201
|
Deng J, Zhou F, Hou W, Heybati K, Ali S, Chang O, Silver Z, Dhivagaran T, Ramaraju HB, Wong CY, Zuo QK, Lapshina E, Mellett M. Efficacy of lopinavir-ritonavir combination therapy for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol 2021; 17:10.2217/fvl-2021-0066. [PMID: 35145560 PMCID: PMC8815807 DOI: 10.2217/fvl-2021-0066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022]
Abstract
Aim: To evaluate the efficacy and safety of lopinavir-ritonavir (LPV/r) therapy in treating hospitalized COVID-19 patients. Materials & methods: Data from randomized and observational studies were included in meta-analyses. Primary outcomes were length of stay, time for SARS-CoV-2 test conversion, mortality, incidence of mechanical ventilation, time to body temperature normalization and incidence of adverse events. Results: Twenty-four studies (n = 10,718) were included. LPV/r demonstrated no significant benefit over the control groups in all efficacy outcomes. The use of LPV/r was associated with a significant increase in the odds of adverse events. Conclusion: Given the lack of efficacy and increased incidence of adverse events, the clinical use of LPV/r in hospitalized COVID-19 patients is not recommended.
Collapse
Affiliation(s)
- Jiawen Deng
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Fangwen Zhou
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Wenteng Hou
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Kiyan Heybati
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
- Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Saif Ali
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Oswin Chang
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Zachary Silver
- Faculty of Science, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - Thanansayan Dhivagaran
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
- Integrated Biomedical Engineering & Health Sciences Program, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | | | - Chi Yi Wong
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Qi Kang Zuo
- Department of Anesthesiology, Rutgers, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
- Faculty of Science, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4, Canada
| | - Elizabeth Lapshina
- Faculty of Science, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4, Canada
| | - Madeline Mellett
- Faculty of Science, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4, Canada
| |
Collapse
|
202
|
Han F, Liu Y, Mo M, Chen J, Wang C, Yang Y, Wu J. Current treatment strategies for COVID‑19 (Review). Mol Med Rep 2021; 24:858. [PMID: 34664677 PMCID: PMC8548951 DOI: 10.3892/mmr.2021.12498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
The spread of the novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) emerged suddenly at the end of 2019 and the disease came to be known as coronavirus disease 2019 (COVID‑19). To date, there is no specific therapy established to treat COVID‑19. Identifying effective treatments is urgently required to treat patients and stop the transmission of SARS‑CoV‑2 in humans. For the present review, >100 publications on therapeutic agents for COVID‑19, including in vitro and in vivo animal studies, case reports, retrospective analyses and meta‑analyses were retrieved from PubMed and analyzed, and promising therapeutic agents that may be used to combat SARS‑CoV‑2 infection were highlighted. Since the outbreak of COVID‑19, different drugs have been repurposed for its treatment. Existing drugs, including chloroquine (CQ), its derivative hydroxychloroquine (HCQ), remdesivir and nucleoside analogues, monoclonal antibodies, convalescent plasma, Chinese herbal medicine and natural compounds for treating COVID‑19 evaluated in experimental and clinical studies were discussed. Although early clinical studies suggested that CQ/HCQ produces antiviral action, later research indicated certain controversy regarding their use for treating COVID‑19. The molecular mechanisms of these therapeutic agents against SARS‑CoV2 have been investigated, including inhibition of viral interactions with angiotensin‑converting enzyme 2 receptors in human cells, viral RNA‑dependent RNA polymerase, RNA replication and the packaging of viral particles. Potent therapeutic options were reviewed and future challenges to accelerate the development of novel therapeutic agents to treat and prevent COVID‑19 were acknowledged.
Collapse
Affiliation(s)
- Fabin Han
- The Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Laboratory for Stem Cell and Regenerative Medicine, Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Yanming Liu
- Laboratory for Stem Cell and Regenerative Medicine, Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Mei Mo
- The Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Juanli Chen
- Laboratory for Stem Cell and Regenerative Medicine, Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Cheng Wang
- The Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Research and Development, Shandong Meijia Therapeutic Biotechnology Co., Ltd., Jinan, Shandong 250100, P.R. China
| | - Yong Yang
- The Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Jibiao Wu
- The Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| |
Collapse
|
203
|
Labhardt ND, Smit M, Petignat I, Perneger T, Marinosci A, Ustero P, Diniz Ribeiro MP, Ragozzino S, Nicoletti GJ, Faré PB, Andrey DO, Jacquerioz F, Lebowitz D, Agoritsas T, Meyer B, Spechbach H, Salamun J, Guessous I, Chappuis F, Kaiser L, Decosterd LA, Grinsztejn B, Bernasconi E, Cardoso SW, Calmy A, Team FTCOPEPS. Post-exposure Lopinavir-Ritonavir Prophylaxis versus Surveillance for Individuals Exposed to SARS-CoV-2: The COPEP Pragmatic Open-Label, Cluster Randomized Trial. EClinicalMedicine 2021; 42:101188. [PMID: 34778734 PMCID: PMC8570913 DOI: 10.1016/j.eclinm.2021.101188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 pandemic, no direct antiviral treatment is effective as post-exposure prophylaxis (PEP). Lopinavir/ritonavir (LPV/r) was repurposed as a potential PEP agent against COVID-19. METHODS We conducted a pragmatic open-label, parallel, cluster-randomised superiority trial in four sites in Switzerland and Brazil between March 2020 to March 2021. Clusters were randomised to receive LPV/r PEP (400/100 mg) twice daily for 5 days or no PEP (surveillance). Exposure to SARS-CoV-2 was defined as a close contact of >15 minutes in <2 metres distance or having shared a closed space for ≥2 hours with a person with confirmed SARS-CoV-2 infection. The primary outcome is the occurrence of COVID-19 defined by a SARS-CoV-2 infection (positive oropharyngeal SARS-CoV-2 PCR and/or a seroconversion) and ≥1 compatible symptom within 21 days post-enrolment. ClinicalTrials.gov (Identifier: NCT04364022); Swiss National Clinical Trial Portal: SNCTP 000003732. FINDINGS Of 318 participants, 157 (49.4%) were women; median age was 39 (interquartile range, 28-50) years. A total of 209 (179 clusters) participants were randomised to LPV/r PEP and 109 (95 clusters) to surveillance. Baseline characteristics were similar, with the exception of baseline SARS-CoV-2 PCR positivity, which was 3-fold more frequent in the LPV/r arm (34/209 [16.3%] vs 6/109 [5.5%], respectively). During 21-day follow-up, 48/318 (15.1%) participants developed COVID-19: 35/209 (16.7%) in the LPV/r group and 13/109 (11.9%) in the surveillance group (unadjusted hazard ratio 1.44; 95% CI, 0.76-2.73). In the primary endpoint analysis, which was adjuted for baseline imbalance, the hazard ratio for developing COVID-19 in the LPV/r group vs surveillance was 0.60 (95% CI, 0.29-1.26; p =0.18). INTERPRETATION The role of LPV/r as PEP for COVID-19 remains unanswered. Although LPV/r over 5 days did not significantly reduce the incidence of COVID-19 in exposed individuals, we observed a change in the directionality of the effect in favour of LPV/r after adjusting for baseline imbalance. LPV/r for this indication merits further testing against SARS-CoV-2 in clinical trials. FUNDING Swiss National Science Foundation (project no.: 33IC30_166819) and the Private Foundation of Geneva University Hospitals (Edmond Rothschild (Suisse) SA, Union Bancaire Privée and the Fondation pour la recherche et le traitement médical).
Collapse
Affiliation(s)
- Niklaus D Labhardt
- Department of Infectious Diseases and Hospital Epidemiology, University of Basel, Basel, Switzerland
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mikaela Smit
- Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ianis Petignat
- Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
| | - Thomas Perneger
- Division of Clinical Epidemiology, Geneva University Hospitals, Geneva, Switzerland
| | - Annalisa Marinosci
- Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
| | - Pilar Ustero
- Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
| | - Maria Pia Diniz Ribeiro
- Lab. De Pesquisa Clinica DST/AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Silvio Ragozzino
- Department of Infectious Diseases and Hospital Epidemiology, University of Basel, Basel, Switzerland
| | - Giovanni Jacopo Nicoletti
- Department of Infectious Diseases and Hospital Epidemiology, University of Basel, Basel, Switzerland
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Pietro Benedetto Faré
- Division of Infectious Diseases, Ospedale Regionale di Lugano and Faculty of Medicine, University of Southern Switzerland, Lugano, Switzerland
| | - Diego O Andrey
- Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Frederique Jacquerioz
- Division and Department of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - Dan Lebowitz
- Infection Control Program, Geneva University Hospitals, Geneva, Switzerland
| | - Thomas Agoritsas
- Division of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Hervé Spechbach
- Division and Department of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - Julien Salamun
- Division and Department of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - Idris Guessous
- Division and Department of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - François Chappuis
- Division and Department of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | | | - Beatriz Grinsztejn
- Lab. De Pesquisa Clinica DST/AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Enos Bernasconi
- Division of Infectious Diseases, Ospedale Regionale di Lugano and Faculty of Medicine, University of Southern Switzerland, Lugano, Switzerland
| | - Sandra Wagner Cardoso
- Lab. De Pesquisa Clinica DST/AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Alexandra Calmy
- Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Corresponding author: Alexandra Calmy, MD, PhD, HIV Unit , Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil , 1211 Geneva 14 / Switzerland
| | - for the COPEP Study Team
- Department of Infectious Diseases and Hospital Epidemiology, University of Basel, Basel, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
- Lab. De Pesquisa Clinica DST/AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
- Division of Infectious Diseases, Ospedale Regionale di Lugano and Faculty of Medicine, University of Southern Switzerland, Lugano, Switzerland
| |
Collapse
|
204
|
Farag EA, Islam MM, Enan K, El-Hussein ARM, Bansal D, Haroun M. SARS-CoV-2 at the human-animal interphase: A review. Heliyon 2021; 7:e08496. [PMID: 34869934 PMCID: PMC8626158 DOI: 10.1016/j.heliyon.2021.e08496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Since its emergence in China in December 2019, COVID-19 remains the recent leading disease of concern drawing the public health attention globally. The disease is known of viral origin and zoonotic nature originating from animals. However, to date neither the source of the spillover nor the intermediate hosts are identified. Moreover, the public health situation is intermittently aggravated by identification of new animals susceptible to the SARS-CoV-2 infection, potentially replicating the virus and maintaining intra and interspecies spread of the disease. Although the role of a given animal and/or its produce is important to map the disease pattern, continuous efforts should be undertaken to further understand the epidemiology of SARS-CoV-2, a vital step to establish effective disease prevention and control strategy. This manuscript attempted to review updates regarding SARS-CoV-2 infection at the human-animal interface with consideration to postulations on the genetic relatedness and origin of the different SARS-CoV-2 variants isolated from different animal species. Also, the review addresses the possible role of different animal species and their produce in transmission of the disease. Also, the manuscript discussed the contamination potentiality of the virus and its environmental stability. Finally, we reviewed the currently instituted measures to prevent and manage the spread of SARS-CoV-2 infection. The manuscript suggested the One Health based control measures that could prove of value for the near future.
Collapse
Affiliation(s)
| | - Md Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
| | - Khalid Enan
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
| | | | | | | |
Collapse
|
205
|
Aronskyy I, Masoudi-Sobhanzadeh Y, Cappuccio A, Zaslavsky E. Advances in the computational landscape for repurposed drugs against COVID-19. Drug Discov Today 2021; 26:2800-2815. [PMID: 34339864 PMCID: PMC8323501 DOI: 10.1016/j.drudis.2021.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has caused millions of deaths and massive societal distress worldwide. Therapeutic solutions are urgently needed, but de novo drug development remains a lengthy process. One promising alternative is computational drug repurposing, which enables the prioritization of existing compounds through fast in silico analyses. Recent efforts based on molecular docking, machine learning, and network analysis have produced actionable predictions. Some predicted drugs, targeting viral proteins and pathological host pathways are undergoing clinical trials. Here, we review this work, highlight drugs with high predicted efficacy and classify their mechanisms of action. We discuss the strengths and limitations of the published methodologies and outline possible future directions. Finally, we curate a list of COVID-19 data portals and other repositories that could be used to accelerate future research.
Collapse
Affiliation(s)
- Illya Aronskyy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Antonio Cappuccio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
206
|
Patel RH, Pella PM, Haider N, Blanco R. Case Report: Severe SARS-CoV-2 Infection with Remdesivir in a Patient with ESRD. Infect Disord Drug Targets 2021; 22:e011221198456. [PMID: 34852751 DOI: 10.2174/1871526521666211201112410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19) has led to a global pandemic since its emergence from Wuhan, China, in December of 2019. As research continues to evolve, there is a paucity of reports describing the management and treatment of COVID-19 in patients with acute kidney failure and end-stage renal disease (ESRD). These patients have increased susceptibility to developing severe clinical symptoms from SARS-CoV-2 infection due to their underlying comorbidities. Remdesivir has emerged as a promising antiviral drug against SARS-CoV-2. However, data regarding the clinical benefits of remdesivir in patients with severe renal impairment is unavailable as they have been excluded from clinical trials due to the risk of sulfobutylether-β-cyclodextrin (SBECD) accumulation in patients with eGFR<30 ml/min per 1.73m2. CASE PRESENTATION We present the first case of a 47-year-old male with end-stage renal disease who was successfully treated with remdesivir during hospitalization for acute respiratory distress syndrome and respiratory failure arising from COVID-19. The worsening clinical progress of the patient despite intensive care and treatment with intravenous azithromycin therapy led to the decision to utilize remdesivir after a risk-benefit analysis, despite his eGFR being <15 ml/min per 1.73m2. Although the patient developed reversible hepatotoxicity, marked improvement of symptoms was observed after the five-day course of remdesivir was completed. CONCLUSION Our findings describe the first instance of compassionate use of remdesivir for the treatment of COVID-19 in the setting of end-stage renal disease, acute respiratory distress syndrome, and hypoxemic respiratory failure.
Collapse
Affiliation(s)
- Raj H Patel
- Edward Via College of Osteopathic Medicine, Monroe, LA. United States
| | | | - Naeem Haider
- Baptist Medical Center, Jacksonville, FL. United States
| | | |
Collapse
|
207
|
Mathez G, Cagno V. Clinical severe acute respiratory syndrome coronavirus 2 isolation and antiviral testing. Antivir Chem Chemother 2021; 29:20402066211061063. [PMID: 34806440 PMCID: PMC8606911 DOI: 10.1177/20402066211061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 is an RNA virus currently causing a pandemic. Due to errors during replication, mutations can occur and result in cell adaptation by the virus or in the rise of new variants. This can change the attachment receptors' usage, result in different morphology of plaques, and can affect as well antiviral development. Indeed, a molecule can be active on laboratory strains but not necessarily on circulating strains or be effective only against some viral variants. Experiments with clinical samples with limited cell adaptation should be performed to confirm the efficiency of drugs of interest. In this protocol, we present a method to culture severe acute respiratory syndrome coronavirus 2 from nasopharyngeal swabs, obtain a high viral titer while limiting cell adaptation, and assess antiviral efficiency.
Collapse
Affiliation(s)
- Gregory Mathez
- Institute of Microbiology, Lausanne University Hospital, 419236University of Lausanne, Switzerland
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, 419236University of Lausanne, Switzerland
| |
Collapse
|
208
|
Shagufta, Ahmad I. An Update on Pharmacological Relevance and Chemical Synthesis of Natural Products and Derivatives with Anti SARS-CoV-2 Activity. ChemistrySelect 2021; 6:11502-11527. [PMID: 34909460 PMCID: PMC8661826 DOI: 10.1002/slct.202103301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
Natural products recognized traditionally as a vital source of active constituents in pharmacotherapy. The COVID-19 infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible, pathogenic, and considered an ongoing global health emergency. The emergence of COVID-19 globally and the lack of adequate treatment brought attention towards herbal medicines, and scientists across the globe instigated the search for novel drugs from medicinal plants and natural products to tackle this deadly virus. The natural products rich in scaffold diversity and structural complexity are an excellent source for antiviral drug discovery. Recently the investigation of several natural products and their synthetic derivatives resulted in the identification of promising anti SARS-CoV-2 agents. This review article will highlight the pharmacological relevance and chemical synthesis of the recently discovered natural product and their synthetic analogs as SARS-CoV-2 inhibitors. The summarized information will pave the path for the natural product-based drug discovery of safe and potent antiviral agents, particularly against SARS-CoV-2.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural SciencesSchool of Arts and SciencesAmerican University of Ras Al KhaimahRas Al Khaimah Road, P. O. Box10021Ras Al Khaimah, UAE
| | - Irshad Ahmad
- Department of Mathematics and Natural SciencesSchool of Arts and SciencesAmerican University of Ras Al KhaimahRas Al Khaimah Road, P. O. Box10021Ras Al Khaimah, UAE
| |
Collapse
|
209
|
Ren M, Wang Y, Luo Y, Yao X, Yang Z, Zhang P, Zhao W, Jiang D. Functionalized Nanoparticles in Prevention and Targeted Therapy of Viral Diseases With Neurotropism Properties, Special Insight on COVID-19. Front Microbiol 2021; 12:767104. [PMID: 34867899 PMCID: PMC8634613 DOI: 10.3389/fmicb.2021.767104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Neurotropic viruses have neural-invasive and neurovirulent properties to damage the central nervous system (CNS), leading to humans' fatal symptoms. Neurotropic viruses comprise a lot of viruses, such as Zika virus (ZIKV), herpes simplex virus (HSV), rabies virus (RABV), and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Effective therapy is needed to prevent infection by these viruses in vivo and in vitro. However, the blood-brain barrier (BBB) usually prevents macromolecules from entering the CNS, which challenges the usage of the traditional probes, antiviral drugs, or neutralizing antibodies in the CNS. Functionalized nanoparticles (NPs) have been increasingly reported in the targeted therapy of neurotropic viruses due to their sensitivity and targeting characteristics. Therefore, the present review outlines efficient functionalized NPs to further understand the recent trends, challenges, and prospects of these materials.
Collapse
Affiliation(s)
| | - Yin Wang
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
210
|
Vicenti I, Martina MG, Boccuto A, De Angelis M, Giavarini G, Dragoni F, Marchi S, Trombetta CM, Crespan E, Maga G, Eydoux C, Decroly E, Montomoli E, Nencioni L, Zazzi M, Radi M. System-oriented optimization of multi-target 2,6-diaminopurine derivatives: Easily accessible broad-spectrum antivirals active against flaviviruses, influenza virus and SARS-CoV-2. Eur J Med Chem 2021; 224:113683. [PMID: 34273661 PMCID: PMC8255191 DOI: 10.1016/j.ejmech.2021.113683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The worldwide circulation of different viruses coupled with the increased frequency and diversity of new outbreaks, strongly highlight the need for new antiviral drugs to quickly react against potential pandemic pathogens. Broad-spectrum antiviral agents (BSAAs) represent the ideal option for a prompt response against multiple viruses, new and re-emerging. Starting from previously identified anti-flavivirus hits, we report herein the identification of promising BSAAs by submitting the multi-target 2,6-diaminopurine chemotype to a system-oriented optimization based on phenotypic screening on cell cultures infected with different viruses. Among the synthesized compounds, 6i showed low micromolar potency against Dengue, Zika, West Nile and Influenza A viruses (IC50 = 0.5-5.3 μM) with high selectivity index. Interestingly, 6i also inhibited SARS-CoV-2 replication in different cell lines, with higher potency on Calu-3 cells that better mimic the SARS-CoV-2 infection in vivo (IC50 = 0.5 μM, SI = 240). The multi-target effect of 6i on flavivirus replication was also analyzed in whole cell studies (in vitro selection and immunofluorescence) and against isolated host/viral targets.
Collapse
Affiliation(s)
- Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy
| | - Adele Boccuto
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgia Giavarini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy
| | - Filippo Dragoni
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Emmanuele Crespan
- Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Cecilia Eydoux
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Marseille, France
| | - Etienne Decroly
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Marseille, France
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; VisMederi s.r.l, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy.
| |
Collapse
|
211
|
Lee CY, Chen YPP. New Insights Into Drug Repurposing for COVID-19 Using Deep Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:4770-4780. [PMID: 34546931 PMCID: PMC8843052 DOI: 10.1109/tnnls.2021.3111745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 05/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has continued to spread worldwide since late 2019. To expedite the process of providing treatment to those who have contracted the disease and to ensure the accessibility of effective drugs, numerous strategies have been implemented to find potential anti-COVID-19 drugs in a short span of time. Motivated by this critical global challenge, in this review, we detail approaches that have been used for drug repurposing for COVID-19 and suggest improvements to the existing deep learning (DL) approach to identify and repurpose drugs to treat this complex disease. By optimizing hyperparameter settings, deploying suitable activation functions, and designing optimization algorithms, the improved DL approach will be able to perform feature extraction from quality big data, turning the traditional DL approach, referred to as a "black box," which generalizes and learns the transmitted data, into a "glass box" that will have the interpretability of its rationale while maintaining a high level of prediction accuracy. When adopted for drug repurposing for COVID-19, this improved approach will create a new generation of DL approaches that can establish a cause and effect relationship as to why the repurposed drugs are suitable for treating COVID-19. Its ability can also be extended to repurpose drugs for other complex diseases, develop appropriate treatment strategies for new diseases, and provide precision medical treatment to patients, thus paving the way to discover new drugs that can potentially be effective for treating COVID-19.
Collapse
Affiliation(s)
- Chun Yen Lee
- Department of Computer Science and Information TechnologyLa Trobe UniversityMelbourneVIC3086Australia
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information TechnologyLa Trobe UniversityMelbourneVIC3086Australia
| |
Collapse
|
212
|
Aherfi S, Pradines B, Devaux C, Honore S, Colson P, Scola BL, Raoult D. Drug repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV. Future Microbiol 2021; 16:1341-1370. [PMID: 34755538 PMCID: PMC8579950 DOI: 10.2217/fmb-2021-0019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, large in silico screening studies and numerous in vitro studies have assessed the antiviral activity of various drugs on SARS-CoV-2. In the context of health emergency, drug repurposing represents the most relevant strategy because of the reduced time for approval by international medicines agencies, the low cost of development and the well-known toxicity profile of such drugs. Herein, we aim to review drugs with in vitro antiviral activity against SARS-CoV-2, combined with molecular docking data and results from preliminary clinical studies. Finally, when considering all these previous findings, as well as the possibility of oral administration, 11 molecules consisting of nelfinavir, favipiravir, azithromycin, clofoctol, clofazimine, ivermectin, nitazoxanide, amodiaquine, heparin, chloroquine and hydroxychloroquine, show an interesting antiviral activity that could be exploited as possible drug candidates for COVID-19 treatment.
Collapse
Affiliation(s)
- Sarah Aherfi
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Microbes, Evolution, Phylogeny & Infection (MEΦI), Marseille, 13005, France
| | - Bruno Pradines
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, 13005, France
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, 13005, France
- Centre national de référence du paludisme, Marseille, 13005, France
| | - Christian Devaux
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
| | - Stéphane Honore
- Aix Marseille Université, Laboratoire de Pharmacie Clinique, Marseille, 13005, France
- AP-HM, hôpital Timone, service pharmacie, Marseille, 13005, France
| | - Philippe Colson
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Microbes, Evolution, Phylogeny & Infection (MEΦI), Marseille, 13005, France
| | - Bernard La Scola
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Microbes, Evolution, Phylogeny & Infection (MEΦI), Marseille, 13005, France
| | - Didier Raoult
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
| |
Collapse
|
213
|
Shin JA, Oh S, Jeong JM. The potential of BEN815 as an anti-inflammatory, antiviral and antioxidant agent for the treatment of COVID-19. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100058. [PMID: 35403084 PMCID: PMC7970834 DOI: 10.1016/j.phyplu.2021.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The corona virus disease 2019 (COVID-19) pandemic has highlighted the fact that there are few effective antiviral agents for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Although the very recent development of vaccines is an extremely important breakthrough, it remains unclear how long-lived such vaccines will be. The development of new agents therefore remains an important goal. PURPOSE Given the multifaceted pathology of COVID-19, a combinatorial formulation may provide an effective treatment. BEN815, a natural nutraceutical composed of extracts from guava leaves (Psidium guajava), green tea leaves (Camellia sinensis), and rose petals (Rosa hybrida), had previously shown to have a therapeutic effect on allergic rhinitis. We investigated whether BEN815 possesses anti-inflammatory, antiviral and antioxidant activities, since the combination of these effects could be useful for the treatment of COVID-19. STUDY DESIGN We examined the anti-inflammatory effects of BEN815 and its principal active components quercetin and epigallocatechin gallate (EGCG) in lipopolysaccharide (LPS)-induced RAW264.7 cells and in an LPS-challenged mouse model of endotoxemia. We also assessed the antioxidant activity, and antiviral effect of BEN815, quercetin, and EGCG in SARS-CoV-2-infected Vero cells. METHODS The principal active ingredients in BEN815 were determined and quantified using HPLC. Changes in the levels of LPS-induced pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured by ELISA. Changes in the expression levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) were analyzed using western blotting. Antioxidant assay was performed using DPPH and ABTS assay. SARS-CoV-2 replication was measured by immunofluorescence staining. RESULTS BEN815 significantly suppressed the induction of IL-6 and TNF-α as well as COX-2 and iNOS in LPS-induced RAW264.7 cells. In addition, BEN815 protected against LPS-challenged endotoxic shock in mice. Two major constituents of BEN815, quercetin and EGCG, reduced the induction of IL-6 and TNF-α as well as COX-2 and iNOS synthase in LPS-induced RAW264.7 cells. BEN815, quercetin, and EGCG were also found to have antioxidant effects. Importantly, BEN815 and EGCG could inhibit SARS-CoV-2 replications in Vero cells. CONCLUSION BEN815 is an anti-inflammatory, antiviral, and antioxidant natural agent that can be used to prevent and improve inflammation-related diseases, COVID-19.
Collapse
Key Words
- ABTS, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
- ACE2, Angiotensin converting enzyme 2
- Anti-inflammatory
- Antioxidant
- Antiviral
- CC, Cytotoxic concentration
- COVID-19
- COVID-19, Coronavirus disease 2019
- COX, Cyclooxygenase
- DMSO, Dimethyl sulfoxide
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- DRC, Dose-response curve
- DXM, Dexamethasone
- EGCG, Epigallocatechin gallate
- ELISA, enzyme-linked immunosorbent assay
- Endotoxemia
- FBS, Fetal bovine serum
- H&E, Hematoxylin and eosin
- HPLC, High-performance liquid chromatography
- IC, Inhibitory concentration
- IFNs, interferons
- IL, Interleukin
- LPS, Lipopolysaccharide
- MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide
- PBS, Phosphate buffered saline
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SEM, Standard error of the mean
- SI, Selectivity index
- TNF, Tumor necrosis factor
- iNOS, Inducible nitric oxide synthase
Collapse
Affiliation(s)
- Jin A Shin
- Biotechnology Research Center, Ben's Lab., Co., Ltd., 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| | - Subin Oh
- Biotechnology Research Center, Ben's Lab., Co., Ltd., 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| | - Jong-Moon Jeong
- Department of Bioscience, College of Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwasung-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
214
|
Españo E, Kim J, Lee K, Kim JK. Phytochemicals for the treatment of COVID-19. J Microbiol 2021; 59:959-977. [PMID: 34724178 PMCID: PMC8559138 DOI: 10.1007/s12275-021-1467-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has underscored the lack of approved drugs against acute viral diseases. Plants are considered inexhaustible sources of drugs for several diseases and clinical conditions, but plant-derived compounds have seen little success in the field of antivirals. Here, we present the case for the use of compounds from vascular plants, including alkaloids, flavonoids, polyphenols, and tannins, as antivirals, particularly for the treatment of COVID-19. We review current evidence for the use of these phytochemicals against SARS-CoV-2 infection and present their potential targets in the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jiyeon Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Kiho Lee
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea.
| |
Collapse
|
215
|
Gupta A, Pradhan A, Maurya VK, Kumar S, Theengh A, Puri B, Saxena SK. Therapeutic approaches for SARS-CoV-2 infection. Methods 2021; 195:29-43. [PMID: 33962011 PMCID: PMC8096528 DOI: 10.1016/j.ymeth.2021.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023] Open
Abstract
Therapeutic approaches to COVID-19 treatment require appropriate inhibitors to target crucial proteins of SARS-CoV-2 replication machinery. It's been approximately 12 months since the pandemic started, yet no known specific drugs are available. However, research progresses with time in terms of high throughput virtual screening (HTVS) and rational design of repurposed, novel synthetic and natural products discovery by understanding the viral life cycle, immuno-pathological and clinical outcomes in patients based on host's nutritional, metabolic, and lifestyle status. Further, complementary and alternative medicine (CAM) approaches have also improved resiliency and immune responses. In this article, we summarize all the therapeutic antiviral strategies for COVID-19 drug discovery including computer aided virtual screening, repurposed drugs, immunomodulators, vaccines, plasma therapy, various adjunct therapies, and phage technology to unravel insightful mechanistic pathways of targeting SARS-CoV-2 and host's intrinsic, innate immunity at multiple checkpoints that aid in the containment of the disease.
Collapse
Affiliation(s)
- Ankur Gupta
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Anish Pradhan
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Vimal K Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Angila Theengh
- Government Pharmacy College, Sajong, Rumtek, Gangtok 737135, India
| | - Bipin Puri
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India.
| |
Collapse
|
216
|
Kunnumakkara AB, Rana V, Parama D, Banik K, Girisa S, Henamayee S, Thakur KK, Dutta U, Garodia P, Gupta SC, Aggarwal BB. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021; 284:119201. [PMID: 33607159 PMCID: PMC7884924 DOI: 10.1016/j.lfs.2021.119201] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cytokine storm is the exaggerated immune response often observed in viral infections. It is also intimately linked with the progression of COVID-19 disease as well as associated complications and mortality. Therefore, targeting the cytokine storm might help in reducing COVID-19-associated health complications. The number of COVID-19 associated deaths (as of January 15, 2021; https://www.worldometers.info/coronavirus/) in the USA is high (1199/million) as compared to countries like India (110/million). Although the reason behind this is not clear, spices may have some role in explaining this difference. Spices and herbs are used in different traditional medicines, especially in countries such as India to treat various chronic diseases due to their potent antioxidant and anti-inflammatory properties. AIM To evaluate the literature available on the anti-inflammatory properties of spices which might prove beneficial in the prevention and treatment of COVID-19 associated cytokine storm. METHOD A detailed literature search has been conducted on PubMed for collecting information pertaining to the COVID-19; the history, origin, key structural features, and mechanism of infection of SARS-CoV-2; the repurposed drugs in use for the management of COVID-19, and the anti-inflammatory role of spices to combat COVID-19 associated cytokine storm. KEY FINDINGS The literature search resulted in numerous in vitro, in vivo and clinical trials that have reported the potency of spices to exert anti-inflammatory effects by regulating crucial molecular targets for inflammation. SIGNIFICANCE As spices are derived from Mother Nature and are inexpensive, they are relatively safer to consume. Therefore, their anti-inflammatory property can be exploited to combat the cytokine storm in COVID-19 patients. This review thus focuses on the current knowledge on the role of spices for the treatment of COVID-19 through suppression of inflammation-linked cytokine storm.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | | | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
217
|
A fluorescence-based, gain-of-signal, live cell system to evaluate SARS-CoV-2 main protease inhibition. Antiviral Res 2021; 195:105183. [PMID: 34626674 PMCID: PMC8495046 DOI: 10.1016/j.antiviral.2021.105183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 02/03/2023]
Abstract
The likelihood of continued circulation of COVID-19 and its variants, and novel coronaviruses due to future zoonotic transmissions, combined with the current paucity of coronavirus antivirals, emphasize the need for improved screening in developing effective antivirals for the treatment of infection by SARS-CoV-2 (CoV2) and other coronaviruses. Here we report the development of a live-cell based assay for evaluating the intracellular function of the critical, highly-conserved CoV2 target, the Main 3C-like protease (Mpro). This assay is based on expression of native wild-type mature CoV2 Mpro, the function of which is quantitatively evaluated in living cells through cleavage of a biosensor leading to loss of fluorescence. Evaluation does not require cell harvesting, allowing for multiple measurements from the same cells facilitating quantification of Mpro inhibition, as well as recovery of function upon removal of inhibitory drugs. The pan-coronavirus Mpro inhibitor, GC376, was utilized in this assay and effective inhibition of intracellular CoV2 Mpro was found to be consistent with levels required to inhibit CoV2 infection of human lung cells. We demonstrate that GC376 is an effective inhibitor of intracellular CoV2 Mpro at low micromolar levels, while other predicted Mpro inhibitors, bepridil and alverine, are not. Results indicate this system can provide a highly effective high-throughput coronavirus Mpro screening system.
Collapse
|
218
|
Low ZY, Yip AJW, Lal SK. Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166294. [PMID: 34687900 PMCID: PMC8526435 DOI: 10.1016/j.bbadis.2021.166294] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/02/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Ivermectin (IVM) is an FDA approved macrocyclic lactone compound traditionally used to treat parasitic infestations and has shown to have antiviral potential from previous in-vitro studies. Currently, IVM is commercially available as a veterinary drug but have also been applied in humans to treat onchocerciasis (river blindness - a parasitic worm infection) and strongyloidiasis (a roundworm/nematode infection). In light of the recent pandemic, the repurposing of IVM to combat SARS-CoV-2 has acquired significant attention. Recently, IVM has been proven effective in numerous in-silico and molecular biology experiments against the infection in mammalian cells and human cohort studies. One promising study had reported a marked reduction of 93% of released virion and 99.98% unreleased virion levels upon administration of IVM to Vero-hSLAM cells. IVM's mode of action centres around the inhibition of the cytoplasmic-nuclear shuttling of viral proteins by disrupting the Importin heterodimer complex (IMPα/β1) and downregulating STAT3, thereby effectively reducing the cytokine storm. Furthermore, the ability of IVM to block the active sites of viral 3CLpro and S protein, disrupts important machinery such as viral replication and attachment. This review compiles all the molecular evidence to date, in review of the antiviral characteristics exhibited by IVM. Thereafter, we discuss IVM's mechanism and highlight the clinical advantages that could potentially contribute towards disabling the viral replication of SARS-CoV-2. In summary, the collective review of recent efforts suggests that IVM has a prophylactic effect and would be a strong candidate for clinical trials to treat SARS-CoV-2.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Sunil K Lal
- School of Science, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia; Tropical Medicine and Biology Platform, Monash University, Sunway Campus, 47500 Bandar Sunway, Selangor DE, Malaysia.
| |
Collapse
|
219
|
Stagi L, De Forni D, Malfatti L, Caboi F, Salis A, Poddesu B, Cugia G, Lori F, Galleri G, Innocenzi P. Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers. NANOSCALE 2021; 13:16465-16476. [PMID: 34553728 DOI: 10.1039/d1nr03745e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from L-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by L-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Luigi Stagi
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari, Via Vienna 2, 07041 Sassari, Italy.
| | | | - Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari, Via Vienna 2, 07041 Sassari, Italy.
| | - Francesca Caboi
- Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche, Parco Scientifico e Tecnologico della Sardegna, 09010 Pula, CA, Italy
| | - Andrea Salis
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | | | - Giulia Cugia
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy
| | - Franco Lori
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy
| | - Grazia Galleri
- Dipartimento di Science Mediche, Chirurgiche e Sperimentali, Viale S. Pietro 8, 07100 Sassari, Italy
| | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari, Via Vienna 2, 07041 Sassari, Italy.
| |
Collapse
|
220
|
Abdurrahman L, Fang X, Zhang Y. Molecular Insights of SARS-CoV-2 Infection and Molecular Treatments. Curr Mol Med 2021; 22:621-639. [PMID: 34645374 DOI: 10.2174/1566524021666211013121831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/15/2021] [Accepted: 07/23/2021] [Indexed: 01/18/2023]
Abstract
The coronavirus disease emerged in December 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome-related coronavirus 2 (SARS-CoV-2) and its rapid global spread has brought an international health emergency and urgent responses for seeking efficient prevention and therapeutic treatment. This has led to imperative needs for illustration of the molecular pathogenesis of SARS-CoV-2, identification of molecular targets or receptors, and development of antiviral drugs, antibodies, and vaccines. In this study, we investigated the current research progress in combating SARS-CoV-2 infection. Based on the published research findings, we first elucidated, at the molecular level, SARS-CoV-2 viral structures, potential viral host-cell-invasion and pathogenic mechanisms, main virus-induced immune responses, and emerging SARS-CoV-2 variants. We then focused on the main virus- and host-based potential targets, summarized and categorized effective inhibitory molecules based on drug development strategies for COVID-19, that can guide efforts for the identification of new drugs and treatment for this problematic disease. Current research and development of antibodies and vaccines were also introduced and discussed. We concluded that the main virus entry route- SARS-CoV-2 spike protein interaction with ACE2 receptors has played a key role in guiding the development of therapeutic treatments against COVID-19, four main therapeutic strategies may be considered in developing molecular therapeutics, and drug repurposing is likely to be an easy, fast and low-cost approach in such a short period of time with urgent need of antiviral drugs. Additionally, the quick development of antibody and vaccine candidates has yielded promising results, but the wide-scale deployment of safe and effective COVID-19 vaccines remains paramount in solving the pandemic crisis. As new variants of the virus begun to emerge, the efficacy of these vaccines and treatments must be closely evaluated. Finally, we discussed the possible challenges of developing molecular therapeutics for COVID-19 and suggested some potential future efforts. Despite the limited availability of literatures, our attempt in this work to provide a relatively comprehensive overview of current SARS-CoV-2 studies can be helpful for quickly acquiring the key information of COVID-19 and further promoting this important research to control and diminish the pandemic.
Collapse
Affiliation(s)
- Lama Abdurrahman
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539. United States
| | - Xiaoqian Fang
- Department of Molecular Science, School of Medicine, The University of Texas Rio Grande Valley, Edinburg, Texas 78539. United States
| | - Yonghong Zhang
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539. United States
| |
Collapse
|
221
|
Ogunyemi OM, Gyebi GA, Ibrahim IM, Olaiya CO, Ocheje JO, Fabusiwa MM, Adebayo JO. Dietary stigmastane-type saponins as promising dual-target directed inhibitors of SARS-CoV-2 proteases: a structure-based screening. RSC Adv 2021; 11:33380-33398. [PMID: 35497510 PMCID: PMC9042289 DOI: 10.1039/d1ra05976a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the development of COVID-19 vaccines, at present, there is still no approved antiviral drug against the pandemic. The SARS-CoV-2 3-chymotrypsin-like proteases (S-3CLpro) and papain-like protease (S-PLpro) are essential for the viral proliferation cycle, hence attractive drug targets. Plant-based dietary components that have been extensively reported for antiviral activities may serve as cheap sources of preventive nutraceuticals and/or antiviral drugs. A custom-made library of 176 phytochemicals from five West African antiviral culinary herbs was screened for potential dual-target-directed inhibitors of S-3CLpro and S-PLpro in silico. The docking analysis revealed fifteen steroidal saponins (FSS) from Vernonia amygdalina with the highest binding tendency for the active sites of S-3CLpro and S-PLpro. In an optimized docking analysis, the FSS were further docked against four equilibrated conformers of the S-3CLpro and S-PLpro. Three stigmastane-type steroidal saponins (vernonioside A2, vernonioside A4 and vernonioside D2) were revealed as the lead compounds. These compounds interacted with the catalytic residues of both S-3CLpro and S-PLpro, thereby exhibiting dual inhibitory potential against these SARS-CoV-2 cysteine proteases. The binding free energy calculations further corroborated the static and optimized docking analysis. The complexed proteases with these promising phytochemicals were stable during a full atomistic MD simulation while the phytochemicals exhibited favourable physicochemical and ADMET properties, hence, recommended as promising inhibitors of SARS-CoV-2 cysteine proteases.
Collapse
Affiliation(s)
- Oludare M Ogunyemi
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University Lokoja Nigeria
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan Nigeria
| | - Gideon A Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University P.M.B 005, Karu Nasarawa Nigeria +234-7063983652
| | - Ibrahim M Ibrahim
- Department of Biophysics, Faculty of Sciences, Cairo University Giza Egypt
| | - Charles O Olaiya
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, University of Ibadan Nigeria
| | - Joshua O Ocheje
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University Akwa Nigeria
| | - Modupe M Fabusiwa
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University Lokoja Nigeria
| | - Joseph O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin Ilorin Nigeria
| |
Collapse
|
222
|
Wang B, Zhang C, Lei X, Ren L, Zhao Z, Wang J, Huang H. Construction of Non-infectious SARS-CoV-2 Replicons and Their Application in Drug Evaluation. Virol Sin 2021; 36:890-900. [PMID: 33835389 PMCID: PMC8034055 DOI: 10.1007/s12250-021-00369-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic worldwide. Vaccines and antiviral drugs are the most promising candidates for combating this global epidemic, and scientists all over the world have made great efforts to this end. However, manipulation of the SARS-CoV-2 should be performed in the biosafety level 3 laboratory. This makes experiments complicated and time-consuming. Therefore, a safer system for working with this virus is urgently needed. Here, we report the construction of plasmid-based, non-infectious SARS-CoV-2 replicons with turbo-green fluorescent protein and/or firefly luciferase reporters by reverse genetics using transformation-associated recombination cloning in Saccharomyces cerevisiae. Replication of these replicons was achieved simply by direct transfection of cells with the replicon plasmids as evident by the expression of reporter genes. Using SARS-CoV-2 replicons, the inhibitory effects of E64-D and remdesivir on SARS-CoV-2 replication were confirmed, and the half-maximal effective concentration (EC50) value of remdesivir and E64-D was estimated by different quantification methods respectively, indicating that these SARS-CoV-2 replicons are useful tools for antiviral drug evaluation.
Collapse
Affiliation(s)
- Bei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Chongyang Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Zhendong Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China.
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China.
| | - He Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
223
|
Muhammed Y, Yusuf Nadabo A, Pius M, Sani B, Usman J, Anka Garba N, Mohammed Sani J, Opeyemi Olayanju B, Zeal Bala S, Garba Abdullahi M, Sambo M. SARS-CoV-2 spike protein and RNA dependent RNA polymerase as targets for drug and vaccine development: A review. BIOSAFETY AND HEALTH 2021; 3:249-263. [PMID: 34396086 PMCID: PMC8346354 DOI: 10.1016/j.bsheal.2021.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/04/2021] [Accepted: 07/18/2021] [Indexed: 01/18/2023] Open
Abstract
The present pandemic has posed a crisis to the economy of the world and the health sector. Therefore, the race to expand research to understand some good molecular targets for vaccine and therapeutic development for SARS-CoV-2 is inevitable. The newly discovered coronavirus 2019 (COVID-19) is a positive sense, single-stranded RNA, and enveloped virus, assigned to the beta CoV genus. The virus (SARS-CoV-2) is more infectious than the previously detected coronaviruses (MERS and SARS). Findings from many studies have revealed that S protein and RdRp are good targets for drug repositioning, novel therapeutic development (antibodies and small molecule drugs), and vaccine discovery. Therapeutics such as chloroquine, convalescent plasma, monoclonal antibodies, spike binding peptides, and small molecules could alter the ability of S protein to bind to the ACE-2 receptor, and drugs such as remdesivir (targeting SARS-CoV-2 RdRp), favipir, and emetine could prevent SASR-CoV-2 RNA synthesis. The novel vaccines such as mRNA1273 (Moderna), 3LNP-mRNAs (Pfizer/BioNTech), and ChAdOx1-S (University of Oxford/Astra Zeneca) targeting S protein have proven to be effective in combating the present pandemic. Further exploration of the potential of S protein and RdRp is crucial in fighting the present pandemic.
Collapse
Affiliation(s)
- Yusuf Muhammed
- Department of Biochemistry, Federal University, Gusau, Nigeria,Corresponding author: Department of Biochemistry, Federal University, Gusau, Nigeria
| | | | - Mkpouto Pius
- Department of Medical Genetics, University of Cambridge, CB2 1TN, United Kingdom
| | - Bashiru Sani
- Department of Microbiology, Federal University of Lafia, Nigeria
| | - Jafar Usman
- Department of Biochemistry, Federal University, Gusau, Nigeria
| | | | | | - Basit Opeyemi Olayanju
- Department of Chemistry and Biochemistry, Florida International University, FL 33199, USA
| | | | | | - Misbahu Sambo
- Department of Biochemistry, Abubakar Tafawa Balewa University Bauchi, Nigeria
| |
Collapse
|
224
|
Huang YJS, Bilyeu AN, Hsu WW, Hettenbach SM, Willix JL, Stewart SC, Higgs S, Vanlandingham DL. Treatment with dry hydrogen peroxide accelerates the decay of severe acute syndrome coronavirus-2 on non-porous hard surfaces. Am J Infect Control 2021; 49:1252-1255. [PMID: 34273464 PMCID: PMC8279916 DOI: 10.1016/j.ajic.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Disinfection of contaminated or potentially contaminated surfaces has become an integral part of the mitigation strategies for controlling coronavirus disease 2019. Whilst a broad range of disinfectants are effective in inactivating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), application of disinfectants has a low throughput in areas that receive treatments. Disinfection of large surface areas often involves the use of reactive microbiocidal materials, including ultraviolet germicidal irradiation, chlorine dioxide, and hydrogen peroxide vapor. Albeit these methods are highly effective in inactivating SARS-CoV-2, the deployment of these approaches creates unacceptable health hazards and precludes the treatment of occupied indoor spaces using existing disinfection technologies. In this study, the feasibility of using dry hydrogen peroxide (DHP) in inactivating SARS-CoV-2 on contaminated surfaces in large indoor spaces was evaluated. METHODS Glass slides were inoculated with SARS-CoV-2 and treated with DHP between 5 and 25 ppb for up to 24 hours. Residual infectious virus samples were eluted from three replicates at each time point and titrated in African green monkey VeroE6 cells. RESULTS In comparison with the observed relatively high stability of SARS-CoV-2 on contaminated glass slides (control group), residual infectious titers of glass slides inoculated with SARS-CoV-2 were significantly reduced after receiving 120 minutes of DHP treatment. CONCLUSIONS The accelerated decay of SARS-CoV-2 on contaminated glass slides suggests that treatment with DHP can be an effective surface disinfection method for occupied indoor spaces.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS; Biosecurity Research Institute, Kansas State University, Manhattan, KS
| | - Ashley N Bilyeu
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS; Biosecurity Research Institute, Kansas State University, Manhattan, KS
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS
| | | | - Joshua L Willix
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS; Biosecurity Research Institute, Kansas State University, Manhattan, KS
| | - Savannah C Stewart
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS; Biosecurity Research Institute, Kansas State University, Manhattan, KS
| | - Stephen Higgs
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS; Biosecurity Research Institute, Kansas State University, Manhattan, KS
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS; Biosecurity Research Institute, Kansas State University, Manhattan, KS.
| |
Collapse
|
225
|
Le Corre P, Loas G. Repurposing functional inhibitors of acid sphingomyelinase (fiasmas): an opportunity against SARS-CoV-2 infection? J Clin Pharm Ther 2021; 46:1213-1219. [PMID: 33645763 PMCID: PMC8014536 DOI: 10.1111/jcpt.13390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/09/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Infection by SARS-CoV-2, the virus responsible of COVID-19, is associated with limited treatment options. The purpose of this study was to evaluate the rationale for repurposing functional inhibitors of acid sphingomyelinase (FIASMAs), several of which are approved medicines, for the treatment of SAR-CoV-2 infections. COMMENT We propose and discuss the FIASMAs' lysosomotropism as a possible explanation for their observed in vitro activities against viruses, and more specifically against infections caused by coronaviruses such as SARS-CoV-2. Successful in vitro-to-in vivo translation of FIASMAs requires that their pharmacokinetics (dosing regimen and drug-drug interactions) are matched with viral kinetics. WHAT IS NEW AND CONCLUSION Drug repurposing to ensure rapid patient access to effective treatment has garnered much attention in this era of the COVID-19 pandemic. The observed lysosomotropic activity of small-molecule FIASMA compounds suggests that their repurposing as potential drugs against SARS-CoV-2 is promising.
Collapse
Affiliation(s)
- Pascal Le Corre
- Pôle PharmacieService Hospitalo‐Universitaire de PharmacieCHU de RennesRennesFrance
- Univ RennesCHU RennesInsermEHESP, Irset (Institut de recherche en santé environnement et travail) ‐ UMR_S 1085RennesFrance
- Laboratoire de Biopharmacie et Pharmacie CliniqueFaculté de PharmacieUniversité de Rennes 1RennesFrance
| | - Gwenolé Loas
- Department of PsychiatryHôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
- Research Unit (ULB 266)Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
226
|
Dey D, Ramakumar S, Conn GL. Targeted Redesign of Suramin Analogs for Novel Antimicrobial Lead Development. J Chem Inf Model 2021; 61:4442-4454. [PMID: 34516120 DOI: 10.1021/acs.jcim.1c00578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence of new viral infections and drug-resistant bacteria urgently necessitates expedient therapeutic development. Repurposing and redesign of existing drugs against different targets are one potential way in which to accelerate this process. Suramin was initially developed as a successful antiparasitic drug but has also shown promising antiviral and antibacterial activities. However, due to its high conformational flexibility and negative charge, suramin is considered quite promiscuous toward positively charged sites within nucleic acid binding proteins. Although some suramin analogs have been developed against specific targets, only limited structure-activity relationship studies were performed, and virtual screening has yet to be used to identify more specific inhibitor(s) based on its scaffold. Using available structures, we investigated suramin's target diversity, confirming that suramin preferentially binds to protein pockets that are both positively charged and enriched in aromatic or leucine residues. Further, suramin's high conformational flexibility allows adaptation to structurally diverse binding surfaces. From this platform, we developed a framework for structure- and docking-guided elaboration of suramin analog scaffolds using virtual screening of suramin and heparin analogs against a panel of diverse therapeutically relevant viral and bacterial protein targets. Use of this new framework to design potentially specific suramin analogs is exemplified using the SARS-CoV-2 RNA-dependent RNA polymerase and nucleocapsid protein, identifying leads that might inhibit a wide range of coronaviruses. The approach presented here establishes a computational framework for designing suramin analogs against different bacterial and viral targets and repurposing existing drugs for more specific inhibitory activity.
Collapse
Affiliation(s)
- Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | | | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
227
|
Schaller MA, Sharma Y, Dupee Z, Nguyen D, Urueña J, Smolchek R, Loeb JC, Machuca TN, Lednicky JA, Odde DJ, Campbell RF, Sawyer WG, Mehrad B. Ex vivo SARS-CoV-2 infection of human lung reveals heterogeneous host defense and therapeutic responses. JCI Insight 2021; 6:e148003. [PMID: 34357881 PMCID: PMC8492301 DOI: 10.1172/jci.insight.148003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cell lines are the mainstay in understanding the biology of COVID-19 infection but do not recapitulate many of the complexities of human infection. The use of human lung tissue is one solution for the study of such novel respiratory pathogens. We hypothesized that a cryopreserved bank of human lung tissue would allow for the ex vivo study of the interindividual heterogeneity of host response to SARS-CoV-2, thus providing a bridge between studies with cell lines and studies in animal models. We generated a cryobank of tissues from 21 donors, many of whom had clinical risk factors for severe COVID-19. Cryopreserved tissues preserved 90% cell viability and contained heterogenous populations of metabolically active epithelial, endothelial, and immune cell subsets of the human lung. Samples were readily infected with HCoV-OC43 and SARS-CoV-2 and demonstrated comparable susceptibility to infection. In contrast, we observed a marked donor-dependent heterogeneity in the expression of IL6, CXCL8, and IFNB1 in response to SARS-CoV-2. Treatment of tissues with dexamethasone and the experimental drug N-hydroxycytidine suppressed viral growth in all samples, whereas chloroquine and remdesivir had no detectable effect. Metformin and sirolimus, molecules with predicted but unproven antiviral activity, each suppressed viral replication in tissues from a subset of donors. In summary, we developed a system for the ex vivo study of human SARS-CoV-2 infection using primary human lung tissue from a library of donor tissues. This model may be useful for drug screening and for understanding basic mechanisms of COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Matthew A. Schaller
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine
| | - Yamini Sharma
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine
| | - Zadia Dupee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine
| | - Duy Nguyen
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering
| | - Juan Urueña
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering
| | - Ryan Smolchek
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering
| | - Julia C. Loeb
- Department of Environmental and Global Health, College of Public Health and Health Professions, and Emerging Pathogens Institute; and
| | - Tiago N. Machuca
- Division of Cardiothoracic Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, and Emerging Pathogens Institute; and
| | - David J. Odde
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert F. Campbell
- Department of Drug Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine
| |
Collapse
|
228
|
Sonkar C, Doharey PK, Rathore AS, Singh V, Kashyap D, Sahoo AK, Mittal N, Sharma B, Jha HC. Repurposing of gastric cancer drugs against COVID-19. Comput Biol Med 2021; 137:104826. [PMID: 34537409 PMCID: PMC8420180 DOI: 10.1016/j.compbiomed.2021.104826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Corona Virus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has become a global pandemic. Additionally, the SARS-CoV-2 infection in the patients of Gastric Cancer (GC; the third leading cause of death in the world) pose a great challenge for the health management of the patients. Since there have been uncertainties to develop a new drug against COVID-19, there is an urgent need for repurposing drugs that can target key proteins of both SARS-CoV-2 and GC. The SARS-CoV-2-RdRp protein contains the NiRAN domain, which is known to have kinase-like folds. A docking study of the FDA approved drugs against GC was performed using AutoDock 4.2 and Glide Schrodinger suite 2019 against SARS-CoV-2-RdRp protein. MMGBSA and MD simulation studies were performed to investigate the binding and stability of the inhibitors with the target protein. In this study, we have found 12 kinase inhibitors with high binding energies namely Baricitinib, Brepocitinib, Decernotinib, Fasudil, Filgotinib, GSK2606414, Peficitinib, Ruxolitinib, Tofacitinib, Upadacitinib, Pamapimod and Ibrutinib. These FDA approved drugs against GC can play a key role in the treatment of COVID-19 patients along with GC as comorbidity. We also hypothesize that JAK, ITK, Rho-associated kinases, FGFR2, FYN, PERK, TYK2, p38-MAPK and SYK kinases can be considered as key therapeutic targets in COVID-19 treatment. Taken altogether, we have proposed the SARS-CoV-2-RdRp as a potential therapeutic target through in-silico studies. However, further in-vitro and in-vivo studies are required for the validation of the proposed targets and drugs for the treatment of COVID-19 patients already suffering from GC.
Collapse
Affiliation(s)
- Charu Sonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Pawan Kumar Doharey
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, U.P., India
| | - Anuranjan Singh Rathore
- SASTRA Deemed to Be University, Trichy-Tanjore Road, Thirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211015, U.P., India
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211015, U.P., India
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, U.P., India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India.
| |
Collapse
|
229
|
Molecular modelling studies unveil potential binding sites on human serum albumin for selected experimental and in silico COVID-19 drug candidate molecules. Saudi J Biol Sci 2021; 29:53-64. [PMID: 34548836 PMCID: PMC8447726 DOI: 10.1016/j.sjbs.2021.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human serum albumin (HSA) is the most prevalent protein in the blood plasma which binds an array of exogenous compounds. Drug binding to HSA is an important consideration when developing new therapeutic molecules, and it also aids in understanding the underlying mechanisms that govern their pharmacological effects. This study aims to investigate the molecular binding of coronavirus disease 2019 (COVID-19) therapeutic candidate molecules to HSA and to identify their putative binding sites. Binding energies and interacting residues were used to evaluate the molecular interaction. Four drug candidate molecules (β-D-N4-hydroxycytidine, Chloroquine, Disulfiram, and Carmofur) demonstrate weak binding to HSA, with binding energies ranging from −5 to −6.7 kcal/mol. Ivermectin, Hydroxychloroquine, Remdesivir, Arbidol, and other twenty drug molecules with binding energies ranging from −6.9 to −9.5 kcal/mol demonstrated moderate binding to HSA. The strong HSA binding drug candidates consist of fourteen molecules (Saquinavir, Ritonavir, Dihydroergotamine, Daclatasvir, Paritaprevir etc.) with binding energies ranging from −9.7 to −12.1 kcal/mol. All these molecules bind to different HSA subdomains (IA, IB, IIA, IIB, IIIA, and IIIB) through molecular forces such as hydrogen bonds and hydrophobic interactions. Various pharmacokinetic properties (gastrointestinal absorption, blood-brain barrier permeation, P-glycoprotein substrate, and cytochrome P450 inhibitor) of each molecule were determined using SwissADME program. Further, the stability of the HSA-ligand complexes was analyzed through 100 ns molecular dynamics simulations considering various geometric properties. The binding free energy between free HSA and compounds were calculated using Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) approach. The findings of this study might be useful in understanding the mechanism of COVID-19 drug candidates binding to serum albumin protein, as well as their pharmacodynamics and pharmacokinetics.
Collapse
|
230
|
Pitsillou E, Liang J, Yu Meng Huang H, Hung A, Karagiannis TC. In silico investigation to identify potential small molecule inhibitors of the RNA-dependent RNA polymerase (RdRp) nidovirus RdRp-associated nucleotidyltransferase domain. Chem Phys Lett 2021; 779:138889. [PMID: 34305155 PMCID: PMC8273049 DOI: 10.1016/j.cplett.2021.138889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/30/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) is a promising target for antiviral drugs. In this study, a chemical library (n = 300) was screened against the nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain. Blind docking was performed using a selection of 30 compounds and nine ligands were chosen based on their docking scores, safety profile, and availability. Using cluster analysis on a 10 microsecond molecular dynamics simulation trajectory (from D.E. Shaw Research), the compounds were docked to the different conformations. On the basis of our modelling studies, oleuropein was identified as a potential lead compound.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Helen Yu Meng Huang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3052, Australia,Corresponding author
| |
Collapse
|
231
|
Taha HR, Keewan N, Slati F, Al-Sawalha NA. Remdesivir: A Closer Look at Its Effect in COVID-19 Pandemic. Pharmacology 2021; 106:462-468. [PMID: 34515227 PMCID: PMC8450841 DOI: 10.1159/000518440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022]
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiology of COVID-19 pandemic, resulted in significant harm to the affected countries in every aspect of life. The virus infected over 139 million patients and resulted in over 2.9 million deaths until April 16, 2021. New variants of this virus were identified that spread rapidly worldwide. Summary Remdesivir, a prodrug of adenosine nucleotide analog, is an antiviral with a broad spectrum of activity that was tested on SARS and Middle East respiratory syndrome infections. In vitro studies conducted on SARS-CoV-2 revealed that remdesivir inhibited viral replication with high selectivity index in cell cultures. In vivo studies showed that remdesivir reduced viral load in bronchoalveolar lavage fluid and attenuated pulmonary infiltrates in infected animals. Further, remdesivir showed promising results in terms of clinical improvement, shortening the recovery time, mortality rate, and the duration of oxygen need, despite that some clinical trials did not reveal significant effect on remdesivir use. Several studies showed positive results of remdesivir against the new variants. Key Messages Remdesivir showed a promising beneficial effect against new variants of SARS-CoV-2, but more clinical evidence is needed to confirm this effect.
Collapse
Affiliation(s)
- Huda R Taha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour Keewan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Farah Slati
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.,Faculty of Pharmacy, Jadara University, Irbid, Jordan
| |
Collapse
|
232
|
Banerjee A, Kanwar M, Maiti S. Theaflavin-3'-O-gallate a Black-tea Constituent Blocked SARS CoV-2 RNA dependant RNA Polymerase Active-site with Better Docking Results than Remdesivir. Drug Res (Stuttg) 2021; 71:462-472. [PMID: 34517419 DOI: 10.1055/a-1467-5828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Replication of SARS-CoV-2 depends on viral RNA-dependent RNA-polymerase (RdRp). Remdesivir, the broad-spectrum RdRp inhibitor acts as nucleoside-analogues (NAs). Remdesivir has initially been repurposed as a promising drug against SARS-CoV-2 infection with some health hazards like liver damage, allergic reaction, low blood-pressure, and breathing-shortness, throat-swelling. In comparison, theaflavin-3'-O-gallate (TFMG), the abundant black tea component has gained importance in controlling viral infection. TFMG is a non-toxic, non-invasive, antioxidant, anticancer and antiviral molecule. RESULTS Here, we analyzed the inhibitory effect of theaflavin-3'-O-gallate on SARS CoV-2 RdRp in comparison with remdesivir by molecular-docking study. TFMG has been shown more potent in terms of lower Atomic-Contact-Energy (ACE) and higher occupancy of surface area; -393.97 Kcal/mol and 771.90 respectively, favoured with lower desolvation-energy; -9.2: Kcal/mol. TFMG forms more rigid electrostatic and H-bond than remdesivir. TFMG showed strong affinity to RNA primer and template and RNA passage-site of RdRp. CONCLUSIONS TFMG can block the catalytic residue, NTP entry site, cation binding site, nsp7-nsp12 junction with binding energy of -6. 72 Kcal/mol with Ki value of 11.79, and interface domain with binding energy of -7.72 and -6.16 Kcal/mol with Ki value of 2.21 and 30.71 µM. And most importantly, TFMG shows antioxidant/anti-inflammatory/antiviral effect on human studies.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| | - Mehak Kanwar
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| | - Smarajit Maiti
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India.,Founder and Secretary, Agricure Biotech Research Society, Epidemiology and Human Health Division, Midnapore, India
| |
Collapse
|
233
|
Ambrus C, Bakos É, Sarkadi B, Özvegy-Laczka C, Telbisz Á. Interactions of anti-COVID-19 drug candidates with hepatic transporters may cause liver toxicity and affect pharmacokinetics. Sci Rep 2021; 11:17810. [PMID: 34497279 PMCID: PMC8426393 DOI: 10.1038/s41598-021-97160-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Transporters in the human liver play a major role in the clearance of endo- and xenobiotics. Apical (canalicular) transporters extrude compounds to the bile, while basolateral hepatocyte transporters promote the uptake of, or expel, various compounds from/into the venous blood stream. In the present work we have examined the in vitro interactions of some key repurposed drugs advocated to treat COVID-19 (lopinavir, ritonavir, ivermectin, remdesivir and favipiravir), with the key drug transporters of hepatocytes. These transporters included ABCB11/BSEP, ABCC2/MRP2, and SLC47A1/MATE1 in the canalicular membrane, as well as ABCC3/MRP3, ABCC4/MRP4, SLC22A1/OCT1, SLCO1B1/OATP1B1, SLCO1B3/OATP1B3, and SLC10A1/NTCP, residing in the basolateral membrane. Lopinavir and ritonavir in low micromolar concentrations inhibited BSEP and MATE1 exporters, as well as OATP1B1/1B3 uptake transporters. Ritonavir had a similar inhibitory pattern, also inhibiting OCT1. Remdesivir strongly inhibited MRP4, OATP1B1/1B3, MATE1 and OCT1. Favipiravir had no significant effect on any of these transporters. Since both general drug metabolism and drug-induced liver toxicity are strongly dependent on the functioning of these transporters, the various interactions reported here may have important clinical relevance in the drug treatment of this viral disease and the existing co-morbidities.
Collapse
Affiliation(s)
- Csilla Ambrus
- SOLVO Biotechnology, Irinyi József street 4-20, 1117, Budapest, Hungary.,Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary.
| |
Collapse
|
234
|
Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN. Pathomechanisms, therapeutic targets and potent inhibitors of some beta-coronaviruses from bench-to-bedside. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104944. [PMID: 34052418 PMCID: PMC8159710 DOI: 10.1016/j.meegid.2021.104944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023]
Abstract
Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-β and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia,Department of Chemistry, Kwara State University, P. M. B. 1530, Malete, Ilorin, Nigeria
| | - Sani Najib Yahaya
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| | - Waleed A. Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| | | | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia,Corresponding author
| |
Collapse
|
235
|
Mslati H, Gentile F, Perez C, Cherkasov A. Comprehensive Consensus Analysis of SARS-CoV-2 Drug Repurposing Campaigns. J Chem Inf Model 2021; 61:3771-3788. [PMID: 34313439 PMCID: PMC8340583 DOI: 10.1021/acs.jcim.1c00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
The current COVID-19 pandemic has elicited extensive repurposing efforts (both small and large scale) to rapidly identify COVID-19 treatments among approved drugs. Herein, we provide a literature review of large-scale SARS-CoV-2 antiviral drug repurposing efforts and highlight a marked lack of consistent potency reporting. This variability indicates the importance of standardizing best practices-including the use of relevant cell lines, viral isolates, and validated screening protocols. We further surveyed available biochemical and virtual screening studies against SARS-CoV-2 targets (Spike, ACE2, RdRp, PLpro, and Mpro) and discuss repurposing candidates exhibiting consistent activity across diverse, triaging assays and predictive models. Moreover, we examine repurposed drugs and their efficacy against COVID-19 and the outcomes of representative repurposed drugs in clinical trials. Finally, we propose a drug repurposing pipeline to encourage the implementation of standard methods to fast-track the discovery of candidates and to ensure reproducible results.
Collapse
Affiliation(s)
- Hazem Mslati
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Francesco Gentile
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Carl Perez
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| |
Collapse
|
236
|
Heterogeneous graph attention networks for drug virus association prediction. Methods 2021; 198:11-18. [PMID: 34419588 PMCID: PMC8376526 DOI: 10.1016/j.ymeth.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus Disease-19 (COVID-19) has lead global epidemics with high morbidity and mortality. However, there are currently no proven effective drugs targeting COVID-19. Identifying drug-virus associations can not only provide insights into the understanding of drug-virus interaction mechanism, but also guide and facilitate the screening of compound candidates for antiviral drug discovery. Since conventional experiment methods are time-consuming, laborious and expensive, computational methods to identify potential drug candidates for viruses (e.g., COVID-19) provide an alternative strategy. In this work, we propose a novel framework of Heterogeneous Graph Attention Networks for Drug-Virus Association predictions, named HGATDVA. First, we fully incorporate multiple sources of biomedical data, e.g., drug chemical information, virus genome sequences and viral protein sequences, to construct abundant features for drugs and viruses. Second, we construct two drug-virus heterogeneous graphs. For each graph, we design a self-enhanced graph attention network (SGAT) to explicitly model the dependency between a node and its local neighbors and derive the graph-specific representations for nodes. Third, we further develop a neural network architecture with tri-aggregator to aggregate the graph-specific representations to generate the final node representations. Extensive experiments were conducted on two datasets, i.e., DrugVirus and MDAD, and the results demonstrated that our model outperformed 7 state-of-the-art methods. Case study on SARS-CoV-2 validated the effectiveness of our model in identifying potential drugs for viruses.
Collapse
|
237
|
Gawriljuk VO, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella TA, Costa FTM, Lakshmanane P, Bernatchez J, Godoy AS, Oliva G, Siqueira-Neto JL, Madrid PB, Ekins S. Machine Learning Models Identify Inhibitors of SARS-CoV-2. J Chem Inf Model 2021; 61:4224-4235. [PMID: 34387990 DOI: 10.1021/acs.jcim.1c00683] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the rapidly evolving SARS-CoV-2 variants of concern, there is an urgent need for the discovery of further treatments for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need, and numerous compounds have already been selected for in vitro testing by several groups. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein, we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA-approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, lumefantrine, an antimalarial was selected for testing and showed limited antiviral activity in cell-based assays while demonstrating binding (Kd 259 nM) to the spike protein using microscale thermophoresis. Several other compounds which we prioritized have since been tested by others and were also found to be active in vitro. This combined machine learning and in vitro testing approach can be expanded to virtually screen available molecules with predicted activity against SARS-CoV-2 reference WIV04 strain and circulating variants of concern. In the process of this work, we have created multiple iterations of machine learning models that can be used as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 with over 500 compounds is now freely available at www.assaycentral.org.
Collapse
Affiliation(s)
- Victor O Gawriljuk
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| | - Phyo Phyo Kyaw Zin
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Brett Hurst
- Institute for Antiviral Research, Utah State University, Logan, Utah 84322-5600, United States.,Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-4815, United States
| | - Tatyana Almeida Tavella
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Premkumar Lakshmanane
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill North Carolina 27599, United States
| | - Jean Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Andre S Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
238
|
Bhavaniramya S, Ramar V, Vishnupriya S, Palaniappan R, Sibiya A, Baskaralingam V. Comprehensive analysis of SARS-COV-2 drug targets and pharmacological aspects in treating the COVID-19. Curr Mol Pharmacol 2021; 15:393-417. [PMID: 34382513 DOI: 10.2174/1874467214666210811120635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Corona viruses are enveloped, single-stranded RNA (Ribonucleic acid) viruses and they cause pandemic diseases having a devastating effect on both human healthcare and the global economy. To date, six corona viruses have been identified as pathogenic organisms which are significantly responsible for the infection and also cause severe respiratory diseases. Among them, the novel SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) caused a major outbreak of corona virus diseases 2019 (COVID-19). Coronaviridae family members can affects both humans and animals. In human, corona viruses cause severe acute respiratory syndrome with mild to severe outcomes. Several structural and genomics have been investigated, and the genome encodes about 28 proteins most of them with unknown function though it shares remarkable sequence identity with other proteins. There is no potent and licensed vaccine against SARS-CoV-2 and several trials are underway to investigate the possible therapeutic agents against viral infection. However, some of the antiviral drugs that have been investigated against SARS-CoV-2 are under clinical trials. In the current review we comparatively emphasize the emergence and pathogenicity of the SARS-CoV-2 and their infection and discuss the various putative drug targets of both viral and host receptors for developing effective vaccines and therapeutic combinations to overcome the viral outbreak.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vanajothi Ramar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024. India
| | - Selvaraju Vishnupriya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600052. India
| | - Ramasamy Palaniappan
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education (BIHER), Chennai-600044, Tamilnadu. India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vaseeharan Baskaralingam
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| |
Collapse
|
239
|
Sivandzadeh GR, Askari H, Safarpour AR, Ejtehadi F, Raeis-Abdollahi E, Vaez Lari A, Abazari MF, Tarkesh F, Bagheri Lankarani K. COVID-19 infection and liver injury: Clinical features, biomarkers, potential mechanisms, treatment, and management challenges. World J Clin Cases 2021; 9:6178-6200. [PMID: 34434987 PMCID: PMC8362548 DOI: 10.12998/wjcc.v9.i22.6178] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
It is hypothesized that liver impairment caused by coronavirus disease 2019 (COVID-19) infection might play a central role in severe clinical presentations. Liver injury is closely associated with severe disease and, even with antiviral drugs, have a poor prognosis in COVID-19 patients. In addition to the common hepatobiliary disorders caused by COVID-19, patients with pre-existing liver diseases demand special considerations during the current pandemic. Thus, it is vital that upon clinical presentation, patients with concurrent pre-existing liver disease associated with metabolic dysfunction and COVID-19 be managed properly to prevent liver failure. Careful monitoring and early detection of liver damage through biomarkers after hospitalization for COVID-19 is underscored in all cases, particularly in those with pre-existing metabolic liver injury. The purpose of this study was to determine most recent evidence regarding causality, potential risk factors, and challenges, therapeutic options, and management of COVID-19 infection in vulnerable patients with pre-existing liver injury. This review aims to highlight the current frontier of COVID-19 infection and liver injury and the direction of liver injury in these patients.
Collapse
Affiliation(s)
- Gholam Reza Sivandzadeh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Fardad Ejtehadi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Medical Sciences, Qom Medical Branch, Islamic Azad University, Qom 1417613151, Iran
| | - Armaghan Vaez Lari
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz 6135715794, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Firoozeh Tarkesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| | | |
Collapse
|
240
|
Ansems K, Grundeis F, Dahms K, Mikolajewska A, Thieme V, Piechotta V, Metzendorf MI, Stegemann M, Benstoem C, Fichtner F. Remdesivir for the treatment of COVID-19. Cochrane Database Syst Rev 2021; 8:CD014962. [PMID: 34350582 PMCID: PMC8406992 DOI: 10.1002/14651858.cd014962] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Remdesivir is an antiviral medicine with properties to inhibit viral replication of SARS-CoV-2. Positive results from early studies attracted media attention and led to emergency use authorisation of remdesivir in COVID-19. A thorough understanding of the current evidence regarding the effects of remdesivir as a treatment for SARS-CoV-2 infection based on randomised controlled trials (RCTs) is required. OBJECTIVES To assess the effects of remdesivir compared to placebo or standard care alone on clinical outcomes in hospitalised patients with SARS-CoV-2 infection, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (which comprises the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Embase, ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, and medRxiv) as well as Web of Science (Science Citation Index Expanded and Emerging Sources Citation Index) and WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies without language restrictions. We conducted the searches on 16 April 2021. SELECTION CRITERIA We followed standard Cochrane methodology. We included RCTs evaluating remdesivir for the treatment of SARS-CoV-2 infection in hospitalised adults compared to placebo or standard care alone irrespective of disease severity, gender, ethnicity, or setting. We excluded studies that evaluated remdesivir for the treatment of other coronavirus diseases. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess risk of bias in included studies, we used the Cochrane RoB 2 tool for RCTs. We rated the certainty of evidence using the GRADE approach for outcomes that were reported according to our prioritised categories: all-cause mortality at up to day 28, duration to liberation from invasive mechanical ventilation, duration to liberation from supplemental oxygen, new need for mechanical ventilation (high-flow oxygen or non-invasive or invasive mechanical ventilation), new need for invasive mechanical ventilation, new need for non-invasive mechanical ventilation or high-flow oxygen, new need for oxygen by mask or nasal prongs, quality of life, adverse events (any grade), and serious adverse events. MAIN RESULTS We included five RCTs with 7452 participants diagnosed with SARS-CoV-2 infection and a mean age of 59 years, of whom 3886 participants were randomised to receive remdesivir. Most participants required low-flow oxygen (n=4409) or mechanical ventilation (n=1025) at baseline. We identified two ongoing studies, one was suspended due to a lack of COVID-19 patients to recruit. Risk of bias was considered to be of some concerns or high risk for clinical status and safety outcomes because participants who had died did not contribute information to these outcomes. Without adjustment, this leads to an uncertain amount of missing values and the potential for bias due to missing data. Effects of remdesivir in hospitalised individuals Remdesivir probably makes little or no difference to all-cause mortality at up to day 28 (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.81 to 1.06; risk difference (RD) 8 fewer per 1000, 95% CI 21 fewer to 7 more; 4 studies, 7142 participants; moderate-certainty evidence). Considering the initial severity of condition, only one study showed a beneficial effect of remdesivir in patients who received low-flow oxygen at baseline (RR 0.32, 95% CI 0.15 to 0.66, 435 participants), but conflicting results exists from another study, and we were unable to validly assess this observations due to limited availability of comparable data. Remdesivir may have little or no effect on the duration to liberation from invasive mechanical ventilation (2 studies, 1298 participants, data not pooled, low-certainty evidence). We are uncertain whether remdesivir increases or decreases the chance of clinical improvement in terms of duration to liberation from supplemental oxygen at up to day 28 (3 studies, 1691 participants, data not pooled, very low-certainty evidence). We are very uncertain whether remdesivir decreases or increases the risk of clinical worsening in terms of new need for mechanical ventilation at up to day 28 (high-flow oxygen or non-invasive ventilation or invasive mechanical ventilation) (RR 0.78, 95% CI 0.48 to 1.24; RD 29 fewer per 1000, 95% CI 68 fewer to 32 more; 3 studies, 6696 participants; very low-certainty evidence); new need for non-invasive mechanical ventilation or high-flow oxygen (RR 0.70, 95% CI 0.51 to 0.98; RD 72 fewer per 1000, 95% CI 118 fewer to 5 fewer; 1 study, 573 participants; very low-certainty evidence); and new need for oxygen by mask or nasal prongs (RR 0.81, 95% CI 0.54 to 1.22; RD 84 fewer per 1000, 95% CI 204 fewer to 98 more; 1 study, 138 participants; very low-certainty evidence). The evidence suggests that remdesivir may decrease the risk of clinical worsening in terms of new need for invasive mechanical ventilation (67 fewer participants amongst 1000 participants; RR 0.56, 95% CI 0.41 to 0.77; 2 studies, 1159 participants; low-certainty evidence). None of the included studies reported quality of life. Remdesivir probably decreases the serious adverse events rate at up to 28 days (RR 0.75, 95% CI 0.63 to 0.90; RD 63 fewer per 1000, 95% CI 94 fewer to 25 fewer; 3 studies, 1674 participants; moderate-certainty evidence). We are very uncertain whether remdesivir increases or decreases adverse events rate (any grade) (RR 1.05, 95% CI 0.86 to 1.27; RD 29 more per 1000, 95% CI 82 fewer to 158 more; 3 studies, 1674 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS Based on the currently available evidence, we are moderately certain that remdesivir probably has little or no effect on all-cause mortality at up to day 28 in hospitalised adults with SARS-CoV-2 infection. We are uncertain about the effects of remdesivir on clinical improvement and worsening. There were insufficient data available to validly examine the effect of remdesivir on mortality in subgroups depending on the extent of respiratory support at baseline. Future studies should provide additional data on efficacy and safety of remdesivir for defined core outcomes in COVID-19 research, especially for different population subgroups. This could allow us to draw more reliable conclusions on the potential benefits and harms of remdesivir in future updates of this review. Due to the living approach of this work, we will update the review periodically.
Collapse
Affiliation(s)
- Kelly Ansems
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Felicitas Grundeis
- Department of Anesthesiology and Intensive Care, University of Leipzig, Leipzig, Germany
| | - Karolina Dahms
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Agata Mikolajewska
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Volker Thieme
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carina Benstoem
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Falk Fichtner
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
241
|
Özlüşen B, Kozan Ş, Akcan RE, Kalender M, Yaprak D, Peltek İB, Keske Ş, Gönen M, Ergönül Ö. Effectiveness of favipiravir in COVID-19: a live systematic review. Eur J Clin Microbiol Infect Dis 2021; 40:2575-2583. [PMID: 34347191 PMCID: PMC8335450 DOI: 10.1007/s10096-021-04307-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022]
Abstract
We performed a systematic review and meta-analysis for the effectiveness of Favipiravir on the fatality and the requirement of mechanical ventilation for the treatment of moderate to severe COVID-19 patients. We searched available literature and reported it by using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Until June 1, 2021, we searched PubMed, bioRxiv, medRxiv, ClinicalTrials.gov, Cochrane Central Register of Controlled Trials (CENTRAL), and Google Scholar by using the keywords “Favipiravir” and terms synonymous with COVID-19. Studies for Favipiravir treatment compared to standard of care among moderate and severe COVID-19 patients were included. Risk of bias assessment was performed using Revised Cochrane risk of bias tool for randomized trials (RoB 2) and ROBINS-I assessment tool for non-randomized studies. We defined the outcome measures as fatality and requirement for mechanical ventilation. A total of 2702 studies were identified and 12 clinical trials with 1636 patients were analyzed. Nine out of 12 studies were randomized controlled trials. Among the randomized studies, one study has low risk of bias, six studies have moderate risk of bias, and 2 studies have high risk of bias. Observational studies were identified as having moderate risk of bias and non-randomized study was found to have serious risk of bias. Our meta-analysis did not reveal any significant difference between the intervention and the comparator on fatality rate (OR 1.11, 95% CI 0.64–1.94) and mechanical ventilation requirement (OR 0.50, 95% CI 0.13–1.95). There is no significant difference in fatality rate and mechanical ventilation requirement between Favipiravir treatment and the standard of care in moderate and severe COVID-19 patients.
Collapse
Affiliation(s)
- Batu Özlüşen
- School of Medicine, Koç University, Istanbul, Turkey
| | - Şima Kozan
- School of Medicine, Koç University, Istanbul, Turkey
| | | | | | | | | | - Şiran Keske
- School of Medicine, Koç University, Istanbul, Turkey
- Koç University İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Mehmet Gönen
- School of Medicine, Koç University, Istanbul, Turkey
- Koç University İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
- Department of Industrial Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Önder Ergönül
- School of Medicine, Koç University, Istanbul, Turkey.
- Koç University İşBank Center for Infectious Diseases (KUISCID), Istanbul, Turkey.
| |
Collapse
|
242
|
Venturas J, Zamparini J, Shaddock E, Stacey S, Murray L, Richards GA, Kalla I, Mahomed A, Mohamed F, Mer M, Maposa I, Feldman C. Comparison of outcomes in HIV-positive and HIV-negative patients with COVID-19. J Infect 2021; 83:217-227. [PMID: 34051225 PMCID: PMC8152212 DOI: 10.1016/j.jinf.2021.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND South Africa has the highest prevalence of HIV in the world and to date has recorded the highest number of cases of COVID-19 in Africa. There is uncertainty as to what the significance of this dual infection is, and whether people living with HIV (PLWH) have worse outcomes compared to HIV-negative patients with COVID-19. This study compared the outcomes of COVID-19 in a group of HIV-positive and HIV-negative patients admitted to a tertiary referral centre in Johannesburg, South Africa. METHODS Data was collected on all adult patients with known HIV status and COVID-19, confirmed by reverse-transcriptase polymerase chain reaction (RT-PCR), admitted to the medical wards and intensive care unit (ICU) between 6 March and 11 September 2020. The data included demographics, co-morbidities, laboratory results, severity of illness scores, complications and mortality, and comparisons were made between the HIV-positive and HIV negative groups. RESULTS Three-hundred and eighty-four patients, 108 HIV-positive and 276 HIV-negative, were included in the study. Median 4C score was significantly higher in the HIV-positive patients compared to the HIV-negative patients, but there was no significant difference in mortality between the HIV-positive and HIV-negative groups (15% vs 20%, p = 0.31). In addition, HIV-positive patients who died were younger than their HIV-negative counterparts, but this was not statistically significant (47.5 vs 57 years, p = 0.06). CONCLUSION Our findings suggest that HIV is not a risk factor for moderate or severe COVID-19 disease neither is it a risk factor for mortality. However, HIV-positive patients with COVID-19 requiring admission to hospital are more likely to be younger than their HIV-negative counterparts. These findings need to be confirmed in future, prospective, studies.
Collapse
Affiliation(s)
- Jacqui Venturas
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Jarrod Zamparini
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Erica Shaddock
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Sarah Stacey
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Lyle Murray
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Guy A Richards
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Ismail Kalla
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Adam Mahomed
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Farzahna Mohamed
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Mervyn Mer
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Innocent Maposa
- Health Science Research Office and Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, and University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Charles Feldman
- Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, and Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| |
Collapse
|
243
|
Anand K, Vadivalagan C, Joseph JS, Singh SK, Gulati M, Shahbaaz M, Abdellattif MH, Prasher P, Gupta G, Chellappan DK, Dua K. A novel nano therapeutic using convalescent plasma derived exosomal (CP Exo) for COVID-19: A combined hyperactive immune modulation and diagnostics. Chem Biol Interact 2021; 344:109497. [PMID: 33991505 PMCID: PMC8116126 DOI: 10.1016/j.cbi.2021.109497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles like exosomes are important therapeutic tactics for treating COVID -19. By utilizing convalescent plasma derived exosomes (CPExo) from COVID-19 recovered persistence could accelerate the treatment strategies in the current state of affairs. Adequate literature has shown that administering the exosome to the in vivo system could be beneficial and could target the pathogens in an effective and precise manner. In this hypothesis we highlight the CPExo instead of convalescent plasma (CP), perhaps to dispense of exosomes are gratified and it's more effectively acquired immune response conferral through antibodies. COVID-19 convalescent plasma has billions of exosomes and it has aptitudes to carry molecular constituents like proteins, lipids, RNA and DNA, etc. Moreover, exosomes are capable of recognizing antigens with adequate sensitivity and specificity. Many of these derivatives could trigger an immune modulation into the cells and act as an epigenetic inheritor response to target pathogens through RNAs. COIVID-19 resistance activated plasma-derived exosomes are either responsible for the effects of plasma beyond the contained immune antibodies or could be inhibitory. The proposed hypothesis suggests that preselecting the plasma-derived antibodies and RNAs merged exosomes would be an optimized therapeutic tactic for COVID-19 patients. We suggest that, the CPExo has a multi-potential effect for treatment efficacy by acting as immunotherapeutic, drug carrier, and diagnostic target with noncoding genetic materials as a biomarker.
Collapse
Affiliation(s)
- Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa.
| | - Chithravel Vadivalagan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Jitcy Saji Joseph
- Department of Toxicology and Biochemistry, National Institute for Occupational Health (NIOH), A Division of National Health Laboratory Service, Johannesburg, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin Prospekt, Chelyabinsk, 454080, Russia
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Deanship of Scientific Research, Taif University, Al-Haweiah, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017, Jaipur, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
244
|
Nile SH, Nile A, Jalde S, Kai G. Recent advances in potential drug therapies combating COVID-19 and related coronaviruses-A perspective. Food Chem Toxicol 2021; 154:112333. [PMID: 34118347 PMCID: PMC8189744 DOI: 10.1016/j.fct.2021.112333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Coronaviruses (CoVs) are a large family of viruses responsible for the severe pathophysiological effects on human health. The most severe outbreak includes Severe Acute Respiratory Syndrome (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 poses major challenges to clinical management because no specific FDA-approved therapy yet to be available. Thus, the existing therapies are being used for the treatment of COVID-19, which are under clinical trials and compassionate use, based on in vitro and in silico studies. In this review, we summarize the potential therapies utilizing small molecules, bioactive compounds, nucleoside and nucleotide analogs, peptides, antibodies, natural products, and synthetic compounds targeting the complex molecular signaling network involved in COVID-19. In this review>230 natural and chemically synthesized drug therapies are described with their recent advances in research and development being done in terms of their chemical, structural and functional properties. This review focuses on possible targets for viral cells, viral proteins, viral replication, and different molecular pathways for the discovery of novel viral- and host-based therapeutic targets against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Shivkumar Jalde
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, South Korea
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
245
|
Rabie AM. CoViTris2020 and ChloViD2020: a striking new hope in COVID-19 therapy. Mol Divers 2021; 25:1839-1854. [PMID: 33389560 PMCID: PMC7778709 DOI: 10.1007/s11030-020-10169-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
Designing anticoronavirus disease 2019 (anti-COVID-19) agents is the primary concern of medicinal chemists/drug designers nowadays. Repurposing of known active compounds against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new effective and time-saving trend in anti-COVID-19 drug discovery. Thorough inhibition of the coronaviral-2 proteins (i.e., multitarget inhibition) is a possible powerful favorable strategy for developing effectively potent drugs for COVID-19. In this new research study, I succeeded to repurpose the two antioxidant polyhydroxy-1,3,4-oxadiazole compounds CoViTris2020 and ChloViD2020 as the first multitarget coronaviral protein blockers with extremely higher potencies (reach about 65 and 304 times, for CoViTris2020, and 20 and 93 times, for ChloViD2020, more potent than remdesivir and favipiravir, respectively). These two 2,5-disubstituted-1,3,4-oxadiazoles were computationally studied (through molecular docking in almost all SARS-CoV-2 proteins) and biologically assessed (through a newly established robust in vitro anti-COVID-19 assay) for their anticoronaviral-2 bioactivities. The data obtained from the docking investigation showed that both ligands promisingly exhibited very strong inhibitory binding affinities with almost all docked enzymes (e.g., they displayed extremely lower binding energies of - 12.00 and - 9.60 kcal/mol, respectively, with the SARS-CoV-2 RNA-dependent RNA polymerase "RdRp"). The results of the biological assay revealed that CoViTris2020 and ChloViD2020 significantly displayed very high anti-COVID-19 activities (anti-SARS-CoV-2 EC50 = 0.31 and 1.01 μM, respectively). Further in vivo/clinical studies for the development of CoViTris2020 and ChloViD2020 as anti-COVID-19 medications are required. In brief, the ascent of CoViTris2020 and ChloViD2020 as the two lead members of the novel family of anti-COVID-19 polyphenolic 2,5-disubstituted-1,3,4-oxadiazole derivatives represents a promising hope in COVID-19 therapy. CoViTris2020 and ChloViD2020 inhibit SARS-CoV-2 life cycle with surprising EC50 values of 0.31 and 1.01 μM, respectively. CoViTris2020 strongly inhibits coronaviral-2 RdRp with exceptionally lower inhibitory binding energy of - 12.00 kcal/mol.
Collapse
Affiliation(s)
- Amgad M Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura, Egypt.
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- , Dikernis, Egypt.
| |
Collapse
|
246
|
Sourimant J, Aggarwal M, Plemper RK. Progress and pitfalls of a year of drug repurposing screens against COVID-19. Curr Opin Virol 2021; 49:183-193. [PMID: 34218010 PMCID: PMC8214175 DOI: 10.1016/j.coviro.2021.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
Near the end of 2019, a new betacoronavirus started to efficiently transmit between humans, resulting in the current COVID-19 pandemic. Unprecedented worldwide efforts were made to identify and repurpose antiviral therapeutics from collections of approved drugs and known bioactive compounds. Typical pitfalls of this approach (promiscuous/cytotoxic compounds leading to false positives), combined with bypassing antiviral drug development parameters due to urgency have resulted in often disappointing outcomes. A flood of publications, press-releases, and media posts, created confusion in the general public and sometime mobilized precious resources for clinical trials with minimal prospect of success. Breakthroughs have been made, not in the laboratory but in the clinic, resulting from the empiric identification of mitigators of clinical signs such as the discovery of improved disease management through immunomodulators. This opinion piece will aim to capture some of the lessons that we believe the COVID-19 pandemic has taught about drug repurposing screens.
Collapse
Affiliation(s)
- Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States.
| | - Megha Aggarwal
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
247
|
Shah NN, Nabi SU, Rather MA, Kalwar Q, Ali SI, Sheikh WM, Ganai A, Bashir SM. An update on emerging therapeutics to combat COVID-19. Basic Clin Pharmacol Toxicol 2021; 129:104-129. [PMID: 33977663 PMCID: PMC8239852 DOI: 10.1111/bcpt.13600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The COVID-19 pandemic has demanded effective therapeutic protocol from researchers and clinicians across the world. Currently, a large amount of primary data have been generated from several preclinical studies. At least 300 clinical trials are underway for drug repurposing against COVID-19; the clinician needs objective evidence-based medication to treat COVID-19. OBSERVATIONS Single-stranded RNA viral genome of SARS-CoV-2 encodes structural proteins (spike protein), non-structural enzymatic proteins (RNA-dependent RNA polymerase, helicase, papain-like protease, 3-chymotrypsin-like protease) and other accessory proteins. These four enzymatic proteins on spike protein are rate-limiting steps in viral replications and, therefore, an attractive target for drug development against SARS-CoV-2. In silico and in vitro studies have identified various potential epitomes as candidate sequences for vaccine development. These studies have also revealed potential targets for drug development and drug repurposing against COVID-19. Clinical trials utilizing antiviral drugs and other drugs have given inconclusive results regarding their clinical efficacy and side effects. The need for angiotensin-converting enzyme (ACE-2) inhibitors/angiotensin receptor blockers and corticosteroids has been recommended. Western countries have adopted telemedicine as an alternative to prevent transmission of infection in the population. Currently, no proven, evidence-based therapeutic regimen exists for COVID-19. CONCLUSION The COVID-19 pandemic has put tremendous pressure on researchers to evaluate and approve drugs effective against the disease. Well-controlled randomized trials should assess medicines that are not marketed with substantial evidence of safety and efficacy and more emphasis on time tested approaches for drug evaluation.
Collapse
Affiliation(s)
| | - Showkat Ul Nabi
- Large Animal Diagnostic LaboratoryDepartment of Clinical Veterinary Medicine, Ethics & JurisprudenceFaculty of Veterinary Sciences and Animal HusbandrySKUAST‐KSrinagarIndia
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology LabDivision of Veterinary BiochemistryFaculty of Veterinary Sciences and Animal HusbandrySKUAST‐KSrinagarIndia
| | - Qudratullah Kalwar
- Department of Animal ReproductionShaheed Benazir Bhutto University of Veterinary and Animal SciencesSakrandPakistan
| | - Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology LabDivision of Veterinary BiochemistryFaculty of Veterinary Sciences and Animal HusbandrySKUAST‐KSrinagarIndia
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology LabDivision of Veterinary BiochemistryFaculty of Veterinary Sciences and Animal HusbandrySKUAST‐KSrinagarIndia
| | - Alveena Ganai
- Division of Veterinary ParasitologyFaculty of Veterinary Sciences and Animal HusbandrySher‐e‐Kashmir University of Agricultural Sciences and Technology of JammuR.S. PuraIndia
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology LabDivision of Veterinary BiochemistryFaculty of Veterinary Sciences and Animal HusbandrySKUAST‐KSrinagarIndia
| |
Collapse
|
248
|
Tan YL, Tan KSW, Chu JJH, Chow VT. Combination Treatment With Remdesivir and Ivermectin Exerts Highly Synergistic and Potent Antiviral Activity Against Murine Coronavirus Infection. Front Cell Infect Microbiol 2021; 11:700502. [PMID: 34395311 PMCID: PMC8362885 DOI: 10.3389/fcimb.2021.700502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
The recent COVID-19 pandemic has highlighted the urgency to develop effective antiviral therapies against the disease. Murine hepatitis virus (MHV) is a coronavirus that infects mice and shares some sequence identity to SARS-CoV-2. Both viruses belong to the Betacoronavirus genus, and MHV thus serves as a useful and safe surrogate model for SARS-CoV-2 infections. Clinical trials have indicated that remdesivir is a potentially promising antiviral drug against COVID-19. Using an in vitro model of MHV infection of RAW264.7 macrophages, the safety and efficacy of monotherapy of remdesivir, chloroquine, ivermectin, and doxycycline were investigated. Of the four drugs tested, remdesivir monotherapy exerted the strongest inhibition of live virus and viral RNA replication of about 2-log10 and 1-log10, respectively (at 6 µM). Ivermectin treatment showed the highest selectivity index. Combination drug therapy was also evaluated using remdesivir (6 µM) together with chloroquine (15 µM), ivermectin (2 µM) or doxycycline (15 µM) - above their IC50 values and at high macrophage cell viability of over 95%. The combination of remdesivir and ivermectin exhibited highly potent synergism by achieving significant reductions of about 7-log10 of live virus and 2.5-log10 of viral RNA in infected macrophages. This combination also resulted in the lowest cytokine levels of IL-6, TNF-α, and leukemia inhibitory factor. The next best synergistic combination was remdesivir with doxycycline, which decreased levels of live virus by ~3-log10 and viral RNA by ~1.5-log10. These results warrant further studies to explore the mechanisms of action of the combination therapy, as well as future in vivo experiments and clinical trials for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yu Ling Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Kevin S. W. Tan
- Healthy Longevity Translational Research Program, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Vincent T. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
249
|
Mohamadi Yarijani Z, Najafi H. Kidney injury in COVID-19 patients, drug development and their renal complications: Review study. Biomed Pharmacother 2021; 142:111966. [PMID: 34333286 PMCID: PMC8313500 DOI: 10.1016/j.biopha.2021.111966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
Since December 2019, the world was encountered a new disease called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although SARS-CoV-2 initially causes lung damage, it also affects many other organs, including the kidneys, and on average, 5–23% of people with COVID-19 develop the symptoms of acute kidney injury (AKI), including elevated blood creatinine and urea, hematuria, proteinuria, and histopathological damages. The exact mechanism is unknown, but the researchers believe that SARS-CoV-2 directly and indirectly affects the kidneys. The direct pathway is by binding the virus to ACE2 receptor in the kidney, damage to cells, the renin-angiotensin system disturbances, activating coagulation pathways, and damaging the renal vascular endothelium. The initial evidence from studying the kidney tissue in postmortem patients is more in favor of the direct pathway. The indirect pathway is created by increased cytokines and cytokine storm, sepsis, circulatory disturbances, hypoxemia, as well as using the nephrotoxic drugs. Using renal tissue biopsy and autopsy in the patients with COVID-19, recent studies found evidence for a predominant indirect pathway in AKI induction by SARS-CoV-2. Besides, some studies showed that the degree of acute tubular injury (ATI) in autopsies from COVID-19 victims is milder compared to AKI degree. We review the mechanism of AKI induction and the renal side effects of the most common drugs used to treat COVID-19 after the overview of the latest findings on SARS-CoV-2 pathogenicity.
Collapse
Affiliation(s)
- Zeynab Mohamadi Yarijani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
250
|
Bhatia S, Narayanan N, Nagpal S, Nair DT. Antiviral therapeutics directed against RNA dependent RNA polymerases from positive-sense viruses. Mol Aspects Med 2021; 81:101005. [PMID: 34311994 DOI: 10.1016/j.mam.2021.101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023]
Abstract
Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.
Collapse
Affiliation(s)
- Sonam Bhatia
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|