201
|
Kushwaha A, Goswami L, Kim BS. Nanomaterial-Based Therapy for Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:618. [PMID: 35214947 PMCID: PMC8878029 DOI: 10.3390/nano12040618] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Poor wound healing affects millions of people globally, resulting in increased mortality rates and associated expenses. The three major complications associated with wounds are: (i) the lack of an appropriate environment to enable the cell migration, proliferation, and angiogenesis; (ii) the microbial infection; (iii) unstable and protracted inflammation. Unfortunately, existing therapeutic methods have not solved these primary problems completely, and, thus, they have an inadequate medical accomplishment. Over the years, the integration of the remarkable properties of nanomaterials into wound healing has produced significant results. Nanomaterials can stimulate numerous cellular and molecular processes that aid in the wound microenvironment via antimicrobial, anti-inflammatory, and angiogenic effects, possibly changing the milieu from nonhealing to healing. The present article highlights the mechanism and pathophysiology of wound healing. Further, it discusses the current findings concerning the prospects and challenges of nanomaterial usage in the management of chronic wounds.
Collapse
Affiliation(s)
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Korea; (A.K.); (L.G.)
| |
Collapse
|
202
|
Lu J, Chen Y, Ding M, Fan X, Hu J, Chen Y, Li J, Li Z, Liu W. A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr Polym 2022; 277:118871. [PMID: 34893276 DOI: 10.1016/j.carbpol.2021.118871] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
In order to develop better wound dressings, a novel chitosan hydrogel (Cn-Nm gel) was designed and fabricated by using aldehyde-4-arm polyethylene glycol (4r-PEG-CHO) to crosslink the chitosan dissolved in alkaline solution, amino-4-arm polyethylene glycol (4r-PEG-NH2) was chosen as the additive simultaneously. The special dissolution technique and macromolecular crosslinking structure endows the Cn-Nm gels with better performance than that of gels prepared by acid dissolving method with micromolecule crosslinker. First, Cn-Nm gels own strong toughness with 500 kPa tensile strength and 1000% elongation, about 400% swelling ratio and fast water absorption rate. Second, about 300 kPa adhesive strength and strippability between the gels and skin is achieved. More importantly, Cn-Nm gels show nearly 100% antibacterial rate towards Escherichia coli and Staphylococcus aureus. Excellent biocompatibility is also proved by the mouse fibroblasts tests. All of the performance makes this developed chitosan-based gel be the potential candidate as a wound dressing.
Collapse
Affiliation(s)
- Jiawei Lu
- School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, China; Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology, Zhuzhou, China
| | - Yi Chen
- School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, China; Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology, Zhuzhou, China.
| | - Meng Ding
- Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology, Zhuzhou, China
| | - Xiaokun Fan
- School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, China; Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology, Zhuzhou, China
| | - Jiawei Hu
- School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, China; Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology, Zhuzhou, China
| | - Yihua Chen
- Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology, Zhuzhou, China
| | - Jie Li
- School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, China; Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environmental Sciences, Hunan University of Technology, Zhuzhou, China
| | - Zhihan Li
- School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, China; Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, Hunan University of Technology, Zhuzhou, China
| | - Wenyong Liu
- School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, China; Hunan Provincial Key Laboratory of Biomass Fiber Functional Materials, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
203
|
Salimbeigi G, Oliveira RN, McGuinness GB. Electrospun poly(e‐caprolactone)/propolis fiber morphology: A process optimisation study. J Appl Polym Sci 2022. [DOI: 10.1002/app.52131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Golestan Salimbeigi
- School of Mechanical & Manufacturing Engineering Dublin City University Dublin Ireland
| | - Renata Nunes Oliveira
- Post Graduation Program of Chemical Engineering, Chemical Engineering Department Federal Rural University of Rio de Janeiro Seropédica Brazil
| | | |
Collapse
|
204
|
3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02899-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
205
|
Chigama H, Kanetaka H, Furuya M, Yokota K, Kawashita M. Indirect cytotoxicity evaluations of antibacterial raw silk fabric doped with calcium, copper and zinc on fibroblasts and osteoblasts. J Biomater Appl 2022; 36:1417-1426. [PMID: 34984930 DOI: 10.1177/08853282211058941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibacterial materials are widely used to prevent hospital-acquired infections. In our previous report, metal (calcium, copper or zinc)-doped raw silk fabrics were shown to possess strong antibacterial activities against Escherichia coli. However, antibacterial materials may occasionally be harmful to the human body; thus, in this study, we investigated the cytotoxicities of extracts from metal-doped raw silk fabrics with respect to fibroblasts and osteoblasts indirectly. Calcium-doped raw silk fabric demonstrated cytocompatibility with fibroblasts. Contrarily, copper- and zinc-doped raw silk fabrics remarkably decreased the cell densities of fibroblasts, indicating their cytotoxic effects. This observation could be attributed to the high concentrations of the released copper or zinc ions. However, calcium-, copper- and zinc-doped raw silk fabrics did not demonstrate any cytotoxic effects on osteoblasts because a high concentration of the serum alleviated the effects of these metal ions released from the fabrics. Thus, calcium-doped raw silk fabric is a promising antibacterial material that does not induce strong cytotoxicity. This study will facilitate the design of materials that are both antibacterial and safe.
Collapse
Affiliation(s)
- Hiroki Chigama
- Graduate School of Dentistry, 13101Tohoku University, Sendai, Japan
| | | | - Maiko Furuya
- Graduate School of Dentistry, 13101Tohoku University, Sendai, Japan
| | - Kotone Yokota
- Graduate School of Dentistry, 13101Tohoku University, Sendai, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, 13100Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
206
|
Kaniuk Ł, Podborska A, Stachewicz U. Enhanced mechanical performance and wettability of PHBV fiber blends with evening primrose oil for skin patches improving hydration and comfort. J Mater Chem B 2022; 10:1763-1774. [DOI: 10.1039/d1tb02805g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growing problem of skin diseases due to allergies causing atopic dermatitis, which is characterized by itching, burning, and redness, constantly motivates researchers to look for solutions to soothe these effects by moisturizing skin properly.
Collapse
Affiliation(s)
- Łukasz Kaniuk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Cracow, Poland
| | - Agnieszka Podborska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Cracow, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Cracow, Poland
| |
Collapse
|
207
|
Nano-silver functionalized polysaccharides as a platform for wound dressings: A review. Int J Biol Macromol 2022; 194:644-653. [PMID: 34822832 DOI: 10.1016/j.ijbiomac.2021.11.108] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
Abstract
The healing of defected skin tissue is a complex process, especially for chronic wounds. Poor healing of these wounds may cause extensive suffering and high cost for patients. Traditional wound dressings are typically designed for a single function and they cannot satisfy all requirements for the whole process of wound healing. Therefore, it is necessary to develop new types of wound dressings with multiple functions for wound healing. In particular, adding an antibacterial function has been shown to be of great benefit during tissue repair. Nano‑silver is widely used in wound treatment because of various advantages, such as its wide antibacterial spectrum and lower drug resistance. Therefore, wound dressings loaded with nano‑silver have attracted widespread attention in wound healing. Naturally derived polysaccharides hold great potential as wound dressings, because of their abundant availability, low prices and good biocompatibility. In this review, nano‑silver functionalized polysaccharide-based wound dressings are systematically reviewed, including their preparation methods, antibacterial performances and classification of nano‑silver wound dressings. Moreover, the toxicity of nano‑silver based wound dressings is discussed and the prospective research direction is elaborated. This review aims to provide readers with an overview of the latest developments in silver nanotechnology, and to provide a little guidance for the research of nano‑silver functionalized polysaccharide-based wound dressings.
Collapse
|
208
|
Schepler H, Neufurth M, Wang S, She Z, Schröder HC, Wang X, Müller WE. Acceleration of chronic wound healing by bio-inorganic polyphosphate: In vitro studies and first clinical applications. Theranostics 2022; 12:18-34. [PMID: 34987631 PMCID: PMC8690915 DOI: 10.7150/thno.67148] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The healing of chronic wounds is impaired by a lack of metabolic energy. In previous studies, we showed that physiological inorganic polyphosphate (polyP) is a generator of metabolic energy by forming ATP as a result of the enzymatic cleavage of the high-energy phosphoanhydride bonds of this polymer. Therefore, in the present study, we investigated whether the administration of polyP can substitute for the energy deficiency in chronic wound healing. Methods: PolyP was incorporated into collagen mats and applied in vitro and to patients in vivo. Results: (i) In vitro studies: Keratinocytes grown in vitro onto the polyP/collagen mats formed long microvilli to guide them to a favorable environment. HUVEC cells responded to polyP/collagen mats with an increased adhesion and migration propensity as well as penetration into the mats. (ii) In vivo - human clinical studies: In a "bench to bedside" process these promising in vitro results were translated from the laboratory into the clinic. In the proof-of-concept application, the engineered polyP/collagen mats were applied to chronic wounds in patients. Those mats impressively accelerated the re-epithelialization rate, with a reduction of the wound area to 65% after 3 weeks and to 36.6% and 22.5% after 6 and 9 weeks, respectively. Complete healing was achieved and no further treatment was necessary. Biopsy samples from the regenerating wound area showed predominantly myofibroblasts. The wound healing process was supported by the use of a polyP containing moisturizing solution. Conclusion: The results strongly recommend polyP as a beneficial component in mats for a substantial healing of chronic wounds.
Collapse
Affiliation(s)
- Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Zhengding She
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | | | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner E.G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
209
|
Gupta H, Verma C, Sharma A, Singh P, Somani M, Mukhopadhyay S, Shekhar A, Gupta B. Development of silver immobilized biofunctional PET Fabric for antimicrobial wound dressing. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
210
|
dos Santos KB, Higawa GE, Conceição KS, Endringer DC, Schmitt EFP, Xavier LM, Fronza M, Stevanato A, Tischer CA, Ribeiro-Viana RM. Performance Improvement of Hydrophobized Bacterial Cellulose Films as Wound Dressing. Macromol Res 2021. [DOI: 10.1007/s13233-022-0005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
211
|
Hashemi SS, Saadatjo Z, Mahmoudi R, Delaviz H, Bardania H, Rajabi SS, Rafati A, Zarshenas MM, Barmak MJ. Preparation and evaluation of polycaprolactone/chitosan/Jaft biocompatible nanofibers as a burn wound dressing. Burns 2021; 48:1690-1705. [PMID: 34973854 DOI: 10.1016/j.burns.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Tissue engineering is an emerging method for replacing damaged tissues. In this study, the potential application of electrospun polycaprolactone/chitosan/ the internal layer of oak fruit (Jaft) as skin scaffolds was investigated. A combination of Polycaprolactone (PCL), chitosan (CH), and the internal layer of oak fruit (Jaft) was used to incorporate mechanical properties of synthetic polymers, biological properties of natural polymers, and antibacterial activity of Jaft. Physical and morphological characteristics of prepared scaffolds were investigated using a scanning electron microscope (SEM), mechanical analysis, swelling ratio, and contact angle. Moreover, chemical and biological properties were evaluated by Fourier-transform infrared spectroscopy (FTIR), chromatography, flow cytometry, DAPI staining, MTT assay, and trypan blue exclusion assay. Obtained results demonstrated that the fabricated scaffolds have good mechanical properties. Moreover, the addition of chitosan and Jaft to the PCL scaffolds improved their water absorption capacity as well as surface hydrophilicity. MTT results showed the fabricated nanofibrous scaffolds have adequate cell viability, which is higher than the cell culture plate at each time point of culture. Furthermore, SEM images of cultured scaffolds, trypan blue exclusion assay, and DAPI staining confirmed that fibroblast cells could be well-attached and proliferate on the PCL/CH/Jaft scaffolds. Results have proven that this novel bioactive scaffold has promising mechanical properties, suitable biocompatibility in vitro, and in vivo. Consequently, it could be a promising candidate for skin tissue engineering applications.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Saadatjo
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hamdollah Delaviz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Seyedeh-Somayeh Rajabi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
212
|
Asadi N, Mehdipour A, Ghorbani M, Mesgari-Abbasi M, Akbarzadeh A, Davaran S. A novel multifunctional bilayer scaffold based on chitosan nanofiber/alginate-gelatin methacrylate hydrogel for full-thickness wound healing. Int J Biol Macromol 2021; 193:734-747. [PMID: 34717980 DOI: 10.1016/j.ijbiomac.2021.10.180] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022]
Abstract
Due to their lack of multifunctionality, the majority of traditional wound dressings do not support all the clinical requirements. Bilayer wound dressings with multifunctional properties can be attractive for effective skin regeneration. In the present study, we designed a multifunctional bilayer scaffold containing Chitosan-Polycaprolactone (PC) nanofiber and tannic acid (TA) reinforced methacrylate gelatin (GM)/alginate (Al) hydrogel (GM/Al/TA). PC nanofibers were coated with GM/Al/TA hydrogel to obtain a bilayer nanocomposite scaffold (Bi-TA). The GM/Al/TA hydrogel layer of Bi-TA showed antibacterial, free radical scavenging, and biocompatibility properties. Also, PC nanofiber acted as a barrier for preventing bacterial invasion and moisture loss of the hydrogel layer. The wound healing performance of the Bi-TA scaffold was investigated via a full-thickness wound model. In addition, the histopathological and immunohistochemical (IHC) stainings of transforming growth factor-β1(TGF-β1) and tumor necrosis factor-α (TNF-α) were assessed. The results indicated an enhanced wound closure rate, effective collagen deposition, quick re-epithelialization, more skin appendages, and replacement of defect area with normal skin tissue by Bi-TA scaffold compared to other groups. Additionally, the regulation of TGF-β1 and TNF-α was observed by Bi-TA dressing. Overall, the Bi-TA with appropriate structural and multifunctional properties can be an excellent candidate for developing effective dressings for wound healing applications.
Collapse
Affiliation(s)
- Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
213
|
Controlled and Local Delivery of Antibiotics by 3D Core/Shell Printed Hydrogel Scaffolds to Treat Soft Tissue Infections. Pharmaceutics 2021; 13:pharmaceutics13122151. [PMID: 34959430 PMCID: PMC8705560 DOI: 10.3390/pharmaceutics13122151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
Soft tissue infections in open fractures or burns are major cause for high morbidity in trauma patients. Sustained, long-term and localized delivery of antimicrobial agents is needed for early eradication of these infections. Traditional (topical or systemic) antibiotic delivery methods are associated with a variety of problems, including their long-term unavailability and possible low local concentration. Novel approaches for antibiotic delivery via wound coverage/healing scaffolds are constantly being developed. Many of these approaches are associated with burst release and thus seldom maintain long-term inhibitory concentrations. Using 3D core/shell extrusion printing, scaffolds consisting of antibiotic depot (in the core composed of low concentrated biomaterial ink 3% alginate) surrounded by a denser biomaterial ink (shell) were fabricated. Denser biomaterial ink (composed of alginate and methylcellulose or alginate, methylcellulose and Laponite) retained scaffold shape and modulated antibiotic release kinetics. Release of antibiotics was observed over seven days, indicating sustained release characteristics and maintenance of potency. Inclusion of Laponite in shell, significantly reduced burst release of antibiotics. Additionally, the effect of shell thickness on release kinetics was demonstrated. Amalgamation of such a modular delivery system with other biofabrication methods could potentially open new strategies to simultaneously treat soft tissue infections and aid wound regeneration.
Collapse
|
214
|
Mbese Z, Alven S, Aderibigbe BA. Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications. Polymers (Basel) 2021; 13:4368. [PMID: 34960918 PMCID: PMC8703599 DOI: 10.3390/polym13244368] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.
Collapse
|
215
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
216
|
Singh R, Roopmani P, Chauhan M, Basu SM, Deeksha W, Kazem MD, Hazra S, Rajakumara E, Giri J. Silver sulfadiazine loaded core-shell airbrushed nanofibers for burn wound healing application. Int J Pharm 2021; 613:121358. [PMID: 34896560 DOI: 10.1016/j.ijpharm.2021.121358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 01/21/2023]
Abstract
Ideal dressing materials for complex and large asymmetric burns should have the dual properties of anti-bacterial and regenerative with advanced applicability of direct deposit on the wound at the patient bedside. In this study, core-shell nanofibers (polycaprolactone; PCL and polyethylene oxide; PEO) with different percent of silver sulfadiazine (SSD) loading (2-10%) were prepared by the airbrushing method using a custom build device. Results indicate a sustained release profile of silver sulfadiazine (SSD) up to 28 days and concentration-dependent anti-bacterial activity. The morphology and proliferation of human dermal fibroblast (HDF) cells and human dental follicle stem cells (HDFSC) on the silver sulfadiazine loaded nanofibers confirm the biocompatibility of airbrushed nanofibers. Moreover, upregulation of extracellular matrix (ECM) proteins (Col I, Col III, and elastin) support the differentiation and regenerative properties of silver sulfadiazine nanofiber mats. This was further confirmed by the complete recovery of rabbit burn wound models within 7 days of silver sulfadiazine loaded nanofiber dressing. Histopathology data show silver sulfadiazine loaded core-shell nanofibers' anti-inflammatory and proliferative activity without any adverse response on the tissue. Overall data display that the airbrushed silver sulfadiazine-loaded core-shell nanofibers are effective dressing material with the possibility of direct fiber deposition on the wound to cover, heal, and regenerate large asymmetric burn wounds.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Purandhi Roopmani
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - M D Kazem
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Sarbani Hazra
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
217
|
Wang Y, Sun H. Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents. Pharmaceutics 2021; 13:2108. [PMID: 34959388 PMCID: PMC8709338 DOI: 10.3390/pharmaceutics13122108] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections have threatened the lives of human beings for thousands of years either as major diseases or complications. The elimination of bacterial infections has always occupied a pivotal position in our history. For a long period of time, people were devoted to finding natural antimicrobial agents such as antimicrobial peptides (AMPs), antibiotics and silver ions or synthetic active antimicrobial substances including antimicrobial peptoids, metal oxides and polymers to combat bacterial infections. However, with the emergence of multidrug resistance (MDR), bacterial infection has become one of the most urgent problems worldwide. The efficient delivery of antimicrobial agents to the site of infection precisely is a promising strategy for reducing bacterial resistance. Polymeric nanomaterials have been widely studied as carriers for constructing antimicrobial agent delivery systems and have shown advantages including high biocompatibility, sustained release, targeting and improved bioavailability. In this review, we will highlight recent advances in highly efficient delivery of antimicrobial agents by polymeric nanomaterials such as micelles, vesicles, dendrimers, nanogels, nanofibers and so forth. The biomedical applications of polymeric nanomaterial-based delivery systems in combating MDR bacteria, anti-biofilms, wound healing, tissue engineering and anticancer are demonstrated. Moreover, conclusions and future perspectives are also proposed.
Collapse
Affiliation(s)
- Yin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China;
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
218
|
Zamani K, Allah-Bakhshi N, Akhavan F, Yousefi M, Golmoradi R, Ramezani M, Bach H, Razavi S, Irajian GR, Gerami M, Pakdin-Parizi A, Tafrihi M, Ramezani F. Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC Biotechnol 2021; 21:68. [PMID: 34876083 PMCID: PMC8650514 DOI: 10.1186/s12896-021-00727-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Antibiotics have been widely used for the treatment of bacterial infections for decades. However, the rapid emergence of antibiotic-resistant bacteria has created many problems with a heavy burden for the medical community. Therefore, the use of nanoparticles as an alternative for antibacterial activity has been explored. In this context, metal nanoparticles have demonstrated broad-spectrum antimicrobial activity. This study investigated the antimicrobial activity of naked cerium oxide nanoparticles dispersed in aqueous solution (CNPs) and surface-stabilized using Pseudomonas aeruginosa as a bacterial model. METHODS Gelatin-polycaprolactone nanofibers containing CNPs (Scaffold@CNPs) were synthesized, and their effect on P. aeruginosa was investigated. The minimum inhibitory and bactericidal concentrations of the nanoparticls were determined in an ATCC reference strain and a clinical isolate strain. To determine whether the exposure to the nanocomposites might change the expression of antibiotic resistance, the expression of the genes shv, kpc, and imp was also investigated. Moreover, the cytotoxicity of the CNPs was assessed on fibroblast using flow cytometry. RESULTS Minimum bactericidal concentrations for the ATCC and the clinical isolate of 50 µg/mL and 200 µg/mL were measured, respectively, when the CNPs were used. In the case of the Scaffold@CNPs, the bactericidal effect was 50 µg/mL and 100 µg/mL for the ATCC and clinical isolate, respectively. Interestingly, the exposure to the Scaffold@CNPs significantly decreased the expression of the genes shv, kpc, and imp. CONCLUSIONS A concentration of CNPs and scaffold@CNPs higher than 50 μg/mL can be used to inhibit the growth of P. aeruginosa. The fact that the scaffold@CNPs significantly reduced the expression of resistance genes, it has the potential to be used for medical applications such as wound dressings.
Collapse
Affiliation(s)
- Khosro Zamani
- 1. Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran. 2. Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Akhavan
- Department of Biology, Sana Institute of Higher education, Sari, Iran
| | - Mahdieh Yousefi
- Department of Biology, Sana Institute of Higher education, Sari, Iran
| | - Rezvan Golmoradi
- 1. Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran. 2. Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Shabnam Razavi
- 1. Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran. 2. Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam-Reza Irajian
- 1. Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran. 2. Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahyar Gerami
- Department of Biology, Sana Institute of Higher education, Sari, Iran.
| | - Ali Pakdin-Parizi
- Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Majid Tafrihi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
219
|
Huang YJ, Huang CL, Lai RY, Zhuang CH, Chiu WH, Lee KM. Microstructure and Biological Properties of Electrospun In Situ Polymerization of Polycaprolactone-Graft-Polyacrylic Acid Nanofibers and Its Composite Nanofiber Dressings. Polymers (Basel) 2021; 13:4246. [PMID: 34883754 PMCID: PMC8659835 DOI: 10.3390/polym13234246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
In this study, polycaprolactone (PCL)- and poly(acrylic acid) (PAA)-based electrospun nanofibers were prepared for the carriers of antimicrobials and designed composite nanofiber mats for chronic wound care. The PCL- and PAA-based electrospun nanofibers were prepared through in situ polymerization starting from PCL and acrylic acid (AA). Different amounts of AA were introduced to improve the hydrophilicity of the PCL electrospun nanofibers. A compatibilizer and a photoinitiator were then added to the electrospinning solution to form a grafted structure composed of PCL and PAA (PCL-g-PAA). The grafted PAA was mainly located on the surface of a PCL nanofiber. The optimization of the composition of PCL, AA, compatibilizer, and photoinitiator was studied, and the PCL-g-PAA electrospun nanofibers were characterized through scanning electron microscopy and 1H-NMR spectroscopy. Results showed that the addition of AA to PCL improved the hydrophilicity of the electrospun PCL nanofibers, and a PCL/AA ratio of 80/20 presented the best composition and had smooth nanofiber morphology. Moreover, poly[2 -(tert-butylaminoethyl) methacrylate]-grafted graphene oxide nanosheets (GO-g-PTA) functioned as an antimicrobial agent and was used as filler for PCL-g-PAA nanofibers in the preparation of composite nanofiber mats, which exerted synergistic effects promoted by the antibacterial properties of GO-g-PTA and the hydrophilicity of PCL-g-PAA electrospun nanofibers. Thus, the composite nanofiber mats had antibacterial properties and absorbed body fluids in the wound healing process, thereby promoting cell proliferation. The biodegradation of the PCL-g-PAA electrospun nanofibers also demonstrated an encouraging result of three-fold weight reduction compared to the neat PCL nanofiber. Our findings may serve as guidelines for the fabrication of electrospun nanofiber composites that can be used mats for chronic wound care.
Collapse
Affiliation(s)
- Yi-Jen Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Chien-Lin Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Ruo-Yu Lai
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Cheng-Han Zhuang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-J.H.); (R.-Y.L.); (C.-H.Z.)
| | - Wei-Hao Chiu
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Kun-Mu Lee
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| |
Collapse
|
220
|
Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021; 136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Collapse
|
221
|
Madruga LYC, Popat KC, Balaban RC, Kipper MJ. Enhanced blood coagulation and antibacterial activities of carboxymethyl-kappa-carrageenan-containing nanofibers. Carbohydr Polym 2021; 273:118541. [PMID: 34560953 DOI: 10.1016/j.carbpol.2021.118541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023]
Abstract
Ideal wound dressings should be biocompatible, exhibit high antibacterial activity, and promote blood coagulation. To impart these imperative functions, carboxymethyl-kappa-carrageenan was incorporated into poly(vinyl alcohol) nanofibers (PVA-CMKC). The antibacterial activity of the nanofibers was evaluated. Adsorption of two important blood proteins, fibrinogen and albumin, was also assessed. The adhesion and activation of platelets, and the clotting of whole blood were evaluated to characterize the ability of the nanofibers to promote hemostasis. Adhesion and morphology of both Staphylococcus aureus and Pseudomonas aeruginosa were evaluated using fluorescence microscopy and scanning electron microscopy. CMKC-containing nanofibers demonstrated significant increases in platelet adhesion and activation, percentage of coagulation in whole blood clotting test and fibrinogen adsorption, compared to PVA nanofibers, showing blood coagulation activity. Incorporating CMKC also reduces adhesion and viability of S. aureus and P. aeruginosa bacteria after 24 h of incubation. PVA-CMKC nanofibers show potential application as dressings for wound healing applications.
Collapse
Affiliation(s)
- Liszt Y C Madruga
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States; Institute of Chemistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, United States; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Rosangela C Balaban
- Institute of Chemistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, United States; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
222
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
223
|
He W, Zhang Z, Chen J, Zheng Y, Xie Y, Liu W, Wu J, Mosselhy DA. Evaluation of the anti-biofilm activities of bacterial cellulose-tannic acid-magnesium chloride composites using an in vitro multispecies biofilm model. Regen Biomater 2021; 8:rbab054. [PMID: 34754505 PMCID: PMC8569941 DOI: 10.1093/rb/rbab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic wounds are a serious worldwide problem, which are often accompanied by wound infections. In this study, bacterial cellulose (BC)-based composites introduced with tannic acid (TA) and magnesium chloride (BC-TA-Mg) were fabricated for anti-biofilm activities. The prepared composites' surface properties, mechanical capacity, thermal stability, water absorption and retention property, releasing behavior, anti-biofilm activities and potential cytotoxicity were tested. Results showed that TA and MgCl2 particles closely adhered to the nanofibers of BC membranes, thus increasing surface roughness and hydrophobicity of the membranes. While the introduction of TA and MgCl2 did not influence the transparency of the membranes, making it beneficial for wound inspection. BC-TA and BC-TA-Mg composites displayed increased tensile strength and elongation at break compared to pure BC. Moreover, BC-TA-Mg exhibited higher water absorption and retention capacity than BC and BC-TA, suitable for the absorption of wound exudates. BC-TA-Mg demonstrated controlled release of TA and good inhibitory effect on both singly cultured Staphylococcus aureus and Pseudomonas aeruginosa biofilm and co-cultured biofilm of S. aureus and P. aeruginosa. Furthermore, the cytotoxicity grade of BC-TA-6Mg membrane was eligible based on standard toxicity classifications. These indicated that BC-TA-Mg is potential to be used as wound dressings combating biofilms in chronic wounds.
Collapse
Affiliation(s)
- Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd, Suzhou 215028, China
| | - Zhaoyu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbo Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Jian Wu
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd, Suzhou 215028, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki 00014, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| |
Collapse
|
224
|
Gul A, Gallus I, Tegginamath A, Maryska J, Yalcinkaya F. Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. MEMBRANES 2021; 11:908. [PMID: 34940410 PMCID: PMC8707140 DOI: 10.3390/membranes11120908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Chronic wounds are caused by bacterial infections and create major healthcare discomforts; to overcome this issue, wound dressings with antibacterial properties are to be utilized. The requirements of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials. Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to be designed. Electrospun nanofibers offer a promising solution to the management of wound healing, and numerous options are available to load antibacterial compounds onto the nanofiber webs. This review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial agents to be used in wound dressings. In addition, we highlight the latest research and patents related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the importance of nanofibers for wound dressing applications and discuss functionalized antibacterial nanofibers in wound dressing.
Collapse
Affiliation(s)
- Aysegul Gul
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Izabela Gallus
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Akshat Tegginamath
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Jiri Maryska
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Fatma Yalcinkaya
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| |
Collapse
|
225
|
Lagat MK, Were S, Ndwigah F, Kemboi VJ, Kipkoech C, Tanga CM. Antimicrobial Activity of Chemically and Biologically Treated Chitosan Prepared from Black Soldier Fly ( Hermetia illucens) Pupal Shell Waste. Microorganisms 2021; 9:microorganisms9122417. [PMID: 34946019 PMCID: PMC8706517 DOI: 10.3390/microorganisms9122417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Globally, the broad-spectrum antimicrobial activity of chitin and chitosan has been widely documented. However, very little research attention has focused on chitin and chitosan extracted from black soldier fly pupal exuviae, which are abundantly present as byproducts from insect-farming enterprises. This study presents the first comparative analysis of chemical and biological extraction of chitin and chitosan from BSF pupal exuviae. The antibacterial activity of chitosan was also evaluated. For chemical extraction, demineralization and deproteinization were carried out using 1 M hydrochloric acid at 100 °C for 2 h and 1 M NaOH for 4 h at 100 °C, respectively. Biological chitin extraction was carried out by protease-producing bacteria and lactic-acid-producing bacteria for protein and mineral removal, respectively. The extracted chitin was converted to chitosan via deacetylation using 40% NaOH for 8 h at 100 °C. Chitin characterization was done using FTIR spectroscopy, while the antimicrobial properties were determined using the disc diffusion method. Chemical and biological extraction gave a chitin yield of 10.18% and 11.85%, respectively. A maximum chitosan yield of 6.58% was achieved via chemical treatment. From the FTIR results, biological and chemical chitin showed characteristic chitin peaks at 1650 and 1550 cm−1—wavenumbers corresponding to amide I stretching and amide II bending, respectively. There was significant growth inhibition for Escherichia coli, Bacillus subtilis,Pseudomonas aeruginosa,Staphylococcus aureus, and Candida albicans when subjected to 2.5 and 5% concentrations of chitosan. Our findings demonstrate that chitosan from BSF pupal exuviae could be a promising and novel therapeutic agent for drug development against resistant strains of bacteria.
Collapse
Affiliation(s)
- Mevin Kiprotich Lagat
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Samuel Were
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Francis Ndwigah
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Violah Jepkogei Kemboi
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (M.K.L.); (S.W.); (F.N.); (V.J.K.)
| | - Carolyne Kipkoech
- Department of Food and Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya
- Correspondence:
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
226
|
Bhar B, Chouhan D, Pai N, Mandal BB. Harnessing Multifaceted Next-Generation Technologies for Improved Skin Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:7738-7763. [PMID: 35006758 DOI: 10.1021/acsabm.1c00880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of sequential and synchronized events of skin regeneration often results in the impairment of chronic wounds. Conventional wound dressings fail to trigger the normal healing mechanism owing to the pathophysiological conditions. Tissue engineering approaches that deal with the fabrication of dressings using various biomaterials, growth factors, and stem cells have shown accelerated healing outcomes. However, most of these technologies are associated with difficulties in scalability and cost-effectiveness of the products. In this review, we survey the latest developments in wound healing strategies that have recently emerged through the multidisciplinary approaches of bioengineering, nanotechnology, 3D bioprinting, and similar cutting-edge technologies to overcome the limitations of conventional therapies. We also focus on the potential of wearable technology that supports complete monitoring of the changes occurring in the wound microenvironment. In addition, we review the role of advanced devices that can precisely enable the delivery of nanotherapeutics, oligonucleotides, and external stimuli in a controlled manner. These technological advancements offer the opportunity to actively influence the regeneration process to benefit the treatment regime further. Finally, the clinical relevance, trajectory, and prospects of this field have been discussed in brief that highlights their potential in providing a beneficial wound care solution at an affordable cost.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Dimple Chouhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nakhul Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
227
|
Haik J, Ullman Y, Gur E, Ad-El D, Egozi D, Kruchevsky D, Zissman S, Biros E, Nir RR, Kornhaber R, Cleary M, Harats M. Advances in the use of electrospun nanofibrous polymeric matrix for dermal healing at the donor site after the split-thickness skin graft excision: a prospective, randomized, controlled, open-label, multicenter study. J Burn Care Res 2021; 43:889-898. [PMID: 34751384 DOI: 10.1093/jbcr/irab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dressings used to manage donor site wounds have up to 40% of patients experiencing complications that may cause suboptimal scarring. We evaluated the efficacy and safety of a portable electrospun nanofibrous matrix that provides contactless management of donor site wounds compared with standard dressing techniques. This study included adult patients who underwent an excised split-thickness skin graft with a donor site wound area of 10-200 cm 2. Patients were allocated into two groups; i.e., the nanofiber group managed with a nanofibrous polymer-based matrix, and the control group managed using the standard of care such as Jelonet® or Biatain® Ibu dressing. Primary outcomes were postoperative dermal healing efficacy assessed by Draize scores. The time to complete re-epithelialization was also recorded. Secondary outcomes included postoperative adverse events, pain, and infections during the first 21-days and extended 12-month follow-up. The itching and scarring were recorded during the extended follow-up (months 1,3,6,9,12) using Numerical-Analogue-Score and Vancouver scores, respectively. The nanofiber and control groups included 21 and 20 patients, respectively. The Draize dermal irritation scores were significantly lower in the nanofiber vs. control group (Z=-2.509; P=0.028) on the first postoperative day but became similar afterward (Z≥-1.62; P≥0.198). In addition, the average time to re-epithelialization was similar in the nanofiber (17.9±4.4 days) and control group (18.3±4.5 days) (Z=-0.299; P=0.764), so were postoperative adverse events, pain, and infection incidence, itching and scarring. The safety and efficacy of electrospun nanofibrous matrix are similar to standard wound care allowing its use as an alternative donor site dressing following the split-thickness skin graft excision.
Collapse
Affiliation(s)
- Josef Haik
- Department of Plastic and Reconstructive Surgery, Sheba Medical Center, Ramat-Gan, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Talpiot Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel.,Institute for Health Research, University of Notre Dame, Western Australia.,College of Health and Medicine, University of Tasmania, Sydney, NSW, Australia
| | - Yehuda Ullman
- Department of Plastic and Reconstructive Surgery, Rambam Health Care Campus, affiliated with the Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Eyal Gur
- Department of Plastic and Reconstructive Surgery, Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dean Ad-El
- Department of Plastic and Reconstructive Surgery, Rabin Medical Center, Petah-Tikva, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dana Egozi
- Department of Plastic and Reconstructive Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Dani Kruchevsky
- Department of Plastic and Reconstructive Surgery, Rambam Health Care Campus, affiliated with the Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sivan Zissman
- Department of Plastic and Reconstructive Surgery, Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Erik Biros
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Rony-Reuven Nir
- Department of Plastic and Reconstructive Surgery, Sheba Medical Center, Ramat-Gan, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Kornhaber
- Department of Plastic and Reconstructive Surgery, Sheba Medical Center, Ramat-Gan, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,College of Health and Medicine, University of Tasmania, Sydney, NSW, Australia
| | - Michelle Cleary
- School of Nursing, Midwifery and Social Sciences, CQUniversity Australia
| | - Moti Harats
- Department of Plastic and Reconstructive Surgery, Sheba Medical Center, Ramat-Gan, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Talpiot Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel.,Institute for Health Research, University of Notre Dame, Western Australia
| |
Collapse
|
228
|
Thapa RK, Winther-Larsen HC, Ovchinnikov K, Carlsen H, Diep DB, Tønnesen HH. Hybrid hydrogels for bacteriocin delivery to infected wounds. Eur J Pharm Sci 2021; 166:105990. [PMID: 34481880 DOI: 10.1016/j.ejps.2021.105990] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 01/30/2023]
Abstract
Superficial infections in chronic wounds can prevent the wound healing process by the development of persistent infections and drug-resistant biofilms. Topically applied antimicrobial formulations with stabilized and controlled release offer significant benefits for the effective treatment of wound infections. Bacteriocins are the antimicrobial peptides (AMPs) produced by bacteria that are viable alternatives to antibiotics owing to their natural origin and low propensity for resistance development. Herein, we developed a hybrid hydrogel composed of Pluronic F127 (PF127), ethylenediaminetetraacetic acid (EDTA) loaded liposomes, glutathione (GSH), and the bacteriocin Garvicin KS (GarKS) referred to as "GarKS gel". The GarKS gel exhibited suitable viscosity and rheological properties along with controlled release behavior (up to 9 days) for effective peptide delivery following topical application. Potent in vitro antibacterial and anti-biofilm effects of GarKS gel were evident against the Gram-positive bacterium Staphylococcus aureus. The in vivo treatment of methicillin resistant S. aureus (MRSA) infected mouse wounds suggested potent antibacterial effects of the GarKS gel following multiple applications of once-a-day application for three consecutive days. Altogether, these results provide proof-of-concept for the successful development of AMP loaded topical formulation for effective treatment of wound infections.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316 Oslo, Norway.
| | - Hanne Cecilie Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, NO-0371 Oslo, Norway
| | - Kirill Ovchinnikov
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
229
|
He W, Wu J, Xu J, Mosselhy DA, Zheng Y, Yang S. Bacterial Cellulose: Functional Modification and Wound Healing Applications. Adv Wound Care (New Rochelle) 2021; 10:623-640. [PMID: 32870775 PMCID: PMC8392072 DOI: 10.1089/wound.2020.1219] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Significance: Wound dressings are frequently used for wound covering and healing. Ideal wound dressings should provide a moist environment for wounds and actively promote wound healing and skin recovery. The materials used as ideal wound dressings should possess specific properties, thus accelerating skin tissue regeneration process. Recent Advances: Bacterial cellulose (BC) is a natural polymer synthesized by some bacteria. As a kind of natural biopolymer, BC shows good biological activity, biodegradability, and biological adaptability. It has many unique physical, chemical, and biological properties, such as ultrafine nanofiber network, high crystallinity, high water absorption and retention capacity, and high tensile strength and elastic modulus. These excellent properties of BC have laid the foundation for its application as dressing in wound healing. Critical Issues: To optimize the biocompatibility and antimicrobial activity of BC, different methods including microbial fermentation, physical modification, chemical modification, and compound modification have been adopted to modify BC to ensure a better application in wound healing. BC-based wound dressings have been applied in infected wounds, acute traumatic injuries, burns, and diabetic wounds, showing remarkable therapeutic effects on promoting wound healing. Furthermore, there have been some commercial BC-based dressings and they have been utilized in clinical practice. Future Directions: Because of its excellent physicochemical characteristics and biological properties, BC shows high clinical value to be used as a wound dressing for skin tissue regeneration.
Collapse
Affiliation(s)
- Wei He
- School of Materials Science and Engineering, University of Science and Technology, Beijing, China
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd., Suzhou, China
| | - Jian Wu
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd., Suzhou, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang, China
| | - Jin Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Dina A. Mosselhy
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology, Beijing, China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing, China
| |
Collapse
|
230
|
Harandi FN, Khorasani AC, Shojaosadati SA, Hashemi-Najafabadi S. Living Lactobacillus-ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112457. [PMID: 34702533 DOI: 10.1016/j.msec.2021.112457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
Probiotic bacteria are able to produce antimicrobial substances as well as to synthesize green metal nanoparticles (NPs). New antimicrobial and antibiofilm coatings (LAB-ZnO NPs), composed of Lactobacillus strains and green ZnO NPs, were employed for the modification of gum Arabic-polyvinyl alcohol-polycaprolactone nanofibers matrix (GA-PVA-PCL) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The physicochemical properties of ZnO NPs biologically synthesized by L. plantarum and L. acidophilus, LAB-ZnO NPs hybrids and LAB-ZnO NPs@GA-PVA-PCL were studied using FE-SEM, EDX, EM, FTIR, XRD and ICP-OES. The morphology of LAB-ZnO NPs hybrids was spherical in range of 4.56-91.61 nm with an average diameter about 34 nm. The electrospun GA-PVA-PCL had regular, continuous and without beads morphology in the scale of nanometer and micrometer with an average diameter of 565 nm. Interestingly, the LAB not only acted as a biosynthesizer in the green synthesis of ZnO NPs but also synergistically enhanced the antimicrobial and antibiofilm efficacy of LAB-ZnO NPs@GA-PVA-PCL. Moreover, the low cytotoxicity of ZnO NPs and ZnO NPs@GA-PVA-PCL on the mouse embryonic fibroblasts cell line led to make them biocompatible. These results suggest that LAB-ZnO NPs@GA-PVA-PCL has potential as a safe promising antimicrobial and antibiofilm dressing in wound healing against pathogens.
Collapse
Affiliation(s)
- Fereshte Nazemi Harandi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
231
|
Hamdan N, Yamin A, Hamid SA, Khodir WKWA, Guarino V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J Funct Biomater 2021; 12:59. [PMID: 34842715 PMCID: PMC8628998 DOI: 10.3390/jfb12040059] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
The rise of antibiotic resistance has become a major threat to human health and it is spreading globally. It can cause common infectious diseases to be difficult to treat and leads to higher medical costs and increased mortality. Hence, multifunctional polymeric nanofibers with distinctive structures and unique physiochemical properties have emerged as a neo-tool to target biofilm and overcome deadly bacterial infections. This review emphasizes electrospun nanofibers' design criteria and properties that can be utilized to enhance their therapeutic activity for antimicrobial therapy. Also, we present recent progress in designing the surface functionalization of antimicrobial nanofibers with non-antibiotic agents for effective antibacterial therapy. Lastly, we discuss the future trends and remaining challenges for polymeric nanofibers.
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Alisa Yamin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
232
|
Zhou N, Zheng S, Xie W, Cao G, Wang L, Pang J. Konjac glucomannan: A review of structure, physicochemical properties, and wound dressing applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Zhou
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Shengxuan Zheng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Wanzhen Xie
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Guoyu Cao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Lin Wang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Jie Pang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
233
|
Delyanee M, Solouk A, Akbari S, Daliri M. Hemostatic Electrospun Nanocomposite Containing Poly(lactic acid)/Halloysite Nanotube Functionalized by Poly(amidoamine) Dendrimer for Wound Healing Application: In Vitro and In Vivo Assays. Macromol Biosci 2021; 22:e2100313. [PMID: 34644007 DOI: 10.1002/mabi.202100313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Indexed: 11/09/2022]
Abstract
The main challenge in treating injuries is excessive bleeding whereas intervention is required if the body's hemostatic systems fail to control the bleeding. Herein, a novel nanocomposite consisting of poly(lactic acid) (PLA) and poly(amidoamine) (PAMAM) dendrimer functionalized halloysite nanotube (HNT) with a highly porous structure via electrospinning is developed. HNT is functionalized by PAMAM via divergent synthetic routes from zero to third-generation numbers. The effect of different percentages and generation numbers of PAMAM dendrimer (G1, G2, and G3) functionalized HNT on PLA is studied using physicochemical nanocomposite characteristics. These resultant nanocomposites provide a nanofibrous structure with appropriate physicochemical characteristics such as mechanical properties, surface wettability, and water permeability. The hemostatic assays indicate that nanocomposite with PAMAM G3 functionalized HNT have the quickest blood clotting time due to the abundant amino functional group. Furthermore, the nanocomposites with 10 wt% of nanoparticles significantly promote cellular behavior in vitro. The in vivo study demonstrates that PLA/PAMAM G3 functionalized HNT promotes angiogenesis, collagen deposition, and re-epithelialization in the wound sites of the rat model, as well as inhibiting inflammatory response. The findings indicate that nanofibrous structure and the presence of dendrimer functionalized HNT have a synergetic effect on the enhanced nanocomposite wound healing performance.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Morteza Daliri
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
234
|
Liu X, Xu H, Zhang M, Yu DG. Electrospun Medicated Nanofibers for Wound Healing: Review. MEMBRANES 2021; 11:770. [PMID: 34677536 PMCID: PMC8537333 DOI: 10.3390/membranes11100770] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022]
Abstract
With the increasing demand for wound care and treatment worldwide, traditional dressings have been unable to meet the needs of the existing market due to their limited antibacterial properties and other defects. Electrospinning technology has attracted more and more researchers' attention as a simple and versatile manufacturing method. The electrospun nanofiber membrane has a unique structure and biological function similar to the extracellular matrix (ECM), and is considered an advanced wound dressing. They have significant potential in encapsulating and delivering active substances that promote wound healing. This article first discusses the common types of wound dressing, and then summarizes the development of electrospun fiber preparation technology. Finally, the polymers and common biologically active substances used in electrospinning wound dressings are summarized, and portable electrospinning equipment is also discussed. Additionally, future research needs are put forward.
Collapse
Affiliation(s)
- Xinkuan Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Haixia Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Mingxin Zhang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.X.); (M.Z.); (D.-G.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
235
|
Momin M, Mishra V, Gharat S, Omri A. Recent advancements in cellulose-based biomaterials for management of infected wounds. Expert Opin Drug Deliv 2021; 18:1741-1760. [PMID: 34605347 DOI: 10.1080/17425247.2021.1989407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Chronic wounds are a substantial burden on the healthcare system. Their treatment requires advanced dressings, which can provide a moist wound environment, prevent bacterial infiltration, and act as a drug carrier. Cellulose is biocompatible, biodegradable, and can be functionalized according to specific requirements, which makes it a highly versatile biomaterial. Antimicrobial cellulose dressings are proving to be highly effective against infected wounds. AREAS COVERED This review briefly addresses the mechanism of wound healing and its pathophysiology. It also discusses wound infections, biofilm formation, and progressive emergence of drug-resistant bacteria in chronic wounds and the treatment strategies for such types of infected wounds. It also summarizes the general properties, method of production, and types of cellulose wound dressings. It explores recent studies and advancements regarding the use of cellulose and its derivatives in wound management. EXPERT OPINION Cellulose and its various functionalized derivatives represent a promising choice of wound dressing material. Cellulose-based dressings loaded with antimicrobials are very useful in controlling infection in a chronic wound. Recent studies showing its efficacy against drug-resistant bacteria make it a favorable choice for chronic wound infections. Further research and large-scale clinical trials are required for better clinical evidence of its efficiency.
Collapse
Affiliation(s)
- Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.,SVKM's C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, India
| | - Varsha Mishra
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
236
|
In-vitro evaluation of electrospun cellulose acetate nanofiber containing Graphene oxide/TiO2/Curcumin for wound healing application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
237
|
Homaeigohar S, Liu Q, Kordbacheh D. Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises. Polymers (Basel) 2021; 13:2833. [PMID: 34451371 PMCID: PMC8401873 DOI: 10.3390/polym13162833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 pandemic has driven a global research to uncover novel, effective therapeutical and diagnosis approaches. In addition, control of spread of infection has been targeted through development of preventive tools and measures. In this regard, nanomaterials, particularly, those combining two or even several constituting materials possessing dissimilar physicochemical (or even biological) properties, i.e., nanohybrid materials play a significant role. Nanoparticulate nanohybrids have gained a widespread reputation for prevention of viral crises, thanks to their promising antimicrobial properties as well as their potential to act as a carrier for vaccines. On the other hand, they can perform well as a photo-driven killer for viruses when they release reactive oxygen species (ROS) or photothermally damage the virus membrane. The nanofibers can also play a crucial protective role when integrated into face masks and personal protective equipment, particularly as hybridized with antiviral nanoparticles. In this draft, we review the antiviral nanohybrids that could potentially be applied to control, diagnose, and treat the consequences of COVID-19 pandemic. Considering the short age of this health problem, trivially the relevant technologies are not that many and are handful. Therefore, still progressing, older technologies with antiviral potential are also included and discussed. To conclude, nanohybrid nanomaterials with their high engineering potential and ability to inactivate pathogens including viruses will contribute decisively to the future of nanomedicine tackling the current and future pandemics.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| | - Qiqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| | - Danial Kordbacheh
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| |
Collapse
|
238
|
Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Escalating medical expenses due to infectious diseases are causing huge socioeconomic pressure on mankind globally. The emergence of antibiotic resistance has further aggravated this problem. Drug-resistant pathogens are also capable of forming thick biofilms on biotic and abiotic surfaces to thrive in a harsh environment. To address these clinical problems, various strategies including antibacterial agent delivering matrices and bactericidal coatings strategies have been developed. In this review, we have discussed various types of polymeric vehicles such as hydrogels, sponges/cryogels, microgels, nanogels, and meshes, which are commonly used to deliver antibiotics, metal nanoparticles, and biocides. Compositions of these polymeric matrices have been elaborately depicted by elucidating their chemical interactions and potential activity have been discussed. On the other hand, various implant/device-surface coating strategies which exploit the release-active mechanism of bacterial killing are discussed in elaboration. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Dipanjana Patra
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| |
Collapse
|
239
|
Yang J, Huang Y, Dai J, Shi X, Zheng Y. A sandwich structure composite wound dressing with firmly anchored silver nanoparticles for severe burn wound healing in a porcine model. Regen Biomater 2021; 8:rbab037. [PMID: 34350029 PMCID: PMC8329475 DOI: 10.1093/rb/rbab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wounds may remain open for a few weeks in severe burns, which provide an entry point for pathogens and microorganisms invading. Thus, wound dressings with long-term antimicrobial activity are crucial for severe burn wound healing. Here, a sandwich structure composite wound dressing anchored with silver nanoparticles (AgNPs) was developed for severe burn wound healing. AgNPs were in situ synthesized on the fibers of chitosan nonwoven fabric (CSNWF) as the interlayer of wound dressing for sustained release of silver ion. The firmly anchored AgNPs could prevent its entry into the body, thereby eliminating the toxicity of nanomaterials. The outer layer was a polyurethane membrane, which has a nanoporous structure that could maintain free transmission of water vapor. Chitosan/collagen sponge was selected as the inner layer because of its excellent biocompatibility and biodegradability. The presence of AgNPs in the CSNWF was fully characterized, and the high antibacterial activity of CSNWF/AgNPs was confirmed by against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The superior wound healing effect on deep dermal burns of presented composite wound dressing was demonstrated in a porcine model. Our finding suggested that the prepared AgNPs doped sandwich structure composite wound dressing has great potential application in severe wound care.
Collapse
Affiliation(s)
- Jianmin Yang
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.,Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yufeng Huang
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jiajia Dai
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.,Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yunquan Zheng
- Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China.,Institute of Pharmaceutical Biotechnology and Engineering, College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
240
|
Kamoun EA, Loutfy SA, Hussein Y, Kenawy ERS. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int J Biol Macromol 2021; 187:755-768. [PMID: 34358597 DOI: 10.1016/j.ijbiomac.2021.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 02/08/2023]
Abstract
Among several types of carbohydrate polymers blend PVA hydrogel membranes used for biomedical applications in particular wound dressings; electrospun nanofibrous membranes have gained increased interest because of their extraordinary features e.g. huge surface area to volume ratio, high porosity, adequate permeability, excellent wound-exudates absorption capacity, architecture similarity with skin ECM and sustained release-profile over long time. In this study, modern perspectives of synthesized/developed electrospun nanofibrous hydrogel membranes based popular carbohydrate polymers blend PVA which recently have been employed for versatile biomedical applications particularly wound dressings, were discussed intensively and compared in detail with traditional fabricated membranes based films, as well. Clinically relevant and advantages of electrospun nanofibrous membranes were discussed in terms of their biocompatibility and easily fabrication and functionalization in different biomedical applications.
Collapse
Affiliation(s)
- Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt.
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Egypt
| | - Yasmein Hussein
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt
| | - El-Refaie S Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| |
Collapse
|
241
|
Fan Y, Lu Q, Liang W, Wang Y, Zhou Y, Lang M. Preparation and characterization of antibacterial polyvinyl alcohol/chitosan sponge and potential applied for wound dressing. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
242
|
Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev 2021; 69:101364. [PMID: 34000462 DOI: 10.1016/j.arr.2021.101364] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Aging increases the susceptibility to a diverse set of diseases and disorders, including neurodegeneration, cancer, diabetes, and arthritis. Natural compounds are currently being explored as alternative or complementary agents to treat or prevent aging-related malfunctions. Curcumin, a phytochemical isolated from the spice turmeric, has garnered great interest in recent years. With anti-oxidant, anti-inflammatory, anti-microbial, and other physiological activities, curcumin has great potential for health applications. However, the benefits of curcumin are restricted by its low bioavailability and stability in biological systems. Curcumin nanoformulations, or nano-curcumin, may overcome these limitations. This review discusses different forms of nano-curcumin that have been evaluated in vitro and in vivo to treat or prevent aging-associated health impairments. We describe current barriers for the routine use of curcumin nanoformulations in the clinic. Our review highlights outstanding questions and future work that is needed to ensure nano-curcumin is efficient and safe to lessen the burden of aging-related health problems.
Collapse
Affiliation(s)
- Maryam Mahjoob
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
243
|
A biomimetic triple-layered biocomposite with effective multifunction for dura repair. Acta Biomater 2021; 130:248-267. [PMID: 34118449 DOI: 10.1016/j.actbio.2021.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Dura mater defect and subsequent cerebrospinal fluid (CSF) leakage usually appear in trauma or neurosurgical procedures and are followed by a series of serious complications and even death. The use of a qualified dura mater substitute with multifunction of leakage blockade, adhesion prevention, and dura reconstruction is one of the promising treatment methods. However, even though some products have been used in the clinic, none of the substitutes achieved the required multifunction. In this study, we aimed to design and fabricate a dura repair composite with the ideal multifunction. By biomimicking the structure and component of natural dura, we applied poly(L-lactic acid) (PLLA), chitosan (CS), gelatin, and acellular small intestinal submucosa (SIS) powders to successfully prepare a triple-layered composite. Then, a series of specific devices and techniques were developed to investigate the performance. The results revealed that satisfactory structural stability could be realized under good synergistic interactions among the components. In addition, all the findings suggested that the bionic triple-layered composite showed satisfactory multifunction of leakage blockade, adhesion prevention, antibacterial property, and dura reconstruction potential, and thus, it might be a promising candidate for dura repair. STATEMENT OF SIGNIFICANCE: Developing qualified dura mater substitutes with multifunction of leakage blockade, adhesion prevention, and dura reconstruction is crucial for treating dura mater defect and subsequent cerebrospinal fluid (CSF) leakage that appear in trauma or neurosurgical procedures. In this study, we designed and fabricated a triple-layered dura repair biocomposite with satisfactory structural stability and desired multifunction based on biomimicking of the structure and component of natural dura. Moreover, a series of specific devices and techniques were developed to investigate the relevant performance. Overall, the developed hydrogel electrospinning system exhibited excellent advantages in achieving multifunction and could be applied widely in the future to achieve multifunctional tissue repair materials.
Collapse
|
244
|
Xu J, Fang H, Zheng S, Li L, Jiao Z, Wang H, Nie Y, Liu T, Song K. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering. Int J Biol Macromol 2021; 187:840-849. [PMID: 34339783 DOI: 10.1016/j.ijbiomac.2021.07.162] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, decellularized extracellular matrix (dECM) has received widespread attention due to its diversity in providing the unique structural and functional components to support cell growth, and finding material with good biocompatibility and anti-infection capability for skin tissue engineering is still a challenge. In this study, a novel dECM/Gel/CS scaffold with appropriate mechanical strength, good antibacterial activity and high biocompatibility was prepared using a one-pot method. The results showed that the immune components such as cells and DNA (about 98.1%) were successfully removed from the porcine skin tissue. The dECM/Gel/CS scaffolds exhibited an interconnected pore structure and had a high porosity (>90%) to promote cell growth. Moreover, the appropriate elastic modulus (≥482.17 kPa) and degradability (≥80.04% for 15 days) of the scaffolds offered stout "houses" for cell proliferation and suitable degradation rate to match the new tissue formation in skin tissue engineering. Furthermore, the addition of chitosan endowed the scaffold with good antibacterial activity, water and protein absorption capacity to avoid wound infection, and maintain the moisture and nutrition balance. In vitro cytocompatibility studies showed that the presence of dECM effectively enhanced the cell proliferation. Overall, the advanced dECM/Gel/CS scaffold has considerable potential to be applied in skin tissue engineering.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huan Fang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zeren Jiao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Hong Wang
- Department of orthopeadics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian 116033, China.
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
245
|
Wang M, Huang X, Zheng H, Tang Y, Zeng K, Shao L, Li L. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. J Control Release 2021; 337:236-247. [PMID: 34273419 DOI: 10.1016/j.jconrel.2021.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Internal and external factors cause various types of wounds on the skin. Infections, nonhealing chronic wounds, and aesthetic and functional recovery all cause challenges for clinicians. The development of nanotechnology in biomedicine has brought many new materials, methods and therapeutic targets for the treatment of wounds, which are believed to have great prospects. In this work, the nanomaterials applied in different stages to promote wound healing and systematically expounded their mechanisms were reviewed. Then, the difficulties and defects of the present research and suggested methods for improvement were pointed out. Moreover, based on the current application status of nanomaterials in wound treatment, some new ideas for subsequent studies were proposed and the feasibility of intelligent healing by real-time monitoring, precision regulation, and signal transmission between electronic signals and human nerve signals in the future were discussed. This review will provide valuable directions and spark new thoughts for researchers.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Huanxin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingmei Tang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
246
|
Jirofti N, Golandi M, Movaffagh J, Ahmadi FS, Kalalinia F. Improvement of the Wound-Healing Process by Curcumin-Loaded Chitosan/Collagen Blend Electrospun Nanofibers: In Vitro and In Vivo Studies. ACS Biomater Sci Eng 2021; 7:3886-3897. [PMID: 34256564 DOI: 10.1021/acsbiomaterials.1c00131] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic wounds have become a major health problem worldwide. Curcumin (Cur), with strong anti-inflammatory and anti-infective properties, is introduced as a unique molecule for wound dressing applications. In the present study, Cur-loaded chitosan/poly(ethylene oxide)/collagen (Cho/PEO/Col) nanofibers were developed for wound dressing applications by the blend-electrospinning process. Structural, mechanical, and biological properties of nanofibers were evaluated using SEM, FTIR, tensile testing, in vitro release study, Alamar blue cytotoxicity assay, and in vivo study in a rat model. According to the results, Cur was successfully released up to 3 days without any significant cytotoxicity of the above hybrid to human dermal fibroblasts. In vivo studies on full-thickness wounds in the rat model indicated significant improvement in the mean wound area closure by applying Cur-loaded Cho/PEO/Col nanofibers. The electrospun Cho/PEO/Col nanofibers loaded with Cur could be considered as a promising type of wound dressing in the wound-healing process.
Collapse
Affiliation(s)
- Nafiseh Jirofti
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Chemical and Biomedical Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mohadese Golandi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jebrail Movaffagh
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Departments of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Departments of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
247
|
Wei C, Feng Y, Che D, Zhang J, Zhou X, Shi Y, Wang L. Biomaterials in skin tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1933977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chao Wei
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yihua Feng
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Dezhao Che
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jiahui Zhang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xuan Zhou
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yanbin Shi
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Li Wang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
248
|
Jing X, Sun Y, Liu Y, Ma X, Hu H. Alginate/chitosan-based hydrogel loaded with gene vectors to deliver polydeoxyribonucleotide for effective wound healing. Biomater Sci 2021; 9:5533-5541. [PMID: 34241614 DOI: 10.1039/d1bm00911g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Timely and effective wound treatment is of great significance in acute bleeding caused by accidents and chronic wounds such as diabetic foot ulcers, venous leg ulcers, pressure sores. A hydrogel as wound dressing can provide a suitable microenvironment for wound healing and prevent bacteria and dust from reaching the wound. The loading of therapeutic factors in the hydrogel has been proved to accelerate wound healing. Polydeoxyribonucleotide (PDRN), as a series of nucleic acid fragments extracted from salmon, has the functions of improving angiogenesis, promoting cell activity, increasing collagen synthesis, and developing the anti-inflammatory response. These effects have positive implications for wound healing. But naked PDRN is difficult to take up by cells. Inspired by gene vectors, we prepared a PDRN-loaded CaCO3 nanoparticle (PCNP) to improve the delivery efficiency of PDRN. PCNPs were encapsulated in an alginate/chitosan-based hydrogel (Gel@PCNPs). The prepared hydrogel has plasticity and is suitable for various irregular wounds. The released gene carrier, PCNP, can be effectively taken up by skin fibroblasts. Under the action of PDRN, the wound healing rate has been confirmed to be significantly accelerated. We believe that this polysaccharide-based hydrogel loaded with PDRN vectors is a promising wound dressing.
Collapse
Affiliation(s)
- Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Yang Liu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xiaoli Ma
- Qingdao Institute of Measurement Technology, Qingdao 266000, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
249
|
Ahmed M, Zayed M, El-dek S, Hady MA, El Sherbiny DH, Uskoković V. Nanofibrous ε-polycaprolactone scaffolds containing Ag-doped magnetite nanoparticles: Physicochemical characterization and biological testing for wound dressing applications in vitro and in vivo. Bioact Mater 2021; 6:2070-2088. [PMID: 33511308 PMCID: PMC7809176 DOI: 10.1016/j.bioactmat.2020.12.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/30/2022] Open
Abstract
Skin wounds can lead to numerous complications with dangerous health consequences. In this work, magnetite nanoparticles were doped with different concentrations of antimicrobial silver (Ag) ions and incorporated into the electrospun nanofibrous ε-polycaprolactone (PCL) scaffolds. Nanoparticles and scaffolds with various Ag contents were characterized using a range of physicochemical techniques. Ag entered magnetite as cations and preferentially positioned at tetrahedral sites, introducing lattice distortions and topographic irregularities. Amorphization of the structure due to accommodation of Ag expanded the lattice in the bulk and contracted it on the surface, where broadened distribution of Fe-O coordinations was detected. Promoting spin canting and diminishing the double exchange interaction through altered distribution of ferric and ferrous ions, Ag softened the magnetism of magnetite. By making the nanoparticle structure more defective, Ag modified the interface with the polymer and promoted the protrusion of the nanoparticles from the surface of the polymeric nanofibers, thus increasing their roughness and hydrophilicity, with positive repercussions on cell adhesion and growth. Both the viability of human melanocytes and the antibacterial activity against E. coli and S. aureus increased with the concentration of Ag in the magnetite phase of the scaffolds. Skin wound healing rate in rats also increased in direct proportion with the concentration of Ag in the magnetite phase, and no abnormalities in the dermal and epidermal tissues were visible on day 10 in the treatment group. These results imply an excellent potential of these composite nanofibrous scaffolds for use as wound dressings and in other reconstructive skin therapies.
Collapse
Affiliation(s)
- M.K. Ahmed
- Faculty of Nanotechnology for Postgraduate studies, Cairo University, El‑Sheikh Zayed 12588, Egypt
- Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt
| | - M.A. Zayed
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - S.I. El-dek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Mayssa Abdel Hady
- Pharmaceutical Technology Department, National Research Centre, Dokii, Giza, Egypt
| | - Doaa H. El Sherbiny
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
- Department of Biochemistry, Faculty of Dentistry, Modern University for Technology and Information, Mokattam, Cairo, Egypt
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA, 92604, USA
| |
Collapse
|
250
|
Molapour Rashedi S, Khajavi R, Rashidi A, Rahimi MK, Bahador A. Novel PLA/ZnO Nanofibrous Nanocomposite Loaded with Tranexamic Acid as an Effective Wound Dressing: In Vitro and In Vivo Assessment. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2737. [PMID: 34825013 PMCID: PMC8590716 DOI: 10.30498/ijb.2021.220458.2737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Chronic wounds contribute to the majority of clinical cases, associated with significant morbidity, and place a massive financial burden on healthcare systems.
Thus, various bandage mats have been designed to facilitate wound healing in clinical applications. Polylactic acid (PLA) nanofibers, as suitable drug carriers,
are highly desirable to prepare a controlled environment for wound healing in dressing tissue. Zinc oxide (ZnO) nanoparticles as an effective antibacterial agent
for wound treatment prevent bacterial invasion and wound infection. Objectives: In this project, for the first time, a new (PLA)/(ZnO) nanofibrous nanocomposite loaded with tranexamic acid (TXA) has been introduced as a useable dressing in wound healing.
Furthermore, the antibacterial properties, coagulant assay, and wound healing assays of nanocomposite are evaluated. Material and Methods: PLA/ZnO nanofibrous nanocomposites were loaded with tranexamic acid fabricated by electrospinning method at distinct concentrations. The prepared structure
was characterized using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR).
Further, antimicrobial properties of tissue were investigated against Escherichia coli and Staphylococcus aureus bacteria.
Also, the coagulation assays, in vitro cytotoxicity, and in vivo skin wound healing model in mice were evaluated. Results: Morphological analysis of the prepared nanofibrous nanocomposites showed uniform bead-free nanofibers with an average size of 90 nm diameter.
The structure exhibited proper antibacterial activities against Escherichia coli and Staphylococcus aureus bacteria, and a good blood clotting effect.
In vitro cytotoxicity assay of the structure approved that this mat has no cytotoxic effect on human dermal fibroblast cells.
In vivo wound healing examination in mice observed over 7 and 14 days showed a faster rate of wound healing over the control. Conclusions: Novel electrospun PLA/ZnO nanocomposites loaded with tranexamic acid can be prepared by the electrospinning method and used for wound treatment.
This structure displayed the effect of two agents in wound healing, including antibacterial nanoparticles and antifibrinolytic drugs to accelerate wound closure.
Collapse
Affiliation(s)
- Samira Molapour Rashedi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khajavi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abosaeed Rashidi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Rahimi
- Department of Microbiology, Tehran Medical Science Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Bahador
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|