201
|
Sawasdikosol S, Pyarajan S, Alzabin S, Matejovic G, Burakoff SJ. Prostaglandin E2 activates HPK1 kinase activity via a PKA-dependent pathway. J Biol Chem 2007; 282:34693-9. [PMID: 17895239 DOI: 10.1074/jbc.m707425200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic cell-restricted member of the Ste20 serine/threonine kinase super family. We recently reported that the immunosuppressive eicosanoid, prostaglandin E(2) (PGE(2)), is capable of activating HPK1 in T cells. In this report, we demonstrate that unlike the TCR-induced activation of HPK1 kinase activity, the induction of HPK1 catalytic activity by PGE(2) does not require the presence of phosphotyrosine-based signaling molecules such as Lck, ZAP-70, SLP-76, and Lat. Nor does the PGE(2)-induced HPK1 activation require the intermolecular interaction between its proline-rich regions and the SH3 domain-containing adaptor proteins, as required by the signaling from the TCR to HPK1. Instead, our study reveals that PGE(2) signal to HPK1 via a 3' -5 '-cyclic adenosine monophosphate-regulated, PKA-dependent pathway. Consistent with this observation, changing the serine 171 residue that forms the optimal PKA phosphorylation site within the "activation loop" of HPK1 to alanine completely prevents this mutant from responding to PGE(2)-generated stimulation signals. Moreover, the inability of HPK1 to respond to PGE(2) stimulation in PKA-deficient S49 cells further supports the importance of PKA in this signaling pathway. We speculate that this unique signaling pathway enables PGE(2) signals to engage a proven negative regulator of TCR signal transduction pathway and uses it to inhibit T cell activation.
Collapse
Affiliation(s)
- Sansana Sawasdikosol
- New York University School of Medicine, New York University Cancer Institute, New York, New York 10016-6402, USA.
| | | | | | | | | |
Collapse
|
202
|
Cho EY, Cho DI, Park JH, Kurose H, Caron MG, Kim KM. Roles of Protein Kinase C and Actin-Binding Protein 280 in the Regulation of Intracellular Trafficking of Dopamine D3 Receptor. Mol Endocrinol 2007; 21:2242-54. [PMID: 17536008 DOI: 10.1210/me.2007-0202] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractD3 dopamine receptor (D3R) is expressed mainly in parts of the brain that control the emotional behaviors. It is believed that the improper regulation of D3R is involved in the etiology of schizophrenia. Desensitization of D3R is weakly associated with G protein-coupled receptor kinase (GRK)/β-arrestin-directed internalization. This suggests that there might be an alternative pathway that regulates D3R signaling. This report shows that D3R undergoes robust protein kinase C (PKC)-dependent sequestration that is accompanied by receptor phosphorylation and the desensitization of signaling. PKC-dependent D3R sequestration, which was enhanced by PKC-β or -δ, was dynamin dependent but independent of GRK, β-arrestin, or caveolin 1. Site-directed mutagenesis of all possible phosphorylation sites within the intracellular loops of D3R identified serine residues at positions 229 and 257 as the critical amino acids responsible for phorbol-12-myristate-13-acetate (PMA)-induced D3R phosphorylation, sequestration, and desensitization. In addition, the LxxY endocytosis motif, which is located between residues 252 and 255, was found to play accommodating roles for PMA-induced D3R sequestration. A continuous interaction with the actin-binding protein 280 (filamin A), which was previously known to interact with D3R, is required for PMA-induced D3R sequestration. In conclusion, the PKC-dependent but GRK-/β-arrestin-independent phosphorylation of D3R is the main pathway responsible for the sequestration and desensitization of D3R. Filamin A is essential for both the efficient signaling and sequestration of D3R.
Collapse
Affiliation(s)
- Eun-Young Cho
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Kwang-Ju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
203
|
Ding Y, Kantarci A, Badwey JA, Hasturk H, Malabanan A, Van Dyke TE. Phosphorylation of pleckstrin increases proinflammatory cytokine secretion by mononuclear phagocytes in diabetes mellitus. THE JOURNAL OF IMMUNOLOGY 2007; 179:647-54. [PMID: 17579087 PMCID: PMC2150995 DOI: 10.4049/jimmunol.179.1.647] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The protein kinase C (PKC) family of intracellular enzymes plays a crucial role in signal transduction for a variety of cellular responses of mononuclear phagocytes including phagocytosis, oxidative burst, and secretion. Alterations in the activation pathways of PKC in a variety of cell types have been implicated in the pathogenesis of the complications of diabetes. In this study, we investigated the consequences of PKC activation by evaluating endogenous phosphorylation of PKC substrates with a phosphospecific PKC substrate Ab (pPKC(s)). Phosphorylation of a 40-kDa protein was significantly increased in mononuclear phagocytes from diabetics. Phosphorylation of this protein is downstream of PKC activation and its phosphorylated form was found to be associated with the membrane. Mass spectrometry analysis, immunoprecipitation, and immunoblotting experiments revealed that this 40-kDa protein is pleckstrin. We then investigated the phosphorylation and translocation of pleckstrin in response to the activation of receptor for advanced glycation end products (RAGE). The results suggest that pleckstrin is involved in RAGE signaling and advanced glycation end product (AGE)-elicited mononuclear phagocyte dysfunction. Suppression of pleckstrin expression with RNA interference silencing revealed that phosphorylation of pleckstrin is an important intermediate in the secretion and activation pathways of proinflammatory cytokines (TNF-alpha and IL-1beta) induced by RAGE activation. In summary, this study demonstrates that phosphorylation of pleckstrin is up-regulated in diabetic mononuclear phagocytes. The phosphorylation is in part due to the activation of PKC through RAGE binding, and pleckstrin is a critical molecule for proinflammatory cytokine secretion in response to elevated AGE in diabetes.
Collapse
Affiliation(s)
- Yong Ding
- Department of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
204
|
Sapountzi V, Logan IR, Nelson G, Cook S, Robson CN. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation. Int J Biochem Cell Biol 2007; 40:236-44. [PMID: 17851107 DOI: 10.1016/j.biocel.2007.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 11/24/2022]
Abstract
Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.
Collapse
Affiliation(s)
- Vasileia Sapountzi
- Surgical Oncology Laboratory, Northern Institute for Cancer Research, Paul O'Gorman Building, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
205
|
Ubersax JA, Ferrell JE. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 2007; 8:530-41. [PMID: 17585314 DOI: 10.1038/nrm2203] [Citation(s) in RCA: 1042] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A typical protein kinase must recognize between one and a few hundred bona fide phosphorylation sites in a background of approximately 700,000 potentially phosphorylatable residues. Multiple mechanisms have evolved that contribute to this exquisite specificity, including the structure of the catalytic site, local and distal interactions between the kinase and substrate, the formation of complexes with scaffolding and adaptor proteins that spatially regulate the kinase, systems-level competition between substrates, and error-correction mechanisms. The responsibility for the recognition of substrates by protein kinases appears to be distributed among a large number of independent, imperfect specificity mechanisms.
Collapse
Affiliation(s)
- Jeffrey A Ubersax
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174, USA.
| | | |
Collapse
|
206
|
Kim J, Feng H, Kipreos ET. C. elegans CUL-4 prevents rereplication by promoting the nuclear export of CDC-6 via a CKI-1-dependent pathway. Curr Biol 2007; 17:966-72. [PMID: 17509881 PMCID: PMC1945017 DOI: 10.1016/j.cub.2007.04.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 04/23/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
Genome stability requires that genomic DNA is replicated only once per cell cycle. The replication-licensing system ensures that the formation of prereplicative complexes is temporally separated from the initiation of DNA replication [1-4]. The replication-licensing factors Cdc6 and Cdt1 are required for the assembly of prereplicative complexes during G1 phase. During S phase, metazoan Cdt1 is targeted for degradation by the CUL4 ubiquitin ligase [5-8], and vertebrate Cdc6 is translocated from the nucleus to the cytoplasm [9, 10]. However, because residual vertebrate Cdc6 remains in the nucleus throughout S phase [10-13], it has been unclear whether Cdc6 translocation to the cytoplasm prevents rereplication [1, 2, 14]. The inactivation of C. elegans CUL-4 is associated with dramatic levels of DNA rereplication [5]. Here, we show that C. elegans CDC-6 is exported from the nucleus during S phase in response to the phosphorylation of multiple CDK sites. CUL-4 promotes the phosphorylation and subsequent translocation of CDC-6 via negative regulation of the CDK-inhibitor CKI-1. Rereplication can be induced by coexpression of nonexportable CDC-6 with nondegradable CDT-1, indicating that redundant regulation of CDC-6 and CDT-1 prevents rereplication. This demonstrates that CDC-6 translocation is critical for preventing rereplication and that CUL-4 independently controls both replication-licensing factors.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607, USA
| | | | | |
Collapse
|
207
|
Expression of Recombinant Proteins in Pichia Pastoris. Appl Biochem Biotechnol 2007; 142:105-24. [PMID: 18025573 DOI: 10.1007/s12010-007-0003-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/16/2006] [Accepted: 05/23/2006] [Indexed: 10/23/2022]
|
208
|
Tinette S, Feyereisen R, Robichon A. Approach to systematic analysis of serine/threonine phosphoproteome using Beta elimination and subsequent side effects: intramolecular linkage and/or racemisation. J Cell Biochem 2007; 100:875-82. [PMID: 17115411 DOI: 10.1002/jcb.21070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Complete analysis of the phosphorylation of serine and threonine residues directly from biological extracts is still at an early stage and will remain a challenging goal for many years. Analysis of phosphorylated proteins and identification of the phosphorylated sites in a crude biological extract is a major topic in proteomics, since phosphorylation plays a dominant role in post-translational protein modification. Beta elimination of the serine/threonine-bound phosphate by alkali action generates (methyl)dehydroalanine. The reactivity of this group susceptible of nucleophilic attacks might be used as a tool for phosphoproteome analysis. Most of the known serine/threonine kinases recognize motifs in protein targets that are rich in lysine(s) and/or arginine(s). The (methyl)dehydroalanine resulting from beta elimination of the serine/threonine-bound phosphate by alkali action is likely to react with the amino groups of these neighboring amino acids. Furthermore, the addition reaction of dehydroalanine-peptides with a nucleophilic group more likely generates diastereoisomers derivatives. The internal cyclic bonds and/or the stereoisomer peptide derivatives thus generated confer resistance to trypsin cleavage and/or constitute stop signals for exopeptidases such as carboxypeptidase. This might form the basis of a method to facilitate the systematic identification of phosphorylated peptides.
Collapse
Affiliation(s)
- Sylvette Tinette
- Institut National de la Recherche Agronomique (INRA) et Centre National de Recherche Scientifique (CNRS), Centre de Sophia Antipolis, Université de Nice, 400 Route des Chappes BP 167, France
| | | | | |
Collapse
|
209
|
Sahoo H, Nau WM. Phosphorylation-Induced Conformational Changes in Short Peptides Probed by Fluorescence Resonance Energy Transfer in the 10 Å Domain. Chembiochem 2007; 8:567-73. [PMID: 17299825 DOI: 10.1002/cbic.200600466] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phosphorylation-induced conformational changes in short polypeptides were probed by a fluorescence resonance energy transfer (FRET) method by employing a short-distance FRET pair (R(0) approximately 10 A) based on tryptophan as natural donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as synthetic acceptor. Two substrates for kinases, LeuArgArgTrpSerLeuGly-Dbo (peptide I) and TrpLysArgThrLeuArgArg-Dbo (peptide II), were investigated, with serine and threonine, respectively, as phosphorylation sites. Steady-state and time-resolved fluorescence experiments in H(2)O revealed a decrease in FRET efficiency for peptide I and an increase for peptide II; this suggested that the effective distances between donor and acceptor increased and decreased, respectively. The same trends and similar absolute variations in effective donor-acceptor distances were observed in propylene glycol, a less polar and highly viscous solvent; this suggested that the variations are due to intrinsic structural preferences. Fitting of the time-resolved decay traces according to a distribution function model (Gaussian distribution) provided the mean donor-acceptor distances, which showed an increase upon phosphorylation for peptide I (from 9.7 to 10.5 A) and a decrease for peptide II (from 10.9 to 9.3 A) in H(2)O. The broadness (half-width) of the distributions, which provides a measure of the rigidity of the peptides, remained similar upon phosphorylation of peptide I (3.0 versus 3.1 A), but decreased for peptide II (from 3.1 to 0.73 A in H(2)O); this suggests a more compact, structured conformation upon phosphorylation of the latter peptide. The elongation of the peptide backbone (by ca. 0.7 A) for peptide I is attributed to an increase in steric demand upon phosphorylation, which favors an extended conformation. The contraction (by ca. 1.4 A) and structural rigidification of peptide II is attributed to attractive Coulombic interactions and hydrogen bonding between the phosphate group and the arginine residues.
Collapse
Affiliation(s)
- Harekrushna Sahoo
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | |
Collapse
|
210
|
Yoshida K. PKCdelta signaling: mechanisms of DNA damage response and apoptosis. Cell Signal 2007; 19:892-901. [PMID: 17336499 DOI: 10.1016/j.cellsig.2007.01.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 01/02/2023]
Abstract
The cellular response to genotoxic stress that damages DNA includes cell cycle arrest, activation of DNA repair, and in the event of irreparable damage, induction of apoptosis. However, the signals that determine cell fate, that is, survival or apoptosis, are largely unknown. The delta isoform of protein kinase C (PKCdelta) has been implicated in many important cellular processes, including regulation of apoptotic cell death. The available information supports a model in which certain sensors of DNA lesions activate PKCdelta. This activation is triggered in part by tyrosine phosphorylation of PKCdelta by c-Abl tyrosine kinase. PKCdelta is further proteolytically activated by caspase-3. The cleaved catalytic fragment of PKCdelta translocates to the nucleus and induces apoptosis. Importantly, accumulating data have revealed the nuclear targets for PKCdelta in the induction of apoptosis. A pro-apoptotic function of activated PKCdelta is mediated by at least several downstream effectors known to be associated with the elicitation of apoptosis. Recent findings also demonstrated that PKCdelta is involved in cell cycle-specific activation and induction of apoptotic cell death. Moreover, previous studies have shown that PKCdelta regulates transcription by phosphorylating various transcription factors, including the p53 tumor suppressor that is critical for cell cycle arrest and apoptosis in response to DNA damage. These findings collectively support a pivotal role for PKCdelta in the induction of apoptosis with significant impact. This review is focused on the current views regarding the regulation of cell fate by PKCdelta signaling in response to DNA damage.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
211
|
Thong FSL, Bilan PJ, Klip A. The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic. Diabetes 2007; 56:414-23. [PMID: 17259386 DOI: 10.2337/db06-0900] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-dependent phosphorylation of Akt target AS160 is required for GLUT4 translocation. Insulin and platelet-derived growth factor (PDGF) (Akt activators) or activation of conventional/novel (c/n) protein kinase C (PKC) and 5' AMP-activated protein kinase (AMPK) all promote a rise in membrane GLUT4 in skeletal muscle and cultured cells. However, the downstream effectors linking these pathways to GLUT4 traffic are unknown. Here we explore the hypothesis that AS160 is a molecular link among diverse signaling cascades converging on GLUT4 translocation. PDGF and insulin increased AS160 phosphorylation in CHO-IR cells. Stimuli that activate c/n PKC or AMPK also elevated AS160 phosphorylation. We therefore examined if these signaling pathways engage AS160 to regulate GLUT4 traffic in muscle cells. Nonphosphorylatable AS160 (4P-AS160) virtually abolished the net surface GLUT4myc gains elicited by insulin, PDGF, K(+) depolarization, or 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside but partly, yet significantly, inhibited the effects of 4-phorbol-12-myristate-13-acetate. However, the hypertonicity or 2,4-dinitrophenol-dependent gains in surface GLUT4myc were unaffected by 4P-AS160. RK-AS160 (GTPase-activating protein [GAP] inactive) or 4PRK-AS160 (GAP inactive, nonphosphorylatable) had no effect on surface GLUT4myc elicited by all stimuli. Collectively, these results indicate that activation of Akt, c/n PKC, or alpha2-AMPK intersect at AS160 to regulate GLUT4 traffic, as well as highlight the potential of AS160 as a therapy target to increase muscle glucose uptake.
Collapse
Affiliation(s)
- Farah S L Thong
- Programme in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
212
|
Park JM, Intine RV, Maraia RJ. Mouse and human La proteins differ in kinase substrate activity and activation mechanism for tRNA processing. Gene Expr 2007; 14:71-81. [PMID: 18257391 PMCID: PMC6042041 DOI: 10.3727/105221607783417619] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The La protein interacts with a variety of small RNAs as well as certain growth-associated mRNAs such as Mdm2 mRNA. Human La (hLa) phosphoprotein is so highly conserved that it can replace the tRNA processing function of the fission yeast La protein in vivo. We used this system, which is based on tRNA-mediated suppression (TMS) of ade6-704 in S. pombe, to compare the activities of mouse and human La proteins. Prior studies indicate that hLa is activated by phosphorylation of serine-366 by protein kinase CK2, neutralizing a negative effect of a short basic motif (SBM). First, we report the sequence mapping of the UGA stop codon that requires suppressor tRNA for TMS, to an unexpected site in S. pombe ade6-704. Next, we show that, unlike hLa, native mLa is unexpectedly inactive for TMS, although its intrinsic activity is revealed by deletion of its SBM. We then show that mLa is not phosphorylated by CK2, accounting for the mechanistic difference between mLa and hLa. We found a PKA/PKG target sequence in mLa (S199) that is not present in hLa, and show that PKA/PKG efficiently phosphorylates mLa S199 in vitro. A noteworthy conclusion that comes from this work is that this fission yeast system can be used to gain insight into differences in control mechanisms used by La proteins of different mammalian species. Finally, RNA binding assays indicate that while mutation of mLa S199 has little effect on pre-tRNA binding, it substantially decreases binding to a probe derived from Mdm2 mRNA. In closing, we note that species-specific signaling through La may be relevant to the La-dependent Mdm2 pathways of p53 metabolism and cancer progression in mice and humans.
Collapse
Affiliation(s)
- Jung-Min Park
- Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert V. Intine
- Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J. Maraia
- Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
213
|
Abstract
Ca2+, nitric oxide (NO), and protein kinase G (PKG) are important signaling molecules that play pivotal roles in many physiological processes such as vascular tone control, platelet activation, and synaptic plasticity. TRPC channels allow Ca2+ influx, thus contributing to the production of NO, which subsequently stimulates PKG. It has been demonstrated that PKG can phosphorylate human TRPC3 at Thr-11 and Ser-263 and that this phosphorylation inactivates TRPC3. These two PKG phosphorylation sites, Thr-11 and Ser-263 in human TRPC3, are conserved in other members of the TRPC3/6/7 subfamily, suggesting that PKG may also phosphorylate TRPC6 and TRPC7. In addition, protein kinase C (PKC) also inactivates TRPC3, partly through activating PKG. The PKG-mediated inhibition of TRPC channels may provide a feedback control for the fine tuning of [Ca2+]i levels and protect the cells from the detrimental effects of excessive [Ca2+]i and/or NO.
Collapse
Affiliation(s)
- X Yao
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
214
|
Masukawa K, Sakai N, Ohmori S, Shirai Y, Saito N. Spatiotemporal analysis of the molecular interaction between PICK1 and PKC. Acta Histochem Cytochem 2006; 39:173-81. [PMID: 17327904 PMCID: PMC1779951 DOI: 10.1267/ahc.06025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 11/10/2006] [Indexed: 11/22/2022] Open
Abstract
PICK1 is a protein which was initially identified as a protein kinase Calpha (alphaPKC) binding protein using the yeast two-hybrid system. In addition to alphaPKC, the PICK1 complex binds to and regulates various transmembrane proteins including receptors and transporters. However, it has not been clarified when and where PICK1 binds to alphaPKC. We examined the spatio-temporal interaction of PICK1 and PKC using live imaging techniques and showed that the activated alphaPKC binds to PICK1 and transports it to the plasma membrane. Although the membrane translocation of PICK1 requires the activation of alphaPKC, PICK1 is retained on the membrane even after PKC moves back to the cytosol. These results suggest that the interaction between alphaPKC and PICK1 is transient and may not be necessary for the regulation of receptors/transporters by PICK1 or by alphaPKC on the membrane.
Collapse
Affiliation(s)
- Kenji Masukawa
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657–8501, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical Sciences, Hiroshima University
| | - Shiho Ohmori
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657–8501, Japan
| | - Yasuhito Shirai
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657–8501, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657–8501, Japan
- Correspondence to: Naoaki Saito, Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1–1 Rokkodai-cho, Nada-ku, Kobe 657–8501, Japan. E-mail:
| |
Collapse
|
215
|
Asenjo A, Calvo E, Villanueva N. Phosphorylation of human respiratory syncytial virus P protein at threonine 108 controls its interaction with the M2-1 protein in the viral RNA polymerase complex. J Gen Virol 2006; 87:3637-3642. [PMID: 17098979 DOI: 10.1099/vir.0.82165-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) P protein is phosphorylated, with different turnover rates, at several serine (S) and threonine (T) residues. The role of phosphothreonines in viral RNA synthesis was studied by using P protein substitution variants and the HRSV-based minigenome pM/SH. By using liquid chromatography coupled to ion-trap mass spectrometry, it was found that P protein T108 was phosphorylated by addition of a high-turnover phosphate group. This phosphorylation occurs in P protein expressed transiently and during HRSV infection. The results suggest that phosphorylation at P protein T108 affects M2-1 transcriptional activities, because this modification prevents interaction between the P and M2-1 proteins. Therefore, P protein phosphorylation-dephosphorylation at T108 could distinguish the role of the P protein in viral transcription and replication.
Collapse
Affiliation(s)
- Ana Asenjo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Crta Majadahonda-Pozuelo km 2, Majadahonda, 28220 Madrid, Spain
| | - Enrique Calvo
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández de Almagro 3, 28029 Madrid, Spain
| | - Nieves Villanueva
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Crta Majadahonda-Pozuelo km 2, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
216
|
Rong J, Li S, Sheng G, Wu M, Coblitz B, Li M, Fu H, Li XJ. 14-3-3 protein interacts with Huntingtin-associated protein 1 and regulates its trafficking. J Biol Chem 2006; 282:4748-4756. [PMID: 17166838 DOI: 10.1074/jbc.m609057200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HAP1 (Huntingtin-associated protein 1) consists of two alternately spliced isoforms (HAP1A and HAP1B, which have unique C-terminal sequences) and participates in intracellular trafficking. The C terminus of HAP1A is phosphorylated, and this phosphorylation was found to decrease the association of HAP1A with kinesin light chain, a protein involved in anterograde transport in cells. It remains unclear how this phosphorylation functions to regulate the association of HAP1 with trafficking proteins. Using the yeast two-hybrid system, we found that HAP1 also interacts with 14-3-3 proteins, which are involved in the assembly of protein complexes and the regulation of protein trafficking. The interaction of HAP1 with 14-3-3 is confirmed by their immunoprecipitation and colocalization in mouse brain. Moreover, this interaction is specific to HAP1A and is increased by the phosphorylation of the C terminus of HAP1A. We also found that expression of 14-3-3 decreases the association of HAP1A with kinesin light chain. As a result, there is less HAP1A distributed in neurite tips of PC12 cells that overexpress 14-3-3. Also, overexpression of 14-3-3 reduces the effect of HAP1A in promoting neurite outgrowth of PC12 cells. We propose that the phosphorylation-dependent interaction of HAP1A with 14-3-3 regulates HAP1 function by influencing its association with kinesin light chain and trafficking in neuronal processes.
Collapse
Affiliation(s)
- Juan Rong
- Department of Human Genetics and the Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shihua Li
- Department of Human Genetics and the Emory University School of Medicine, Atlanta, Georgia 30322
| | - Guoqing Sheng
- Department of Human Genetics and the Emory University School of Medicine, Atlanta, Georgia 30322
| | - Meng Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Brian Coblitz
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Min Li
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322 and the
| | - Xiao-Jiang Li
- Department of Human Genetics and the Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
217
|
Ogata Y, Heppelmann CJ, Heppelmann CJ, Charlesworth MC, Madden BJ, Miller MN, Kalli KR, Cliby WA, Bergen HR, Saggese DA, Muddiman DC. Elevated Levels of Phosphorylated Fibrinogen-α-Isoforms and Differential Expression of Other Post-Translationally Modified Proteins in the Plasma of Ovarian Cancer Patients. J Proteome Res 2006; 5:3318-25. [PMID: 17137333 DOI: 10.1021/pr060344+] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We evaluated the differentially expressed proteins in the plasma of ovarian cancer (OVC) patients using 2-D SDS-polyacrylamide gel electrophoresis (SDS-PAGE) with post-translational modification (PTM) specific stains after the removal of six high-abundance proteins. The pooled plasma from patients with stage III or IV OVC was compared to a pooled postmenopausal age-matched control. Several proteins were identified as differentially expressed in the plasma of OVC patients. Among them, the phosphorylated fibrinogen-alpha-chain isoform (containing fibrinopeptide-A) was found to be up-regulated. Previously in our laboratory, phosphorylated fibrinopeptide-A was found to be up-regulated in the low molecular weight fraction of serum derived from OVC patients. We examined the levels of phosphorylated fibrinogen-alpha-chain in each patient that constituted the pooled plasma using Western blot, mass spectrometry (MS), and PTM specific stains. Phosphoprotein bands containing fibrinogen-alpha-chain fragments showed up-regulation in all OVC patients.
Collapse
Affiliation(s)
- Yuko Ogata
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Niwa T. Elucidation of characteristic structural features of ligand binding sites of protein kinases: a neural network approach. J Chem Inf Model 2006; 46:2158-66. [PMID: 16995746 DOI: 10.1021/ci050528t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinases play important roles in regulating cellular signal transduction and other biochemical processes, and they are attractive targets for drug discovery programs in many disease areas. Most kinase inhibitors under development as drugs act by directly competing with ATP at the ATP-binding site of the kinase. There are more than 500 protein kinases, and the ATP-binding site is highly conserved among them. Therefore selectivity is an essential requirement for clinically effective drugs, and understanding the structural characteristics of ATP-binding sites is of crucial importance. The objective of the present study was to elucidate the structural characteristics of the adenosine-binding site of four major kinase groups, AGC (PKA, PKG, and PKC families), CaMK (calcium/calmodulin-dependent protein kinases), CMGC (CDK, MAPK, GSK3, and CLK families), and TK (tyrosine kinases). To do this, we classified the kinases into groups by using feed-forward multilayer perceptron (MLP) neural networks and structural, electronic, and hydrophobic descriptors of the amino acids at the adenosine-binding site. A total of 275 kinases were classified in two ways: (1) kinases belonging to a certain group were distinguished from those not belonging to that group, and (2) all of the kinases were classified into four groups. More than 85% of the kinases were correctly classified by both methods. Trained neural networks clarified which amino acids and which properties characterize the adenosine-binding site of each group, and the results were visualized by molecular graphics. Comparison of the modeled neural networks and the distributions of amino acids provided more detailed information on the structural characteristics of each group. Application of the present results to drug development is also discussed.
Collapse
Affiliation(s)
- Tomoko Niwa
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd., 14, Nishinosho-Monguchi-cho, Kisshoin, Minami-ku, Kyoto, 601-8550 Japan.
| |
Collapse
|
219
|
Adayev T, Chen-Hwang MC, Murakami N, Wegiel J, Hwang YW. Kinetic properties of a MNB/DYRK1A mutant suitable for the elucidation of biochemical pathways. Biochemistry 2006; 45:12011-9. [PMID: 17002300 DOI: 10.1021/bi060632j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minibrain kinase/dual-specificity tyrosine phosphorylation regulated kinase 1A (MNB/DYRK1A) is a proline/arginine-directed serine/threonine kinase implicated in the learning deficits of Down syndrome. Epigallocatechin-3-gallate (EGCG), the major tea polyphenolic compound, is a potent MNB/DYRK1A inhibitor. In this study, we investigated the mechanism of EGCG inhibition of MNB/DYRK1A using a combination of genetic and biochemical approaches. In the testing system using MNB/DYRK1A-promoted Gli 1-dependent transcription as the readout, NIH3T3 cells expressing EGCG resistant MNB/DYRK1A mutant R21 were found to acquire EGCG resistance for a wide range of drug concentrations. Mutant R21 harbors a single K465R substitution, which produces a 3-fold gain in the EGCG resistance in vitro. However, the gain in the EGCG resistance alone cannot fully interpret the effectiveness of mutant R21 in suppressing EGCG in cultured cells. Kinetic analysis suggests that EGCG functions as a noncompetitive inhibitor against ATP. Interestingly, the K465R mutation changes the mode of EGCG inhibition on MNB/DYRK1A so that it becomes a competitive inhibitor against ATP. This competitive mode of EGCG inhibition coupled with high intracellular ATP concentrations and an elevated EGCG resistance are likely to be the basis for the resistant property of mutant R21 in cultured cells. The K465R mutation apparently transforms the intramolecular interactions required for MNB/DYRK1A catalysis. This mutant would also be valuable for the elucidation of the mechanisms of MNB/DYRK1A-catalyzed reaction.
Collapse
Affiliation(s)
- Tatyana Adayev
- Molecular Biology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | | | | | | | | |
Collapse
|
220
|
Hagen T, Cross DAE, Culbert AA, West A, Frame S, Morrice N, Reith AD. FRAT1, a substrate-specific regulator of glycogen synthase kinase-3 activity, is a cellular substrate of protein kinase A. J Biol Chem 2006; 281:35021-9. [PMID: 16982607 DOI: 10.1074/jbc.m607003200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FRAT1, like its Xenopus homolog glycogen synthase kinase-3 (GSK-3)-binding protein, is known to inhibit GSK-3-mediated phosphorylation of beta-catenin. It is currently unknown how FRAT-GSK-3-binding protein activity toward GSK-3 is regulated. FRAT1 has recently been shown to be a phosphoprotein in vivo; however, the responsible kinase(s) have not been determined. In this study, we identified Ser188 as a phosphorylated residue in FRAT1. The identity of the kinase that catalyzes Ser188 phosphorylation and the significance of this phosphorylation to FRAT1 function were investigated. Protein kinase A (PKA) was found to phosphorylate Ser188 in vitro as well as in intact cells. Importantly, activation of endogenous cAMP-coupled beta-adrenergic receptors with norepinephrine stimulated the phosphorylation of FRAT1 at Ser188. GSK-3 was also able to phosphorylate FRAT1 at Ser188 and other residues in vitro or when overexpressed in intact cells. In contrast, endogenous GSK-3 did not lead to significant FRAT1 phosphorylation in cells, suggesting that GSK-3 is not a major FRAT1 kinase in vivo. Phosphorylation of Ser188 by PKA inhibited the ability of FRAT1 to activate beta-catenin-dependent transcription. In conclusion, PKA phosphorylates FRAT1 in vitro as well as in intact cells and may play a role in regulating the inhibitory activity of FRAT1 toward GSK-3.
Collapse
Affiliation(s)
- Thilo Hagen
- Discovery Research Biology, Neurology Centre of Excellence in Drug Discovery, Computational, Analytical, and Structural Sciences, GlaxoSmithKline Pharmaceuticals, Harlow, Essex CM19 5AD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
221
|
Xu Y, Voorhees JJ, Fisher GJ. Epidermal growth factor receptor is a critical mediator of ultraviolet B irradiation-induced signal transduction in immortalized human keratinocyte HaCaT cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:823-30. [PMID: 16936259 PMCID: PMC1698809 DOI: 10.2353/ajpath.2006.050449] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2006] [Indexed: 01/28/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a critical mediator of several types of epithelial cancers. Skin cancer arising from exposure to ultraviolet B irradiation (UVB) from the sun is a prominent form of human cancer. Recent data indicate that in addition to cognate ligands, EGFR is activated by UVB irradiation. We used pharmacological and genetic approaches to investigate the function of EGFR in mediating UVB-induced signal transduction in human skin keratinocyte HaCaT cells. Pharmacological inhibition of EGFR tyrosine kinase significantly inhibited UVB-mediated induction of ERK, p38, and JNK MAP kinases, and their effectors, transcription factors c-Fos and c-Jun. Inhibition of UVB activation of EGFR also suppressed activation of AKT-, PKC-, and PKA-dependent signal transduction pathways. B82 mouse L cells devoid of EGFR were used to further investigate EGFR dependence of UVB-induced signal transduction. UVB failed to induce ERK, and JNK activation was reduced 60% in B82 cells compared to B82K+ cells, which express EGFR. In addition, UVB induced both c-Fos and c-Jun proteins in B82K+ cells, whereas neither were induced in B82 cells. Taken together, these data demonstrate that EGFR is required for UVB-mediated induction of multiple signaling pathways that are known to mediate tumor formation in skin.
Collapse
Affiliation(s)
- Yiru Xu
- Department of Dermatology, University of Michigan Medical School, Medical Science I, Room 6447, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-0609, USA
| | | | | |
Collapse
|
222
|
Furet P, Bold G, Meyer T, Roesel J, Guagnano V. Aromatic interactions with phenylalanine 691 and cysteine 828: a concept for FMS-like tyrosine kinase-3 inhibition. Application to the discovery of a new class of potential antileukemia agents. J Med Chem 2006; 49:4451-4. [PMID: 16854049 DOI: 10.1021/jm060368s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FLT3 kinase inhibitors are currently under investigation as a new treatment for acute myeloid leukemia. We report here a molecular concept invoking interactions between an aromatic ring and the side chains of Phe691 and Cys828, two residues of the ATP pocket, to obtain potent and specific inhibitors of this kinase. The hypothesis has been validated by the successful design of a new inhibitor prototype showing promising antiproliferative activity in cellular assays.
Collapse
Affiliation(s)
- Pascal Furet
- Novartis Pharma AG, Novartis Institutes for Biomedical Research, CH-4002 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
223
|
Konde V, Eichberg J. Myelin protein zero: mutations in the cytoplasmic domain interfere with its cellular trafficking. J Neurosci Res 2006; 83:957-64. [PMID: 16493674 DOI: 10.1002/jnr.20793] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cytoplasmic domain of myelin protein zero (MPZ), the principal protein of peripheral myelin, undergoes phosphorylation on several serine residues and a tyrosine group that is maximal during peak nerve myelination. Mutations that could affect MPZ phosphorylation cause the inherited neuropathy, Charcot-Marie-Tooth disease Type 1B. To investigate a possible role for phosphorylation in regulation of MPZ trafficking within the cell, we expressed wild-type and mutated MPZ-enhanced green fluorescent protein (GFP) fusion proteins in cultured Schwann-like cells. Whereas wild-type protein is present almost entirely at the cell surface, mutation of serine 204 to alanine or at a nearby presumed PKC substrate motif (198RSTK201) causes 40-60% of protein to be retained in the cytoplasm. Mutation of S204 to aspartate, which introduces a permanent negative charge, also impairs MPZ movement to the plasma membrane. In contrast, tyrosine 191 mutation has no effect on MPZ cellular distribution. Simultaneous alteration of S204 and Y191 produces much less perturbation of MPZ trafficking than mutation of S204 alone. Colocalization studies showed that mutated MPZ-EGFP trapped in the cytoplasm associates with all organelles in the secretory pathway. Previous studies have shown that cytoplasmic mutations at serine, but not tyrosine phosphorylation sites, abolish MPZ adhesive properties. Our results suggest that this loss of adhesion may be due, at least in part, to a failure of sufficient MPZ to reach the cell surface and that this impaired trafficking is associated with deficient serine phosphorylation in the cytoplasmic domain.
Collapse
Affiliation(s)
- Viren Konde
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | |
Collapse
|
224
|
Archila S, King MA, Carlson GM, Rice NA. The cytoskeletal organizing protein Cdc42-interacting protein 4 associates with phosphorylase kinase in skeletal muscle. Biochem Biophys Res Commun 2006; 345:1592-9. [PMID: 16735024 DOI: 10.1016/j.bbrc.2006.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/11/2006] [Indexed: 11/18/2022]
Abstract
Phosphorylase kinase is a key enzyme in regulating glycogenolytic flux in skeletal muscle in response to changing energy demands. In the present study, we sought to identify interacting proteins of phosphorylase kinase by yeast two-hybrid screening. Screening a rabbit skeletal muscle cDNA library with the exposed C-terminus of the alpha subunit (residues 1060-1237), we identified eight independent, yet overlapping, constructs of cdc42-interacting protein 4 (CIP4). Immunocytochemistry indicated that CIP4 colocalized with phosphorylase kinase in vivo, and the cognate binding domain on CIP4 was determined to lie between residues 398 and 545. While this region of CIP4 does contain a known src homology 3 domain, transient transfections and coimmunoprecipitation experiments showed that this domain is not responsible for the dimeric interaction. Based upon sequence analysis the association is inferred to be mediated by two proline-rich sequences in CIP4, residues 436-439 and 441-444, that bind to a cognate WW domain found between residues 1107 and 1129 of PhKalpha.
Collapse
Affiliation(s)
- Soleil Archila
- Department of Biology, Western Kentucky University, Bowling Green, 42101-1080, USA
| | | | | | | |
Collapse
|
225
|
Rong J, McGuire JR, Fang ZH, Sheng G, Shin JY, Li SH, Li XJ. Regulation of intracellular trafficking of huntingtin-associated protein-1 is critical for TrkA protein levels and neurite outgrowth. J Neurosci 2006; 26:6019-30. [PMID: 16738245 PMCID: PMC6675209 DOI: 10.1523/jneurosci.1251-06.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutant huntingtin can affect vesicular and receptor trafficking via its abnormal protein interactions, suggesting that impairment of intracellular trafficking may contribute to Huntington's disease. There is growing evidence that huntingtin-associated protein-1 (HAP1) also interacts with microtubule-dependent transporters and is involved in intracellular trafficking. However, it remains unclear how the trafficking of HAP1 is regulated and contributes to neuronal function. Here we report that phosphorylation of HAP1 decreases its association with microtubule-dependent transport proteins dynactin p150 and kinesin light chain and reduces its localization in neurite tips. Suppressing HAP1 expression by RNA interference reduces neurite outgrowth and the level of tropomyosin-related kinase A receptor tyrosine kinase (TrkA), a nerve growth factor receptor whose internalization and trafficking are required for neurite outgrowth. HAP1 maintains the normal level of membrane TrkA by preventing the degradation of internalized TrkA. Mutant huntingtin also reduces the association of HAP1 with dynactin p150 and kinesin light chain and thereby decreases the intracellular level of TrkA. These findings suggest that HAP1 trafficking is critical for the stability of TrkA and neurite function, both of which can be attenuated by mutant huntingtin.
Collapse
|
226
|
Hagi A, Hirata H, Shinomiya H. Analysis of a bacterial lipopolysaccharide-activated serine kinase that phosphorylates p65/L-plastin in macrophages. Microbiol Immunol 2006; 50:331-5. [PMID: 16625055 DOI: 10.1111/j.1348-0421.2006.tb03801.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously identified p65/L-plastin as a phosphorylated protein in LPS-stimulated macrophages and determined its phosphorylation site. In vitro kinase assay using peptide substrates revealed that LPS-stimulated kinase activity selectively phosphorylated their serine-5 (Ser-5) residue. Kinase inhibitors for cAMP-dependent kinase such as H-89 inhibited the Ser-5 phosphorylation, but cAMP was not essential for the kinase activity. The LPS-stimulated kinase activity in cytosol fractions of macrophages was recovered as a sharp peak by anion exchange chromatography. These findings suggest that an as yet unknown H-89-sensitive serine kinase is rapidly activated by LPS stimulation and then phosphorylates p65/L-plastin, playing a vital role in macrophage activation.
Collapse
Affiliation(s)
- Akifumi Hagi
- Pharmacology Section, Nutrition Research Institute, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | | | | |
Collapse
|
227
|
Tzircotis G, Thorne RF, Isacke CM. Directional sensing of a phorbol ester gradient requires CD44 and is regulated by CD44 phosphorylation. Oncogene 2006; 25:7401-10. [PMID: 16785995 DOI: 10.1038/sj.onc.1209724] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cancer progression is associated with enhanced directional cell migration, both of the tumour cells invading into the stroma and stromal cells infiltrating the tumour site. In cell-based assays to study directional cell migration, phorbol esters are frequently used as a chemotactic agent. However, the molecular mechanism by which these activators of protein kinase C (PKC) result in the establishment of a polarized migratory phenotype is not known. Here we show that CD44 expression is essential for chemotaxis towards a phorbol ester gradient. In an investigation of CD44 phosphorylation kinetics in resting and stimulated cells, Ser316 was identified as a novel site of phosphorylation following activation of PKC. PKC does not phosphorylate Ser316 directly, but rather mediates the activation of downstream Ser316 kinase(s). In transfection studies, a phosphorylation-deficient Ser316 mutant was shown to act in a dominant-negative fashion to impair chemotaxis mediated by endogenous CD44 in response to a phorbol ester gradient. Importantly, this mutation had no effect on random cell motility or the ability of cells to migrate directionally towards a cocktail of chemoattractants. These studies demonstrate that CD44 functions to provide directional cues to migrating cells without affecting the motility apparatus.
Collapse
Affiliation(s)
- G Tzircotis
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
228
|
Strnad P, Lienau TC, Tao GZ, Lazzeroni LC, Stickel F, Schuppan D, Omary MB. Keratin variants associate with progression of fibrosis during chronic hepatitis C infection. Hepatology 2006; 43:1354-63. [PMID: 16729313 DOI: 10.1002/hep.21211] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Keratins 8 and 18 (K8/K18) protect the liver from various forms of injury. Studies of liver explants from a large cohort of U.S. patients showed that K8/K18 mutations confer a risk to developing end-stage liver diseases, though which diseases are preferentially involved is unknown. We tested the hypothesis that K8/K18 variants are associated with chronic hepatitis C (CHC) and that their presence correlates with progression of fibrosis. Genomic DNA was isolated from peripheral blood of a well-characterized German cohort of 329 patients with CHC infection. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Our findings showed: (1) amino acid altering keratin heterozygous variants in 24 of 329 CHC patients (7.3%) and non-coding heterozygous variants in 26 patients (7.8%), and (2) 3 new exonic K8 variants (T26R/G55A/A359T); 6 novel non-coding variants and one K18 coding variant (K18 S230T; 2 patients). The most common variants were K8 R341H (10 patients), K8 G62C (6 patients) and K8 I63V (4 patients). A novel and exclusive association of an intronic KRT8 IVS7+10delC deletion in all 10 patients with K8 R341H was observed. Notably, there was a significant association of exonic, but not of intronic K8 variants with increased fibrosis. In conclusion, previously described and novel K8 variants are present in a German population and collectively associate with progression of fibrosis in CHC infection. The unique 100% segregation of the most common K8 variant, R341H, with an intronic deletion suggests that one of these two genetic changes might lead to the other.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Medicine, Palo Alto VA Medical Center, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Portela P, Moreno S, Rossi S. Characterization of yeast pyruvate kinase 1 as a protein kinase A substrate, and specificity of the phosphorylation site sequence in the whole protein. Biochem J 2006; 396:117-26. [PMID: 16426231 PMCID: PMC1450003 DOI: 10.1042/bj20051642] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyk1 (pyruvate kinase 1) from Saccharomyces cerevisiae was characterized as a substrate for PKA (protein kinase A) from bovine heart and yeast. By designing Pyk1 synthetic peptides containing potential PKA sequence targets (Ser22, Thr94 and Thr478) we determined that the peptide S22 was a substrate for PKA in vitro, with a K(sp)* (specificity constant) 10-fold and 3-fold higher than Kemptide for bovine heart and yeast PKA respectively. In vitro phosphorylation of the Pyk1 S22A mutant protein was decreased by as much as 90% when compared with wild-type Pyk1 and the Pyk1 T94A mutant. The K(sp)* values for Pyk1 and Pyk1 T94A were the same, indicating that both proteins are phosphorylated at the same site by PKA. Two-dimensional PAGE of Pyk1 and Pyk1 S22A indicates that in vivo the S22A mutation prevented the formation of one of the Pyk1 isoforms. We conclude that in yeast the major PKA phosphorylation site of Pyk1 is Ser22. Phosphorylation of Ser22 leads to a Pyk1 enzyme that is more active in the absence of FBP (fructose 1,6-bisphosphate). The specificity of yeast and mammalian PKA towards the S22 peptide and towards whole Pyk1 protein was measured and compared. The K(sp)* for the S22 peptide is higher than that for Pyk1, indicating that the peptide modelled on Pyk1 is a much better substrate than Pyk1, regardless of which tissue was used as the source of PKA. However, the K(m) of Pyk1 protein is lower than that of the better substrate, the S22 peptide, indicating that ground-state substrate binding is not the major determinant of substrate specificity for PKA.
Collapse
Affiliation(s)
- Paula Portela
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
| | - Silvia Moreno
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
| | - Silvia Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
- To whom correpsondence should be addressed (email )
| |
Collapse
|
230
|
Tak YS, Tanaka Y, Endo S, Kamimura Y, Araki H. A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. EMBO J 2006; 25:1987-96. [PMID: 16619031 PMCID: PMC1456926 DOI: 10.1038/sj.emboj.7601075] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 03/09/2006] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation often regulates protein-protein interactions to control biological reactions. The Sld2 and Dpb11 proteins of budding yeast form a phosphorylation-dependent complex that is essential for chromosomal DNA replication. The Sld2 protein has a cluster of 11 cyclin-dependent kinase (CDK) phosphorylation motifs (Ser/Thr-Pro), six of which match the canonical sequences Ser/Thr-Pro-X-Lys/Arg, Lys/Arg-Ser/Thr-Pro and Ser/Thr-Pro-Lys/Arg. Simultaneous alanine substitution for serine or threonine in all the canonical CDK-phosphorylation motifs severely reduces complex formation between Sld2 and Dpb11, and inhibits DNA replication. Here we show that phosphorylation of these canonical motifs does not play a direct role in complex formation, but rather regulates phosphorylation of another residue, Thr84. This constitutes a non-canonical CDK-phosphorylation motif within a 28-amino-acid sequence that is responsible, after phosphorylation, for binding of Sld2-Dpb11. We further suggest that CDK-catalysed phosphorylation of sites other than Thr84 renders Thr84 accessible to CDK. Finally, we argue that this novel mechanism sets a threshold of CDK activity for formation of the essential Sld2 to Dpb11 complex and therefore prevents premature DNA replication.
Collapse
Affiliation(s)
- Yon-Soo Tak
- Division of Microbial Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Yoshimi Tanaka
- Division of Microbial Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- CREST, Kawaguchi, Saitama, Japan
| | - Shizuko Endo
- Division of Microbial Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Yoichiro Kamimura
- Division of Microbial Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- CREST, Kawaguchi, Saitama, Japan
| | - Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- CREST, Kawaguchi, Saitama, Japan
- Division of Microbial Genetics, National Institute of Genetics, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan. Tel.: +81 55 981 6754; Fax: +81 55 981 6762; E-mail:
| |
Collapse
|
231
|
Zhou Q, Cadrin M, Herrmann H, Chen CH, Chalkley RJ, Burlingame AL, Omary MB. Keratin 20 serine 13 phosphorylation is a stress and intestinal goblet cell marker. J Biol Chem 2006; 281:16453-61. [PMID: 16608857 DOI: 10.1074/jbc.m512284200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Keratin polypeptide 20 (K20) is an intermediate filament protein with preferential expression in epithelia of the stomach, intestine, uterus, and bladder and in Merkel cells of the skin. K20 expression is used as a marker to distinguish metastatic tumor origin, but nothing is known regarding its regulation and function. We studied K20 phosphorylation as a first step toward understanding its physiologic role. K20 phosphorylation occurs preferentially on serine, with a high stoichiometry as compared with keratin polypeptides 18 and 19. Mass spectrometry analysis predicted that either K20 Ser(13) or Ser(14) was a likely phosphorylation site, and Ser(13) was confirmed as the phospho-moiety using mutation and transfection analysis and generation of an anti-K20-phospho-Ser(13) antibody. K20 Ser(13) phosphorylation increases after protein kinase C activation, and Ser(13)-to-Ala mutation interferes with keratin filament reorganization in transfected cells. In physiological contexts, K20 degradation and associated Ser(13) hyperphosphorylation occur during apoptosis, and chemically induced mouse colitis also promotes Ser(13) phosphorylation. Among mouse small intestinal enterocytes, K20 Ser(13) is preferentially phosphorylated in goblet cells and undergoes dramatic hyperphosphorylation after starvation and mucin secretion. Therefore, K20 Ser(13) is a highly dynamic protein kinase C-related phosphorylation site that is induced during apoptosis and tissue injury. K20 Ser(13) phosphorylation also serves as a unique marker of small intestinal goblet cells.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | |
Collapse
|
232
|
Nishikata M, Yoshimura Y, Deyama Y, Suzuki K. Continuous assay of protein tyrosine phosphatases based on fluorescence resonance energy transfer. Biochimie 2006; 88:879-86. [PMID: 16540231 DOI: 10.1016/j.biochi.2006.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 02/04/2006] [Indexed: 11/22/2022]
Abstract
An assay method that continuously measures the protein tyrosine phosphatase (PTP)-catalyzed dephosphorylation reaction based on fluorescence resonance energy transfer (FRET) was developed as an improvement of our previously reported discontinuous version [M. Nishikata, K. Suzuki, Y. Yoshimura, Y. Deyama, A. Matsumoto, Biochem. J. 343 (1999) 385-391]. The assay uses oligopeptide substrates that contain (7-methoxycoumarin-4-yl)acetyl (Mca) group as a fluorescence donor and 2,4-dinitrophenyl (DNP) group as a fluorescence acceptor, in addition to a phosphotyrosine residue located between these two groups. In the assay, a PTP solution is added to a buffer solution containing a FRET substrate and chymotrypsin. The PTP-catalyzed dephosphorylation of the substrate and subsequent chymotryptic cleavage of the dephosphorylated substrate results in a disruption of FRET, thereby increasing Mca fluorescence. In this study, we used FRET substrates that are much more susceptible to chymotryptic cleavage after dephosphorylation than the substrate used in our discontinuous assay, thus enabling the continuous assay without significant PTP inactivation by chymotrypsin. The rate of fluorescence increase strictly reflected the rate of dephosphorylation at appropriate chymotrypsin concentrations. Since the continuous assay allows the measurement of initial rate of dephosphorylation reaction, kinetic parameters for the dephosphorylation reactions of FRET substrates by Yersinia, T-cell and LAR PTPs were determined. The continuous assay was compatible with the measurement of very low PTP activity in a crude enzyme preparation and was comparable in sensitivity to assays that use radiolabeled substrates.
Collapse
Affiliation(s)
- M Nishikata
- Central Research Division, Hokkaido University Graduate School of Dental Medicine, Kita-ku, Kita-13 Nishi-7, 060-8586 Sapporo, Hokkaido, Japan.
| | | | | | | |
Collapse
|
233
|
Lee J, O'Neill RC, Park MW, Gravel M, Braun PE. Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: implications of a mitochondrial function for CNP2 in glial and non-glial cells. Mol Cell Neurosci 2005; 31:446-62. [PMID: 16343930 DOI: 10.1016/j.mcn.2005.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022] Open
Abstract
Both 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) isoforms are abundantly expressed in myelinating cells. CNP2 differs from CNP1 by a 20 amino acid N-terminal extension and is also expressed at much lower levels in non-myelinating tissues. The functional role of CNP2, apart from CNP1, and the significance for CNP2 expression in non-myelinating tissues are unknown. Here, we demonstrate that CNP2 is translocated to mitochondria by virtue of a mitochondrial targeting signal at the N-terminus. PKC-mediated phosphorylation of the targeting signal inhibits CNP2 translocation to mitochondria, thus retaining it in the cytoplasm. CNP2 is imported into mitochondria and the targeting signal cleaved, yielding a mature, truncated form similar in size to CNP1. CNP2 is entirely processed in adult liver and embryonic brain, indicating that it is localized specifically to mitochondria in non-myelinating cells. Our results point to a broader biological role for CNP2 in mitochondria that is likely to be different from its specific role in the cytoplasm, along with CNP1, during myelination.
Collapse
Affiliation(s)
- John Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6.
| | | | | | | | | |
Collapse
|
234
|
Liu J, Asuncion-Chin M, Liu P, Dopico AM. CaM kinase II phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels. Nat Neurosci 2005; 9:41-9. [PMID: 16341213 PMCID: PMC2574430 DOI: 10.1038/nn1602] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 10/21/2005] [Indexed: 01/01/2023]
Abstract
High-conductance, Ca(2+)-activated and voltage-gated (BK) channels set neuronal firing. They are almost universally activated by alcohol, leading to reduced neuronal excitability and neuropeptide release and to motor intoxication. However, several BK channels are inhibited by alcohol, and most other voltage-gated K(+) channels are refractory to drug action. BK channels are homotetramers (encoded by Slo1) that possess a unique transmembrane segment (S0), leading to a cytosolic S0-S1 loop. We identified Thr107 of bovine slo (bslo) in this loop as a critical residue that determines BK channel responses to alcohol. In addition, the activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the cell controlled channel activity and alcohol modulation. Incremental CaMKII-mediated phosphorylation of Thr107 in the BK tetramer progressively increased channel activity and gradually switched the channel alcohol responses from robust activation to inhibition. Thus, CaMKII phosphorylation of slo Thr107 works as a 'molecular dimmer switch' that could mediate tolerance to alcohol, a form of neuronal plasticity.
Collapse
Affiliation(s)
- Jianxi Liu
- Department of Pharmacology, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
235
|
Kobe B, Kampmann T, Forwood JK, Listwan P, Brinkworth RI. Substrate specificity of protein kinases and computational prediction of substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:200-9. [PMID: 16172032 DOI: 10.1016/j.bbapap.2005.07.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of "peptide specificity" of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information.
Collapse
Affiliation(s)
- Bostjan Kobe
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
236
|
Lieser SA, Aubol BE, Wong L, Jennings PA, Adams JA. Coupling phosphoryl transfer and substrate interactions in protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:191-9. [PMID: 16213199 DOI: 10.1016/j.bbapap.2005.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Protein kinases control cell signaling events through the ATP-dependent phosphorylation of serine, threonine and tyrosine residues in protein targets. The recognition of these protein substrates by the kinases relies on two principal factors: proper subcellular co-localization and molecular interactions between the kinase and substrate. In this review, we will focus on the kinetic role of the latter in conveying favorable substrate recognition. Using rapid mixing technologies, we demonstrate that the intrinsic thermodynamic affinities of two protein substrates for their respective kinases (Csk with Src and Sky1p with Npl3) are weak compared to their apparent affinities measured in traditional steady-state kinetic assays (i.e.--Km < Kd). The source of the high apparent affinities rests in a very fast and highly favorable phosphoryl transfer step that serves as a clamp for substrate recognition. In this mechanism, both Csk and Sky1p utilize this step to draw the substrate toward product, thereby, converting a high Kd into a low Km. We propose that this one form of substrate recognition employed by protein kinases is advantageous since it simultaneously facilitates high apparent substrate affinity and fast protein turnover.
Collapse
Affiliation(s)
- Scot A Lieser
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0506, USA
| | | | | | | | | |
Collapse
|
237
|
Chang M, Brown HJ, Collado-Hidalgo A, Arevalo JM, Galic Z, Symensma TL, Tanaka L, Deng H, Zack JA, Sun R, Cole SW. beta-Adrenoreceptors reactivate Kaposi's sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol 2005; 79:13538-47. [PMID: 16227274 PMCID: PMC1262578 DOI: 10.1128/jvi.79.21.13538-13547.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication is mediated by the viral RTA transcription factor, but little is known about the physiological processes controlling its expression or activity. Links between autonomic nervous system activity and AIDS-associated Kaposi's sarcoma led us to examine the potential influence of catecholamine neurotransmitters. Physiological concentrations of epinephrine and norepinephrine efficiently reactivated lytic replication of KSHV in latently infected primary effusion lymphoma cells via beta-adrenergic activation of the cellular cyclic AMP/protein kinase A (PKA) signaling pathway. Effects were blocked by PKA antagonists and mimicked by pharmacological and physiological PKA activators (prostaglandin E2 and histamine) or overexpression of the PKA catalytic subunit. PKA up-regulated RTA gene expression, enhanced activity of the RTA promoter, and posttranslationally enhanced RTA's trans-activating capacity for its own promoter and heterologous lytic promoters (e.g., the viral PAN gene). Mutation of predicted phosphorylation targets at RTA serines 525 and 526 inhibited PKA-mediated enhancement of RTA trans-activating capacity. Given the high catecholamine levels at sites of KSHV latency such as the vasculature and lymphoid organs, these data suggest that beta-adrenergic control of RTA might constitute a significant physiological regulator of KSHV lytic replication. These findings also suggest novel therapeutic strategies for controlling the activity of this oncogenic gammaherpesvirus in vivo.
Collapse
Affiliation(s)
- Margaret Chang
- Department of Microbiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1678,USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
[chemical reaction: see text]. A novel fluorescence-based assay for serine/threonine kinases is described. Base-mediated beta-elimination of the phosphate moiety and the Michael addition of a thiol-containing fluorescent molecule allows convenient and efficient detection of the enzyme activity. This approach may be broadly applicable to various serine/threonine kinases.
Collapse
Affiliation(s)
- Shoji Akita
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Nagoya, Japan
| | | | | |
Collapse
|
239
|
Henkelman G, LaBute MX, Tung CS, Fenimore PW, McMahon BH. Conformational dependence of a protein kinase phosphate transfer reaction. Proc Natl Acad Sci U S A 2005; 102:15347-51. [PMID: 16227439 PMCID: PMC1255735 DOI: 10.1073/pnas.0506425102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. With the protein in TC, the motions involved in reaction are small, with only P(gamma) and the catalytic proton moving >0.5 A. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site.
Collapse
Affiliation(s)
- Graeme Henkelman
- Department of Chemistry and Biochemistry, University of Texas, 1 University Station A5300, Austin, TX 78712-0165, USA
| | | | | | | | | |
Collapse
|
240
|
Cristiani C, Rusconi L, Perego R, Schiering N, Kalisz HM, Knapp S, Isacchi A. Regulation of the Wild-Type and Y1235D Mutant Met Kinase Activation. Biochemistry 2005; 44:14110-9. [PMID: 16245927 DOI: 10.1021/bi051242k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Met receptor tyrosine kinase plays a crucial role in the regulation of a large number of cellular processes and, when deregulated by overexpression or mutations, leads to tumor growth and invasion. The Y1235D mutation identified in metastases was shown to induce constitutive activation and a motile-invasive phenotype on transduced carcinoma cells. Wild-type Met activation requires phosphorylation of both Y1234 and Y1235 in the activation loop. We mapped the major phosphorylation sites in the kinase domain of a recombinant Met protein and identified the known residues Y1234 and Y1235 as well as a new phosphorylation site at Y1194 in the hinge region. Combining activating and silencing mutations at these sites, we characterized in depth the mechanism of activation of wild-type and mutant Met proteins. We found that the phosphotyrosine mimetic mutation Y1235D is sufficient to confer constitutive kinase activity, which is not influenced by phosphorylation at Y1234. However, the specific activity of this mutant was lower than that observed for fully activated wild-type Met and induced less phosphorylation of Y1349 in the signaling site, indicating that this mutation cannot entirely compensate for a phosphorylated tyrosine at this position. The Y1194F silencing mutation yielded an enzyme that could be activated to a similar extent as the wild type but with significantly slower activation kinetics, underlying the importance of this residue, which is conserved among different tyrosine kinase receptors. Finally, we observed different interactions of wild-type and mutant Met with the inhibitor K252a that may have therapeutic implications for the selective inhibition of this kinase.
Collapse
Affiliation(s)
- Cinzia Cristiani
- Biology Department, Nerviano Medical Sciences, Viale Pasteur 10, 20014 Nerviano, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
241
|
Khan SA, Park SW, Huq M, Wei LN. Protein kinase C-mediated phosphorylation of orphan nuclear receptor TR2: Effects on receptor stability and activity. Proteomics 2005; 5:3885-94. [PMID: 16130175 DOI: 10.1002/pmic.200402062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vivo metabolic labeling showed that orphan nuclear receptor TR2 could be phosphorylated. Systematic studies were conducted using specific kinases/phosphatase inhibitors to determine the enzymes responsible for TR2 phosphorylation and the effects of TR2 phosphorylation on its protein stability and activation of its target gene. The data showed that protein kinase C (PKC)-mediated phosphorylation enhanced the activating ability of TR2 on target gene RARbeta as well as its stability through protection from proteosome-mediated degradation. Several PKC-mediated potential serine/threonine phosphorylation sites on TR2 protein were predicted from the computer analysis using NetPhos software (http://us.expasy.org) and were commensurate by in vitro phosphorylation of purified TR2 protein using PKC enzyme. Two phosphorylation sites at Ser-461 and Ser-568 were identified by LC-ESI-MS/MS. Point mutations at Ser-568 or Ser-461 were prepared and evaluated for their biological activity. Ser-568, but not Ser-461, mutation significantly reduced PKC-mediated TR2 protein stability and its transcriptional activity.
Collapse
Affiliation(s)
- Shaukat Ali Khan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
242
|
Kam KWL, Kravtsov GM, Liu J, Wong TM. Increased PKA activity and its influence on isoprenaline-stimulated L-type Ca2+ channels in the heart from ovariectomized rats. Br J Pharmacol 2005; 144:972-81. [PMID: 15685204 PMCID: PMC1576077 DOI: 10.1038/sj.bjp.0706123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We previously showed that oestrogen confers cardioprotection by downregulating the cardiac beta1-adrenoceptor (beta1-AR). The present study examined the effect of oestrogen on the post beta1-AR signalling cascade, with particular emphasis on the activity of protein kinase A (PKA) and its influence on the L-type Ca2+ channel. Three groups of adult female Sprague-Dawley rats were used: sham-operated controls, bilaterally ovariectomized (Ovx) rats, and Ovx rats with oestrogen replacement (Ovx + E2), which restored the oestrogen concentration to normal. The electrically induced intracellular Ca2+ transient (E[Ca2+]i), 45Ca(2+)-uptake through cardiac L-type Ca2+ channels (Ca2+ channels), heart rate and force of contraction in response to beta-AR stimulation with 10 nM isoprenaline (Iso) in hearts from Ovx rats were significantly greater than those of control and Ovx + E2 rats. The basal and Iso-induced PKA activities were also higher in hearts from Ovx rats. KT5720, a selective PKA inhibitor, completely inhibited its potentiating effect on basal Ca2+ channel activity in the Ovx rat heart. On the other hand, expression of G proteins (G(alpha)s and G(alpha)i1-3)), basal and forskolin-stimulated cAMP accumulation, and responsiveness of PKA to cAMP, were not altered by Ovx. Interestingly, the PKA inhibitor at the same concentration significantly reduced the increases in PKA activity and Ca2+ channel activity upon beta-AR stimulation in all three groups of rats and the inhibitions were significantly greater in the Ovx rat than in the other two groups of rats. This study provides the first evidence that, in addition to downregulation of beta1-AR shown previously, suppression of PKA activity, which is partly responsible for the suppressed Ca2+ channel activity, also determines the E[Ca2+]i and cardiac contractility following beta-AR stimulation in the female rat.
Collapse
Affiliation(s)
- Kenneth W L Kam
- Department of Physiology, Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Gennadi M Kravtsov
- Department of Physiology, Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jing Liu
- Department of Physiology, Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tak Ming Wong
- Department of Physiology, Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Author for correspondence:
| |
Collapse
|
243
|
Rainey MA, Callaway K, Barnes R, Wilson B, Dalby KN. Proximity-induced catalysis by the protein kinase ERK2. J Am Chem Soc 2005; 127:10494-5. [PMID: 16045329 PMCID: PMC7085985 DOI: 10.1021/ja052915p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Five hundred protein kinases phosphorylate 10 000 proteins in human cells. Frequently, more than one site in a protein is phosphorylated, and often by more than one protein kinase. The mechanistic basis underlying the overlapping specificity of the phospho-proteome is not well understood. We are interested in understanding why ERK2, a proline-directed protein kinase, phosphorylates only a fraction of the (S/T-P) sites found in the surface loops of proteins, at an appreciable rate. To address this fundamental question, we utilized a well-established protein substrate EtsDelta138, which comprises a globular ERK2-recognition domain (pnt domain) and an unstructured peptide-like N-terminal tail. This tail contains T38, the sole ERK2 phosphorylation site. We mutated the TP motif, which is recognized by the active site and found that mutagenesis of the T-38/P-39 motif to TD, TR, TA, TG, and TV has no effect on the stability of the ternary complex but does decrease kcat. We also investigated the effect of perturbing the binding between ERK2 and the pnt domain, which occurs outside the active site, to find that mutation of the pnt domain (F120A) leads to a 10-fold decrease in binding but the kcat remains the same. The data support a mechanism of proximity-mediated catalysis, where the docking of the pnt domain, outside the active site, increases the effective concentration of the TP motif near the active site. The data are consistent with the notion that the interaction between ERK2 and the pnt domain provides uniform binding energy and stabilizes each enzyme intermediate and transition state to an equal extent. While other steps on the reaction pathway contribute towards the specificity of the ERK2 reaction, a docking interaction provides the initial basis for substrate recognition. Those residues within the docked complex, which have the ability to access the active site with an appropriate geometry, can be phosphorylated at an efficient rate if followed by a proline or small hydrophobic amino acid.
Collapse
Affiliation(s)
- Mark A Rainey
- College of Pharmacy, University of Texas at Austin, Austin, Texas 78712-1074, USA
| | | | | | | | | |
Collapse
|
244
|
Gupta P, Huq MDM, Khan SA, Tsai NP, Wei LN. Regulation of co-repressive activity of and HDAC recruitment to RIP140 by site-specific phosphorylation. Mol Cell Proteomics 2005; 4:1776-84. [PMID: 16093479 DOI: 10.1074/mcp.m500236-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that contains several autonomous repressive domains (RDs). The N-terminal RD acts by recruiting histone deacetylases (HDACs). In a comprehensive proteomic analysis of RIP140 by MS, 11 phosphorylation sites of RIP140 are identified; among them five sites are located in the N-terminal RD including Ser104, Thr202, Thr207, Ser358, and Ser380. The role of phosphorylation of RIP140 in regulating its biological activity and the underlying mechanism are examined using a site-directed mutagenesis approach. Mutations mimicking constitutive phosphorylation or dephosphorylation are introduced. The N-terminal RD phosphorylation, mediated by the mitogen-activated protein kinase (MAPK), enhances its repressive activity through increased recruitment of HDAC. Mutations mimicking constitutive dephosphorylation at Thr202 or Thr207 significantly impair its repressive activity and HDAC recruitment, whereas mutation at Ser358 only slightly affects its HDAC recruitment and the repressive activity. Consistently, mutations mimicking constitutive phosphorylation at either Thr202 or Thr207 convert RIP140 into a more potent repressor, which is less responsive to a disturbance in the MAPK system. Furthermore, constitutive phosphorylation at both Thr202 and Thr207 residues renders RIP140 fully repressive and strongly interacting with HDAC. The activity of this mutant is resistant to the MAPK inhibitor, indicating an essential role for Thr202 and Thr207 in MAPK-mediated modulation of RIP140 function. The study provides insights into the modulation of RIP140 biological activity through a specific cellular signaling pathway that augments phosphorylation at specific residues of RIP140 molecule and alters its cofactor recruitment.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
245
|
Chiolo I, Carotenuto W, Maffioletti G, Petrini JHJ, Foiani M, Liberi G. Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation. Mol Cell Biol 2005; 25:5738-51. [PMID: 15964827 PMCID: PMC1156977 DOI: 10.1128/mcb.25.13.5738-5751.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the genes encoding the BLM and WRN RecQ DNA helicases and the MRE11-RAD50-NBS1 complex lead to genome instability and cancer predisposition syndromes. The Saccharomyces cerevisiae Sgs1 RecQ helicase and the Mre11 protein, together with the Srs2 DNA helicase, prevent chromosome rearrangements and are implicated in the DNA damage checkpoint response and in DNA recombination. By searching for Srs2 physical interactors, we have identified Sgs1 and Mre11. We show that Srs2, Sgs1, and Mre11 form a large complex, likely together with yet unidentified proteins. This complex reorganizes into Srs2-Mre11 and Sgs1-Mre11 subcomplexes following DNA damage-induced activation of the Mec1 and Tel1 checkpoint kinases. The defects in subcomplex formation observed in mec1 and tel1 cells can be recapitulated in srs2-7AV mutants that are hypersensitive to intra-S DNA damage and are altered in the DNA damage-induced and Cdk1-dependent phosphorylation of Srs2. Altogether our observations indicate that Mec1- and Tel1-dependent checkpoint pathways modulate the functional interactions between Srs2, Sgs1, and Mre11 and that the Srs2 DNA helicase represents an important target of the Cdk1-mediated cellular response induced by DNA damage.
Collapse
Affiliation(s)
- Irene Chiolo
- FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139, Milan, Italy
| | | | | | | | | | | |
Collapse
|
246
|
Hui L, Pei DS, Zhang QG, Guan QH, Zhang GY. The neuroprotection of insulin on ischemic brain injury in rat hippocampus through negative regulation of JNK signaling pathway by PI3K/Akt activation. Brain Res 2005; 1052:1-9. [PMID: 16018989 DOI: 10.1016/j.brainres.2005.05.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Current studies demonstrated that cell survival is determined by a balance among signaling cascades, including those that recruit the Akt and JNK pathways. In our present work, the relationship between Akt1 and JNK1/2 was evaluated after cerebral ischemia-reperfusion in the hippocampus in a four-vessel occlusion model of Sprague-Dawley rats. This paper was based on our present and previous studies. Firstly, Akt1 had one active peak during reperfusion following 15 min ischemia. Secondly, two peaks of JNK1/2 activation occurred during reperfusion, respectively. Thirdly, the phosphorylation of JNK substrates c-Jun and Bcl-2, and the activation of a key protease of caspase-3 were detected. They only had one active peak, respectively, during reperfusion. To clarify the mechanism of Akt1 activation and further define whether JNK1/2 activation could be regulated by Akt1 through PI3K pathway, LY294002 and insulin were, respectively, administrated to the rats prior to ischemia. Our research indicated that LY294002, a PI3K inhibitor, significantly suppressed Akt1 activation. Furthermore, LY294002 significantly strengthened both peaks of JNK1/2 activation, c-Jun activation, Bcl-2 phosphorylation, and the activation of caspase-3 during reperfusion. In contrast, insulin, a PI3K agonist, not only obviously activated Akt1 during early and later reperfusion, but also inhibited phosphorylation of JNK1/2, c-Jun, and Bcl-2 and attenuated the activation of caspase-3. In addition, pretreatment of insulin significantly increased the number of the surviving CA1 pyramidal cells at 5 days of reperfusion. Consequently, our results indicated that the cross-talk between Akt1 and JNK1/2 could be mediated by insulin receptor through PI3K in rat hippocampus during reperfusion. This signaling pathway might play a neuroprotective role against ischemic insults via inhibition of the JNK pathway, involving the death effector of caspase-3.
Collapse
Affiliation(s)
- Liang Hui
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, PR China
| | | | | | | | | |
Collapse
|
247
|
Gibson RM, Laszlo GS, Nathanson NM. Calmodulin-dependent protein kinases phosphorylate gp130 at the serine-based dileucine internalization motif. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:56-62. [PMID: 16036214 DOI: 10.1016/j.bbamem.2005.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/18/2005] [Accepted: 05/23/2005] [Indexed: 11/29/2022]
Abstract
The receptor for leukemia inhibitory factor (LIF) consists of two polypeptides, the low affinity LIF receptor (LIFR) and gp130. We previously demonstrated that LIF stimulation caused phosphorylation of gp130 at Ser782, adjacent to a dileucine internalization motif, and that transient expression of a mutant receptor lacking Ser782 resulted in increased cell surface expression and increased LIF-stimulated gene expression compared to wild-type receptor. Phosphorylation of Ser782 on gp130 fusion protein by LIF-stimulated 3T3-L1 cell extracts was inhibited 61% by autocamtide-2-related inhibitory peptide (AIP), a highly specific and highly effective inhibitor of calmodulin-dependent protein kinase type II (CaMKII). Purified rat forebrain CaMKII was also able to phosphorylate gp130 fusion protein at Ser782 in vitro. Furthermore, antibodies targeting CaMKII and CaMKIV were able to immunoprecipitate gp130 phosphorylating activity from LIF-stimulated 3T3-L1 lysates. While pretreatment of cells with the MAPKK inhibitors PD98059 and U0126 blocked phosphorylation of Ser782 prior to LIF stimulation, these inhibitors did not block Ser782 phosphorylation by LIF-stimulated 3T3-L1 cell extracts in vitro. These results show that CaMKII and possibly CaMKIV phosphorylate Ser782 in the serine-based dileucine internalization motif of gp130 via a MAPK-dependent pathway.
Collapse
Affiliation(s)
- Robin M Gibson
- Department of Pharmacology, University of Washington, Box 357750, Seattle, WA 98195-7750, USA
| | | | | |
Collapse
|
248
|
Volkman HM, Rutledge SE, Schepartz A. Binding mode and transcriptional activation potential of high affinity ligands for the CBP KIX domain. J Am Chem Soc 2005; 127:4649-58. [PMID: 15796530 DOI: 10.1021/ja042761y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently described a pair of ligands, PPKID4(P) (4(P)) and PPKID6(U) (6(U)), which present the alpha-helical functional epitope found on helix B of the CREB KID activation domain (KID(P)) on a pancreatic fold protein scaffold. 4(P) and 6(U) bind the natural target of KID(P), the KIX domain of the coactivator CBP, with equilibrium dissociation constants between 515 nM and 1.5 microM and compete effectively with KID(P) for binding to CBP KIX (KIX). Here we present a detailed investigation of the binding mode, orientation, and transcriptional activation potential of 4(P) and 6(U). Equilibrium binding experiments using a panel of well-characterized KIX variants support a model in which 4(P) binds KIX in a manner that closely resembles that of KID(P) but 6(U) binds an overlapping, yet distinct region of the protein. Equilibrium binding experiments using a judiciously chosen panel of 4(P) variants containing alanine or sarcosine substitutions along the putative alpha- or PPII helix of 4(P) support a model in which 4(P) folds into a pancreatic fold structure upon binding to KIX. Transcriptional activation assays performed in HEK293 cells using GAL4 DNA-binding domain fusion proteins indicate that 4(P) functions as a potent activator of p300/CBP-dependent transcription. Notably, 6(U) is a less potent transcriptional activator in this context than 4(P)despite the similarity of their affinities for CBP KIX. This final result suggests that thermodynamic affinity is an important, although not exclusive, criterion controlling the level of KIX-dependent transcriptional activation.
Collapse
Affiliation(s)
- Heather M Volkman
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
249
|
Oxombre B, Kouach M, Moerman E, Formstecher P, Laine B. The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factor 4alpha activities and introduces a PKA phosphorylation site in its DNA-binding domain. Biochem J 2005; 383:573-80. [PMID: 15233628 PMCID: PMC1133751 DOI: 10.1042/bj20040473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HNF4alpha (hepatocyte nuclear factor 4alpha) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic beta-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4alpha gene correlate with MODY1 (maturity-onset diabetes of the young 1), a form of type II diabetes characterized by an impaired glucose-induced insulin secretion. The MODY1 G115S (Gly115-->Ser) HNF4alpha mutation is located in the DNA-binding domain of this nuclear receptor. We show here that the G115S mutation failed to affect HNF4alpha-mediated transcription on apolipoprotein promoters in HepG2 cells. Conversely, in pancreatic beta-cell lines, this mutation resulted in strong impairments of HNF4alpha transcriptional activity on the promoters of LPK (liver pyruvate kinase) and HNF1alpha, with this transcription factor playing a key role in endocrine pancreas. We show as well that the G115S mutation creates a PKA (protein kinase A) phosphorylation site, and that PKA-mediated phosphorylation results in a decreased transcriptional activity of the mutant. Moreover, the G115E (Gly115-->Glu) mutation mimicking phosphorylation reduced HNF4alpha DNA-binding and transcriptional activities. Our results may account for the 100% penetrance of diabetes in human carriers of this mutation. In addition, they suggest that introduction of a phosphorylation site in the DNA-binding domain may represent a new mechanism by which a MODY1 mutation leads to loss of HNF4alpha function.
Collapse
Affiliation(s)
- Bénédicte Oxombre
- INSERM U459, Faculté de Médecine Henri Warembourg, 1 Place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | |
Collapse
|
250
|
Asenjo A, Rodríguez L, Villanueva N. Determination of phosphorylated residues from human respiratory syncytial virus P protein that are dynamically dephosphorylated by cellular phosphatases: a possible role for serine 54. J Gen Virol 2005; 86:1109-1120. [PMID: 15784905 DOI: 10.1099/vir.0.80692-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 241 aa human respiratory synctyial virus (HRSV) Long strain P protein is phosphorylated at serines 116, 117 and/or 119, and 232. Phosphates added to these residues have slow turnover and can be detected in the absence of protein phosphatase inhibition. Inhibition of phosphatases PP1 and PP2A increases the level of phosphorylation at serines 116, 117 and/or 119, suggesting a more rapid turnover for phosphates added to these residues compared to that of S232. High-turnover phosphorylation is detected in the P-protein NH2-terminal region, mainly at S54 and, to a lesser extent, at S39, in the Long strain. When the P protein bears the T46I substitution (in the remaining HRSV strains), phosphates are added to S30, S39, S45 and S54. Phosphatase PP1 removes phosphate at residues in the central part of the P-protein molecule, whereas those in the NH2-terminal region are removed by phosphatase PP2A. The significance of the phosphorylation of the NH2-terminal region residues for some P-protein functions was studied. The results indicated that this modification is not essential for P-protein oligomerization or for its role in viral RNA synthesis. Nonetheless, dephosphorylation at S54 could facilitate P-M protein interactions that probably occur during the egress of viral particles.
Collapse
Affiliation(s)
- Ana Asenjo
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2, Majadahonda, E-28220 Madrid, Spain
| | - Lorena Rodríguez
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2, Majadahonda, E-28220 Madrid, Spain
| | - Nieves Villanueva
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2, Majadahonda, E-28220 Madrid, Spain
| |
Collapse
|