201
|
Fabi JP. The connection between gut microbiota and its metabolites with neurodegenerative diseases in humans. Metab Brain Dis 2024; 39:967-984. [PMID: 38848023 DOI: 10.1007/s11011-024-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
The aging of populations is a global phenomenon that follows a possible increase in the incidence of neurodegenerative diseases. Alzheimer's, Parkinson's, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, and Huntington's diseases are some neurodegenerative disorders that aging could initiate or aggravate. Recent research has indicated that intestinal microbiota dysbiosis can trigger metabolism and brain functioning, contributing to the etiopathogenesis of those neurodegenerative diseases. The intestinal microbiota and its metabolites show significant functions in various aspects, such as the immune system modulation (development and maturation), the maintenance of the intestinal barrier integrity, the modulation of neuromuscular functions in the intestine, and the facilitation of essential metabolic processes for both the microbiota and humans. The primary evidence supporting the connection between intestinal microbiota and its metabolites with neurodegenerative diseases are epidemiological observations and animal models experimentation. This paper reviews up-to-date evidence on the correlation between the microbiota-gut-brain axis and neurodegenerative diseases, with a specially focus on gut metabolites. Dysbiosis can increase inflammatory cytokines and bacterial metabolites, altering intestinal and blood-brain barrier permeability and causing neuroinflammation, thus facilitating the pathogenesis of neurodegenerative diseases. Clinical data supporting this evidence still needs to be improved. Most of the works found are descriptive and associated with the presence of phyla or species of bacteria with neurodegenerative diseases. Despite the limitations of recent research, the potential for elucidating clinical questions that have thus far eluded clarification within prevailing pathophysiological frameworks of health and disease is promising through investigation of the interplay between the host and microbiota.
Collapse
Affiliation(s)
- João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508000, SP, Brazil.
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, 05508080, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, 05508080, SP, Brazil.
| |
Collapse
|
202
|
Gao X, Zhang J, Ma B, Liu L, Gao H. Tongue Acupuncture to Treat Dysphagia in Patients with Parkinson's Disease: A Randomized Controlled Trial. Med Acupunct 2024; 36:137-145. [PMID: 39139365 PMCID: PMC11317795 DOI: 10.1089/acu.2023.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Objective Parkinson's disease (PD) is a chronic degenerative disease that lacks specific treatment. The incidence of dysphagia in patients with PD is 35%-82%. Dysphagia not only affects nutritional intake but also leads to pneumonia, even asphyxia. This study explored the efficacy of tongue acupuncture for treating dysphagia in patients with PD. Materials and Methods From March 2021 to June 2023, 64 patients with PD-related dysphagia were chosen from Qingdao Central Hospital and the Affiliated Hospital of Qingdao Binhai University, both in Qindao, Shandong, China. The patients were divided into a tongue acupuncture group (n = 32) and a control group (n = 32). The control group was treated with a VitalStim® 5900 Swallowing Disorder Therapeutic Instrument (CA, USA), and the tongue acupuncture group had tongue acupuncture at Juquan (Ex-HN-10) and Haiquan (Ex-HN-11). Swallowing function and nutritional conditions were compared between the 2 groups after all treatments. Results The total clinical effective rate in the tongue acupuncture group was higher than that of the control group (P < 0.05). The proportion of grade 1 and grade 2 of the 5-scaled Kubota drinking-water test in the tongue acupuncture group was significantly higher than that in the control group (78.13 % versus 31.26 %; P < 0.05), and the proportion of grade 3, grade 4, and grade 5 was significantly lower than that in the control group (21.87 % versus 68.74 %; P < 0.05). After tongue acupuncture, levels of body mass index, upper-arm circumference, triceps skinfold thickness, hemoglobin, serum albumin, and prealbumin were significantly higher than those in the control group (P < 0.05) and the incidence of complications caused by PD was significantly lower than that in the control group (P < 0.05). Conclusions Treatment of dysphagia in PD by tongue acupuncture significantly improved swallowing function and nutritional level, and decreased the incidence of complications.
Collapse
Affiliation(s)
- Xia Gao
- Department of Acupuncture, Qingdao Central Hospital, and University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, Shandong, China
| | - Jianying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao and Binhai University, Qingdao, Shandong, China
| | - Benxu Ma
- Department of Acupuncture, Qingdao Central Hospital, and University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, Shandong, China
| | - Lili Liu
- Department of Pathology, Qingdao Central Hospital, and University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, Shandong, China
| | - Huanmin Gao
- Department of Neurology, The Affiliated Hospital of Qingdao and Binhai University, Qingdao, Shandong, China
| |
Collapse
|
203
|
Ma LY, Jia B, Geng H, Liang J, Huo L. Poly(rC)-binding protein 1 alleviates neurotoxicity in 6-OHDA-induced SH-SY5Y cells and modulates glial cells in neuroinflammation. Brain Res 2024; 1832:148863. [PMID: 38492841 DOI: 10.1016/j.brainres.2024.148863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a debilitating neurodegenerative condition characterized by the loss of dopaminergic neurons and neuroinflammation. Previous research has identified the involvement of Poly (rC)-binding protein 1 (PCBP1) in certain degenerative diseases; however, its specific mechanisms in PD remain incompletely understood. METHODS In this study, 6-OHDA-induced neurotoxicity in the cell lines SH-SY5Y, BV-2 and HA, was used to evaluate the protective effects of PCBP1. We assessed alterations in BDNF levels in SY5Y cells, changes in GDNF expression in glial cells, as well as variations in HSP70 and NF-κB activation. Additionally, glial cells were used as the in vitro model for neuroinflammation mechanisms. RESULTS The results indicate that the overexpression of PCBP1 significantly enhances cell growth compared to the control plasmid pEGFP/N1 group. Overexpression of PCBP1 leads to a substantial reduction in early apoptosis rates in SH-SY5Y, HA, and BV-2 cells, with statistically significant differences (p < 0.05). Furthermore, the overexpression of PCBP1 in cells results in a marked increase in the expression of HSP70, GDNF, and BDNF, while reducing NF-κB expression. Additionally, in SH-SY5Y, HA, and BV-2 cells overexpressing PCBP1, there is a decrease in the inflammatory factor IL-6 compared to the control plasmid pEGFP/N1 group, while BV-2 cells exhibit a significant increase in the anti-inflammatory factor IL-10. CONCLUSION Our findings suggest that PCBP1 plays a substantial role in promoting cell growth and modulating the balance of neuroprotective and inflammatory factors. These results offer valuable insights into the potential therapeutic utility of PCBP1 in mitigating neuroinflammation and enhancing neuronal survival in PD.
Collapse
Affiliation(s)
- Ling-Yun Ma
- Central Laboratory, Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Bingbing Jia
- Central Laboratory, Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, China; Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Haoming Geng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiantao Liang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lirong Huo
- Central Laboratory, Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
204
|
Loughlin H, Jackson J, Looman C, Starll A, Goldman J, Shan Z, Yu C. Aerobic exercise improves depressive symptoms in the unilateral 6-OHDA-lesioned rat model of Parkinson's disease. IBRO Neurosci Rep 2024; 16:468-475. [PMID: 38560366 PMCID: PMC10981038 DOI: 10.1016/j.ibneur.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Aerobic exercise has been shown to have established benefits on motor function in Parkinson's disease (PD). However, the impact of exercise on depressive symptoms in PD remains unclear. This study aimed to investigate the effects of regular exercise, specifically using a forced running wheel, on both motor performance and the prevalence of depression in a unilateral 6-OHDA-lesioned rat model of PD. The behavioral outcomes of exercise were assessed through the rotarod test (RT), forelimb adjusting step test (FAST), sucrose consumption test (SCT), and novelty sucrose splash test (NSST). Our data revealed evident depressive symptoms in the PD animals, characterized by reduced sucrose consumption in the SCT and diminished exploratory activity in the NSST compared to the naïve control group. Specifically, after 11 weeks of exercise, the PD exercise group demonstrated the most significant improvements in sucrose consumption in the SCT. Additionally, this group exhibited reduced immobility and increased exploratory behavior compared to the PD control group in the NSST. Furthermore, the PD exercise group displayed the greatest improvement in correcting forelimb stepping bias. Our results suggested that a regimen of running wheel exercise enhances motor abilities and mitigates the occurrence of depressive behaviors caused by 6-OHDA dopamine depletion in the PD rat model.
Collapse
Affiliation(s)
- Hannah Loughlin
- Department of Biomedical Engineering, Michigan Technological University, United States
| | - Jacob Jackson
- Department of Biomedical Engineering, Michigan Technological University, United States
| | - Chloe Looman
- Department of Biomedical Engineering, Michigan Technological University, United States
| | - Alayna Starll
- Department of Biomedical Engineering, Michigan Technological University, United States
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, United States
| | - Chunxiu Yu
- Department of Biomedical Engineering, Michigan Technological University, United States
| |
Collapse
|
205
|
Bao X, He Y, Huang L, Li H, Li Q, Huang Y. Sinomenine exerts a neuroprotective effect on PD mouse model through inhibiting PI3K/AKT/mTOR pathway to enhance autophagy. Int J Neurosci 2024; 134:301-309. [PMID: 35815397 DOI: 10.1080/00207454.2022.2100780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Parkinson's disease (PD), as a chronic and progressive neurodegenerative disease, is associated with autophagy. This study focused on the regulation of sinomenine (SN) on autophagy in PD and its related mechanism. METHODS The PD mouse model was constructed by MPTP inducement, and the mouse motor function after modeling and SN treatment was examined by rotarod, grip strength, and foot printing tests. Tyrosine hydroxylase (TH)/LC3B-positive neurons in the substantia nigra pars compacta of mouse brains were detected by immunofluorescence. The expressions of proteins related to autophagy (Beclin1, p62, LC3-I and LC3-II) and phosphorylated phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin kinase (mTOR) signaling pathway were measured by western blot. Rescue experiments were performed to determine the effects of MHY1485 (mTOR activator) on SN-treated PD mice. RESULTS SN potentiated the motor ability in PD mice, promoted the survival of dopaminergic neurons, increased the protein expression level of Beclin1, LC3-II/LC3-I ratio and LC3B-positive neurons, lowered the protein expression level of p62 and inactivated PI3K/AKT/mTOR pathway in the substantia nigra tissue of mouse brains. Moreover, MHY1485 reversed the above effects of SN on PD mice via reactivating PI3K/AKT/mTOR pathway. CONCLUSION SN augments the autophagy of dopaminergic neurons via inhibiting the PI3K/AKT/mTOR pathway and exerts a neuroprotective effect on PD mice.
Collapse
Affiliation(s)
- Xi Bao
- Department of Geriatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yingchun He
- Department of Geriatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lin Huang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haichang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiang Li
- Department of Geriatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yun Huang
- Department of Chinese Medicine Gynecology, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
206
|
Morton A, Fraser H, Green C, Drovandi A. Effectiveness of Deep Brain Stimulation in Improving Balance in Parkinson's Disease: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 186:242-251.e3. [PMID: 38608807 DOI: 10.1016/j.wneu.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Balance dysfunction is a debilitating feature of advanced Parkinson's disease (PD), potentially improved by deep brain stimulation (DBS). This systematic review and meta-analysis pooled evidence from randomized controlled trials (RCTs) on DBS effectiveness in improving balance in PD. METHODS A systematic search was conducted to identify eligible RCTs investigating the effectiveness of DBS on improving balance in people with PD. Meta-analysis was performed using random effects models and reported as mean difference and 95% confidence intervals. Risk of bias was assessed using Cochrane's ROB-2 tool. RESULTS Seventeen RCTs were eligible (n = 333), utilizing a range of stimulation sites, parameters, reporting tools for balance outcomes, and control/comparator groups, making the identification of clear trends and recommendations difficult. Eleven studies were deemed as having some risk of bias, 4 having low risk of bias and 2 having high risk of bias. One small meta-analysis was conducted and found no significant difference in balance outcomes. Most studies reported no significant improvement in Timed Up-and-Go scores, Berg Balance Scale scores, frequency of falls, and balance-related items of the Movement Disorder Society's Unified Parkinson's Disease Rating Scales. Some studies reported improvements in the Tinetti balance test, posturography readings, and reduction in falls though these were not supported by other studies due to a lack of reporting on these items or conflicting findings. CONCLUSIONS Current research suggests that DBS results in no significant improvement in balance dysfunction for people with PD, though such assertions require larger RCTs with clear reporting methods using validated reporting tools.
Collapse
Affiliation(s)
- Amy Morton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Holly Fraser
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Chloe Green
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Aaron Drovandi
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
207
|
Contreras-Ruston F, Castillo-Allendes A, Saavedra-Garrido J, Ochoa-Muñoz AF, Hunter EJ, Kotz SA, Navarra J. Voice self-assessment in individuals with Parkinson's Disease as compared to general voice disorders. Parkinsonism Relat Disord 2024; 123:106944. [PMID: 38552350 DOI: 10.1016/j.parkreldis.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Individuals with Parkinson's Disease (IwPD) often fail to adjust their voice in different situations, without awareness of this limitation. Clinicians use self-report questionnaires that are typically designed for individuals with General Voice Disorders (GVD) in the vocal assessment of IwPD. However, these instruments may not consider that IwPD have a reduced self-perception of their vocal deficits. This study aimed to compare self-reported vocal symptoms and voice loudness between IwPD and GVD. METHODS 28 IwPD and 26 with GVD completed the Voice Symptom Scale (VoiSS) questionnaire to evaluate their voice self-perception. Vocal loudness (dB) was also assessed. Univariate and multivariate analyses were used to compare the outcomes from these measures between the two groups. Principal Component Analysis and Hierarchical Clustering Analysis were applied to explore data patterns related to voice symptoms. RESULTS IwPD reported significantly fewer vocal symptoms than those with GVD in all VoiSS questionnaire domains. Multivariate principal component analysis found no significant correlations between VoiSS scores and participant similarities in voice measures. Despite experiencing hypophonia, IwPD scored lower in all VoiSS domains but still fell in the healthy voice range. Hierarchical Clustering Analysis grouped participants into three distinct categories, primarily based on age, vocal loudness, and VoiSS domain scores, distinguishing between PD and GVD individuals. CONCLUSIONS IwPD reported fewer vocal symptoms than GVD. The voice self-assessment seems to be unreliable to assess vocal symptoms in IwPD, at least regarding loudness. New self-report instruments tailored to PD individuals are needed due to their particular voice characteristics.
Collapse
Affiliation(s)
- Francisco Contreras-Ruston
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Faculty of Psychology and Neuroscience, Department of Neuropsychology & Psychopharmacology, Maastricht University, 6229 ER, Maastricht, the Netherlands; Speech-Language Pathology and Audiology Department - Universidad de Valparaíso, San Felipe, Chile.
| | - Adrián Castillo-Allendes
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA; Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Jorge Saavedra-Garrido
- Institute of Statistics, University of Valparaíso, Faculty of Science, Valparaíso, Chile; Department of Meteorology, University of Valparaíso, Valparaíso, Chile
| | - Andrés Felipe Ochoa-Muñoz
- Institute of Statistics, University of Valparaíso, Faculty of Science, Valparaíso, Chile; School of Statistics, Universidad del Valle, Cali, Colombia
| | - Eric J Hunter
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Department of Neuropsychology & Psychopharmacology, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Jordi Navarra
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
208
|
Hu W, Wang M, Sun G, Zhang L, Lu H. Early B Cell Factor 3 (EBF3) attenuates Parkinson's disease through directly regulating contactin-associated protein-like 4 (CNTNAP4) transcription: An experimental study. Cell Signal 2024; 118:111139. [PMID: 38479556 DOI: 10.1016/j.cellsig.2024.111139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Parkinson's disease (PD) is a gradually debilitating neurodegenerative syndrome. Here, we analyzed GSE7621 chip data obtained from the Gene Expression Omnibus (GEO) database to explore the pathogenesis of PD. Early B Cell Factor 3 (EBF3), a member of the highly evolutionarily conserved EBF-transcription factor family, is involved in neuronal development. EBF3 expression is low in the substantia nigra of patients with PD. However, whether EBF3 is implicated in dopaminergic neuron death during PD has not yet been investigated. Therefore, we aimed to reveal the potential anti-apoptotic effect and molecular mechanism of EBF3 in PD. We established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model in vivo and a 1-methyl-4-phenylpyridine (MPP+)-induced SH-SY5Y cell model in vitro. EBF3 was downregulated in the substantia nigra of PD mice and SH-SY5Y cells treated with MPP+, and the m6A methylation modification level was low. Fat mass and obesity-associated protein (FTO) siRNA upregulated m6A methylation modification of EBF3 and extended the EBF3 mRNA half-life. Functionally, as demonstrated by the results of the open-field test, pole test and gait analysis, EBF3 overexpression ameliorated MPTP-induced behavioral disorder. Further, EBF3 overexpression suppressed neuronal apoptosis in vivo, as evidenced by decreased TUNEL+ cells, and the increased activation of caspase-3 and caspase-9. Similar results were obtained in vitro, as reflected by increased cell viability, decreased LDH activity and restored mitochondrial function, collectively protecting SH-SY5Y cells from MPP+-induced apoptosis. Mechanistically, the results of luciferase reporter, ch-IP and DNA pull-down assays confirmed that, as a transcription factor, EBF3 bound to the promoter of CNTNAP4 (a protein associated with neuronal differentiation) and directly regulated CNTNAP4 transcription. Strikingly, CNTNAP4 knockdown markedly abolished the effect of EBF3 on cell apoptosis, thus aggravating PD. In conclusion, the low level of m6A methylation modification may contribute to the low expression of EBF3 during PD. Additionally, EBF3 attenuates PD by activating CNTNAP4 transcription, suggesting that EBF3 may be a novel therapeutic target in PD.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Menghan Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guifang Sun
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Limin Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong Lu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
209
|
Naimi N, Seyedmirzaei H, Hassannejad Z, Soltani Khaboushan A. Advanced nanoparticle strategies for optimizing RNA therapeutic delivery in neurodegenerative disorders. Biomed Pharmacother 2024; 175:116691. [PMID: 38713941 DOI: 10.1016/j.biopha.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
Neurodegenerative diseases affect many people worldwide, and as the population ages, the incidence of these conditions increases. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative disorders worldwide. Different medicines are being used to control symptoms related to these conditions, but no treatment has yet been approved. Both genetic and environmental factors are involved in disease pathogenesis, and research on the pathophysiological pathways is still ongoing. The role of subcellular pathways and dysregulation in RNA pathways has been highlighted in pathophysiological studies, and treatment strategies focused on these pathways can be a promising approach. Many experiments have been conducted on delivering RNA cargo to the CNS to modulate various pathways involved. Yet another challenge to be faced is the effective transport of desired molecules to targets, which can be greatly hindered by distinct barriers limiting transport to the CNS, most noticeably the blood-brain barrier (BBB). Nanotechnology and the use of different nano-carriers for the delivery of nucleotides, peptides, proteins, and drug molecules are currently of great interest as these carriers help with better delivery and protection and, as a result, improve the effectiveness of the cargo. Nanocarriers can protect susceptible RNA molecules from possible degradation or destruction and improve their ability to reach the brain by enhancing BBB penetration. Different mechanisms for this process have been hypothesized. This review will go through the therapeutic application of RNA molecules in the treatment of AD and PD and the role of nanocarriers in overcoming delivery challenges and enhancing efficacy.
Collapse
Affiliation(s)
- Narges Naimi
- Departement of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Homa Seyedmirzaei
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
210
|
Zhao YD, Zhang W, Xing LZ, Xu J, Shi WM, Zhang YX. In vitro inhibition of α-Synuclein aggregation and disaggregation of preformed fibers by polyphenol hybrids with 2-conjugated benzothiazole. Bioorg Med Chem Lett 2024; 105:129752. [PMID: 38631541 DOI: 10.1016/j.bmcl.2024.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
The misfolding and aggregation of α-Syn play a pivotal role in connecting diverse pathological pathways in Parkinson's disease (PD). Preserving α-Syn proteostasis and functionality by inhibiting its aggregation or disaggregating existing aggregates using suitable inhibitors represents a promising strategy for PD prevention and treatment. In this study, a series of benzothiazole-polyphenol hybrids was designed and synthesized. Three identified compounds exhibited notable inhibitory activities against α-Syn aggregation in vitro, with IC50 values in the low micromolar range. These inhibitors demonstrated sustained inhibitory effects throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation. Moreover, the compounds effectively disintegrated preformed α-Syn oligomers and fibers, potentially by binding to specific domains within the fibers, inducing fibril instability, collapse, and ultimately resulting in smaller-sized aggregates and monomers. These findings offer valuable insights into the therapeutic potential of polyphenol hybrids with 2-conjugated benzothiazole targeting α-Syn aggregation in the treatment of PD.
Collapse
Affiliation(s)
- Ya-Dong Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Wei Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Li-Zi Xing
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ji Xu
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China.
| | - Wei-Min Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| |
Collapse
|
211
|
Xie S, Peng P, Dong X, Yuan J, Liang J. Novel gene signatures predicting and immune infiltration analysis in Parkinson's disease: based on combining random forest with artificial neural network. Neurol Sci 2024; 45:2681-2696. [PMID: 38265536 DOI: 10.1007/s10072-023-07299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, and its incidence is rapidly rising. The diagnosis of PD relies on clinical characteristics. Although current treatments aim to alleviate symptoms, they do not effectively halt the disease's progression. Early detection and intervention hold immense importance. This study aimed to establish a new PD diagnostic model. METHODS Data from a public database were adopted for the construction and validation of a PD diagnostic model with random forest and artificial neural network models. The CIBERSORT platform was applied for the evaluation of immune cell infiltration in PD. Quantitative real-time PCR was performed to verify the accuracy and reliability of the bioinformatics analysis results. RESULTS Leveraging existing gene expression data from the Gene Expression Omnibus (GEO) database, we sifted through differentially expressed genes (DEGs) in PD and identified 30 crucial genes through a random forest classifier. Furthermore, we successfully designed a novel PD diagnostic model using an artificial neural network and verified its diagnostic efficacy using publicly available datasets. Our research also suggests that mast cells may play a significant role in the onset and progression of PD. CONCLUSION This work developed a new PD diagnostic model with machine learning techniques and suggested the immune cells as a potential target for PD therapy.
Collapse
Affiliation(s)
- Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Genetic Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Pei Peng
- Department of Medicine Oncology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, China
| | - Xingcheng Dong
- Department of Orthopedics, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, China
| | - Junxing Yuan
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), No. 818 Renmin Road, Changde, 415000, Hunan, China
| | - Ji Liang
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), No. 818 Renmin Road, Changde, 415000, Hunan, China.
| |
Collapse
|
212
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
213
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
214
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
215
|
Lumpkin CJ, Patel H, Potts GK, Chaurasia S, Gibilisco L, Srivastava GP, Lee JY, Brown NJ, Amarante P, Williams JD, Karran E, Townsend M, Woods D, Ravikumar B. Broad proteomics analysis of seeding-induced aggregation of α-synuclein in M83 neurons reveals remodeling of proteostasis mechanisms that might contribute to Parkinson's disease pathogenesis. Mol Brain 2024; 17:26. [PMID: 38778381 PMCID: PMC11110445 DOI: 10.1186/s13041-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Aggregation of misfolded α-synuclein (α-syn) is a key characteristic feature of Parkinson's disease (PD) and related synucleinopathies. The nature of these aggregates and their contribution to cellular dysfunction is still not clearly elucidated. We employed mass spectrometry-based total and phospho-proteomics to characterize the underlying molecular and biological changes due to α-syn aggregation using the M83 mouse primary neuronal model of PD. We identified gross changes in the proteome that coincided with the formation of large Lewy body-like α-syn aggregates in these neurons. We used protein-protein interaction (PPI)-based network analysis to identify key protein clusters modulating specific biological pathways that may be dysregulated and identified several mechanisms that regulate protein homeostasis (proteostasis). The observed changes in the proteome may include both homeostatic compensation and dysregulation due to α-syn aggregation and a greater understanding of both processes and their role in α-syn-related proteostasis may lead to improved therapeutic options for patients with PD and related disorders.
Collapse
Affiliation(s)
- Casey J Lumpkin
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Hiral Patel
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
| | - Gregory K Potts
- Discovery Research, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Shilpi Chaurasia
- Excelra Knowledge Solutions Pvt Ltd, Uppal, Hyderabad, India, 500039
| | - Lauren Gibilisco
- Genomics Research Center, Computational Biology Neuroscience, AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Gyan P Srivastava
- Data & Statistical Sciences, AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Janice Y Lee
- Discovery Research, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Nathan J Brown
- Biotherapeutics, AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Patricia Amarante
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
| | - Jon D Williams
- Discovery Research, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Eric Karran
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
| | - Matthew Townsend
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
| | - Dori Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA.
| | - Brinda Ravikumar
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA.
| |
Collapse
|
216
|
Furlepa M, Zhang YP, Lobanova E, Kahanawita L, Vivacqua G, Williams-Gray CH, Klenerman D. Single-molecule characterization of salivary protein aggregates from Parkinson's disease patients: a pilot study. Brain Commun 2024; 6:fcae178. [PMID: 38863577 PMCID: PMC11166177 DOI: 10.1093/braincomms/fcae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Saliva is a convenient and accessible biofluid that has potential as a future diagnostic tool for Parkinson's disease. Candidate diagnostic tests for Parkinson's disease to date have predominantly focused on measurements of α-synuclein in CSF, but there is a need for accurate tests utilizing more easily accessible sample types. Prior studies utilizing saliva have used bulk measurements of salivary α-synuclein to provide diagnostic insight. Aggregate structure may influence the contribution of α-synuclein to disease pathology. Single-molecule approaches can characterize the structure of individual aggregates present in the biofluid and may, therefore, provide greater insight than bulk measurements. We have employed an antibody-based single-molecule pulldown assay to quantify salivary α-synuclein and amyloid-β peptide aggregate numbers and subsequently super-resolved captured aggregates using direct Stochastic Optical Reconstruction Microscopy to describe their morphological features. We show that the salivary α-synuclein aggregate/amyloid-β aggregate ratio is increased almost 2-fold in patients with Parkinson's disease (n = 20) compared with controls (n = 20, P < 0.05). Morphological information also provides insight, with saliva from patients with Parkinson's disease containing a greater proportion of larger and more fibrillar amyloid-β aggregates than control saliva (P < 0.05). Furthermore, the combination of count and morphology data provides greater diagnostic value than either measure alone, distinguishing between patients with Parkinson's disease (n = 17) and controls (n = 18) with a high degree of accuracy (area under the curve = 0.87, P < 0.001) and a larger dynamic range. We, therefore, demonstrate for the first time the application of highly sensitive single-molecule imaging techniques to saliva. In addition, we show that aggregates present within saliva retain relevant structural information, further expanding the potential utility of saliva-based diagnostic methods.
Collapse
Affiliation(s)
- Martin Furlepa
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Yu P Zhang
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| | - Evgeniia Lobanova
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| | - Lakmini Kahanawita
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Giorgio Vivacqua
- Microscopic and Ultrastructural Anatomy Research Unit-Integrated Research Centre (PRABB), Campus Biomedico University of Rome, 00128 Rome, Italy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| | | | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
217
|
Tao X, Zhang W, Chen C, Tao Y, Tao Y, Chen Z, Zhang G. miR-101a-3p/ROCK2 axis regulates neuronal injury in Parkinson's disease models. Aging (Albany NY) 2024; 16:8732-8746. [PMID: 38775730 PMCID: PMC11164493 DOI: 10.18632/aging.205836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). This study focuses on deciphering the role of microRNA (miR)-101a-3p in the neuronal injury of PD and its regulatory mechanism. METHODS We constructed a mouse model of PD by intraperitoneal injection of 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP), and used 1-methyl-4-phenylpyridinium (MPP+) to treat Neuro-2a cells to construct an in-vitro PD model. Neurological dysfunction in mice was evaluated by swimming test and traction test. qRT-PCR was utilized to examine miR-101a-3p expression and ROCK2 expression in mouse brain tissues and Neuro-2a cells. Western blot was conducted to detect the expression of α-synuclein protein and ROCK2 in mouse brain tissues and Neuro-2a cells. The targeting relationship between miR-101a-3p and ROCK2 was determined by dual-luciferase reporter gene assay. The apoptosis of neuro-2a cells was assessed by flow cytometry. RESULTS Low miR-101a-3p expression and high ROCK2 expression were found in the brain tissues of PD mice and MPP+-treated Neuro-2a cells; PD mice showed decreased neurological disorders, and apoptosis of Neuro-2a cells was increased after MPP+ treatment, both of which were accompanied by increased accumulation of α-synuclein protein. After miR-101a-3p was overexpressed, the neurological function of PD mice was improved, and the apoptosis of Neuro-2a cells induced by MPP+ was alleviated, and the accumulation of α-synuclein protein was reduced; ROCK2 overexpression counteracted the protective effect of miR-101a-3p. Additionally, ROCK2 was identified as the direct target of miR-101a-3p. CONCLUSION MiR-101a-3p can reduce neuronal apoptosis and neurological deficit in PD mice by inhibiting ROCK2 expression, suggesting that miR-101a-3p is a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenfei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chen Chen
- Department of Orthodontics, Wuhan First Stomatological Hospital, Wuhan, Hubei 430060, China
| | - Yang Tao
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yun Tao
- Department of Stomatology, Wuhan Central Hospital, Wuhan, Hubei 430060, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ge Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
218
|
Barakati T, Ghafari ES, Niakan S, Humkar O, Shadab H, Ehsan H. Clinical Report on an Implant-Supported Overdenture in a Parkinson's Patient. Clin Cosmet Investig Dent 2024; 16:145-152. [PMID: 38798739 PMCID: PMC11122263 DOI: 10.2147/ccide.s462756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Speaking, chewing, and swallowing difficulties can result from Parkinson's disease (PD), which frequently affects the oro-pharyngeal muscles. The reduction in food and hydration intake that is unavoidable leads to a worsening of neurological symptoms. Patients with Parkinson's disease experience significant challenges when adjusting to wearing entire dentures. Each of these problems presents a considerable challenge for the doctor in terms of prosthodontic rehabilitation. This case study describes how a patient with Parkinson's disease was able to employ flexible removable partial dentures supported by implants to replace both their full and partial set of missing teeth. A well-made prosthesis will help the patient with their psychological, functional, and aesthetic impairments.
Collapse
Affiliation(s)
- Tamana Barakati
- Research Department, Queen Mary University of London, London, UK
| | - Elaha Somaya Ghafari
- Department of Periodontology, Kabul University of Medical Science, Kabul, Afghanistan
| | - Somayeh Niakan
- Department of Prosthodontics, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Humkar
- Oral Medicine Department, Noman Sadat Institute of Higher Education, Kabul, Afghanistan
| | - Hasina Shadab
- Department of Periodontology, Kabul University of Medical Science, Kabul, Afghanistan
| | | |
Collapse
|
219
|
Cardinale A, de Iure A, Picconi B. Neuroinflammation and Dyskinesia: A Possible Causative Relationship? Brain Sci 2024; 14:514. [PMID: 38790492 PMCID: PMC11118841 DOI: 10.3390/brainsci14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Levodopa (L-DOPA) treatment represents the gold standard therapy for Parkinson's disease (PD) patients. L-DOPA therapy shows many side effects, among them, L-DOPA-induced dyskinesias (LIDs) remain the most problematic. Several are the mechanisms underlying these processes: abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events, changes in gene expression, and altered plasticity. In recent years, researchers have also suggested non-neuronal mechanisms as a possible cause for LIDs. We reviewed recent clinical and pre-clinical studies on neuroinflammation contribution to LIDs. Microglia and astrocytes seem to play a strategic role in LIDs phenomenon. In particular, their inflammatory response affects neuron-glia communication, synaptic activity and neuroplasticity, contributing to LIDs development. Finally, we describe possible new therapeutic interventions for dyskinesia prevention targeting glia cells.
Collapse
Affiliation(s)
- Antonella Cardinale
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Antonio de Iure
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| |
Collapse
|
220
|
Altham C, Zhang H, Pereira E. Machine learning for the detection and diagnosis of cognitive impairment in Parkinson's Disease: A systematic review. PLoS One 2024; 19:e0303644. [PMID: 38753740 PMCID: PMC11098383 DOI: 10.1371/journal.pone.0303644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Parkinson's Disease is the second most common neurological disease in over 60s. Cognitive impairment is a major clinical symptom, with risk of severe dysfunction up to 20 years post-diagnosis. Processes for detection and diagnosis of cognitive impairments are not sufficient to predict decline at an early stage for significant impact. Ageing populations, neurologist shortages and subjective interpretations reduce the effectiveness of decisions and diagnoses. Researchers are now utilising machine learning for detection and diagnosis of cognitive impairment based on symptom presentation and clinical investigation. This work aims to provide an overview of published studies applying machine learning to detecting and diagnosing cognitive impairment, evaluate the feasibility of implemented methods, their impacts, and provide suitable recommendations for methods, modalities and outcomes. METHODS To provide an overview of the machine learning techniques, data sources and modalities used for detection and diagnosis of cognitive impairment in Parkinson's Disease, we conducted a review of studies published on the PubMed, IEEE Xplore, Scopus and ScienceDirect databases. 70 studies were included in this review, with the most relevant information extracted from each. From each study, strategy, modalities, sources, methods and outcomes were extracted. RESULTS Literatures demonstrate that machine learning techniques have potential to provide considerable insight into investigation of cognitive impairment in Parkinson's Disease. Our review demonstrates the versatility of machine learning in analysing a wide range of different modalities for the detection and diagnosis of cognitive impairment in Parkinson's Disease, including imaging, EEG, speech and more, yielding notable diagnostic accuracy. CONCLUSIONS Machine learning based interventions have the potential to glean meaningful insight from data, and may offer non-invasive means of enhancing cognitive impairment assessment, providing clear and formidable potential for implementation of machine learning into clinical practice.
Collapse
Affiliation(s)
- Callum Altham
- Department of Computer Science, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Huaizhong Zhang
- Department of Computer Science, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Ella Pereira
- Department of Computer Science, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| |
Collapse
|
221
|
Bonde-Jensen F, Dalgas U, Langeskov-Christensen M. Are physical activity levels, cardiorespiratory fitness and peak power associated with Parkinson's disease severity? J Neurol Sci 2024; 460:122996. [PMID: 38615406 DOI: 10.1016/j.jns.2024.122996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Increased physical activity (PA) may slow Parkinson's disease (PD) progression. Associations between markers of PA and PD severity could justify further studies evaluating interventions increasing PA levels in PD. The objectives of the present study were to assess associations between PA, cardiorespiratory fitness (VO2-max), and muscle peak power and measures of the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS), the Parkinson's disease questionnaire-39 (PDQ-39), and the four PD hallmark motor symptoms (rigidity, bradykinesia, postural instability, and tremor). METHODS Data from 105 people with PD were used. PA was measured for seven consecutive days using accelerometers. Peak power was measured with a linear encoder during a chair rise test, while VO2-max was directly assessed during a graded bicycle test. Analyses included simple and multiple linear regression and hurdle exponential regression. RESULTS PA was weakly to moderately associated with MDS-UPDRS II + III, rigidity, bradykinesia, and postural instability, as well as PDQ-39 mobility and activities of daily living sub-scores. VO2-max and peak power were weakly to moderately associated with MDS-UPDRS III, bradykinesia, and postural instability, while peak power was further weakly associated with the MDS-UPDRS II. Lastly, VO2-max was associated with PDQ-39 mobility and activities of daily living sub-scores. CONCLUSION PA, VO2-max, and peak power were associated with PD severity, thus highlighting the potential benefits of a physically active lifestyle. Furthermore, PA and VO2-max were associated with PDQ-39 sub-scores. This calls for confirmation of the potential effect of PA on quality of life in PD.
Collapse
Affiliation(s)
- Frederik Bonde-Jensen
- Exercise Biology, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark.
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000 Aarhus C, Denmark
| | - Martin Langeskov-Christensen
- Department of Neurology, Viborg Regional Hospital, Heibergs Alle 2, 8800 Viborg, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200 Aarhus N, Denmark
| |
Collapse
|
222
|
Yuzkan S, Hasimoglu O, Balsak S, Mutlu S, Karagulle M, Kose F, Altinkaya A, Tugcu B, Kocak B. Utility of diffusion tensor imaging and generalized q-sampling imaging for predicting short-term clinical effect of deep brain stimulation in Parkinson's disease. Acta Neurochir (Wien) 2024; 166:217. [PMID: 38748304 PMCID: PMC11096246 DOI: 10.1007/s00701-024-06096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE To assess whether diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI) metrics could preoperatively predict the clinical outcome of deep brain stimulation (DBS) in patients with Parkinson's disease (PD). METHODS In this single-center retrospective study, from September 2021 to March 2023, preoperative DTI and GQI examinations of 44 patients who underwent DBS surgery, were analyzed. To evaluate motor functions, the Unified Parkinson's Disease Rating Scale (UPDRS) during on- and off-medication and Parkinson's Disease Questionnaire-39 (PDQ-39) scales were used before and three months after DBS surgery. The study population was divided into two groups according to the improvement rate of scales: ≥ 50% and < 50%. Five target regions, reported to be affected in PD, were investigated. The parameters having statistically significant difference were subjected to a receiver operating characteristic (ROC) analysis. RESULTS Quantitative anisotropy (qa) values from globus pallidus externus, globus pallidus internus (qa_Gpi), and substantia nigra exhibited significant distributional difference between groups in terms of the improvement rate of UPDRS-3 scale during on-medication (p = 0.003, p = 0.0003, and p = 0.0008, respectively). In ROC analysis, the best parameter in predicting DBS response included qa_Gpi with a cut-off value of 0.01370 achieved an area under the ROC curve, accuracy, sensitivity, and specificity of 0.810, 73%, 62.5%, and 85%, respectively. Optimal cut-off values of ≥ 0.01864 and ≤ 0.01162 yielded a sensitivity and specificity of 100%, respectively. CONCLUSION The imaging parameters acquired from GQI, particularly qa_Gpi, may have the ability to non-invasively predict the clinical outcome of DBS surgery.
Collapse
Affiliation(s)
| | - Ozan Hasimoglu
- Department of Neurosurgery, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Bezmialem Vakif University Hospital, Istanbul, Turkey
| | - Samet Mutlu
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Mehmet Karagulle
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Fadime Kose
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Ayca Altinkaya
- Department of Neurosurgery, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Bekir Tugcu
- Department of Neurosurgery, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey.
| |
Collapse
|
223
|
Jiang P, Xiao Y, Hu X, Wang C, Gao H, Huang H, Lv J, Qi Z, Wang Z. RVG29 Peptide-Modified Exosomes Loaded with Mir-133b Mediate the RhoA-ROCK Pathway to Improve Motor and Neurological Symptoms in Parkinson's Disease. ACS Biomater Sci Eng 2024; 10:3069-3085. [PMID: 38578110 DOI: 10.1021/acsbiomaterials.3c01622] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Drug delivery to the brain through the blood-brain barrier (BBB) is a significant challenge in PD treatment. Exosomes, which can efficiently traverse the BBB, which many drugs cannot penetrate, are ideal natural carriers for drug delivery. In this study, the BBB shuttle peptide was modified on the exosome surfaces. Three types of exosomes were constructed, each modified with a distinct peptide (RVG29, TAT, or Ang2) and loaded with miR-133b. The safety and brain-targeting capabilities of these peptide-modified exosomes were then evaluated. Finally, the mechanism by which RVG29-Exo-133b regulates the RhoA-ROCK signaling pathway was investigated. The findings indicate that the three peptide-modified exosomes were adequately tolerated, safe, and effectively assimilated in vivo and ex vivo, with RVG29 exhibiting superior targeting to the brain. Furthermore, RVG29-Exo-133b decreased the phosphorylation level of the Tau protein by targeting the RhoA-ROCK signaling pathway. It also enhanced the motor function in mice with PD, thereby reducing the degree of depression, improving dopaminergic neuron function, and attenuating 6-OHDA-induced nerve damage. In this study, we developed a stable drug delivery mechanism that targets the intracerebral region using exosomes. Furthermore, a novel strategy was developed to manage PD and can potentially serve as a preclinical basis for utilizing exosomes in the diagnosis and treatment of neurodegenerative conditions.
Collapse
Affiliation(s)
- Peng Jiang
- Medical College, Guangxi University, Nanning 530021, P. R. China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning530011, P. R. China
| | - Yu Xiao
- Medical College, Guangxi University, Nanning 530021, P. R. China
| | - Xinmei Hu
- Medical College, Guangxi University, Nanning 530021, P. R. China
| | - Cancan Wang
- Medical College, Guangxi University, Nanning 530021, P. R. China
| | - Hongjun Gao
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning530011, P. R. China
| | - Hongri Huang
- Guangxi Taimei Rensheng Biotechnology Co., Ltd., Nanning 530006, P. R. China
| | - Junming Lv
- Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian Campus), Jinjiang 200233, P. R. China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530021, P. R. China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361026, Fujian, P. R. China
| |
Collapse
|
224
|
Bonini LDS, Dos Santos AP, Vitor JDS, Brasolotto AG, Antonetti-Carvalho AE, Silverio KCA. Water Resistance Therapy in Individuals with Parkinson's Disease: A Session-by-Session Analysis of the Vocal Quality. J Voice 2024:S0892-1997(24)00106-1. [PMID: 38735802 DOI: 10.1016/j.jvoice.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Verify session-by-session effects of the water resistance therapy (WRT) on the vocal quality of individuals with Parkinson's disease (PD). METHODS This is a retrospective analytical study. Then, the samples were acquired from a database composed of 10 men aged between 50 and 90 years old diagnosed with PD. The participants underwent WRT with a resonance tube; then, they were guided to perform the following phonatory tasks: comfortable pitch and loudness, high pitch, low pitch, ascending and descending glissandos, and sentence uttering. Furthermore, tube depth ranged from 2 cm to 9 cm. Finally, WRT was implemented twice per week, totaling eight sessions, each lasting 45 minutes. Participants were assessed before and after each therapy session. Hence, the data were assessed with spectrographic analysis, vocal intensity, cepstral peak prominence-smoothed, alpha ratio, L1-L0, oscillatory frequency, and auditory-perceptual assessment of overall degree, roughness, breathiness, and instability. One-way repeated measures analysis of variance and Friedman tests were applied (P < 0.05). Furthermore, Holm-Sidak and Tukey tests were used as posthoc tests. RESULTS After the sixth session, the spectrographic analysis revealed that the tracing color intensity of medium frequencies darkened, whereas a better result could be observed after the eighth session. Regarding vocal intensity, the improvement could be observed from the third session. Additionally, L1-L0 followed the same results. The overall degree auditory-perceptual assessment revealed the best results only after the second, third, and fourth sessions; however, after the eighth session, the instability increased. CONCLUSIONS WRT allowed better results from the third session, with some improvements in the sixth session. However, the instability increased after the eighth session; thus, it is important to review the phonatory tasks and session numbers to avoid an overload in the phonatory system.
Collapse
Affiliation(s)
- Letícia de Souza Bonini
- Speech-Language Pathology and Audiology Department at Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil.
| | - Ana Paula Dos Santos
- Speech-Language Pathology and Audiology Department at Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil.
| | - Jhonatan da Silva Vitor
- Speech-Language Pathology and Audiology Department at Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil.
| | - Alcione Ghedini Brasolotto
- Speech-Language Pathology and Audiology Department at Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil.
| | - Angélica Emygdio Antonetti-Carvalho
- Speech-Language Pathology and Audiology Department at Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil.
| | - Kelly Cristina Alves Silverio
- Speech-Language Pathology and Audiology Department at Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
225
|
Lu C, Cai X, Zhi S, Wen X, Shen J, Ercoli T, Simula ER, Masala C, Sechi LA, Solla P. Exploring the Association between Cathepsin B and Parkinson's Disease. Brain Sci 2024; 14:482. [PMID: 38790460 PMCID: PMC11119263 DOI: 10.3390/brainsci14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE The aim of this study is to investigate the association between Cathepsin B and Parkinson's Disease (PD), with a particular focus on determining the role of N-acetylaspartate as a potential mediator. METHODS We used summary-level data from Genome-Wide Association Studies (GWAS) for a two-sample Mendelian randomization (MR) analysis, exploring the association between Cathepsin B (3301 cases) and PD (4681 cases). A sequential two-step MR approach was applied (8148 cases) to study the role of N-acetylaspartate. RESULTS The MR analysis yielded that genetically predicted elevated Cathepsin B levels correlated with a reduced risk of developing PD (p = 0.0133, OR: 0.9171, 95% CI: 0.8563-0.9821). On the other hand, the analysis provided insufficient evidence to determine that PD affected Cathepsin B levels (p = 0.8567, OR: 1.0035, 95% CI: 0.9666-1.0418). The estimated effect of N-acetylaspartate in this process was 7.52% (95% CI = -3.65% to 18.69%). CONCLUSIONS This study suggested that elevated Cathepsin B levels decreased the risk of developing PD, with the mediation effect of N-acetylaspartate. Further research is needed to better understand this relationship.
Collapse
Affiliation(s)
- Changhao Lu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
| | - Xinyi Cai
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou 515041, China;
| | - Shilin Zhi
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
| | - Xiaofen Wen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China;
| | - Jiaxin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China;
| | - Tommaso Ercoli
- Department of Neurology, University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
| | - Carla Masala
- Department of Biomedical Sciences, University of Cagliari, SP 8 Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Neurology, University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy
| |
Collapse
|
226
|
de Moraes Santos Corrêa É, Christofoletti G, de Souza AS. Effects of Intracerebral Aminophylline Dosing on Catalepsy and Gait in an Animal Model of Parkinson's Disease. Int J Mol Sci 2024; 25:5191. [PMID: 38791229 PMCID: PMC11120906 DOI: 10.3390/ijms25105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD) is a progressive disorder characterized by the apoptosis of dopaminergic neurons in the basal ganglia. This study explored the potential effects of aminophylline, a non-selective adenosine A1 and A2A receptor antagonist, on catalepsy and gait in a haloperidol-induced PD model. Sixty adult male Swiss mice were surgically implanted with guide cannulas that targeted the basal ganglia. After seven days, the mice received intraperitoneal injections of either haloperidol (experimental group, PD-induced model) or saline solution (control group, non-PD-induced model), followed by intracerebral infusions of aminophylline. The assessments included catalepsy testing on the bar and gait analysis using the Open Field Maze. A two-way repeated-measures analysis of variance (ANOVA), followed by Tukey's post hoc tests, was employed to evaluate the impact of groups (experimental × control), aminophylline (60 nM × 120 nM × saline/placebo), and interactions. Significance was set at 5%. The results revealed that the systemic administration of haloperidol in the experimental group increased catalepsy and dysfunction of gait that paralleled the observations in PD. Co-treatment with aminophylline at 60 nM and 120 nM reversed catalepsy in the experimental group but did not restore the normal gait pattern of the animals. In the non-PD induced group, which did not present any signs of catalepsy or motor dysfunctions, the intracerebral dose of aminophylline did not exert any interference on reaction time for catalepsy but increased walking distance in the Open Field Maze. Considering the results, this study highlights important adenosine interactions in the basal ganglia of animals with and without signs comparable to those of PD. These findings offer valuable insights into the neurobiology of PD and emphasize the importance of exploring novel therapeutic strategies to improve patient's catalepsy and gait.
Collapse
Affiliation(s)
| | | | - Albert Schiaveto de Souza
- Faculty of Medicine, Institute of Health, Federal University of Mato Grosso do Sul, UFMS, Campo Grande 79060-900, Brazil; (É.d.M.S.C.); (G.C.)
| |
Collapse
|
227
|
Ai B, Zhang J, Zhang S, Chen G, Tian F, Chen L, Li H, Guo Y, Jerath A, Lin H, Zhang Z. Causal association between long-term exposure to air pollution and incident Parkinson's disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133944. [PMID: 38457975 DOI: 10.1016/j.jhazmat.2024.133944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Epidemiological evidence for long-term air pollution exposure and Parkinson's disease (PD) is controversial, and analysis of causality is limited. We identified 293,888 participants who were free of PD at baseline in the UK Biobank (2006-2010). Time-varying air pollution [fine particulate (PM2.5) and ozone (O3)] exposures were estimated using spatio-temporal models. Incident cases of PD were identified using validated algorithms. Four methods were used to investigate the associations between air pollution and PD, including (1) standard time-varying Cox proportional-hazard model; (2) Cox models weighted by generalized propensity score (GPS) and inverse-probability weights (IPW); (3) instrumental variable (IV) analysis; and (4) negative control outcome analysis. During a median of 11.6 years of follow-up, 1822 incident PD cases were identified. Based on standard Cox regression, the hazard ratios (95% confidence interval) for a 1 µg/m3 or ppb increase in PM2.5 and O3 were 1.23 (1.17, 1.30) and 1.02 (0.98, 1.05), respectively. Consistent results were found in models weighted by GPS and IPW, and in IV analysis. There were no significant associations between air pollution and negative control outcomes. This study provides evidence to support a causal association between PM2.5 exposure and PD. Mitigation of air pollution could be a protective measure against PD.
Collapse
Affiliation(s)
- Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiayue Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haitao Li
- Shenzhen University General Hospital, Shenzhen, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Angela Jerath
- Schulich Heart Program, Sunnybrook Research Institute, Toronto, ON, Canada; ICES, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
228
|
Ameli A, Peña-Castillo L, Usefi H. Assessing the reproducibility of machine-learning-based biomarker discovery in Parkinson's disease. Comput Biol Med 2024; 174:108407. [PMID: 38603902 DOI: 10.1016/j.compbiomed.2024.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Feature selection and machine learning algorithms can be used to analyze Single Nucleotide Polymorphisms (SNPs) data and identify potential disease biomarkers. Reproducibility of identified biomarkers is critical for them to be useful for clinical research; however, genotyping platforms and selection criteria for individuals to be genotyped affect the reproducibility of identified biomarkers. To assess biomarkers reproducibility, we collected five SNPs datasets from the database of Genotypes and Phenotypes (dbGaP) and explored several data integration strategies. While combining datasets can lead to a reduction in classification accuracy, it has the potential to improve the reproducibility of potential biomarkers. We evaluated the agreement among different strategies in terms of the SNPs that were identified as potential Parkinson's disease (PD) biomarkers. Our findings indicate that, on average, 93% of the SNPs identified in a single dataset fail to be identified in other datasets. However, through dataset integration, this lack of replication is reduced to 62%. We discovered fifty SNPs that were identified at least twice, which could potentially serve as novel PD biomarkers. These SNPs are indirectly linked to PD in the literature but have not been directly associated with PD before. These findings open up new potential avenues of investigation.
Collapse
Affiliation(s)
- Ali Ameli
- Department of Computer Science, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada; Department of Biology, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada.
| | - Hamid Usefi
- Department of Computer Science, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada; Department of Mathematics and Statistics, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, A1C5S7, NL, Canada.
| |
Collapse
|
229
|
Thamke V, Suryawanshi S, Aware C, Mali P, Shinde B, Patil D, Rane M, Chaudhari A, Tapase S, Jadhav J. Mucuna laticifera: unprecedented L-dopa content and its role in neurodegenerative and inflammatory conditions. 3 Biotech 2024; 14:126. [PMID: 38585411 PMCID: PMC10994908 DOI: 10.1007/s13205-024-03969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Genus Mucuna encompasses several plant species renowned for their utilization in traditional Ayurvedic medicine for the treatment of Parkinson's disease, chiefly due to their exceptionally high L-dopa content relative to other plants. However, limited information exists regarding Mucuna laticifera, a newly identified species within the Mucuna genus. This study unveils a remarkable L-dopa content of 174.3 mg/g in M. laticifera seeds, surpassing all previously documented Mucuna species. Moreover, this research marks the first documentation of L-dopa, flavonoids, and phenolics within M. laticifera seeds. Furthermore, the aqueous extract derived from these seeds exhibits robust antioxidant properties. Investigation into its anti-inflammatory potential reveals a significant reduction in paw swelling and neutrophil infiltration at inflammatory sites in a carrageenan-induced rat model. Gene expression analysis utilizing a rat paw model demonstrates that the seed extract significantly downregulates the expression of various inflammation-related genes compared to carrageenan-treated rats. Collectively, these findings clearly substantiate the anti-inflammatory activity of M. laticifera seed extract. The exceptional L-dopa content combined with its anti-inflammatory properties position M. laticifera seeds as a promising therapeutic option for neurodegenerative diseases like Parkinson's, as well as various inflammatory conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03969-w.
Collapse
Affiliation(s)
- Viresh Thamke
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Suresh Suryawanshi
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Chetan Aware
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Pratibha Mali
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Balkrishna Shinde
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Devashree Patil
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Manali Rane
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Ashvini Chaudhari
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007 India
| | - Savita Tapase
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| | - Jyoti Jadhav
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004 India
| |
Collapse
|
230
|
Cerutti L, Brofiga M. Unraveling brain diseases: The promise of brain-on-a-chip models. J Neurosci Methods 2024; 405:110105. [PMID: 38460796 DOI: 10.1016/j.jneumeth.2024.110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Brain disorders, encompassing a wide spectrum of neurological and psychiatric conditions, present a formidable challenge in modern medicine. Despite decades of research, the intricate complexity of the human brain still eludes comprehensive understanding, impeding the development of effective treatments. Recent advancements in microfluidics and tissue engineering have led to the development of innovative platforms known as "Brain-on-a-Chip" (BoC) i.e., advanced in vitro systems that aim to replicate the microenvironment of the brain with the highest possible fidelity. This technology offers a promising test-bed for studying brain disorders at the cellular and network levels, providing insights into disease mechanisms, drug screening, and, in perspective, the development of personalized therapeutic strategies. In this review, we provide an overview of the BoC models developed over the years to model and understand the onset and progression of some of the most severe neurological disorders in terms of incidence and debilitation (stroke, Parkinson's, Alzheimer's, and epilepsy). We also report some of the cutting-edge therapeutic approaches whose effects were evaluated by means of these technologies. Finally, we discuss potential challenges, and future perspectives of the BoC models.
Collapse
Affiliation(s)
- Letizia Cerutti
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBIRS), University of Genova, Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBIRS), University of Genova, Genova, Italy; ScreenNeuroPharm s.r.l, Sanremo, Italy; Neurofacility, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
231
|
Zhang C, Bo R, Zhou T, Chen N, Yuan Y. The raphe nuclei are the early lesion site of gastric α-synuclein propagation to the substantia nigra. Acta Pharm Sin B 2024; 14:2057-2076. [PMID: 38799632 PMCID: PMC11119576 DOI: 10.1016/j.apsb.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegeneration disease with α-synuclein accumulated in the substantia nigra pars compacta (SNpc) and most of the dopaminergic neurons are lost in SNpc while patients are diagnosed with PD. Exploring the pathology at an early stage contributes to the development of the disease-modifying strategy. Although the "gut-brain" hypothesis is proposed to explain the underlying mechanism, where the earlier lesioned site in the brain of gastric α-synuclein and how α-synuclein further spreads are not fully understood. Here we report that caudal raphe nuclei (CRN) are the early lesion site of gastric α-synuclein propagating through the spinal cord, while locus coeruleus (LC) and substantia nigra pars compacta (SNpc) were further affected over a time frame of 7 months. Pathological α-synuclein propagation via CRN leads to neuron loss and disordered neuron activity, accompanied by abnormal motor and non-motor behavior. Potential neuron circuits are observed among CRN, LC, and SNpc, which contribute to the venerability of dopaminergic neurons in SNpc. These results show that CRN is the key region for the gastric α-synuclein spread to the midbrain. Our study provides valuable details for the "gut-brain" hypothesis and proposes a valuable PD model for future research on early PD intervention.
Collapse
Affiliation(s)
| | | | - Tiantian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| |
Collapse
|
232
|
Shadkam R, Saadat P, Azadmehr A, Chehrazi M, Daraei A. Key Non-coding Variants in Three Neuroapoptosis and Neuroinflammation-Related LncRNAs Are Protectively Associated with Susceptibility to Parkinson's Disease and Some of Its Clinical Features. Mol Neurobiol 2024; 61:2854-2865. [PMID: 37946005 DOI: 10.1007/s12035-023-03708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Research findings show that genetic susceptibility to sporadic Parkinson's disease (PD), a common neurodegenerative disorder, is determined through gene variation of loci involved in its development and pathogenesis. A growing body of strong evidence has revealed that dysfunction of long non-coding RNAs (lncRNAs) plays key roles in the pathogenesis and progression of PD through impairing neuronal signaling pathways, but little is known about the relationship between their variants and PD susceptibility. In this research, we intended to study the relationship between functional SNPs rs12826786C>T, rs3200401C>T, and rs6931097G>A in the key lncRNAs stimulating neuroapoptosis and neuroinflammation in PD, including HOTAIR, MALAT1, and lincRNA-P21, respectively, with susceptibility to PD as well as its clinical symptoms.The population of this study consisted of 240 individuals, including 120 controls and 120 cases, and the sample taken from them was peripheral blood. Genotyping of the target SNPs was done using PCR-RFLP. We found that the healthy individuals carry more T allele of MALAT1-rs3200401C>T compared to the patients (P= 0.019). Furthermore, it was observed that in the dominant genetic model, subjects with genotypes carrying the T allele have a lower risk of PD (OR= 0.530; CI= 0.296-0.950; P= 0.033). Regarding the lincRNA-P21-rs6931097G>A, we observed a significant protective relationship between its GA (OR= 0.144; CI= 0.030-0.680; P= 0.014) and AA (OR= 0.195; CI= 00.047-0.799; P= 0.023) genotypes with the manifestation of tremor and bradykinesia symptoms, respectively. Furthermore, the findings indicated that the minor TT genotype of HOTAIR-rs12826786C>T was significantly associated with a reduced risk of bradykinesia symptoms (OR= 0.147; CI= 0.039-0.555; P= 0.005). Collectively, these findings suggest that MALAT1-rs3200401C>T may be an important lncRNA SNP against the development of PD, while the other two SNPs show protective effects on the clinical manifestations of PD in a way that lincRNA-P21-rs6931097G>A has a protective effect against the occurrence of tremor and bradykinesia symptoms in PD patients, and HOTAIR -rs12826786C>T indicates a protective effect against the display of bradykinesia feature. Therefore, they can have valuable potential as biomarkers for clinical evaluations of this disease.
Collapse
Affiliation(s)
- Roshanak Shadkam
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Chehrazi
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
233
|
Zhang Y, Liu S, Xu K, Zhou Y, Shen Y, Liu Z, Bai Y, Wang S. Non-pharmacological therapies for treating non-motor symptoms in patients with Parkinson's disease: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1363115. [PMID: 38737585 PMCID: PMC11082280 DOI: 10.3389/fnagi.2024.1363115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/18/2024] [Indexed: 05/14/2024] Open
Abstract
Objective The non-motor symptoms of Parkinson's disease (PD) are an important part of PD. In recent years, more and more non-drug interventions have been applied to alleviate the non-motor symptoms of PD, but the relevant evidence is limited. This systematic review and meta-analysis was designed to evaluate the efficacy of non-drug interventions in patients with non-motor symptoms in patients with PD. Methods Seven databases, including Pubmed, Embease, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang database (WANFANG), VIP database (VIP), and China Biomedical Literature Service System (CBM) were searched from the establishment of the database to December 2023. Non-drug interventions such as acupuncture, cognitive behavioral therapy (CBT), exercise, repetitive transcranial magnetic stimulation (rTMS), and non-motor symptoms of Parkinson's disease were selected as search words, and two independent evaluators evaluated the included literature's bias risk and data extraction. The therapeutic efficacy was evaluated by the Parkinson's Disease Sleep Scale (PDSS), Hamilton Depression Scale (HAMD), Beck Depression Inventory (BDI), Hamilton Anxiety Scale (HAMA), Montreal Cognitive Assessment (MoCA), Minimum Mental State Examination (MMSE), and Parkinson's Disease Questionnaire-39 (PDQ-39). RevMan 5.4.1 (Reviewer Manager Software 5.4.1). Cochrane Collaboration, Oxford, United Kingdom analyzed the data and estimated the average effect and the 95% confidence interval (CI). A heterogeneity test is used to assess differences in the efficacy of different non-drug treatments. Results We selected 36 from 4,027 articles to participate in this meta-analysis, involving 2,158 participants. Our combined results show that: PDSS: [mean difference (MD) = -19.35, 95% CI (-30.4 to -8.28), p < 0.0006]; HAMD: [MD = -2.98, 95% CI (-4.29 to -1.67), p < 0.00001]; BDI: [MD = -2.69, 95% CI (-4.24 to 4.80), p = 0.006]; HAMA: [MD = -2.00, 95% CI (-2.83 to -1.17), p < 0.00001]; MMSE: [MD = 1.20, 95% CI (0.71 to 1.68), p < 0.00001]; CoMA: [MD = 2.10, 95% CI (-0.97 to 3.23), p = 0.0003]; PDQ-39: [MD = -4.03, 95% CI (-5.96 to -1.57), p < 0.00001]. Conclusion The four non-drug measures used in our review showed significant improvements in sleep, depression, anxiety, cognition, constipation, and quality of life compared with the control group, and no serious adverse events were reported in the included research evidence, and we found that there were some differences among the subgroups of different intervention methods, but due to the less literature included in the subgroup, and the comparison was more indirect. So, we should interpret these results carefully. Systematic review registration www.crd.york.ac.uk/PROSPERO, identifier CRD42023486897.
Collapse
Affiliation(s)
- Yu Zhang
- School of Acupuncture-Moxibustion and Tuina, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Liu
- School of Acupuncture-Moxibustion and Tuina, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ke Xu
- School of Acupuncture-Moxibustion and Tuina, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yan Zhou
- School of Acupuncture-Moxibustion and Tuina, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yiwei Shen
- School of Acupuncture-Moxibustion and Tuina, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhengnan Liu
- School of Acupuncture-Moxibustion and Tuina, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yan Bai
- Institute of Acupuncture and Moxibustion, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shun Wang
- School of Acupuncture-Moxibustion and Tuina, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- Institute of Acupuncture and Moxibustion, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
234
|
Zhong C, Guo N, Hu C, Ni R, Zhang X, Meng Z, Liu T, Ding S, Ding W, Zhao Y, Cao L, Zheng Y. Efficacy of Wearable low-intensity pulsed Ultrasound treatment in the Movement disorder in Parkinson's disease (the SWUMP trial): protocol for a single-site, double-blind, randomized controlled trial. Trials 2024; 25:275. [PMID: 38650028 PMCID: PMC11036625 DOI: 10.1186/s13063-024-08092-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive, neurodegenerative illness marked by the loss of dopaminergic neurons, causing motor symptoms. Oral levodopa replacement therapy remains the gold standard in the treatment of PD. It is, nevertheless, a symptomatic treatment. There is currently no effective treatment for PD. Therefore, new therapies for PD are highly desirable. Low-intensity pulsed ultrasound (LIPUS) has been shown to improve behavioral functions in PD animal models. It is a new type of neuromodulation approach that combines noninvasiveness with high spatial precision. The purpose of this study is to establish a new clinical protocol for LIPUS in the treatment of movement disorders in patients with PD. METHODS This protocol is a single-site, prospective, double-blind, randomized controlled trial (RCT). Forty-eight participants with clinically confirmed PD will be randomly allocated to one of two groups: LIPUS group or sham group. All of the participants continue to use pharmacological therapy as a fundamental treatment. The primary outcome is the difference between groups from baseline to 4 months in the change in the Unified Parkinson's Disease Rating Scale (UPDRS) motor score (part III). The secondary outcomes include the rating scales such as the Mini-Mental State Examination (MMSE), and other three rating scales, and medical examinations including high-density electroencephalography (hdEEG) and functional magnetic resonance imaging (fMRI). The primary safety outcome will be assessed at 4 months, and adverse events will be recorded. DISCUSSION This study represents the clinical investigation into the efficacy of therapeutic LIPUS in the treatment of PD for the first time. If LIPUS is determined to be effective, it could offer a practical and innovative means of expanding the accessibility of ultrasound therapy by using a wearable LIPUS device within a home setting. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100052093. Registered on 17 October 2021.
Collapse
Affiliation(s)
- Chuanyu Zhong
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Ning Guo
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Canfang Hu
- Department of Neurology, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, People's Republic of China
| | - Ruilong Ni
- Department of Neurology, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Zheying Meng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Taotao Liu
- Department of Neurology, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Siqi Ding
- Department of Neurology, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Wanhai Ding
- Department of Neurosurgery, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
235
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
236
|
Cheslow L, Byrne M, Kopenhaver JS, Iacovitti L, Smeyne RJ, Snook AE, Waldman SA. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults. NPJ Parkinsons Dis 2024; 10:83. [PMID: 38615030 PMCID: PMC11016112 DOI: 10.1038/s41531-024-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases and their second messenger cyclic (c)GMP support mitochondrial function, protecting against ROS and promoting cell survival in several tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) mouse model. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in SNpc DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica S Kopenhaver
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard J Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
237
|
Binoy S, Lithwick Algon A, Ben Adiva Y, Montaser-Kouhsari L, Saban W. Online cognitive testing in Parkinson's disease: advantages and challenges. Front Neurol 2024; 15:1363513. [PMID: 38651103 PMCID: PMC11034553 DOI: 10.3389/fneur.2024.1363513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Parkinson's disease (PD) is primarily characterized by motor symptoms. Yet, many people with PD experience cognitive decline, which is often unnoticed by clinicians, although it may have a significant impact on quality of life. For over half a century, traditional in-person PD cognitive assessment lacked accessibility, scalability, and specificity due to its inherent limitations. In this review, we propose that novel methods of online cognitive assessment could potentially address these limitations. We first outline the challenges of traditional in-person cognitive testing in PD. We then summarize the existing literature on online cognitive testing in PD. Finally, we explore the advantages, but also the limitations, of three major processes involved in online PD cognitive testing: recruitment and sampling methods, measurement and participation, and disease monitoring and management. Taking the limitations into account, we aim to highlight the potential of online cognitive testing as a more accessible and efficient approach to cognitive testing in PD.
Collapse
Affiliation(s)
- Sharon Binoy
- Loyola Stritch School of Medicine, Maywood, IL, United States
- Center for Accessible Neuropsychology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Occupational Therapy, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Lithwick Algon
- Center for Accessible Neuropsychology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Occupational Therapy, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoad Ben Adiva
- Center for Accessible Neuropsychology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Occupational Therapy, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Leila Montaser-Kouhsari
- Department of Neurology, Brigham and Women Hospital, Harvard University, Boston, MA, United States
| | - William Saban
- Center for Accessible Neuropsychology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Occupational Therapy, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
238
|
Tian H, Yuan Y, Zhang K. Application of sensory nerve quantitative tests to analyze the subtypes of motor disorders in Parkinson's disease. Neuroreport 2024; 35:361-365. [PMID: 38526953 PMCID: PMC10965128 DOI: 10.1097/wnr.0000000000002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 03/27/2024]
Abstract
This study investigated the sensory nerve function in people with different subtypes of Parkinson's disease (PD), which included the tremor-dominant (TD) group (n = 30), postural instability and gait disorder (PIGD) group (n = 33), and healthy-controls (HC) group (n = 33). Sural nerve's current perception threshold (CPT) and pain tolerance threshold (PTT) in both feet were measured at different frequencies. Results were evaluated using the mini-mental state examination (MMSE), Hoehn Yahr scale (H-Y) , and 3-meter timed-up-and-go-test (TUGT). The MMSE scores of the TD and HC groups were higher than those of the PIGD group (TD < HC). The 3-meter TUGT scores of the PIGD group were higher than theTD and HC groups (TD > HC). The PIGD patients experienced a significantly shorter disease duration and higher H-Y score than the TD patients ( P < 0.05). The values of 2 KHz CPT of left-side (CPTL), 2KHz CPT of right-side (CPTR), and 5 Hz CPTR in the PIGD group were significantly higher compared to the TD and HC groups ( P < 0.05, Bonferroni correction). Additionally, the values of 250 Hz CPTL, 5 Hz CPTL, 250 Hz CPTR, 2 kHz PTT of left-side (PTTL), 250 Hz PTTL, and 5 Hz PTTL in the PIGD group were significantly elevated relative to the TD group ( P < 0.05, Bonferroni correction). Distinctive current threshold perception and PTT of the sural nerve can be observed in patients with varying PD subtypes, and sensory nerve conduction threshold electrical diagnostic testing can detect these discrepancies in sensory nerve function.
Collapse
Affiliation(s)
- Hongxue Tian
- Nanjing Medical University, Nanjing
- Department of Neurology, The Affiliated Kezhou People’s Hospital of Nanjing Medical University, Kezhou
| | - Yongsheng Yuan
- Nanjing Medical University, Nanjing
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Nanjing Medical University, Nanjing
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
239
|
Pazi MB, Belan DV, Komarova EY, Ekimova IV. Intranasal Administration of GRP78 Protein (HSPA5) Confers Neuroprotection in a Lactacystin-Induced Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:3951. [PMID: 38612761 PMCID: PMC11011682 DOI: 10.3390/ijms25073951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Maria B Pazi
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| | - Daria V Belan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| | - Elena Y Komarova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky pr., St. Petersburg 194064, Russia
| | - Irina V Ekimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| |
Collapse
|
240
|
Sharma N, Yadav A, Kaur M, Kumar P, Kaur S, Kapoor G, Verma M. Group tele-rehabilitation improves quality of life among subjects with Parkinson's disease: A two arm non-parallel non-randomized clinical trial. Parkinsonism Relat Disord 2024; 121:106027. [PMID: 38377657 DOI: 10.1016/j.parkreldis.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Tele-rehabilitation has lately emerged as a promising medium for increasing patient adherence with significant positive results. One of the most prevalent neurological diseases affecting movement is Parkinson's disease (PD), which causes a variety of motor and non-motor symptoms among patients. Consequentially, the study was designed to compare the efficacy of group tele-rehabilitation with individual tele-rehabilitation in improving quality of life (QoL) among subjects with PD. METHOD A two-group pretest-posttest, non-randomized clinical study recruited 68 subjects and classified them into two groups, i.e., Group A (group therapy, n = 36) and Group B (individual therapy, n = 32). Groups A and B received a supervised protocol consisting of a 40-min session on alternate days/week for twelve weeks via the WhatsApp Messenger application through group and individual therapy, respectively. The Parkinson's disease questionnaire (PDQ-39), mental and physical components of the Short Form Survey (SF-12) were used as primary outcome variables, while the Satisfaction questionnaire was used as a secondary outcome variable. RESULT The p-values related to within-group analyses were <0.05 except SF-12 PCS >0.05 in Group A and <0.05 in Group B. While the p-values related to between-group analyses were <0.05 except for pre-scores of SF-12 (MCS and PCS). The effect sizes for PDQ-39, SF-12 (MCS), and SF-12 (PCS) were -2.37, 3.36, and 0.66 in Group A and 1.95, 2.69, and 2.03 in Group B, respectively. CONCLUSION The study concluded that group tele-rehabilitation is more effective in improving QoL among subjects with PD as compared to individual tele-rehabilitation. Clinical trial Registration NoCTRI/2022/04/041818.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Physiotherapy, Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, Haryana, India.
| | - Ankita Yadav
- Department of Physiotherapy, Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, Haryana, India.
| | - Manpreet Kaur
- Department of Physiotherapy, Modi University of Science and Technology, Laxmangarh, Sikar, 332311, Rajasthan, India.
| | - Parveen Kumar
- Pal Physiotherapy Clinic, Pal Healthcare, Jandli, Ambala City, 134005, Haryana, India.
| | - Simranjeet Kaur
- Department of Physiotherapy, Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, Haryana, India.
| | - Gaurav Kapoor
- Department of Physiotherapy, School of Allied Medical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Meenu Verma
- SNV Physiotherapy & Rehab Clinic, JP Complex, Peer Muchalla, Zirakpur, 160104, Punjab, India.
| |
Collapse
|
241
|
Jin R, Yoshioka H, Sato H, Hisaka A. Data-driven disease progression model of Parkinson's disease and effect of sex and genetic variants. CPT Pharmacometrics Syst Pharmacol 2024; 13:649-659. [PMID: 38369942 PMCID: PMC11015075 DOI: 10.1002/psp4.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
As Parkinson's disease (PD) progresses, there are multiple biomarker changes, and sex and genetic variants may influence the rate of progression. Data-driven, long-term disease progression model analysis may provide precise knowledge of the relationships between these risk factors and progression and would allow for the selection of appropriate diagnosis and treatment according to disease progression. To construct a long-term disease progression model of PD based on multiple biomarkers and evaluate the effects of sex and leucine-rich repeat kinase 2 (LRRK2) mutations, a technique derived from the nonlinear mixed-effects model (Statistical Restoration of Fragmented Time course [SReFT]) was applied to datasets of patients provided by the Parkinson's Progression Markers Initiative. Four biomarkers, including the Unified PD Rating Scale, were used, and a covariate analysis was performed to investigate the effects of sex and LRRK2-related mutations. A model of disease progression over ~30 years was successfully developed using patient data with a median of 6 years. Covariate analysis suggested that female sex and LRRK2 G2019S mutations were associated with 21.6% and 25.4% significantly slower progression, respectively. LRRK2 rs76904798 mutation also tended to delay disease progression by 10.4% but the difference was not significant. In conclusion, a long-term PD progression model was successfully constructed using SReFT from relatively short-term individual patient observations and depicted nonlinear changes in relevant biomarkers and their covariates, including sex and genetic variants.
Collapse
Affiliation(s)
- Ryota Jin
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Hideki Yoshioka
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Hiromi Sato
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Akihiro Hisaka
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| |
Collapse
|
242
|
Livingston C, Monroe-Duprey L. A Review of Levodopa Formulations for the Treatment of Parkinson's Disease Available in the United States. J Pharm Pract 2024; 37:485-494. [PMID: 36704966 DOI: 10.1177/08971900221151194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose: The safety and efficacy of levodopa formulations are evaluated to inform clinical decision making for the treatment of Parkinson's disease. Summary: Levodopa is a cornerstone of treatment for Parkinson's disease due to its proven efficacy. Although many patients can initially be managed using immediate release tablets, as their disease progresses they often require escalating doses as well as more frequent dosing to prevent wearing off effects. Additionally, patients who experience time in the off state may struggle with the delay between medication administration and onset of action. Therefore, to increase patient convenience as well as to enhance the pharmacokinetic profile of the levodopa, several other formulations have been developed. Levodopa coformulated with carbidopa is supplied as immediate release tablets, oral disintegrating tablets, controlled release tablets, extended release capsules, and a continuous enteral solution. Additionally, there is a levodopa inhalation powder available. As a result of their different absorption profiles, each formulation has unique safety and efficacy attributes. Consequently, while this expansion of levodopa formulations has substantially increased treatment options for patients, it has also increased the complexity of medical decision making for patients, providers, and health systems alike. Conclusion: Knowledge of the different pharmacokinetic, safety and efficacy profiles of the available levodopa formulations is critical for the effective management of Parkinson's disease on both the individual patient and population levels.
Collapse
Affiliation(s)
- Clare Livingston
- Department of Pharmacy, Inova Health System, Alexandria, VA, USA
| | | |
Collapse
|
243
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
244
|
da Costa Pereira JP, Queiroz Júnior JRAD, Medeiros LCD, Araújo Bezerra GK, Porto IVP, Cabral PC, Luz MCLD, Pinho CPS, Romero RA. Sarcopenia and dynapenia is correlated to worse quality of life perception in middle-aged and older adults with Parkinson's disease. Nutr Neurosci 2024; 27:310-318. [PMID: 36932322 DOI: 10.1080/1028415x.2023.2190246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
BACKGROUND There are few studies that assess the relationship between nutritional status and quality of life in individuals with Parkinson's disease, despite the well-established negative impact of sarcopenia and dynapenia on functional capacity and quality of life. These conditions impair protein-muscular status and are prevalent in individuals with Parkinson's disease. This study aimed to examine the relationship between nutritional status, including body composition, functional capacity, and diagnosis of sarcopenia and dynapenia, and quality-of-life perception in individuals with Parkinson's disease. METHODS This is a cross-sectional study conducted in two Parkinson's disease centers in the northeast of Brazil. The researchers assessed muscle strength, muscle mass, and physical performance to diagnose dynapenia, sarcopenia and functional capacity. Quality of life was estimated using the Parkinson's disease Quality of Life Questionnaire. RESULTS We found positive correlations between quality of life and variables such as severity and duration of the disease, as well as positive screening for sarcopenia (p<0.001). Negative correlations were observed between quality of life and muscle strength and functional capacity. The study also found that individuals with sarcopenia and dynapenia had significantly worse quality-of-life scores compared to those who did not have these nutritional outcomes (p <0.05; p <0.001). CONCLUSIONS The presence of sarcopenia, dynapenia, low gait speed, disease duration, and severity had an impact on higher scores in the Parkinson's Disease Quality of Life Questionnaire, indicating a worsening perception of quality of life.
Collapse
Affiliation(s)
- Jarson Pedro da Costa Pereira
- Hospital das Clínicas of Pernambuco, Recife, Brazil
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | - Marcella Campos Lima da Luz
- Hospital das Clínicas of Pernambuco, Recife, Brazil
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Cláudia Porto Sabino Pinho
- Hospital das Clínicas of Pernambuco, Recife, Brazil
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
245
|
Hansen B, Roomp K, Ebid H, Schneider JG. Perspective: The Impact of Fasting and Caloric Restriction on Neurodegenerative Diseases in Humans. Adv Nutr 2024; 15:100197. [PMID: 38432589 PMCID: PMC10997874 DOI: 10.1016/j.advnut.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive functional and structural denaturation of neurons in the central and peripheral nervous systems. Despite the wide range of genetic predispositions, the increased emergence of these disorders has been associated with a variety of modifiable risk factors, including lifestyle factors. Diet has been shown to influence cognitive alterations in the elderly population with age-related brain pathologies, and specific dietary interventions might, therefore, confer preservatory protection to neural structures. Although Mediterranean and ketogenic diets have been studied, no clear guidelines have been implemented for the prevention or treatment of ND in clinical practice. Murine models have shown that intermittent fasting and caloric restriction (CR) can counteract disease processes in various age-related disorders, including NDs. The objective of this perspective is to provide a comprehensive, comparative overview of the available primary intervention studies on fasting and CR in humans with ND and to elucidate possible links between the mechanisms underlying the effects of fasting, CR, and the neuropathology of ND. We also included all currently available studies in older adults (with and without mild cognitive impairment) in which the primary endpoint was cognitive function to provide further insights into the feasibility and outcomes of such interventions. Overall, we conclude that nutritional intervention trials focusing on fasting and CR in humans with ND have been neglected, and more high-quality studies, including longitudinal clinical intervention trials, are urgently needed to elucidate the underlying immune-metabolic mechanisms in diet and ND.
Collapse
Affiliation(s)
- Bérénice Hansen
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kirsten Roomp
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Hebah Ebid
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jochen G Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Departments of Internal Medicine II and Psychiatry, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
246
|
Prasad K, de Vries EFJ, van der Meiden E, Moraga-Amaro R, Vazquez-Matias DA, Barazzuol L, Dierckx RAJO, van Waarde A. Effects of the adenosine A 2A receptor antagonist KW6002 on the dopaminergic system, motor performance, and neuroinflammation in a rat model of Parkinson's disease. Neuropharmacology 2024; 247:109862. [PMID: 38325770 DOI: 10.1016/j.neuropharm.2024.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Adenosine A2A-receptors (A2AR) and dopamine D2-receptors (D2R) are known to work together in a synergistic manner. Inhibiting A2ARs by genetic or pharmacological means can relief symptoms and have neuroprotective effects in certain conditions. We applied PET imaging to evaluate the impact of the A2AR antagonist KW6002 on D2R availability and neuroinflammation in an animal model of Parkinson's disease. Male Wistar rats with 6-hydroxydopamine-induced damage to the right striatum were given 3 mg/kg of KW6002 daily for 20 days. Motor function was assessed using the rotarod and cylinder tests, and neuroinflammation and dopamine receptor availability were measured using PET scans with the tracers [11C]PBR28 and [11C]raclopride, respectively. On day 7 and 22 following 6-OHDA injection, rats were sacrificed for postmortem analysis. PET scans revealed a peak in neuroinflammation on day 7. Chronic treatment with KW6002 significantly reduced [11C]PBR28 uptake in the ipsilateral striatum [normalized to contralateral striatum] and [11C]raclopride binding in both striata when compared to the vehicle group. These imaging findings were accompanied by an improvement in motor function. Postmortem analysis showed an 84% decrease in the number of Iba-1+ cells in the ipsilateral striatum [normalized to contralateral striatum] of KW6002-treated rats compared to vehicle rats on day 22 (p = 0.007), corroborating the PET findings. Analysis of tyrosine hydroxylase levels showed less dopaminergic neuron loss in the ipsilateral striatum of KW6002-treated rats compared to controls on day 7. These findings suggest that KW6002 reduces inflammation and dopaminergic neuron loss, leading to less motor symptoms in this animal model of Parkinson's disease.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Esther van der Meiden
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Daniel Aaron Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
247
|
Fangxu L, Wenbin L, Pan Z, Dan C, Xi W, Xue X, Jihua S, Qingfeng L, Le X, Songbai Z. Chinese expert consensus on diagnosis and management of gastroesophageal reflux disease in the elderly (2023). Aging Med (Milton) 2024; 7:143-157. [PMID: 38725699 PMCID: PMC11077342 DOI: 10.1002/agm2.12293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 05/12/2024] Open
Abstract
Gastroesophageal reflux disease (GERD) in the elderly is characterized by atypical symptoms, relatively severe esophageal injury, and more complications, and when GERD is treated, it is also necessary to fully consider the general health condition of the elderly patients. This consensus summarized the epidemiology, pathogenesis, clinical manifestations, and diagnosis and treatment characteristics of GERD in the elderly, and provided relevant recommendations, providing guidance for medical personnel to correctly understand and standardize the diagnosis and treatment of GERD in the elderly.
Collapse
Affiliation(s)
- Liu Fangxu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Li Wenbin
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Zhang Pan
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Chen Dan
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Wu Xi
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xu Xue
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Shi Jihua
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Luo Qingfeng
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xu Le
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Zheng Songbai
- Department of GeriatricsHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| |
Collapse
|
248
|
Wang ZY, Ma DR, Li MJ, Liang YY, Hu ZW, Li SJ, Zuo CY, Hao CW, Feng YM, Guo MN, Hao XY, Guo YL, Ma KK, Guo LN, Zhang C, Xu YM, Mao CY, Shi CH. Association between irritable bowel syndrome and Parkinson's disease by Cohort study and Mendelian randomization analysis. NPJ Parkinsons Dis 2024; 10:70. [PMID: 38548756 PMCID: PMC10978991 DOI: 10.1038/s41531-024-00691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
This study aimed to investigate the association between irritable bowel syndrome (IBS) and Parkinson's disease (PD) utilizing prospective cohort study and Mendelian randomization. The dataset contained a substantial cohort of 426,911 participants from the UK Biobank, discussing the association between IBS and PD with Cox proportional hazards models and case-control analysis while adjusting for covariates such as age, gender, ethnicity and education level. In univariate Cox regression model, the risk of PD was reduced in IBS patients (HR: 0.774, 95%CI: 0.625-0.956, P = 0.017), but the statistical significance diminished in the three models after adjusting for other variables. In a few subgroup analyses, IBS patients are less likely to develop into PD, and patients diagnosed with IBS after 2000 also had a lower risk (HR: 0.633, 95%CI: 0.403-0.994, P = 0.047) of subsequently developing PD. In addition, we matched five healthy control participants based on gender and age at the end of the study for each IBS patient diagnosed during the follow-up period, and logistic regression results (OR:1.239, 95%CI: 0.896-1.680, P = 0.181) showed that IBS was not associated with the risk of PD. Mendelian randomization did not find significant evidence of the causal relationship between IBS and Parkinson's disease (OR: 0.801, 95%CI: 0.570-1.278, P = 0.204). Overall, we suggest that IBS status is not associated with the risk of developing PD, and that these findings provide valuable insights into the clinical management and resource allocation of patients with IBS.
Collapse
Affiliation(s)
- Zhi-Yun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong-Rui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan-Yuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zheng-Wei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuang-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chun-Yan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chen-Wei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan-Mei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Nan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-Yan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan-Li Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ke-Ke Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Li-Na Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng-Yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
249
|
Malkiewicz JJ, Siuda J. Evaluation of Cardiovascular Autonomic Nervous System in Essential Tremor and Tremor Dominant Parkinson's Disease. Brain Sci 2024; 14:313. [PMID: 38671965 PMCID: PMC11048246 DOI: 10.3390/brainsci14040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: The differential diagnosis of essential tremor (ET) and tremor-dominant Parkinson's disease (TDPD) can be challenging. Only a few studies have investigated the autonomic nervous system (ANS) in ET. However, some of these suggested that heart rate variability (HRV) might be useful in the differential diagnosis. (2) Methods: Demographic and clinical data, including medications and comorbidities, were collected from 15 TDPD patients, 19 ET patients, and 20 healthy controls. Assessment with the SCOPA-AUT questionnaire, 5 min HRV analysis in time and frequency domains, and evaluation of orthostatic hypotension (OH) with tilt test were performed. (3) Results: There were no significant differences between all groups on the SCOPA-AUT questionnaire. PD patients had OH more frequently and a larger drop in systolic blood pressure (SBP) during the tilt test than ET patients and controls. HRV was affected in PD, but not in ET and controls. Power in the low frequency band, the standard deviation of all normal RR intervals and SBP drop were potentially useful in differential diagnosis with AUCs of 0.83, 0.78, and 0.83, respectively. (4) Conclusions: Cardiovascular ANS dysfunction was present in TDPD, but not in ET and controls. HRV analysis and assessment of SBP drop may be potentially useful in the differential diagnosis of ET and TDPD.
Collapse
Affiliation(s)
- Jakub J. Malkiewicz
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, University Clinical Center Prof. K. Gibiński, 14 Medyków Street, 40-752 Katowice, Poland;
| | | |
Collapse
|
250
|
Gobbo S, Urso E, Colombo A, Menghini M, Perin C, Isaias IU, Daini R. Facial expressions and identities recognition in Parkinson disease. Heliyon 2024; 10:e26860. [PMID: 38463872 PMCID: PMC10923660 DOI: 10.1016/j.heliyon.2024.e26860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Parkinson's Disease (PD) is associated with motor and non-motor symptoms. Among the latter are deficits in matching, identification, and recognition of emotional facial expressions. On one hand, this deficit has been attributed to a dysfunction in emotion processing. Another explanation (which does not exclude the former) links this deficit with reduced facial expressiveness in these patients, which prevents them from properly understanding or embodying emotions. To disentangle the specific contribution of emotion comprehension and that of facial expression processing in PD's observed deficit with emotions we performed two experiments on non-emotional facial expressions. In Experiment 1, a group of PD patients and a group of Healthy Controls (HC) underwent a task of non-emotional expression recognition in faces of different identity and a task of identity recognition in faces with different expression. No differences were observed between the two groups in accuracies. In Experiment 2, PD patients and Healthy Controls underwent a task where they had to recognize the identity of faces encoded through a non-emotional facial expression, through a rigid head movement, or as neutral. Again, no group differences were observed. In none of the two experiments hypomimia scores had a specific effect on expression processing. We conclude that in PD patients the observed impairment with emotional expressions is likely due to a specific deficit for emotions to a greater extent than for facial expressivity processing.
Collapse
Affiliation(s)
- Silvia Gobbo
- University of Milan-Bicocca, Department of Psychology, Milan, Italy
| | | | - Aurora Colombo
- Centro Parkinson e Parkinsonismi, ASST “Gaetano Pini-Cto”, Milano, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milano, Italy
| | - Matilde Menghini
- University of Milan-Bicocca, Department of Psychology, Milan, Italy
| | - Cecilia Perin
- Istituti Clinici Zucchi-GSD, Italy
- Università Milano Bicocca, Department of Medicine and Surgery, Milano, Italy
| | - Ioannis Ugo Isaias
- Centro Parkinson e Parkinsonismi, ASST “Gaetano Pini-Cto”, Milano, Italy
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Roberta Daini
- University of Milan-Bicocca, Department of Psychology, Milan, Italy
| |
Collapse
|