201
|
Kiani-Esfahani A, Kazemi Sheykhshabani S, Peymani M, Hashemi MS, Ghaedi K, Nasr-Esfahani MH. Overexpression of Annexin A1 Suppresses Pro-Inflammatory Factors in PC12 Cells Induced by 1-Methyl-4-Phenylpyridinium. CELL JOURNAL 2016; 18:197-204. [PMID: 27540524 PMCID: PMC4988418 DOI: 10.22074/cellj.2016.4314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 07/28/2015] [Indexed: 01/19/2023]
Abstract
Objective Annexin A1 (ANXA1) is suggested to have anti-inflammatory function. However, the precise function of ANXA1 has remained unclear. In this study, we therefore
examined the potency of ANXA1 in regulating reactive oxygen species (ROS) production
and suppressing pro-inflammatory responses in PC12 cells induced by 1-methyl-4-phenylpyridinium (MPP+).
Materials and Methods In this experimental study, cDNA of ANXA1 was cloned and
inserted to the PGL268 pEpi-FGM18F vector to produce a recombinant PGL/ANXA1 vector for transfection into the PC12 cells. ANXA1 transfected cells were then treated with
MPP+. Apoptosis and the content of pro-inflammatory factors including ROS, Interlukin-6
(IL-6), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were
assessed by flow-cytometry, real-time quantitative polymerase chain reaction (RT-qPCR)
and western blot in ANXA1-transfected cells and the data were compared with those obtained from mock and control cells.
Results Data revealed that overexpression of ANXA1 is associated with decreased levels of ROS and expression level of IL-6 and iNOS transcripts, and NF-κB protein in MPP+
treated PC12 cells.
Conclusion ANXA1 may be considered as an agent for prevention of neurodegenerative
or inflammatory conditions.
Collapse
Affiliation(s)
- Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Sahrekord, Iran
| | - Motahare-Sadat Hashemi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
202
|
e-Cadherin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson Disease. Mediators Inflamm 2016; 2016:3937057. [PMID: 27194825 PMCID: PMC4852763 DOI: 10.1155/2016/3937057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
Today a large number of studies are focused on clarifying the complexity and diversity of the pathogenetic mechanisms inducing Parkinson disease. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that induces Parkinson disease, to evaluate the change of midbrain structure and the behavior of the anti-inflammatory factor e-cadherin, interleukin-6, tyrosine hydroxylase, phosphatase and tensin homolog, and caveolin-1. The results showed a strong expression of e-cadherin, variation of length and thickness of the heavy neurofilaments, increase of interleukin-6, and reduction of tyrosine hydroxylase known to be expression of dopamine cell loss, reduction of phosphatase and tensin homolog described to impair responses to dopamine, and reduction of caveolin-1 known to be expression of epithelial-mesenchymal transition and fibrosis. The possibility that the overexpression of the e-cadherin might be implicated in the anti-inflammatory reaction to MPTP treatment by influencing the behavior of the other analyzed molecules is discussed.
Collapse
|
203
|
Ahmed HH, Metwally FM, Khalil WKB, Aglan HA. Bone marrow derived mesenchymal stem cells: A unique cytotherapy for rescuing degenerated dopaminergic neurons. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
204
|
Olson KE, Gendelman HE. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson's disease. Curr Opin Pharmacol 2015; 26:87-95. [PMID: 26571205 DOI: 10.1016/j.coph.2015.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 01/06/2023]
Abstract
While immune control is associated with nigrostriatal neuroprotection for Parkinson's disease, direct cause and effect relationships have not yet been realized, and modulating the immune system for therapeutic gain has been openly debated. Here, we review how innate and adaptive immunity affect disease pathobiology, and how each could be harnessed for treatment. The overarching idea is to employ immunopharmacologics as neuroprotective strategies for disease. The aim of the current work is to review disease-modifying treatments that are currently being developed as neuroprotective strategies for PD in experimental animal models and for human disease translation. The long-term goal of this research is to effectively harness the immune system to slow or prevent PD pathobiology.
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
205
|
Sridharan S, Mohankumar K, Jeepipalli SPK, Sankaramourthy D, Ronsard L, Subramanian K, Thamilarasan M, Raja K, Chandra VK, Sadras SR. Neuroprotective effect of Valeriana wallichii rhizome extract against the neurotoxin MPTP in C57BL/6 mice. Neurotoxicology 2015; 51:172-83. [PMID: 26522450 DOI: 10.1016/j.neuro.2015.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023]
Abstract
Oxidative stress and inflammation are some of the contributing factors for dopaminergic neurodegeneration in Parkinson's disease (PD). Though Valeriana wallichii D.C. is known for its nervine activities its effect against PD is yet to be studied. This is the first report on the antioxidant and anti-inflammatory effect of V. wallichii rhizome extract (VWE) in MPTP induced PD mice. GC-MS analysis of VWE indicated the presence of phytoconstituents like isovaleric acid and acacetin. PD induced mice were treated orally with three different doses (50, 100 and 200mg/kg body weight (BW)) of VWE for 14 days and their behavioural changes were studied on days 0, 8, 13 and 21. The levels of striatal dopamine, mid brain tyrosine hydroxylase positive (TH(+)) cell count, TH protein expression, reactive oxygen species (ROS), lipid peroxidation (LPO), antioxidants and inflammatory cytokines were analysed. Mid brain glial fibrillary acidic protein (GFAP) expression was assessed by immunohistochemistry and western blotting. Also mid brain histopathological analysis was performed. VWE treatment significantly recuperated the altered behavioural test scores, striatal dopamine levels, mid brain TH(+) cell count and TH protein levels, increased GFAP expression and the histopathological changes observed in PD mice. Similarly, diminished levels of antioxidants, elevated levels of ROS, LPO and inflammatory cytokines were also significantly ameliorated following VWE treatment. The effective dose of VWE was found to be 200mg/kg BW. Conclusively, V. wallichii rhizome extract has the potential to mitigate oxidative stress and inflammatory damage in PD.
Collapse
Affiliation(s)
- Subhashree Sridharan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Syam Praveen Kumar Jeepipalli
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Divya Sankaramourthy
- Department of Pharmacology, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry 605006, India
| | - Larance Ronsard
- Virology Laboratory-II, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Kavimani Subramanian
- Department of Pharmacology, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry 605006, India
| | - Manivasagam Thamilarasan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608002, India
| | - Kumar Raja
- Department of Pathology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry 605009, India
| | - Varshney Khub Chandra
- Department of Pathology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry 605009, India
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
206
|
GPER1-mediated immunomodulation and neuroprotection in the myenteric plexus of a mouse model of Parkinson's disease. Neurobiol Dis 2015; 82:99-113. [DOI: 10.1016/j.nbd.2015.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/09/2015] [Accepted: 05/27/2015] [Indexed: 01/27/2023] Open
|
207
|
Interleukin-6 May Contribute to Mortality in Parkinson's Disease Patients: A 4-Year Prospective Study. PARKINSONS DISEASE 2015; 2015:898192. [PMID: 26351617 PMCID: PMC4553204 DOI: 10.1155/2015/898192] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022]
Abstract
Objectives. The association between abnormal serum immunomarkers and mortality in 53 consecutive Parkinson's disease patients was studied. Materials and Methods. The plasma level of specific inflammatory cytokines was investigated: mannan-binding lectin (MBL), interleukin- (IL-) 6, and tumor necrosis factor-alpha (TNF-α). The baseline serum immunomarkers obtained from patients who died (n = 16) during a four-year follow-up period were compared with the data of patients who survived (n = 37). Results. The baseline level of IL-6 was significantly higher in the deceased patients than in the survivors. Elevated IL-6 levels and age were major independent contributors to disease mortality. Differences between other plasma cytokine level abnormalities were not significant. Conclusion. This study showed that IL-6 elevation may be a marker of increased mortality risk in Parkinson's disease patients. The inflammation may act in association with other factors and comorbidities in progressive neurodegenerative pathology.
Collapse
|
208
|
Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:628192. [PMID: 26295044 PMCID: PMC4532803 DOI: 10.1155/2015/628192] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, being characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Among several putative factors that may contribute to PD pathogenesis, inflammatory mechanisms may play a pivotal role. The involvement of microglial activation as well as of brain and peripheral immune mediators in PD pathophysiology has been reported by clinical and experimental studies. These inflammatory biomarkers evaluated by imaging techniques and/or by biological sample analysis have become valuable tools for PD diagnosis and prognosis. Regardless of the significant increase in the number of people suffering from PD, there are still no established disease-modifying or neuroprotective therapies for it. There is growing evidence of protective effect of anti-inflammatory drugs on PD development. Herein, we reviewed the current literature regarding the central nervous system and peripheral immune biomarkers in PD and advances in diagnostic and prognostic tools as well as the neuroprotective effects of anti-inflammatory therapies.
Collapse
|
209
|
Dobbs SM, Dobbs RJ, Weller C, Charlett A, Augustin A, Taylor D, Ibrahim MAA, Bjarnason I. Peripheral aetiopathogenic drivers and mediators of Parkinson's disease and co-morbidities: role of gastrointestinal microbiota. J Neurovirol 2015; 22:22-32. [PMID: 26092111 PMCID: PMC4729788 DOI: 10.1007/s13365-015-0357-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/17/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022]
Abstract
We seek an aetiopathogenic model for the spectrum of Parkinson's disease (PD), functional bowel disease, depression and cognitive impairment. The adopted concept is that systemic immuno-inflammatory processes mediate neuro-inflammation. The model would be based on phenotype, exposome (including gastrointestinal microbiome), milieu (immuno-inflammatory and metabolome), human genetics and their interactions. It would enable a patient's position, to be understood in terms of drivers, perpetuators and mediators, and a future position, with and without intervention, predicted. Even the cardinal facets of PD may have different drivers: halting one may allow escape down subordinate pathways. Peptic ulceration is prodromal to PD. In our randomised placebo-controlled trial, hypokinesia improved over the year following biopsy-proven Helicobacter pylori eradication and rigidity worsened. This was independent of any (stable, long t½) antiparkinsonian medication. There are pointers to an autoimmune process: for example, surveillance-confirmed hypokinesia effect was indication specific. During surveillance, successive antimicrobial courses, other than for Helicobacter, were associated with cumulative increase in rigidity. Exhibiting laxatives appeared to stem the overall temporal increase, despite antiparkinsonian medication, in rigidity. Thus, intestinal dysbiosis may be a major source of bystander neuronal damage. There are biological gradients of objective measures of PD facets on circulating inflammatory markers and leucocyte subset counts. Moreover, lactulose hydrogen breath test positivity for small-intestinal bacterial overgrowth (present in two thirds of PD patients) is associated with the same subsets: higher natural killer and total CD4+ counts and lower neutrophils. With greater aetiopathogenic understanding, relatively low cost and on-the-shelf medication could have a major impact. A new generation of animal models, based on the gut microbiome, is envisaged.
Collapse
Affiliation(s)
- Sylvia M Dobbs
- Pharmaceutical Sciences, King's College London, London, UK. .,The Maudsley Hospital, London, UK. .,Department of Gastroenterology, King's College Hospital, London, UK.
| | - R John Dobbs
- Pharmaceutical Sciences, King's College London, London, UK.,The Maudsley Hospital, London, UK.,Department of Gastroenterology, King's College Hospital, London, UK
| | - Clive Weller
- Pharmaceutical Sciences, King's College London, London, UK
| | - André Charlett
- Pharmaceutical Sciences, King's College London, London, UK.,Statistics Unit, National Infection Service, Public Health England, London, UK
| | - Aisha Augustin
- Pharmaceutical Sciences, King's College London, London, UK.,The Maudsley Hospital, London, UK
| | - David Taylor
- Pharmaceutical Sciences, King's College London, London, UK.,The Maudsley Hospital, London, UK
| | - Mohammad A A Ibrahim
- Diagnostic Immunology Laboratory, King's College and St Thomas's Hospitals, London, UK
| | - Ingvar Bjarnason
- Department of Gastroenterology, King's College Hospital, London, UK
| |
Collapse
|
210
|
Côté M, Poirier AA, Aubé B, Jobin C, Lacroix S, Soulet D. Partial depletion of the proinflammatory monocyte population is neuroprotective in the myenteric plexus but not in the basal ganglia in a MPTP mouse model of Parkinson's disease. Brain Behav Immun 2015; 46:154-67. [PMID: 25637482 DOI: 10.1016/j.bbi.2015.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) patients often suffer from gastrointestinal (GI) impairments that are associated with the alteration of dopaminergic (DAergic) neurons in the myenteric nervous system. Growing evidence suggests that inflammation originating from the gut may have a major impact in both the initiation and progression of PD. Here, we investigated the role of the innate immune response in neurodegeneration occurring in central nervous system (CNS) and enteric nervous system (ENS) in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that produces Parkinsonism in both humans and animal models. We found a strong immune response in the gut of mice treated with MPTP, as demonstrated by the prominent presence of macrophages derived from CD115(+) CD11b(+) Ly6C(Hi) monocytes, known as M1 monocytes, and increased production of IL-1β and IL-6. Partial depletion of proinflammatory M1 monocytes through intravenous injections of clodronate-encapsulated liposome protects against MPTP-induced reduction of tyrosine hydroxylase (TH) expression in the ENS. In contrast, loss of striatal TH expression in the CNS after MPTP intoxication occurs regardless of partial monocyte depletion. Examination of brain tissue revealed that microglial activation, comprising the majority of the immune response in the CNS after MPTP injections is unaffected by M1 depletion. In vitro experiments revealed that MPTP and MPP(+) act directly on monocytes to elicit a proinflammatory response that is, in part, dependent on the MyD88/NF-κB signaling pathway resulting in nitrite and proinflammatory cytokine production. Taken together, our results demonstrate a critical role for proinflammatory M1 monocytes/macrophages in DAergic alterations occurring in the GI, but not in the brain, in the MPTP model of PD.
Collapse
Affiliation(s)
- M Côté
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - A-A Poirier
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - B Aubé
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - C Jobin
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, FL, USA
| | - S Lacroix
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Faculté de médecine, Département de Médecine Moléculaire, Université Laval, Québec, QC G1K 0A6, Canada
| | - D Soulet
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Faculté de médecine, Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
211
|
Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 2015; 9:124. [PMID: 25914621 PMCID: PMC4392704 DOI: 10.3389/fncel.2015.00124] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.
Collapse
|
212
|
The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 2015; 13:68. [PMID: 25889215 PMCID: PMC4382850 DOI: 10.1186/s12916-015-0310-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction and defects in oxidative metabolism are a characteristic feature of many chronic illnesses not currently classified as mitochondrial diseases. Examples of such illnesses include bipolar disorder, multiple sclerosis, Parkinson's disease, schizophrenia, depression, autism, and chronic fatigue syndrome. DISCUSSION While the majority of patients with multiple sclerosis appear to have widespread mitochondrial dysfunction and impaired ATP production, the findings in patients diagnosed with Parkinson's disease, autism, depression, bipolar disorder schizophrenia and chronic fatigue syndrome are less consistent, likely reflecting the fact that these diagnoses do not represent a disease with a unitary pathogenesis and pathophysiology. However, investigations have revealed the presence of chronic oxidative stress to be an almost invariant finding in study cohorts of patients afforded each diagnosis. This state is characterized by elevated reactive oxygen and nitrogen species and/or reduced levels of glutathione, and goes hand in hand with chronic systemic inflammation with elevated levels of pro-inflammatory cytokines. SUMMARY This paper details mechanisms by which elevated levels of reactive oxygen and nitrogen species together with elevated pro-inflammatory cytokines could conspire to pave a major road to the development of mitochondrial dysfunction and impaired oxidative metabolism seen in many patients diagnosed with these disorders.
Collapse
|
213
|
Yu X, Yao JY, He J, Tian JW. Protection of MPTP-induced neuroinflammation and neurodegeneration by rotigotine-loaded microspheres. Life Sci 2015; 124:136-43. [PMID: 25640758 DOI: 10.1016/j.lfs.2015.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 11/17/2022]
Abstract
AIMS The aim of the study is to evaluate the neuroprotective effects of continuous dopaminergic stimulation (CDS) by rotigotine-loaded microspheres (RoMS) in a mouse model of MPTP-induced Parkinson's disease (PD) and to elucidate the potential mechanism underlying these effects. MAIN METHODS Male C57BL/6 mice were treated either intramuscularly once with RoMS or twice daily for two weeks with rotigotine, and from the 9th day, MPTP (30 mg/kg, i.p.) was injected for the last 5 days. Following treatment, Parkinsonism scores were calculated and oxidative stress-related indicators in the striatum were performed. Neuroinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were detected in the striatum. Expression of apoptosis-related proteins B-cell leukemia/lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX) was measured in the striatum by Western blot. Nigral tyrosine hydroxylase (TH)-positive neurons and microglial cell markers, i.e., ionized calcium binding adaptor molecule-1 (Iba-1) and neuronal synaptosomes, were quantified to assess the neuroprotective efficacy of RoMS. KEY FINDINGS The administration of rotigotine significantly improved the Parkinsonism score, protected dopaminergic neurons with antioxidants, reduced microglial cell activation and the release of neuroinflammatory cytokines, and balanced the expression of Bcl-2 and Bax in MPTP-treated mice. Interestingly, the neuroprotective properties of rotigotine were remarkably amplified by CDS treatment with RoMS. SIGNIFICANCE These results suggest that CDS therapy can play a neuroprotective role in an MPTP mouse model. Neuroprotective disease-modifying therapy may have the potential benefits of early treatment by normalizing compensatory mechanisms and may also help to delay dyskinesia in the later stages of PD.
Collapse
Affiliation(s)
- Xin Yu
- School of Pharmacy, Yantai University, Yantai 264005, PR China.
| | - Jun-Yi Yao
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jie He
- State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai 264003, PR China
| | - Jing-Wei Tian
- School of Pharmacy, Yantai University, Yantai 264005, PR China; State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai 264003, PR China.
| |
Collapse
|
214
|
Cenci MA. Presynaptic Mechanisms of l-DOPA-Induced Dyskinesia: The Findings, the Debate, and the Therapeutic Implications. Front Neurol 2014; 5:242. [PMID: 25566170 PMCID: PMC4266027 DOI: 10.3389/fneur.2014.00242] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/10/2014] [Indexed: 12/24/2022] Open
Abstract
The dopamine (DA) precursor l-DOPA has been the most effective treatment for Parkinson’s disease (PD) for over 40 years. However, the response to this treatment changes with disease progression, and most patients develop dyskinesias (abnormal involuntary movements) and motor fluctuations within a few years of l-DOPA therapy. There is wide consensus that these motor complications depend on both pre- and post-synaptic disturbances of nigrostriatal DA transmission. Several presynaptic mechanisms converge to generate large DA swings in the brain concomitant with the peaks-and-troughs of plasma l-DOPA levels, while post-synaptic changes engender abnormal functional responses in dopaminoceptive neurons. While this general picture is well-accepted, the relative contribution of different factors remains a matter of debate. A particularly animated debate has been growing around putative players on the presynaptic side of the cascade. To what extent do presynaptic disturbances in DA transmission depend on deficiency/dysfunction of the DA transporter, aberrant release of DA from serotonin neurons, or gliovascular mechanisms? And does noradrenaline (which is synthetized from DA) play a role? This review article will summarize key findings, controversies, and pending questions regarding the presynaptic mechanisms of l-DOPA-induced dyskinesia. Intriguingly, the debate around these mechanisms has spurred research into previously unexplored facets of brain plasticity that have far-reaching implications to the treatment of neuropsychiatric disease.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University , Lund , Sweden
| |
Collapse
|
215
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Cerebrospinal fluid biochemical studies in patients with Parkinson's disease: toward a potential search for biomarkers for this disease. Front Cell Neurosci 2014; 8:369. [PMID: 25426023 PMCID: PMC4227512 DOI: 10.3389/fncel.2014.00369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier supplies brain tissues with nutrients and filters certain compounds from the brain back to the bloodstream. In several neurodegenerative diseases, including Parkinson's disease (PD), there are disruptions of the blood-brain barrier. Cerebrospinal fluid (CSF) has been widely investigated in PD and in other parkinsonian syndromes with the aim of establishing useful biomarkers for an accurate differential diagnosis among these syndromes. This review article summarizes the studies reported on CSF levels of many potential biomarkers of PD. The most consistent findings are: (a) the possible role of CSF urate on the progression of the disease; (b) the possible relations of CSF total tau and phosphotau protein with the progression of PD and with the preservation of cognitive function in PD patients; (c) the possible value of CSF beta-amyloid 1-42 as a useful marker of further cognitive decline in PD patients, and (d) the potential usefulness of CSF neurofilament (NFL) protein levels in the differential diagnosis between PD and other parkinsonian syndromes. Future multicentric, longitudinal, prospective studies with long-term follow-up and neuropathological confirmation would be useful in establishing appropriate biomarkers for PD.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- Department of Biochemistry and Molecular Biology, University of ExtremaduraCáceres, Spain
- AMGenomicsCáceres, Spain
| | - José A. G. Agúndez
- AMGenomicsCáceres, Spain
- Department of Pharmacology, University of ExtremaduraCáceres, Spain
| |
Collapse
|
216
|
Ainscough JS, Frank Gerberick G, Zahedi-Nejad M, Lopez-Castejon G, Brough D, Kimber I, Dearman RJ. Dendritic cell IL-1α and IL-1β are polyubiquitinated and degraded by the proteasome. J Biol Chem 2014; 289:35582-92. [PMID: 25371210 PMCID: PMC4271241 DOI: 10.1074/jbc.m114.595686] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IL-1α and β are key players in the innate immune system. The secretion of these cytokines by dendritic cells (DC) is integral to the development of proinflammatory responses. These cytokines are not secreted via the classical secretory pathway. Instead, 2 independent processes are required; an initial signal to induce up-regulation of the precursor pro-IL-1α and -β, and a second signal to drive cleavage and consequent secretion. Pro-IL-1α and -β are both cytosolic and thus, are potentially subject to post-translational modifications. These modifications may, in turn, have a functional outcome in the context of IL-1α and -β secretion and hence inflammation. We report here that IL-1α and -β were degraded intracellularly in murine bone marrow-derived DC and that this degradation was dependent on active cellular processes. In addition, we demonstrate that degradation was ablated when the proteasome was inhibited, whereas autophagy did not appear to play a major role. Furthermore, inhibition of the proteasome led to an accumulation of polyubiquitinated IL-1α and -β, indicating that IL-1α and -β were polyubiquitinated prior to proteasomal degradation. Finally, our investigations suggest that polyubiquitination and proteasomal degradation are not continuous processes but instead are up-regulated following DC activation. Overall, these data highlight that IL-1α and -β polyubiquitination and proteasomal degradation are central mechanisms in the regulation of intracellular IL-1 levels in DC.
Collapse
Affiliation(s)
- Joseph S Ainscough
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | | | - Maryam Zahedi-Nejad
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - Gloria Lopez-Castejon
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - David Brough
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - Ian Kimber
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| | - Rebecca J Dearman
- From the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom and
| |
Collapse
|
217
|
Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis 2014; 71:280-91. [DOI: 10.1016/j.nbd.2014.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
|
218
|
Ofori E, Pasternak O, Planetta PJ, Burciu R, Snyder A, Febo M, Golde TE, Okun MS, Vaillancourt DE. Increased free water in the substantia nigra of Parkinson's disease: a single-site and multi-site study. Neurobiol Aging 2014; 36:1097-104. [PMID: 25467638 DOI: 10.1016/j.neurobiolaging.2014.10.029] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/15/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023]
Abstract
Measures from diffusion magnetic resonance imaging reflect changes in the substantia nigra of Parkinson's disease. It is the case, however, that partial volume effects from free water can bias diffusion measurements. The bi-tensor diffusion model was introduced to quantify the contribution of free water and eliminates its bias on estimations of tissue microstructure. Here, we test the hypothesis that free water is elevated in the substantia nigra for Parkinson's disease compared with control subjects. This hypothesis was tested between large cohorts of Parkinson's disease and control participants in a single-site study and validated against a multisite study using multiple scanners. The fractional volume of free water was increased in the posterior region of the substantia nigra in Parkinson's disease compared with control subjects in both the single-site and multi-site studies. We did not observe changes in either cohort for free-water-corrected fractional anisotropy or free-water-corrected mean diffusivity. Our findings provide new evidence that the free-water index reflects alteration of the substantia nigra in Parkinson's disease, and this was evidenced across both single-site and multi-site cohorts.
Collapse
Affiliation(s)
- Edward Ofori
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peggy J Planetta
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Roxana Burciu
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Amy Snyder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
219
|
Dzamko N, Geczy CL, Halliday GM. Inflammation is genetically implicated in Parkinson's disease. Neuroscience 2014; 302:89-102. [PMID: 25450953 DOI: 10.1016/j.neuroscience.2014.10.028] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022]
Abstract
Inflammation has long been associated with the pathogenesis of Parkinson's disease (PD) but the extent to which it is a cause or consequence is sill debated. Over the past decade a number of genes have been implicated in PD. Relatively rare missense mutations in genes such as LRRK2, Parkin, SNCA and PINK1 are causative for familial PD whereas more common variation in genes, including LRRK2, SNCA and GBA, comprise risk factors for sporadic PD. Determining how the function of these genes and the proteins they encode are altered in PD has become a priority, as results will likely provide much needed insights into contributing causes. Accumulating evidence indicates that many of these genes function in pathways that regulate aspects of immunity, particularly inflammation, suggesting close associations between PD and immune homeostasis.
Collapse
Affiliation(s)
- N Dzamko
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| | - C L Geczy
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | - G M Halliday
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| |
Collapse
|
220
|
Doty KR, Guillot-Sestier MV, Town T. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive? Brain Res 2014; 1617:155-73. [PMID: 25218556 DOI: 10.1016/j.brainres.2014.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases share common features, including catastrophic neuronal loss that leads to cognitive or motor dysfunction. Neuronal injury occurs in an inflammatory milieu that is populated by resident and sometimes, infiltrating, immune cells - all of which participate in a complex interplay between secreted inflammatory modulators and activated immune cell surface receptors. The importance of these immunomodulators is highlighted by the number of immune factors that have been associated with increased risk of neurodegeneration in recent genome-wide association studies. One of the more difficult tasks for designing therapeutic strategies for immune modulation against neurodegenerative diseases is teasing apart beneficial from harmful signals. In this regard, learning more about the immune components of these diseases has yielded common themes. These unifying concepts should eventually enable immune-based therapeutics for treatment of Alzheimer׳s and Parkinson׳s diseases and amyotrophic lateral sclerosis. Targeted immune modulation should be possible to temper maladaptive factors, enabling beneficial immune responses in the context of neurodegenerative diseases. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Kevin R Doty
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
221
|
Naureen I, Waheed KAI, Rathore AW, Victor S, Mallucci C, Goodden JR, Chohan SN, Miyan JA. Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: inflammatory cytokines. Childs Nerv Syst 2014; 30:1155-64. [PMID: 24733414 DOI: 10.1007/s00381-014-2415-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/27/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Hydrocephalus (HC) has a multifactorial and complex picture of pathophysiology due to aetiology, age at and duration since onset. We have previously identified distinctions in markers of cell death associated with different aetiologies. Here, we examined cerebrospinal fluid (CSF) from human HC neonates for cytokines to identify further distinguishing features of different aetiologies. METHODS CSF was collected during routine lumbar puncture or ventricular tap from neonates with hydrocephalus, or with no neurological condition (normal controls). Total protein, Fas receptor, Fas ligand, stem cell factor (SCF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), insulin growth factor-1 (IGF-1), tumour necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were measured and compared between 8 unaffected and 28 HC neonatal CSF samples. RESULTS Total protein was significantly (P < 0.05) raised in late-onset hydrocephalus (LOH). Fas receptor was raised (P < 0.05) in post-haemorrhagic hydrocephalus (PHH) and spina bifida with hydrocephalus (SB/HC), but no difference in Fas ligand was found. SCF was raised (P < 0.05) in SB/HC. HGF was found in all HC and was increased (P < 0.01) in PHH. Increased VEGF was found in PHH (P < 0.01) and SB/HC (P < 0.05). Variable levels of IL-6, TNF-α and IGF-1 were found in all HC groups compared with none in normal. CONCLUSIONS LOH was unusual with significantly raised total protein indicating an inflammatory state. Increased Fas receptor, VEGF, IGF-1 and HGF suggest anti-apoptotic and repair mechanism activation. By contrast, elevated TNF-α and IL-6 indicate inflammatory processes in these neonatal brains. Taken with our previous study, these data indicate that different pathophysiology, inflammation and repair are occurring in HC of different aetiologies and that additional treatment strategies may benefit these infants in addition to fluid diversion.
Collapse
Affiliation(s)
- Irum Naureen
- Faculty of Life Sciences, The University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Evidence of inflammatory system involvement in Parkinson's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:308654. [PMID: 25050341 PMCID: PMC4094726 DOI: 10.1155/2014/308654] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease underpinned by both genetic and environmental etiologic factors. Recent findings suggest that inflammation may be a pathogenic factor in the onset and progression of both familial and sporadic PD. Understanding the precise role of inflammatory factors in PD will likely lead to understanding of how the disease arises. In vivo evidence for inflammation in PD includes dysregulated molecular mediators such as cytokines, complement system and its receptors, resident microglial activation, peripheral immune cells invasion, and altered composition and phenotype of peripheral immune cells. The growing awareness of these factors has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Influences of ageing and differential exposure to environmental agents suggest potential host-pathogen specific pathophysiologic factors. There is a clear need for research to further unravel the pathophysiologic role of immunity in PD, with the potential of developing new therapeutic targets for this debilitating condition.
Collapse
|
223
|
Nasimolo J, Kiama SG, Gathumbi PK, Makanya AN, Kagira JM. Erythrina abyssinica prevents meningoencephalitis in chronic Trypanosoma brucei brucei mouse model. Metab Brain Dis 2014; 29:509-19. [PMID: 24452611 DOI: 10.1007/s11011-014-9488-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Human African trypanosomiasis is prevalent in Sub-sahara African countries that lie between 14° North and 29° south of the equator. Sixty million people are at risk of infection. Trypanosoma brucei gambesience occurs in West and Central Africa while Trypanosoma brucei rhodesience occurs in East and Southern Africa. The neurological stage of the disease is characterized by neuroinflammation. About 10% of patients treated with the recommended drug, melarsoprol develop post treatment reactive encephalopathy, which is fatal in 50% of these patients, thus melarsoprol is fatal in 5% of all treated patients. This study was aimed at establishing the potential activity of Erythrina abyssinica in reducing neuroinflammation following infection with Trypanosoma brucei brucei. Swiss white mice were divided into ten groups, two control groups and eight infected groups. Infected mice received either methanol or water extract of Erythrina abyssinica at 12.5, 25, 50 or 100 mg/kg body weight. Parasite counts were monitored in peripheral circulation from the third day post infection up to the end of the study. Brains were processed for histology, immunohistochemistry scanning and transmission electron microscopy. Following infection, trypanosomes were observed in circulation 3 days post-infection, with the parasitaemia occurring in waves. In the cerebrum, typical brain pathology of chronic trypanosomiasis was reproduced. This was exhibited as astrocytosis, perivascular cuffing and infiltration of inflammatory cells into the neuropil. However, mice treated with Erythrina abyssinica water extract exhibited significant reduction in perivascular cuffing, lymphocytic infiltration and astrocytosis in the cerebrum. The methanol extract did not have a significant difference compared to the non-treated group. This study provides evidence of anti-inflammatory properties of Erythrina abyssinica and may support its wide use as a medicinal plant by various communities in Kenya.
Collapse
Affiliation(s)
- Johnson Nasimolo
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya,
| | | | | | | | | |
Collapse
|
224
|
Inhibition of prothrombin kringle-2-induced inflammation by minocycline protects dopaminergic neurons in the substantia nigra in vivo. Neuroreport 2014; 25:489-95. [DOI: 10.1097/wnr.0000000000000122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
225
|
Tomasiuk R, Szlufik S, Friedman A, Koziorowski D. Ropinirole treatment in Parkinson's disease associated with higher serum level of inflammatory biomarker NT-proCNP. Neurosci Lett 2014; 566:147-50. [PMID: 24602984 DOI: 10.1016/j.neulet.2014.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 02/05/2023]
Abstract
There is rapidly growing evidence for the influence of inflammation on the development and progression of Parkinson's disease (PD). N-terminal pro C-type Natriuretic Peptide (NT-proCNP) is a novel potential inflammatory biomarker and has been recently correlated in PD with pro- and anti-inflammatory cytokines, especially TNF-α and IL-10. The study aims to explore serum level of NT-proCNP in group consisted of 132 patients with idiopathic Parkinson's disease (age 59.6±15.l years) and 46 healthy controls (age 58.5±11.5 years). Serum level of NT-proCNP was significantly higher in PD patients than in the control group (p<0.05; PD vs control: mean 3.65±5.5 vs 1.49±0.73, median 1.81 vs 1.46). The serum level of NT-proCNP was directly correlated with the treatment with dopamine agonist (ropinirole) (R=0.38; p<0.05). The higher serum level of NT-proCNP in PD patients being treated with ropinirole suggests a potential proinflammatory characteristic of dopamine agonists.
Collapse
Affiliation(s)
- Ryszard Tomasiuk
- Department of Laboratory Diagnostics, Brodnowski Hospital in Warsaw, Poland
| | - Stanislaw Szlufik
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, Poland.
| | - Andrzej Friedman
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, Poland
| |
Collapse
|
226
|
Chen H, Chen X, Gu P, Wu Z, Yu T. OWL reasoning framework over big biological knowledge network. BIOMED RESEARCH INTERNATIONAL 2014; 2014:272915. [PMID: 24877076 PMCID: PMC4022201 DOI: 10.1155/2014/272915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/25/2014] [Accepted: 03/19/2014] [Indexed: 11/17/2022]
Abstract
Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.
Collapse
Affiliation(s)
- Huajun Chen
- Department of Computer Science, Zhejiang University, Hangzhou 310027, China
| | - Xi Chen
- Department of Computer Science, Zhejiang University, Hangzhou 310027, China
| | - Peiqin Gu
- Department of Computer Science, Zhejiang University, Hangzhou 310027, China
| | - Zhaohui Wu
- Department of Computer Science, Zhejiang University, Hangzhou 310027, China
| | - Tong Yu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
227
|
Immune responses in Parkinson's disease: interplay between central and peripheral immune systems. BIOMED RESEARCH INTERNATIONAL 2014; 2014:275178. [PMID: 24822191 PMCID: PMC4005076 DOI: 10.1155/2014/275178] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/16/2014] [Indexed: 02/06/2023]
Abstract
The etiology of Parkinson's disease (PD) is complex and most likely involves numerous environmental and heritable risk factors. Recent studies establish that central and peripheral inflammation occurs in the prodromal stage of the disease and sustains disease progression. Aging, heritable risk factors, or environmental exposures may contribute to the initiation of central or peripheral inflammation. One emerging hypothesis is that inflammation plays a critical role in PD neuropathology. Increasing evidence suggest that activation of the peripheral immune system exacerbates the discordant central inflammatory response and synergistically drives neurodegeneration. We provide an overview of current knowledge on the temporal profile of central and peripheral immune responses in PD and discuss the potential synergistic effects of the central and peripheral inflammation in disease development. The understanding of the nature of the chronic inflammation in disease progression and the possible risk factors that contribute to altered central and peripheral immune responses will offer mechanistic insights into PD etiology and pathology and benefit the development of effective tailored therapeutics for human PD.
Collapse
|
228
|
Effects of syringic acid on chronic MPTP/probenecid induced motor dysfunction, dopaminergic markers expression and neuroinflammation in C57BL/6 mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
229
|
Li DW, Liu ZQ, Chen W, Yao M, Li GR. Association of glycogen synthase kinase-3β with Parkinson's disease (review). Mol Med Rep 2014; 9:2043-50. [PMID: 24681994 PMCID: PMC4055480 DOI: 10.3892/mmr.2014.2080] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/25/2014] [Indexed: 12/21/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a pleiotropic serine/threonine protein kinase found in almost all eukaryotes. It is structurally highly conserved and has been identified as a multifaceted enzyme affecting a wide range of biological functions, including gene expression and cellular processes. There are two closely related isoforms of GSK-3; GSK-3α and GSK-3β. The latter appears to play crucial roles in regulating the pathogenesis of diverse diseases, including neurodegenerative disease. The present review focuses on the involvement of this protein in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by the gradually progressive and selective loss of dopaminergic neurons, and by intracellular inclusions known as Lewy bodies (LBs) expressed in surviving neurons of the substantia nigra (SN). GSK-3β is involved in multiple signaling pathways and has several phosphorylation targets. Numerous apoptotic conditions can be facilitated by the GSK-3β signaling pathways. Studies have shown that GSK-3β inhibition protects the dopaminergic neurons from various stress-induced injuries, indicating the involvement of GSK-3β in PD pathogenesis. However, the underlying mechanisms of the protective effect of GSK-3β inhibition on dopaminergic neurons in PD is not completely understood. Multiple pathological events have been recognized to be responsible for the loss of dopaminergic neurons in PD, including mitochondrial dysfunction, oxidative stress, protein aggregation and neuroinflammation. The present review stresses the regulatory roles of GSK-3β in these events and in dopaminergic neuron degeneration, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective therapeutic target for PD.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China
| | - Zhi-Qiang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Chen
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Yao
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
230
|
Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V. Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 2014; 10:852-67. [PMID: 24670306 DOI: 10.4161/hv.28578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disease in the world, but there is currently no available cure for it. Current treatments only alleviate some of the symptoms for a few years, but they become ineffective in the long run and do not stop the disease. Therefore it is of outmost importance to develop therapeutic strategies that can prevent, stop, or cure Parkinson disease. A very promising target for these therapies is the peripheral immune system due to its probable involvement in the disease and its potential as a tool to modulate neuroinflammation. But for such strategies to be successful, we need to understand the particular state of the peripheral immune system during Parkinson disease in order to avoid its weaknesses. In this review we examine the available data regarding how dopamine regulates the peripheral immune system and how this regulation is affected in Parkinson disease; the specific cytokine profiles observed during disease progression and the alterations documented to date in patients' peripheral blood mononuclear cells. We also review the different strategies used in Parkinson disease animal models to modulate the adaptive immune response to salvage dopaminergic neurons from cell death. After analyzing the evidence, we hypothesize the need to prime the immune system to restore natural tolerance against α-synuclein in Parkinson disease, including at the same time B and T cells, so that T cells can reprogram microglia activation to a beneficial pattern and B cell/IgG can help neurons cope with the pathological forms of α-synuclein.
Collapse
Affiliation(s)
- Marina Romero-Ramos
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Marianne von Euler Chelpin
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| |
Collapse
|
231
|
Gyoneva S, Shapiro L, Lazo C, Garnier-Amblard E, Smith Y, Miller GW, Traynelis SF. Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson's disease. Neurobiol Dis 2014; 67:191-202. [PMID: 24632419 DOI: 10.1016/j.nbd.2014.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022] Open
Abstract
Microglia, the immune cells of the central nervous system, constantly survey the parenchyma in the healthy brain to maintain homeostasis. When a disturbance, such as cell death, results in ATP release in vivo, microglial processes respond by utilizing P2Y12 purinergic receptors to trigger extension toward the site of damage. Processes ultimately surround the injury site, preventing the spread of harmful cellular constituents and assisting with tissue repair. In contrast to the healthy brain, many neurodegenerative diseases, including Parkinson's disease, are characterized by the presence of neuroinflammation. Yet, the ability of microglia to respond to tissue damage under pro-inflammatory conditions has not been well studied. To assess the ability of microglia to respond to tissue injury and localized cell death in the context of Parkinson's disease, we performed confocal imaging of acute brain slices from mice with microglia-specific green fluorescent protein expression. Microglia in coronal slices containing the substantia nigra extend processes toward a mechanical injury in a P2Y12 receptor-dependent manner. However, microglia in mice treated for 5days with 20mg/kg/day 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) show significantly reduced process displacement toward the injury compared to microglia in control animals. Pre-treatment of slices from MPTP-injected mice with the A2A receptor-selective antagonist preladenant restores the ability of activated microglia to respond to tissue damage. These data support the hypothesis that chronic inflammation impedes microglial motility in response to further injury, such as cell death, and suggest that some aspects of the neuroprotection observed with adenosine A2A receptor antagonists may involve direct or indirect actions at microglia.
Collapse
Affiliation(s)
- Stefka Gyoneva
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Division of Biological and Biomedical Sciences, Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA 30322, USA.
| | - Lauren Shapiro
- Graduate Division of Biological and Biomedical Sciences, Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA 30322, USA
| | - Carlos Lazo
- School of Public Health, Environmental Health, Emory University, Atlanta, GA 30322, USA
| | | | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA; School of Public Health, Environmental Health, Emory University, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
232
|
Romeo MJ, Espina V, Lowenthal M, Espina BH, Petricoin EF, Liotta LA. CSF proteome: a protein repository for potential biomarker identification. Expert Rev Proteomics 2014; 2:57-70. [PMID: 15966853 DOI: 10.1586/14789450.2.1.57] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteomic analysis is not limited to the analysis of serum or tissues. Synovial, peritoneal, pericardial and cerebrospinal fluid represent unique proteomes for disease diagnosis and prognosis. In particular, cerebrospinal fluid serves as a rich source of putative biomarkers that are not solely limited to neurologic disorders. Peptides, proteolytic fragments and antibodies are capable of crossing the blood-brain barrier, thus providing a repository of pathologic information. Proteomic technologies such as immunoblotting, isoelectric focusing, 2D gel electrophoresis and mass spectrometry have proven useful for deciphering this unique proteome. Cerebrospinal fluid proteins are generally less abundant than their corresponding serum counterparts, necessitating the development and use of sensitive analytical techniques. This review highlights some of the promising areas of cerebrospinal fluid proteomic research and their clinical applications.
Collapse
Affiliation(s)
- Martin J Romeo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
233
|
Bisaglia M, Filograna R, Beltramini M, Bubacco L. Are dopamine derivatives implicated in the pathogenesis of Parkinson's disease? Ageing Res Rev 2014; 13:107-14. [PMID: 24389159 DOI: 10.1016/j.arr.2013.12.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Parkinson's disease (PD) is the most common motor system disorder affecting 1-2% of people over the age of sixty-five. Although PD is generally a sporadic neurological disorder, the discovery of monogenic, hereditable forms of the disease, representing 5-10% of all cases, has been very important in helping to partially delineate the molecular pathways that lead to this pathology. These mechanisms include impairment of the intracellular protein-degradation pathways, protein aggregation, mitochondria dysfunction, oxidative stress and neuroinflammation. Some of these features are also supported by post-mortem analyses. One of the main pathological hallmarks of PD is the preferential degeneration of dopaminergic neurons, which supports a direct role of dopamine itself in promoting the disorder. This review presents a comprehensive overview of the existing literature that links the aforementioned pathways to the oxidative chemistry of dopamine, ultimately leading to the formation of free radicals and reactive quinone species. We emphasize, in particular, how the reaction of dopamine-derived quinones with several cellular targets could foster the processes involved in the pathogenesis of PD and contribute to the progression of the disorder.
Collapse
|
234
|
Wheeler CJ, Seksenyan A, Koronyo Y, Rentsendorj A, Sarayba D, Wu H, Gragg A, Siegel E, Thomas D, Espinosa A, Thompson K, Black K, Koronyo-Hamaoui M, Pechnick R, Irvin DK. T-Lymphocyte Deficiency Exacerbates Behavioral Deficits in the 6-OHDA Unilateral Lesion Rat Model for Parkinson's Disease. ACTA ACUST UNITED AC 2014; 5. [PMID: 25346865 PMCID: PMC4207300 DOI: 10.4172/2155-9562.1000209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
T-lymphocytes have been previously implicated in protecting dopaminergic neurons in the substantianigra from induced cell death. However, the role of T-cells in neurodegenerative models such as Parkinson’s disease (PD) has not been fully elucidated. To examine the role of T-lymphocytes on motor behavior in the 6-hydroxydopamine (6-OHDA) unilateral striatal partial lesion PD rat model, we assessed progression of hemi-parkinsonian lesions in the substantia nigra, induced by 6-OHDA striatal injections, in athymic rats (RNU−/−, T-lymphocyte-deficient) as compared to RNU−/+ rats (phenotypically normal). Motor skills were determined by the cylinder and D-amphetamine sulfate-induced rotational behavioral tests. Cylinder behavioral test showed no significant difference between unilaterally lesioned RNU−/− and RNU−/+ rats. However both unilaterally lesioned RNU−/− and RNU−/+ rats favored the use of the limb ipsilateral to lesion. Additionally, amphetamine-induced rotational test revealed greater rotational asymmetry in RNU−/− rats compared to RNU−/+ rats at two- and six-week post-lesion. Quantitative immunohistochemistry confirmed loss of striatal TH-immunopositive fibers in RNU−/− and RNU−/+ rat, as well as blood-brain-barrier changes associated with PD that may influence passage of immune cells into the central nervous system in RNU−/− brains. Specifically, GFAP immunopositive cells were decreased, as were astrocytic end-feet (AQP4) contacting blood vessels (laminin) in the lesioned relative to contralateral striatum. Flow cytometric analysis in 6-OHDA lesioned RNU−/+rats revealed increased CD4+ and decreased CD8+ T cells specifically within lesioned brain. These results suggest that both major T cell subpopulations are significantly and reciprocally altered following 6-OHDA-lesioning, and that global T cell deficiency exacerbates motor behavioral defects in this rat model of PD.
Collapse
Affiliation(s)
- Christopher J Wheeler
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Akop Seksenyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Danielle Sarayba
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Henry Wu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Ashley Gragg
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Emily Siegel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Deborah Thomas
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Andres Espinosa
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Kerry Thompson
- Department of Biology, Occidental College, Los Angeles, CA 90041, USA
| | - Keith Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| | - Robert Pechnick
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, CA 91766, USA
| | - Dwain K Irvin
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA, Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA; Occidental College, Los Angeles, CA 90041, USA
| |
Collapse
|
235
|
Valera E, Ubhi K, Mante M, Rockenstein E, Masliah E. Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of multiple system atrophy. Glia 2013; 62:317-37. [PMID: 24310907 DOI: 10.1002/glia.22610] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/01/2013] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease characterized by the pathological accumulation of alpha-synuclein (α-syn) within oligodendroglial cells. This accumulation is accompanied by neuroinflammation with astrogliosis and microgliosis, that leads to neuronal death and subsequent parkinsonism and dysautonomia. Antidepressants have been explored as neuroprotective agents as they normalize neurotrophic factor levels, increase neurogenesis and reduce neurodegeneration, but their anti-inflammatory properties have not been fully characterized. We analyzed the anti-inflammatory profiles of three different antidepressants (fluoxetine, olanzapine and amitriptyline) in the MBP1-hα-syn transgenic (tg) mouse model of MSA. We observed that antidepressant treatment decreased the number of α-syn-positive cells in the basal ganglia of 11-month-old tg animals. This reduction was accompanied with a similar decrease in the colocalization of α-syn with astrocyte markers in this brain structure. Consistent with these results, antidepressants reduced astrogliosis in the hippocampus and basal ganglia of the MBP1-hα-syn tg mice, and modulated the expression levels of key cytokines that were dysregulated in the tg mouse model, such as IL-1β. In vitro experiments in the astroglial cell line C6 confirmed that antidepressants inhibited NF-κB translocation to the nucleus and reduced IL-1β protein levels. We conclude that the anti-inflammatory properties of antidepressants in the MBP1-hα-syn tg mouse model of MSA might be related to their ability to inhibit α-syn propagation from oligodendrocytes to astroglia and to regulate transcription factors involved in cytokine expression. Our results suggest that antidepressants might be of interest as anti-inflammatory and α-syn-reducing agents for MSA and other α-synucleinopathies.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | | | | | | | | |
Collapse
|
236
|
Lu H, Liu X, Deng Y, Qing H. DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci 2013; 5:85. [PMID: 24367332 PMCID: PMC3851782 DOI: 10.3389/fnagi.2013.00085] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/17/2013] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations represent a sort of functional modifications related to the genome that are not responsible for changes in the nucleotide sequence. DNA methylation is one of such epigenetic modifications that have been studied intensively for the past several decades. The transfer of a methyl group to the 5 position of a cytosine is the key feature of DNA methylation. A simple change as such can be caused by a variety of factors, which can be the cause of many serious diseases including several neurodegenerative diseases. In this review, we have reviewed and summarized recent progress regarding DNA methylation in four major neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The studies of these four major neurodegenerative diseases conclude the strong suggestion of the important role DNA methylation plays in these diseases. However, each of these diseases has not yet been understood completely as details in some areas remain unclear, and will be investigated in future studies. We hope this review can provide new insights into the understanding of neurodegenerative diseases from the epigenetic perspective.
Collapse
Affiliation(s)
| | | | | | - Hong Qing
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| |
Collapse
|
237
|
Vera M, Le S, Kan SH, Garban H, Naylor D, Mlikotic A, Kaitila I, Harmatz P, Chen A, Dickson P. Immune response to intrathecal enzyme replacement therapy in mucopolysaccharidosis I patients. Pediatr Res 2013; 74:712-20. [PMID: 24002329 PMCID: PMC3855632 DOI: 10.1038/pr.2013.158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 04/23/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intrathecal (IT) enzyme replacement therapy with recombinant human α-L-iduronidase (rhIDU) has been studied to treat glycosaminoglycan storage in the central nervous system of mucopolysaccharidosis (MPS) I dogs and is currently being studied in MPS I patients. METHODS We studied the immune response to IT rhIDU in MPS I subjects with spinal cord compression who had been previously treated with intravenous rhIDU. We measured the concentrations of specific antibodies and cytokines in serum and cerebrospinal fluid (CSF) collected before monthly IT rhIDU infusions and compared the serologic findings with clinical adverse event (AE) reports to establish temporal correlations with clinical symptoms. RESULTS Five MPS I subjects participating in IT rhIDU trials were studied. One subject with symptomatic spinal cord compression had evidence of an inflammatory response with CSF leukocytosis, elevated interleukin-5, and elevated immunoglobulin G. This subject also complained of lower back pain and buttock paresthesias temporally correlated with serologic abnormalities. Clinical symptoms were managed with oral medication, and serologic abnormalities were resolved, although this subject withdrew from the trial to have spinal decompressive surgery. CONCLUSION IT rhIDU was generally well tolerated in the subjects studied, although one subject had moderate to severe clinical symptoms and serologic abnormalities consistent with an immune response.
Collapse
Affiliation(s)
- Moin Vera
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA,Corresponding author: Moin Vera Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center 1124 W Carson St HH1 Torrance, CA 90502, USA. Phone (310)-781-1400. Fax (310)-781-1093.
| | - Steven Le
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Shih-hsin Kan
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hermes Garban
- Department of Internal Medicine, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David Naylor
- Department of Neurology, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anton Mlikotic
- Department of Radiology, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ilkka Kaitila
- Department of Medical Genetics, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Paul Harmatz
- Department of Pediatrics, Children's Hospital and Research Center Oakland, Oakland, CA, USA
| | - Agnes Chen
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Patricia Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
238
|
Deleidi M, Gasser T. The role of inflammation in sporadic and familial Parkinson's disease. Cell Mol Life Sci 2013; 70:4259-73. [PMID: 23665870 PMCID: PMC11113951 DOI: 10.1007/s00018-013-1352-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/29/2013] [Accepted: 04/24/2013] [Indexed: 01/18/2023]
Abstract
The etiology of Parkinson's disease (PD) is complex and most likely involves numerous environmental and heritable risk factors. Interestingly, many genetic variants, which have been linked to familial forms of PD or identified as strong risk factors, also play a critical role in modulating inflammatory responses. There has been considerable debate in the field as to whether inflammation is a driving force in neurodegeneration or simply represents a response to neuronal death. One emerging hypothesis is that inflammation plays a critical role in the early phases of neurodegeneration. In this review, we will discuss emerging aspects of both innate and adaptive immunity in the context of the pathogenesis of PD. We will highlight recent data from genetic and functional studies that strongly support the theory that genetic susceptibility plays an important role in modulating immune pathways and inflammatory reactions, which may precede and initiate neuronal dysfunction and subsequent neurodegeneration. A detailed understanding of such cellular and molecular inflammatory pathways is crucial to uncover pathogenic mechanisms linking sporadic and hereditary PD and devise tailored neuroprotective interventions.
Collapse
Affiliation(s)
- Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller. Str 27, 72076, Tübingen, Germany,
| | | |
Collapse
|
239
|
Tapias V, Cannon JR, Greenamyre JT. Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Neurobiol Aging 2013; 35:1162-76. [PMID: 24315037 DOI: 10.1016/j.neurobiolaging.2013.10.077] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/07/2013] [Accepted: 10/12/2013] [Indexed: 12/28/2022]
Abstract
Numerous factors contribute to the death of substantia nigra (SN) dopamine (DA) neurons in Parkinson's disease (PD). Compelling evidence implicates mitochondrial deficiency, oxidative stress, and inflammation as important pathogenic factors in PD. Chronic exposure of rats to rotenone causes a PD-like syndrome, in part by causing oxidative damage and inflammation in substantia nigra. Pomegranate juice (PJ) has the greatest composite antioxidant potency index among beverages, and it has been demonstrated to have protective effects in a transgenic model of Alzheimer's disease. The present study was designed to examine the potential neuroprotective effects of PJ in the rotenone model of PD. Oral administration of PJ did not mitigate or prevent experimental PD but instead increased nigrostriatal terminal depletion, DA neuron loss, the inflammatory response, and caspase activation, thereby heightening neurodegeneration. The mechanisms underlying this effect are uncertain, but the finding that PJ per se enhanced nitrotyrosine, inducible nitric oxide synthase, and activated caspase-3 expression in nigral DA neurons is consistent with its potential pro-oxidant activity.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh VA Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
240
|
Lindqvist D, Hall S, Surova Y, Nielsen HM, Janelidze S, Brundin L, Hansson O. Cerebrospinal fluid inflammatory markers in Parkinson's disease--associations with depression, fatigue, and cognitive impairment. Brain Behav Immun 2013; 33:183-9. [PMID: 23911592 DOI: 10.1016/j.bbi.2013.07.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/13/2013] [Accepted: 07/13/2013] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation may be involved in the pathophysiology of Parkinson's disease (PD) and specifically in non-motor symptoms such as depression, fatigue and cognitive impairment. The aim of this study was to measure inflammatory markers in cerebrospinal fluid (CSF) samples from PD patients and a reference group, and to investigate correlations between non-motor symptoms and inflammation. We quantified C-reactive protein (CRP), interleukin-6, tumor necrosis factor-alpha, eotaxin, interferon gamma-induced protein-10, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein 1-β in CSF samples from PD patients (N=87) and the reference group (N=33). Sixteen of the PD patients had a dementia diagnosis (PDD). We assessed symptoms of fatigue, depression, anxiety and cognitive function using the Functional Assessment of Chronic Illness Therapy-Fatigue, the Hospital Anxiety and Depression Scale, and the Mini Mental State Examination, respectively. There were no significant differences in mean levels of inflammatory markers between PD patients and the reference group. After controlling for age, gender and somatic illness, patients with PDD had significantly higher levels of CRP compared to non-demented PD patients (p=0.032) and the reference group (p=0.026). Increased levels of inflammatory markers in CSF were significantly associated with more severe symptoms of depression, anxiety, fatigue, and cognition in the entire PD group. After controlling for PD duration, age, gender, somatic illness and dementia diagnosis, high CRP levels were significantly associated with more severe symptoms of depression (p=0.010) and fatigue (p=0.008), and high MCP-1 levels were significantly associated with more severe symptoms of depression (p=0.032). Our results indicate that non-motor features of PD such as depression, fatigue, and cognitive impairment are associated with higher CSF levels of inflammatory markers.
Collapse
Affiliation(s)
- Daniel Lindqvist
- Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden; Psychiatry Skåne, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
241
|
Barcia C. Glial-mediated inflammation underlying parkinsonism. SCIENTIFICA 2013; 2013:357805. [PMID: 24278772 PMCID: PMC3820356 DOI: 10.1155/2013/357805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
The interest in studying neuroimmune interactions is increasing in the scientific community, and for many researchers, immunity is becoming a crucial factor in the understanding of the physiology of the normal brain as well as the biology underlying neurodegenerative diseases. Mounting data over the last two decades point toward immune and inflammatory alterations as important mediators of the progressive dopaminergic degeneration in Parkinson's disease. The purpose of this review is to address, under a historical perspective, as well as in the light of recent reports, the glial-mediated inflammatory and immune responses that occur in Parkinsonism. In line with this, this review also evaluates and highlights available anti-inflammatory drugs and putative targets for Parkinson's disease therapy for the near future.
Collapse
Affiliation(s)
- Carlos Barcia
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience & School of Medicine, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
242
|
Sanchez-Guajardo V, Barnum C, Tansey M, Romero-Ramos M. Neuroimmunological processes in Parkinson's disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 2013; 5:113-39. [PMID: 23506036 PMCID: PMC3639751 DOI: 10.1042/an20120066] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
The role of neuroinflammation and the adaptive immune system in PD (Parkinson's disease) has been the subject of intense investigation in recent years, both in animal models of parkinsonism and in post-mortem PD brains. However, how these processes relate to and modulate α-syn (α-synuclein) pathology and microglia activation is still poorly understood. Specifically, how the peripheral immune system interacts, regulates and/or is induced by neuroinflammatory processes taking place during PD is still undetermined. We present herein a comprehensive review of the features and impact that neuroinflamation has on neurodegeneration in different animal models of nigral cell death, how this neuroinflammation relates to microglia activation and the way microglia respond to α-syn in vivo. We also discuss a possible role for the peripheral immune system in animal models of parkinsonism, how these findings relate to the state of microglia activation observed in these animal models and how these findings compare with what has been observed in humans with PD. Together, the available data points to the need for development of dual therapeutic strategies that modulate microglia activation to change not only the way microglia interact with the peripheral immune system, but also to modulate the manner in which microglia respond to encounters with α-syn. Lastly, we discuss the immune-modulatory strategies currently under investigation in animal models of parkinsonism and the degree to which one might expect their outcomes to translate faithfully to a clinical setting.
Collapse
Key Words
- lymphocytes
- m1/m2 phenotype
- microglia
- neuroinflammation
- parkinson’s disease
- α-synuclein
- 6-ohda, 6-hydroxydopamine
- ad, alzheimer’s disease
- apc, antigen-presenting cell
- α-syn, α-synuclein
- bbb, brain–blood barrier
- bcg, bacille calmette–guérin
- bm, bone marrow
- cfa, complete freund’s adjuvant
- cm, conditioned media
- cns, central nervous system
- cox, cyclooxygenase
- cr, complement receptor
- csf, cerebrospinal fluid
- da, dopamine
- eae, experimental autoimmune encephalomyelitis
- ga, galatiramer acetate
- gdnf, glial-derived neurotrophic factor
- gfp, green fluorescent protein
- hla-dr, human leucocyte antigen type dr
- ifnγ, interferon γ
- igg, immunoglobulin g
- il, interleukin
- inos, inducible nitric oxide synthase
- lamp, lysosome-associated membrane protein
- lb, lewy body
- lps, lipopolysaccharide
- mhc, major histocompatibility complex
- mptp, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- nfκb, nuclear factor κb
- nk, natural killer
- no, nitric oxide
- pd, parkinson’s disease
- pet, positron-emission tomography
- prp, prion protein
- raav, recombinant adeno-associated virus
- rns, reactive nitrogen species
- ros, reactive oxygen species
- sn, substantia nigra
- snp, single nucleotide polymorphism
- tcr, t-cell receptor
- tgfβ, tumour growth factor β
- th, tyrosine hydroxylase
- th1, t helper 1
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- treg, regulatory t-cell
- vip, vasoactive intestinal peptide
- wt, wild-type
Collapse
Affiliation(s)
- Vanesa Sanchez-Guajardo
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christopher J. Barnum
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Malú G. Tansey
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Marina Romero-Ramos
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
243
|
Leal MC, Casabona JC, Puntel M, Pitossi FJ. Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson's Disease? Front Cell Neurosci 2013; 7:53. [PMID: 23641196 PMCID: PMC3638129 DOI: 10.3389/fncel.2013.00053] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation has received increased attention as a target for putative neuroprotective therapies in Parkinson’s Disease (PD). Two prototypic pro-inflammatory cytokines interleukin-1β (IL-1) and tumor necrosis factor-α (TNF) have been implicated as main effectors of the functional consequences of neuroinflammation on neurodegeneration in PD models. In this review, we describe that the functional interaction between these cytokines in the brain differs from the periphery (e.g., their expression is not induced by each other) and present data showing predominantly a toxic effect of these cytokines when expressed at high doses and for a sustained period of time in the substantia nigra pars compacta (SN). In addition, we highlight opposite evidence showing protective effects of these two main cytokines when conditions of duration, amount of expression or state of activation of the target or neighboring cells are changed. Furthermore, we discuss these results in the frame of previous disappointing results from anti-TNF-α clinical trials against Multiple Sclerosis, another neurodegenerative disease with a clear neuroinflammatory component. In conclusion, we hypothesize that the available evidence suggests that the duration and dose of IL-1β or TNF-α expression is crucial to predict their functional effect on the SN. Since these parameters are not amenable for measurement in the SN of PD patients, we call for an in-depth analysis to identify downstream mediators that could be common to the toxic (and not the protective) effects of these cytokines in the SN. This strategy could spare the possible neuroprotective effect of these cytokines operative in the patient at the time of treatment, increasing the probability of efficacy in a clinical setting. Alternatively, receptor-specific agonists or antagonists could also provide a way to circumvent undesired effects of general anti-inflammatory or specific anti-IL-1β or TNF-α therapies against PD.
Collapse
Affiliation(s)
- María C Leal
- Institute Leloir Fundation - IIBBA-CONICET Buenos Aires, Argentina
| | | | | | | |
Collapse
|
244
|
Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, González-Billault C, Núñez MT. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 2013; 126:541-9. [PMID: 23506423 DOI: 10.1111/jnc.12244] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 12/23/2022]
Abstract
Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that include Alzheimer's disease and Parkinson's disease. The study of the putative association between inflammation and iron accumulation in central nervous system cells is relevant to understand the contribution of these processes to the progression of neuronal death. In this study, we analyzed the effects of the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) and of lipopolysaccharide on total cell iron content and on the expression and abundance of the iron transporters divalent metal transporter 1 (DMT1) and Ferroportin 1 (FPN1) in neurons, astrocytes and microglia obtained from rat brain. Considering previous reports indicating that inflammatory stimuli induce the systemic synthesis of the master iron regulator hepcidin, we identified brain cells that produce hepcidin in response to inflammatory stimuli, as well as hepcidin-target cells. We found that inflammatory stimuli increased the expression of DMT1 in neurons, astrocytes, and microglia. Inflammatory stimuli also induced the expression of hepcidin in astrocytes and microglia, but not in neurons. Incubation with hepcidin decreased the expression of FPN1 in the three cell types. The net result of these changes was increased iron accumulation in neurons and microglia but not in astrocytes. The data presented here establish for the first time a causal association between inflammation and iron accumulation in brain cells, probably promoted by changes in DMT1 and FPN1 expression and mediated in part by hepcidin. This connection may potentially contribute to the progression of neurodegenerative diseases by enhancing iron-induced oxidative damage.
Collapse
Affiliation(s)
- Pamela Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile and Research Ring on Oxidative Stress in the Nervous System, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 2013; 62:803-19. [DOI: 10.1016/j.neuint.2012.12.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
|
246
|
Beynon AL, Brown MR, Wright R, Rees MI, Sheldon IM, Davies JS. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones. J Neuroinflammation 2013; 10:40. [PMID: 23509933 PMCID: PMC3614890 DOI: 10.1186/1742-2094-10-40] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/23/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones. FINDINGS The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed.We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry demonstrated that the results were independent from activation of cytotoxic and/or apoptotic mechanisms in the neuronal population, respectively. CONCLUSION Our results provide evidence that the gut-hormone, ghrelin, attenuates IL-6 secretion to LPS challenge in mid-brain dopaminergic neurones. These data suggest that ghrelin may protect against dopaminergic SN nerve cell damage or death via modulation of the innate immune response.
Collapse
Affiliation(s)
- Amy L Beynon
- Molecular Neuroscience, Swansea University, Swansea, SA28PP, UK
| | | | | | | | | | | |
Collapse
|
247
|
Durrant DM, Robinette ML, Klein RS. IL-1R1 is required for dendritic cell-mediated T cell reactivation within the CNS during West Nile virus encephalitis. ACTA ACUST UNITED AC 2013; 210:503-16. [PMID: 23460727 PMCID: PMC3600909 DOI: 10.1084/jem.20121897] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IL-1R1 signaling drives T cell activation in the CNS via effects on DC activation. Infections of the central nervous system (CNS) with cytopathic viruses require efficient T cell responses to promote viral clearance, limit immunopathology, and enhance survival. We found that IL-1R1 is critical for effector T cell reactivation and limits inflammation within the CNS during murine West Nile virus (WNV) encephalitis. WNV-infected IL-1R1−/− mice display intact adaptive immunity in the periphery but succumb to WNV infection caused by loss of virologic control in the CNS with depressed local Th1 cytokine responses, despite parenchymal entry of virus-specific CD8+ T cells. Ex vivo analysis of CD4+ T cells from WNV-infected CNS of IL-1R1−/− mice revealed impaired effector responses, whereas CD8+ T cells revealed no cell intrinsic defects in response to WNV antigen. WNV-infected, IL-1R1−/− mice also exhibited decreased activation of CNS CD11c+CD11b−CD103+ and CD11c+CD11b−CD8α+Dec-205+ cells with reduced up-regulation of the co-stimulatory molecules CD80, CD86, and CD68. Adoptive transfer of wild-type CD11c-EYFP+ cells from WNV-infected CNS into WNV-infected IL-1R1−/− mice trafficked into the CNS restored T cell functions and improved survival from otherwise lethal infection. These data indicate that IL-1R1 signaling promotes virologic control during WNV infection specifically within the CNS via modulation of CD11c+ cell–mediated T cell reactivation at this site.
Collapse
Affiliation(s)
- Douglas M Durrant
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
248
|
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:461-91. [PMID: 24252804 PMCID: PMC4135313 DOI: 10.3233/jpd-130230] [Citation(s) in RCA: 1113] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection.
Collapse
Affiliation(s)
- Vera Dias
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
249
|
Gapp K, Woldemichael BT, Bohacek J, Mansuy IM. Epigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience 2012; 264:99-111. [PMID: 23256926 DOI: 10.1016/j.neuroscience.2012.11.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/08/2012] [Accepted: 11/21/2012] [Indexed: 01/25/2023]
Abstract
From fertilization throughout development and until death, cellular programs in individual cells are dynamically regulated to fulfill multiple functions ranging from cell lineage specification to adaptation to internal and external stimuli. Such regulation is of major importance in brain cells, because the brain continues to develop long after birth and incorporates information from the environment across life. When compromised, these regulatory mechanisms can have detrimental consequences on neurodevelopment and lead to severe brain pathologies and neurodegenerative diseases in the adult individual. Elucidating these processes is essential to better understand their implication in disease etiology. Because they are strongly influenced by environmental factors, they have been postulated to depend on epigenetic mechanisms. This review describes recent studies that have identified epigenetic dysfunctions in the pathophysiology of several neurodevelopmental and neurodegenerative diseases. It discusses currently known pathways and molecular targets implicated in pathologies including imprinting disorders, Rett syndrome, and Alzheimer's, Parkinson's and Hungtinton's disease, and their relevance to these diseases.
Collapse
Affiliation(s)
- K Gapp
- Brain Research Institute, Medical Faculty of the University of Zürich and Swiss Federal Institute of Technology, Neuroscience Center Zürich, Zürich, Switzerland
| | - B T Woldemichael
- Brain Research Institute, Medical Faculty of the University of Zürich and Swiss Federal Institute of Technology, Neuroscience Center Zürich, Zürich, Switzerland
| | - J Bohacek
- Brain Research Institute, Medical Faculty of the University of Zürich and Swiss Federal Institute of Technology, Neuroscience Center Zürich, Zürich, Switzerland
| | - I M Mansuy
- Brain Research Institute, Medical Faculty of the University of Zürich and Swiss Federal Institute of Technology, Neuroscience Center Zürich, Zürich, Switzerland.
| |
Collapse
|
250
|
Synergistic cooperation between methamphetamine and HIV-1 gsp120 through the P13K/Akt pathway induces IL-6 but not IL-8 expression in astrocytes. PLoS One 2012; 7:e52060. [PMID: 23251686 PMCID: PMC3522628 DOI: 10.1371/journal.pone.0052060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/12/2012] [Indexed: 12/11/2022] Open
Abstract
HIV-1 envelope protein gp120 has been extensively studied for neurotoxic effects that have been attributed to the increased expression of various proinflammatory cytokines in the CNS. Recently we have shown that methamphetamine (MA) also increases expression of proinflammatory cytokines in astrocytes. However, combined effect of gp120 and MA is not known. The present study was undertaken to determine cumulative effect and the mechanism(s)/pathways involved in the functional interaction between gp120 and MA in SVGA astrocytes. Our results clearly suggest that gp120 and MA affect IL-6 but not IL-8 in a synergistic manner and this synergy was mediated by PI3K/Akt and NF-κB pathways. Inhibition of either of these pathways could abrogate the increased expression of IL-6 due to MA or gp120 alone, as well as the increased expression of IL-6 when the astrocytes were treated with both gp120 and MA. These results were confirmed by both, using chemical inhibitors/siRNA as well as western blotting. This study therefore provides novel information regarding the interaction between MA and gp120 in terms of the expression of IL-6 and the mechanisms underlying potential synergy between MA and gp120 in astrocytes.
Collapse
|