201
|
Genetic effects on DNA methylation and its potential relevance for obesity in Mexican Americans. PLoS One 2013; 8:e73950. [PMID: 24058506 PMCID: PMC3772804 DOI: 10.1371/journal.pone.0073950] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/23/2013] [Indexed: 12/22/2022] Open
Abstract
Several studies have identified effects of genetic variation on DNA methylation patterns and associated heritability, with research primarily focused on Caucasian individuals. In this paper, we examine the evidence for genetic effects on DNA methylation in a Mexican American cohort, a population burdened by a high prevalence of obesity. Using an Illumina-based platform and following stringent quality control procedures, we assessed a total of 395 CpG sites in peripheral blood samples obtained from 183 Mexican American individuals for evidence of heritability, proximal genetic regulation and association with age, sex and obesity measures (i.e. waist circumference and body mass index). We identified 16 CpG sites (∼4%) that were significantly heritable after Bonferroni correction for multiple testing and 27 CpG sites (∼6.9%) that showed evidence of genetic effects. Six CpG sites (∼2%) were associated with age, primarily exhibiting positive relationships, including CpG sites in two genes that have been implicated in previous genome-wide methylation studies of age (FZD9 and MYOD1). In addition, we identified significant associations between three CpG sites (∼1%) and sex, including DNA methylation in CASP6, a gene that may respond to estradiol treatment, and in HSD17B12, which encodes a sex steroid hormone. Although we did not identify any significant associations between DNA methylation and the obesity measures, several nominally significant results were observed in genes related to adipogenesis, obesity, energy homeostasis and glucose homeostasis (ARHGAP9, CDKN2A, FRZB, HOXA5, JAK3, MEST, NPY, PEG3 and SMARCB1). In conclusion, we were able to replicate several findings from previous studies in our Mexican American cohort, supporting an important role for genetic effects on DNA methylation. In addition, we found a significant influence of age and sex on DNA methylation, and report on trend-level, novel associations between DNA methylation and measures of obesity.
Collapse
|
202
|
Katoh I, Kurata SI. Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol 2013; 3:234. [PMID: 24062987 PMCID: PMC3769647 DOI: 10.3389/fonc.2013.00234] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/27/2013] [Indexed: 01/31/2023] Open
Abstract
Since the human genome sequences became available in 2001, our knowledge about the human transposable elements which comprise ∼40% of the total nucleotides has been expanding. Non-long terminal repeat (non-LTR) retrotransposons are actively transposing in the present-day human genome, and have been found to cause ∼100 identified clinical cases of varied disorders. In contrast, almost all of the human endogenous retroviruses (HERVs) originating from ancient infectious retroviruses lost their infectivity and transposing activity at various times before the human-chimpanzee speciation (∼6 million years ago), and no known HERV is presently infectious. Insertion of HERVs and mammalian apparent LTR retrotransposons (MaLRs) into the chromosomal DNA influenced a number of host genes in various modes during human evolution. Apart from the aspect of genome evolution, HERVs and solitary LTRs being suppressed in normal biological processes can potentially act as extra transcriptional apparatuses of cellular genes by re-activation in individuals. There has been a reasonable prediction that aberrant LTR activation could trigger malignant disorders and autoimmune responses if epigenetic changes including DNA hypomethylation occur in somatic cells. Evidence supporting this hypothesis has begun to emerge only recently: a MaLR family LTR activation in the pathogenesis of Hodgkin’s lymphoma and a HERV-E antigen expression in an anti-renal cell carcinoma immune response. This mini review addresses the impacts of the remnant-form LTR retrotransposons on human pathogenesis.
Collapse
Affiliation(s)
- Iyoko Katoh
- Department of Microbiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo, Yamanashi , Japan
| | | |
Collapse
|
203
|
Marques M, Laflamme L, Gaudreau L. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation. Nucleic Acids Res 2013; 41:8094-106. [PMID: 23828038 PMCID: PMC3783176 DOI: 10.1093/nar/gkt595] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/16/2013] [Accepted: 06/13/2013] [Indexed: 11/14/2022] Open
Abstract
Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells.
Collapse
Affiliation(s)
| | | | - Luc Gaudreau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
204
|
Cui Y, Cho IH, Chowdhury B, Irudayaraj J. Real-time dynamics of methyl-CpG-binding domain protein 3 and its role in DNA demethylation by fluorescence correlation spectroscopy. Epigenetics 2013; 8:1089-100. [PMID: 23974971 DOI: 10.4161/epi.25958] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With unprecedented development in technology, epigenetics is recognized as a substantial and flexible regulatory pathway for phenotyping. Cytosine methylation and its subsequent oxidization have attracted significant attention due to their direct impact on gene regulation, in association with methyl-CpG-binding domain proteins (MBDs) and transcription related factors. In this study we record the dynamics of DNA demethylation using the recombinant MBD3-GFP protein in living cells under hypoxia and Decitabine treatment using Fluorescence Correlation Spectroscopy (FCS) by monitoring the diffusion dynamics of MBD3. Our study shows a DNA-replication-independent decrease of 5-methylcytosine (5mC)/5-hydroxymethylcytosine (5hmC) under hypoxia vs. a dependent decrease under Decitabine treatment. Further, we define a significantly faster diffusion of MBD3 in the nucleus as a precursory event for active demethylation rather than the Decitabine induced passive demethylation. By monitoring the diffusion of bound and unbound MBD3 in the nucleus we were able to identify and characterize hypoxia-sensitive cells from insensitive/tolerant cells, as well as the respective contribution to active demethylation in a time-dependent manner. Last, we quantitatively describe the concurrent decreasing trend in all of the three oxidized products of 5mC, which points to the potential involvement of ten-eleven-translocation proteins (TETs) in hypoxia induced active demethylation. Overall, for the first time we correlate the dynamic process of DNA demethylation with the biophysical properties of the corresponding DNA binding proteins in live single cells by single molecule spectroscopy.
Collapse
Affiliation(s)
- Yi Cui
- Biological Engineering and Bindley Bioscience Center, Purdue University; West Lafayette, IN USA
| | - Il-Hoon Cho
- Biological Engineering and Bindley Bioscience Center, Purdue University; West Lafayette, IN USA
| | - Basudev Chowdhury
- Biological Engineering and Bindley Bioscience Center, Purdue University; West Lafayette, IN USA
| | - Joseph Irudayaraj
- Biological Engineering and Bindley Bioscience Center, Purdue University; West Lafayette, IN USA
| |
Collapse
|
205
|
Besaratinia A, Cockburn M, Tommasi S. Alterations of DNA methylome in human bladder cancer. Epigenetics 2013; 8:1013-22. [PMID: 23975266 DOI: 10.4161/epi.25927] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer is the fourth most common cancer in men in the United States, and its recurrence rate is highest among all malignancies. The unmet need for improved strategies for early detection, treatment, and monitoring of the progression of this disease continues to translate into high mortality and morbidity. The quest for advanced diagnostic, therapeutic, and prognostic approaches for bladder cancer is a high priority, which can be achieved by understanding the molecular mechanisms of the initiation and progression of this malignancy. Aberrant DNA methylation in single or multiple cancer-related genes/loci has been found in human bladder tumors and cancer cell lines, and urine sediments, and correlated with many clinicopathological features of this disease, including tumor relapse, muscle-invasiveness, and survival. The present review summarizes the published research on aberrant DNA methylation in connection with human bladder cancer. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in this prime epigenetic field of research. Identifying the potentially reversible and 'drugable' aberrant DNA methylation events that initiate and promote bladder cancer development can highlight biological markers for early diagnosis, effective therapy and accurate prognosis of this malignancy.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine; Keck School of Medicine of USC; University of Southern California; Los Angeles, CA USA
| | - Myles Cockburn
- Department of Preventive Medicine; Keck School of Medicine of USC; University of Southern California; Los Angeles, CA USA
| | - Stella Tommasi
- Department of Preventive Medicine; Keck School of Medicine of USC; University of Southern California; Los Angeles, CA USA
| |
Collapse
|
206
|
Cruickshanks HA, Vafadar-Isfahani N, Dunican DS, Lee A, Sproul D, Lund JN, Meehan RR, Tufarelli C. Expression of a large LINE-1-driven antisense RNA is linked to epigenetic silencing of the metastasis suppressor gene TFPI-2 in cancer. Nucleic Acids Res 2013; 41:6857-69. [PMID: 23703216 PMCID: PMC3737543 DOI: 10.1093/nar/gkt438] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/18/2022] Open
Abstract
LINE-1 retrotransposons are abundant repetitive elements of viral origin, which in normal cells are kept quiescent through epigenetic mechanisms. Activation of LINE-1 occurs frequently in cancer and can enable LINE-1 mobilization but also has retrotransposition-independent consequences. We previously reported that in cancer, aberrantly active LINE-1 promoters can drive transcription of flanking unique sequences giving rise to LINE-1 chimeric transcripts (LCTs). Here, we show that one such LCT, LCT13, is a large transcript (>300 kb) running antisense to the metastasis-suppressor gene TFPI-2. We have modelled antisense RNA expression at TFPI-2 in transgenic mouse embryonic stem (ES) cells and demonstrate that antisense RNA induces silencing and deposition of repressive histone modifications implying a causal link. Consistent with this, LCT13 expression in breast and colon cancer cell lines is associated with silencing and repressive chromatin at TFPI-2. Furthermore, we detected LCT13 transcripts in 56% of colorectal tumours exhibiting reduced TFPI-2 expression. Our findings implicate activation of LINE-1 elements in subsequent epigenetic remodelling of surrounding genes, thus hinting a novel retrotransposition-independent role for LINE-1 elements in malignancy.
Collapse
Affiliation(s)
- Hazel A. Cruickshanks
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Natasha Vafadar-Isfahani
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Donncha S. Dunican
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Andy Lee
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Duncan Sproul
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Jonathan N. Lund
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Richard R. Meehan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Cristina Tufarelli
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| |
Collapse
|
207
|
Wu HC, Wang Q, Yang HI, Tsai WY, Chen CJ, Santella RM. Global DNA methylation in a population with aflatoxin B1 exposure. Epigenetics 2013; 8:962-9. [PMID: 23867725 DOI: 10.4161/epi.25696] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that global DNA hypomethylation, measured as Sat2 methylation in white blood cells (WBC), and aflatoxin B1 (AFB1) exposure were associated with increased hepatocellular carcinoma risk. In this study, we assessed the association between AFB1 exposure and global DNA methylation. We measured LINE-1 and Sat2 methylation in WBC DNA samples from 1140 cancer free participants of the Cancer Screening Program (CSP) cohort. Blood and urine samples were used to determine the level of AFB1-albumin (AFB1-Alb) adducts and urinary AFB1 metabolites. In continuous models, we found reverse associations of urinary AFB1 with LINE-1 and Sat2 methylation. The odds ratio (OR) per 1 unit decrease were 1.12 (95%CI = 1.03-1.22) for LINE-1 and 1.48 (95%CI = 1.10-2.00) for Sat2 methylation. When compared with subjects in the highest quartile of LINE-1, we found that individuals in the 2nd and 3rd quartiles were less likely to have detectable AFB1-Alb adducts, with ORs (95%CI) of 0.61 (0.40-0.93), 0.61 (0.40-.94), and 1.09 (0.69-1.72), respectively. The OR for detectable AFB1-Alb was 1.81 (95%CI = 1.15-2.85) for subjects in the lowest quartile of Sat2 methylation. The OR for detection of urinary AFB1 for those with LINE-1 methylation in the lowest quartile compared with those in the highest quartile was 1.87 (95%CI = 1.15-3.04). The corresponding OR was 1.75 (95%CI = 1.08-2.82) for subjects in the lowest quartile of Sat2 methylation. The association between AFB1 exposure and global DNA methylation may have implications for the epigenetic effect of AFB1 on hepatocellular carcinoma development and also suggests that changes in DNA methylation may represent an epigenetic biomarker of dietary AFB1 exposure.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Environmental Health Sciences; Mailman School of Public Health of Columbia University; New York, NY USA
| | | | | | | | | | | |
Collapse
|
208
|
Byun HM, Motta V, Panni T, Bertazzi PA, Apostoli P, Hou L, Baccarelli AA. Evolutionary age of repetitive element subfamilies and sensitivity of DNA methylation to airborne pollutants. Part Fibre Toxicol 2013; 10:28. [PMID: 23855992 PMCID: PMC3717285 DOI: 10.1186/1743-8977-10-28] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 07/05/2013] [Indexed: 02/07/2023] Open
Abstract
Background Repetitive elements take up >40% of the human genome and can change distribution through transposition, thus generating subfamilies. Repetitive element DNA methylation has associated with several diseases and environmental exposures, including exposure to airborne pollutants. No systematic analysis has yet been conducted to examine the effects of exposures across different repetitive element subfamilies. The purpose of the study is to evaluate sensitivity of DNA methylation in differentially‒evolved LINE, Alu, and HERV subfamilies to different types of airborne pollutants. Methods We sampled a total of 120 male participants from three studies (20 high-, 20 low-exposure in each study) of steel workers exposed to metal-rich particulate matter (measured as PM10) (Study 1); gas-station attendants exposed to air benzene (Study 2); and truck drivers exposed to traffic-derived elemental carbon (Study 3). We measured methylation by bisulfite-PCR-pyrosequencing in 10 differentially‒evolved repetitive element subfamilies. Results High-exposure groups exhibited subfamily-specific methylation differences compared to low-exposure groups: L1PA2 showed lower DNA methylation in steel workers (P=0.04) and gas station attendants (P=0.03); L1Ta showed lower DNA methylation in steel workers (P=0.02); AluYb8 showed higher DNA methylation in truck drivers (P=0.05). Within each study, dose–response analyses showed subfamily-specific correlations of methylation with exposure levels. Interaction models showed that the effects of the exposures on DNA methylation were dependent on the subfamily evolutionary age, with stronger effects on older LINEs from PM10 (p‒interaction=0.003) and benzene (p‒interaction=0.04), and on younger Alus from PM10 (p-interaction=0.02). Conclusions The evolutionary age of repetitive element subfamilies determines differential susceptibility of DNA methylation to airborne pollutants.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
209
|
LINE-1 methylation in peripheral blood and the risk of melanoma in melanoma-prone families with and without CDKN2A mutations. Melanoma Res 2013; 23:55-60. [PMID: 23222549 DOI: 10.1097/cmr.0b013e32835adc51] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cutaneous malignant melanoma (CMM) is an etiologically heterogenous disease with genetic, environmental (sun exposure), and host (pigmentation/nevi) factors and their interactions contributing to risk. Recently, epigenetic changes involving reduced levels of global DNA methylation in blood have been associated with genomic instability and cancer risk. We thus examined whether global methylation was associated with CMM risk in individuals from melanoma-prone families with and without CDKN2A germline mutations. We measured global DNA methylation using bisulfite pyrosequencing at four CpG sites of the long interspersed nucleotide element-1 (LINE-1) sequences in peripheral blood mononuclear cells (PBMCs) from individuals in 64 melanoma-prone families including 114 CMM cases (45 CDKN2A-positive and 69 CDKN2A-negative) and 121 unaffected individuals (31 CDKN2A-positive and 90 CDKN2A-negative). We used unconditional logistic regression to evaluate the association between CMM status and LINE-1 methylation levels, adjusting for age at blood draw and accounting for familial correlation in the variance. We found that male sex was significantly associated with higher overall LINE-1 methylation (P=0.0001). However, the overall and site-specific levels of LINE-1 methylation did not vary significantly by CMM status (overall odds ratio: 1.57, 95% confidence interval: 0.84-2.95, P=0.16; comparing lowest to highest or reference methylation group). Similar results were obtained when CDKN2A-positive and CDKN2A-negative families were analyzed separately. Our findings did not support a significant association between constitutional LINE-1 methylation in PBMCs and risk of CMM in melanoma-prone families with or without CDKN2A mutations.
Collapse
|
210
|
Quinlivan EP, Crider KS, Zhu JH, Maneval DR, Hao L, Li Z, Rasmussen SA, Berry RJ, Bailey LB. Hypomethylation of serum blood clot DNA, but not plasma EDTA-blood cell pellet DNA, from vitamin B12-deficient subjects. PLoS One 2013; 8:e65241. [PMID: 23785415 PMCID: PMC3681792 DOI: 10.1371/journal.pone.0065241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/22/2013] [Indexed: 12/20/2022] Open
Abstract
Vitamin B12, a co-factor in methyl-group transfer, is important in maintaining DNA (deoxycytidine) methylation. Using two independent assays we examined the effect of vitamin B12-deficiency (plasma vitamin B12<148 pmol/L) on DNA methylation in women of childbearing age. Coagulated blood clot DNA from vitamin B12-deficient women had significantly (p<0.001) lower percentage deoxycytidine methylation (3.23±0.66%; n = 248) and greater [3 H]methyl-acceptance (42,859±9,699 cpm; n = 17) than DNA from B12-replete women (4.44±0.18%; n = 128 and 26,049±2,814 cpm; n = 11) [correlation between assays: r = -0.8538; p<0.001; n = 28]. In contrast, uncoagulated EDTA-blood cell pellet DNA from vitamin B12-deficient and B12-replete women exhibited similar percentage methylation (4.45±0.15%; n = 77 vs. 4.47±0.15%; n = 47) and [3 H]methyl-acceptance (27,378±4,094 cpm; n = 17 vs. 26,610±2,292 cpm; n = 11). Therefore, in simultaneously collected paired blood samples, vitamin B12-deficiency was associated with decreased DNA methylation only in coagulated samples. These findings highlight the importance of sample collection methods in epigenetic studies, and the potential impact biological processes can have on DNA methylation during collection.
Collapse
Affiliation(s)
- Eoin P Quinlivan
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Carlin J, George R, Reyes TM. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology. PLoS One 2013; 8:e63549. [PMID: 23658839 PMCID: PMC3642194 DOI: 10.1371/journal.pone.0063549] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Maternal consumption of a high fat diet during pregnancy increases the offspring risk for obesity. Using a mouse model, we have previously shown that maternal consumption of a high fat (60%) diet leads to global and gene specific decreases in DNA methylation in the brain of the offspring. The present experiments were designed to attempt to reverse this DNA hypomethylation through supplementation of the maternal diet with methyl donors, and to determine whether methyl donor supplementation could block or attenuate phenotypes associated with maternal consumption of a HF diet. Metabolic and behavioral (fat preference) outcomes were assessed in male and female adult offspring. Expression of the mu-opioid receptor and dopamine transporter mRNA, as well as global DNA methylation were measured in the brain. Supplementation of the maternal diet with methyl donors attenuated the development of some of the adverse effects seen in offspring from dams fed a high fat diet; including weight gain, increased fat preference (males), changes in CNS gene expression and global hypomethylation in the prefrontal cortex. Notable sex differences were observed. These findings identify the importance of balanced methylation status during pregnancy, particularly in the context of a maternal high fat diet, for optimal offspring outcome.
Collapse
Affiliation(s)
- JesseLea Carlin
- University of Pennsylvania, School of Medicine, Department of Pharmacology, Institute for Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States of America
| | - Robert George
- University of Pennsylvania, School of Medicine, Department of Pharmacology, Institute for Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States of America
| | - Teresa M. Reyes
- University of Pennsylvania, School of Medicine, Department of Pharmacology, Institute for Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
212
|
Schillebeeckx M, Schrade A, Löbs AK, Pihlajoki M, Wilson DB, Mitra RD. Laser capture microdissection-reduced representation bisulfite sequencing (LCM-RRBS) maps changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse. Nucleic Acids Res 2013; 41:e116. [PMID: 23589626 PMCID: PMC3675465 DOI: 10.1093/nar/gkt230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a mechanism for long-term transcriptional regulation and is required for normal cellular differentiation. Failure to properly establish or maintain DNA methylation patterns leads to cell dysfunction and diseases such as cancer. Identifying DNA methylation signatures in complex tissues can be challenging owing to inaccurate cell enrichment methods and low DNA yields. We have developed a technique called laser capture microdissection-reduced representation bisulfite sequencing (LCM-RRBS) for the multiplexed interrogation of the DNA methylation status of cytosine–guanine dinucleotide islands and promoters. LCM-RRBS accurately and reproducibly profiles genome-wide methylation of DNA extracted from microdissected fresh frozen or formalin-fixed paraffin-embedded tissue samples. To demonstrate the utility of LCM-RRBS, we characterized changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse. Compared with adjacent normal tissue, the adrenocortical tumors showed reproducible gains and losses of DNA methylation at genes involved in cell differentiation and organ development. LCM-RRBS is a rapid, cost-effective, and sensitive technique for analyzing DNA methylation in heterogeneous tissues and will facilitate the investigation of DNA methylation in cancer and organ development.
Collapse
Affiliation(s)
- Maximiliaan Schillebeeckx
- Department of Genetics, Center for Genome Sciences, Washington University School of Medicine, 4444 Forest Park Parkway, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
213
|
Lyon D, Elmore L, Aboalela N, Merrill-Schools J, McCain N, Starkweather A, Elswick RK, Jackson-Cook C. Potential epigenetic mechanism(s) associated with the persistence of psychoneurological symptoms in women receiving chemotherapy for breast cancer: a hypothesis. Biol Res Nurs 2013; 16:160-74. [PMID: 23585573 DOI: 10.1177/1099800413483545] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to recent treatment advances, there have been improvements in the proportion of women surviving a diagnosis of breast cancer (BC). However, many of these survivors report persistent adverse side effects following treatment, such as cognitive dysfunction, depressive symptoms, anxiety, fatigue, sleep disturbances, and pain. Investigators have examined circulating levels of inflammatory markers, particularly serum cytokines, for a potential causal relationship to the development/persistence of these psychoneurological symptoms (PNS). While inflammatory activation, resulting from perceived stress or other factors, may directly contribute to the development of PNS, we offer an alternative hypothesis, suggesting that these symptoms are an early step in a cascade of biological changes leading to epigenetic alterations at the level of deoxyribonucleic acid (DNA) methylation, histone modifications, and/or chromatin structure/chromosomal instability. Given that epigenetic patterns have plasticity, if this conjectured relationship between epigenomic/acquired genomic alterations and the development/persistence of PNS is confirmed, it could provide foundational knowledge for future research leading to the recognition of predictive markers and/or treatments to alleviate PNS in women with BC. In this article, we discuss an evolving theory of the biological basis of PNS, integrating knowledge related to inflammation and DNA repair in the context of genetic and epigenetic science to expand the paradigm for understanding symptom acquisition/persistence following chemotherapy.
Collapse
Affiliation(s)
- Debra Lyon
- 1Department of Family and Community Health Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Soriano-Tárraga C, Jiménez-Conde J, Giralt-Steinhauer E, Ois Á, Rodríguez-Campello A, Cuadrado-Godia E, Fernández-Cadenas I, Montaner J, Lucas G, Elosua R, Roquer J. DNA isolation method is a source of global DNA methylation variability measured with LUMA. Experimental analysis and a systematic review. PLoS One 2013; 8:e60750. [PMID: 23585847 PMCID: PMC3621987 DOI: 10.1371/journal.pone.0060750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
In DNA methylation, methyl groups are covalently bound to CpG dinucleotides. However, the assumption that methyl groups are not lost during routine DNA extraction has not been empirically tested. To avoid nonbiological associations in DNA methylation studies, it is essential to account for potential batch effect bias in the assessment of this epigenetic mechanism. Our purpose was to determine if the DNA isolation method is an independent source of variability in methylation status. We quantified Global DNA Methylation (GDM) by luminometric methylation assay (LUMA), comparing the results from 3 different DNA isolation methods. In the controlled analysis (n = 9), GDM differed slightly for the same individual depending on extraction method. In the population analysis (n = 580) there were significant differences in GDM between the 3 DNA isolation methods (medians, 78.1%, 76.5% and 75.1%; p<0.001). A systematic review of published data from LUMA GDM studies that specify DNA extraction methods is concordant with our findings. DNA isolation method is a source of GDM variability measured with LUMA. To avoid possible bias, the method used should be reported and taken into account in future DNA methylation studies.
Collapse
Affiliation(s)
- Carolina Soriano-Tárraga
- Neurovascular Research Group. Neurology Department. Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
- * E-mail:
| | - Jordi Jiménez-Conde
- Neurovascular Research Group. Neurology Department. Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Eva Giralt-Steinhauer
- Neurovascular Research Group. Neurology Department. Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Ángel Ois
- Neurovascular Research Group. Neurology Department. Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Ana Rodríguez-Campello
- Neurovascular Research Group. Neurology Department. Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Elisa Cuadrado-Godia
- Neurovascular Research Group. Neurology Department. Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Israel Fernández-Cadenas
- Neurovascular Research Laboratory. Institut de Recerca, Universitat Autònoma de Barcelona, Hospital Vall d’Hebron, Barcelona, Spain
- Laboratory of neurovascular pharmacogenomics and genetics, Fundació per la Docència i Recerca Mutua Terrassa, Terrassa (Barcelona), Spain
| | - Joan Montaner
- Neurovascular Research Laboratory. Institut de Recerca, Universitat Autònoma de Barcelona, Hospital Vall d’Hebron, Barcelona, Spain
| | - Gavin Lucas
- Cardiovascular Epidemiology and Genetics group. Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics group. Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Jaume Roquer
- Neurovascular Research Group. Neurology Department. Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | |
Collapse
|
215
|
Basu N, Head J, Nam DH, Pilsner JR, Carvan MJ, Chan HM, Goetz FW, Murphy CA, Rouvinen-Watt K, Scheuhammer AM. Effects of methylmercury on epigenetic markers in three model species: mink, chicken and yellow perch. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:322-7. [PMID: 23481557 PMCID: PMC4346372 DOI: 10.1016/j.cbpc.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
We previously reported that methylmercury (MeHg) exposure is associated with DNA hypomethylation in the brain stem of male polar bears. Here, we conveniently use archived tissues obtained from controlled laboratory exposure studies to look for evidence that MeHg can disrupt DNA methylation across taxa. Brain (cerebrum) tissues from MeHg-exposed mink (Neovison vison), chicken (Gallus gallus) and yellow perch (Perca flavescens) were analyzed for total Hg levels and global DNA methylation. Tissues from chicken and mink, but not perch, were also analyzed for DNA methyltransferase (DNMT) activity. In mink we observed significant reductions in global DNA methylation in an environmentally-relevant dietary exposure group (1 ppm MeHg), but not in a higher group (2 ppm MeHg). DNMT activity was significantly reduced in all treatment groups. In chicken or yellow perch, no statistically significant effects of MeHg were observed. Dose-dependent trends were observed in the chicken data but the direction of the change was not consistent between the two endpoints. Our results suggest that MeHg can be epigenetically active in that it has the capacity to affect DNA methylation in mammals. The variability in results across species may suggest inter-taxa differences in epigenetic responses to MeHg, or may be related to differences among the exposure scenarios used as animals were exposed to MeHg through different routes (dietary, egg injection), for different periods of time (19-89 days) and at different life stages (embryonic, juvenile, adult).
Collapse
Affiliation(s)
- Niladri Basu
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Chen HF, Mai JR, Wan JX, Gao YF, Lin LN, Wang SZ, Chen YX, Zhang CZ, Zhang YJ, Xia B, Liao K, Lin YC, Lin ZN. Role of a novel functional variant in the PPP2R1A promoter on the regulation of PP2A-Aalpha and the risk of hepatocellular carcinoma. PLoS One 2013; 8:e59574. [PMID: 23555712 PMCID: PMC3612049 DOI: 10.1371/journal.pone.0059574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/15/2013] [Indexed: 02/06/2023] Open
Abstract
Previously, we identified the genetic variant −241 (−/G) (rs11453459) in the PP2A-Aα gene (PPP2R1A) promoter and demonstrated that this variant influences the DNA-binding affinity of nuclear factor-kappa B (NF-κB). In this study, we further confirmed that the transcriptional activity of PPP2R1A may be regulated by NF-κB through the functional genetic variant −241 (−/G). Moreover, we also demonstrated that the methylation status of CpG islands in the promoter of PPP2R1A influences the activity of this gene promoter. Few studies have examined the role of this −241 (−/G) variant in genetic or epigenetic regulation in hepatocellular carcinoma (HCC). To investigate whether this functional variant in the PPP2R1A promoter is associated with the risk of HCC and confirm the function of the −241 (−/G) variant in the HCC population, we conducted a case-control study involving 251 HCC cases and 252 cancer-free controls from a Han population in southern China. Compared with the −241 (−−) homozygote, the heterozygous −241 (−G) genotype (adjusted OR = 0.32, 95% confidence interval (CI) = 0.17–0.58, P<0.001) and the −241 (−G)/(GG) genotypes (adjusted OR = 0.38, 95% CI = 0.22–0.67, P = 0.001) were both significantly associated with a reduced risk of HCC. Stratification analysis indicated that the protective role of −241 (−G) was more pronounced in individuals who were ≤ 40 years of age, female and HBV-negative. Our data suggest that the transcriptional activity of PPP2R1A is regulated by NF-κB through the −241 (−/G) variant and by the methylation of the promoter region. Moreover, the functional −241 (−/G) variant in the PPP2R1A promoter contributes to the decreased risk of HCC. These findings contribute novel information regarding the gene transcription of PPP2R1A regulated by the polymorphism and methylation in the promoter region through genetic and epigenetic mechanisms in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hui-Feng Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Chen Q, Lin J, Qian J, Deng ZQ, Qian W, Yang J, Li Y, Chen XX, Ma YJ, Ma JC, Liu Q. The methylation status of the DDX43 promoter in Chinese patients with chronic myeloid leukemia. Genet Test Mol Biomarkers 2013; 17:508-11. [PMID: 23495895 DOI: 10.1089/gtmb.2012.0530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aberrant DNA methylation is a common epigenetic alteration and an important feature in human cancers. The DEAD box polypeptide 43 (DDX43) has been found to be overexpressed in various solid tumors and some hematologic malignancies. In the present study, we investigated the methylation status of the DDX43 promoter in 87 Chinese patients with chronic myeloid leukemia (CML) using real-time quantitative methylation-specific polymerase chain reaction and examined the DDX43 transcript in 35 patients using real-time quantitative polymerase chain reaction. DDX43 promoter hypomethylation was observed in 22 (25.3%) CML patients. No significant correlation was found between the hypomethylation of the DDX43 promoter with the age, sex, white blood cell counts, hemoglobin concentration, platelet counts, and chromosomal abnormalities of CML patients (p>0.05). The frequency of DDX43 hypomethylation in patients in the chronic phase, in the accelerated phase, and in blast crisis was 23.4% (15/64), 25.0% (2/8), and 33.3% (5/15), respectively (p>0.05). There was a significant correlation between DDX43 hypomethylation and DDX43 transcript (r=0.469, p=0.004). Our data suggest that hypomethylation of the DDX43 promoter may be an early and frequent molecular event in the development of CML in Chinese patients.
Collapse
Affiliation(s)
- Qin Chen
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Yang BZ, Zhang H, Ge W, Weder N, Douglas-Palumberi H, Perepletchikova F, Gelernter J, Kaufman J. Child abuse and epigenetic mechanisms of disease risk. Am J Prev Med 2013; 44:101-7. [PMID: 23332324 PMCID: PMC3758252 DOI: 10.1016/j.amepre.2012.10.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/24/2012] [Accepted: 10/05/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Child abuse is highly prevalent and associated with increased risk for a range of health problems, including cancer, cardiovascular disease, diabetes, psychiatric disorders, and other health problems. Little is currently known about the mechanism by which early adversity confers risk for health problems later in life. PURPOSE To determine if there are epigenetic differences associated with child maltreatment that may help explain association between adverse childhood experiences and later health problems. METHODS As part of a study examining genetic and environmental factors associated with depression, saliva DNA specimens were collected on 96 maltreated children removed from their parents due to abuse or neglect and 96 demographically matched control children between 2003 and 2010. In 2011, the Illumina 450K BeadChip was used on stored DNA specimens and analyzed to examine whole-genome methylation differences between maltreated and control children. RESULTS After controlling for multiple comparisons, maltreated and control children had significantly different methylation values at 2868 CpG sites (p<5.0 × 10(-7), all sites; average methylation difference per site=17%; range=1%-62%). The gene set contained numerous markers of diseases and biological processes related to the health problems associated with early childhood adversity. CONCLUSIONS Although replication is required, this study suggests that epigenetic mechanisms may be associated with risk for health problems later in life in maltreated children. This study lays the groundwork for future studies examining health and methylation measures to further characterize the role of epigenetic mechanisms in conferring risk for medical problems in individuals with histories of early adversity.
Collapse
Affiliation(s)
- Bao-Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Pogribny IP, Rusyn I. Environmental toxicants, epigenetics, and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:215-32. [PMID: 22956504 PMCID: PMC4281087 DOI: 10.1007/978-1-4419-9967-2_11] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumorigenesis, a complex and multifactorial progressive process of transformation of normal cells into malignant cells, is characterized by the accumulation of multiple cancer-specific heritable phenotypes triggered by the mutational and/or non-mutational (i.e., epigenetic) events. Accumulating evidence suggests that environmental and occupational exposures to natural substances, as well as man-made chemical and physical agents, play a causative role in human cancer. In a broad sense, carcinogenesis may be induced through either genotoxic or non-genotoxic mechanisms; however, both genotoxic and non-genotoxic carcinogens also cause prominent epigenetic changes. This review presents current evidence of the epigenetic alterations induced by various chemical carcinogens, including arsenic, 1,3-butadine, and pharmaceutical and biological agents, and highlights the potential for epigenetic changes to serve as markers for carcinogen exposure and cancer risk assessment.
Collapse
Affiliation(s)
- Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
220
|
Yun J, Johnson JL, Hanigan CL, Locasale JW. Interactions between epigenetics and metabolism in cancers. Front Oncol 2012; 2:163. [PMID: 23162793 PMCID: PMC3498627 DOI: 10.3389/fonc.2012.00163] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/24/2012] [Indexed: 12/31/2022] Open
Abstract
Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. While it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, most of the enzymatic machinery of epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.
Collapse
Affiliation(s)
- Jihye Yun
- Department of Systems Biology, Harvard Medical School Boston, MA, USA
| | | | | | | |
Collapse
|
221
|
Thaler R, Spitzer S, Karlic H, Berger C, Klaushofer K, Varga F. Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells. Biochem Pharmacol 2012; 85:173-85. [PMID: 23103563 PMCID: PMC3557391 DOI: 10.1016/j.bcp.2012.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 12/13/2022]
Abstract
There is growing evidence that aminobisphosphonates like ibandronate show anticancer activity by an unknown mechanism. Biochemically, they prevent posttranslational isoprenylation of small GTPases, thus inhibiting their activity. In tumor cells, activated RAS-GTPase, the founding member of the gene family, down-regulates the expression of the pro-apoptotic gene FAS via epigenetic DNA-methylation by DNMT1. We compared ibandronate treatment in neoplastic human U-2 osteosarcoma and in mouse CCL-51 breast cancer cells as well as in the immortalized non-neoplastic MC3T3-E1 osteoblastic cells. Ibandronate attenuated cell proliferation in all cell lines tested. In the neoplastic cells we found up-regulation of caspases suggesting apoptosis. Further we found stimulation of FAS-expression as a result of epigenetic DNA demethylation that was due to down-regulation of DNMT1, which was rescued by re-isoprenylation by both geranylgeranyl-pyrophosphate and farnesylpyrophosphate. In contrast, ibandronate did not affect FAS and DNMT1 expression in MC3T3-E1 non-neoplastic cells. Data suggest that bisphosphonates via modulation of the activity of small-GTPases induce apoptosis in neoplastic cells by DNA-CpG-demethylation and stimulation of FAS-expression. In conclusion the shown epigenetic mechanism underlying the anti-neoplastic activity of farnesyl-transferase-inhibition, also explains the clinical success of other drugs, which target this pathway.
Collapse
Affiliation(s)
- R. Thaler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - S. Spitzer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - H. Karlic
- Ludwig Boltzmann Cluster Oncology and Institute for Leukemia Research and Hematology, Hanusch Hospital, Vienna, Austria
| | - C. Berger
- Department of Orthopedics, SMZ-OST, Danube Hospital, Vienna, Austria
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - F. Varga
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
- Corresponding author at: Ludwig Boltzmann Institute of Osteology, 1st Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, A-1140 Vienna, Austria. Tel.: +43 1 91021 86933; fax: +43 1 91021 86929.
| |
Collapse
|
222
|
Brzeziańska E, Dutkowska A, Antczak A. The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep 2012; 40:309-25. [PMID: 23086271 PMCID: PMC3518808 DOI: 10.1007/s11033-012-2063-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
Lung cancer is recognized as a leading cause of cancer-related death worldwide and its frequency is still increasing. The prognosis in lung cancer is poor and limited by the difficulties of diagnosis at early stage of disease, when it is amenable to surgery treatment. Therefore, the advance in identification of lung cancer genetic and epigenetic markers with diagnostic and/or prognostic values becomes an important tool for future molecular oncology and personalized therapy. As in case of other tumors, aberrant epigenetic landscape has been documented also in lung cancer, both at early and late stage of carcinogenesis. Hypermethylation of specific genes, mainly tumor suppressor genes, as well as hypomethylation of oncogenes and retrotransposons, associated with histopathological subtypes of lung cancer, has been found. Epigenetic aberrations of histone proteins and, especially, the lower global levels of histone modifications have been associated with poorer clinical outcome in lung cancer. The recently discovered role of epigenetic modifications of microRNA expression in tumors has been also proven in lung carcinogenesis. The identified epigenetic events in lung cancer contribute to its specific epigenotype and correlated phenotypic features. So far, some of them have been suggested to be cancer biomarkers for early detection, disease monitoring, prognosis, and risk assessment. As epigenetic aberrations are reversible, their correction has emerged as a promising therapeutic target.
Collapse
Affiliation(s)
- Ewa Brzeziańska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska St. 251, 92-213 Lodz, Poland.
| | | | | |
Collapse
|
223
|
Ludgate JL, Le Mée G, Fukuzawa R, Rodger EJ, Weeks RJ, Reeve AE, Morison IM. Global demethylation in loss of imprinting subtype of Wilms tumor. Genes Chromosomes Cancer 2012; 52:174-84. [PMID: 23074036 DOI: 10.1002/gcc.22017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/17/2012] [Indexed: 12/31/2022] Open
Abstract
Epigenetic abnormalities at the IGF2/H19 locus play a key role in the onset of Wilms tumor. These tumors can be classified into three molecular subtypes depending on the events occurring at this locus: loss of imprinting (LOI), loss of heterozygosity (LOH), or retention of imprinting (ROI). As IGF2 LOI is a consequence of aberrant methylation, we hypothesized that this subtype of Wilms tumors might display global abnormalities of methylation. We therefore analyzed the methylation status of satellite DNA, as a surrogate for global methylation in 50 Wilms tumor patients. Satellite methylation was quantified by a methylation-sensitive quantitative PCR. We confirmed hypomethylation of both satellite α (Sat α) and satellite 2 (Sat 2) DNA in Wilms tumor samples compared with normal kidney. In addition, we found that LOI tumors, unlike ROI or LOH ones, showed concordant hypomethylation of both Sat α and Sat 2 DNA. This would suggest that the LOI subtype of Wilms tumor, which unlike other subtypes results from an epimutation, has a global deregulation of methylation mechanisms.
Collapse
Affiliation(s)
- Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
224
|
Lange NE, Sordillo J, Tarantini L, Bollati V, Sparrow D, Vokonas P, Zanobetti A, Schwartz J, Baccarelli A, Litonjua AA, DeMeo DL. Alu and LINE-1 methylation and lung function in the normative ageing study. BMJ Open 2012; 2:e001231. [PMID: 23075571 PMCID: PMC3488751 DOI: 10.1136/bmjopen-2012-001231] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/06/2012] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To investigate the association between methylation of transposable elements Alu and long-interspersed nuclear elements (LINE-1) and lung function. DESIGN Cohort study. SETTING Outpatient Veterans Administration facilities in greater Boston, Massachusetts, USA. PARTICIPANTS Individuals from the Veterans Administration Normative Aging Study, a longitudinal study of aging in men, evaluated between 1999 and 2007. The majority (97%) were white. PRIMARY AND SECONDARY OUTCOME MEASURES Primary predictor was methylation, assessed using PCR-pyrosequencing after bisulphite treatment. Primary outcome was lung function as assessed by spirometry, performed according to American Thoracic Society/European Respiratory Society guidelines at the same visit as the blood draws. RESULTS In multivariable models adjusted for age, height, body mass index (BMI), pack-years of smoking, current smoking and race, Alu hypomethylation was associated with lower forced expiratory volume in 1 s (FEV(1)) (β=28 ml per 1% change in Alu methylation, p=0.017) and showed a trend towards association with a lower forced vital capacity (FVC) (β=27 ml, p=0.06) and lower FEV(1)/FVC (β=0.3%, p=0.058). In multivariable models adjusted for age, height, BMI, pack-years of smoking, current smoking, per cent lymphocytes, race and baseline lung function, LINE-1 hypomethylation was associated with more rapid decline of FEV(1) (β=6.9 ml/year per 1% change in LINE-1 methylation, p=0.005) and of FVC (β=9.6 ml/year, p=0.002). CONCLUSIONS In multiple regression analysis, Alu hypomethylation was associated with lower lung function, and LINE-1 hypomethylation was associated with more rapid lung function decline in a cohort of older and primarily white men from North America. Future studies should aim to replicate these findings and determine if Alu or LINE-1 hypomethylation may be due to specific and modifiable environmental exposures.
Collapse
Affiliation(s)
- Nancy E Lange
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine Harvard Medical School, Boston, Massachusetts, USA
| | - Joanne Sordillo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine Harvard Medical School, Boston, Massachusetts, USA
| | - Letizia Tarantini
- Department of Environmental and Occupational Health, Center of Molecular and Genetic Epidemiology, Università degli Studi di Milano and IRCCS Maggiore Policlinico Hospital, Milan, Italy
| | - Valentina Bollati
- Department of Environmental and Occupational Health, Center of Molecular and Genetic Epidemiology, Università degli Studi di Milano and IRCCS Maggiore Policlinico Hospital, Milan, Italy
| | - David Sparrow
- Veterans Administration Boston Healthcare System and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Pantel Vokonas
- Veterans Administration Boston Healthcare System and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Andrea Baccarelli
- Department of Environmental and Occupational Health, Center of Molecular and Genetic Epidemiology, Università degli Studi di Milano and IRCCS Maggiore Policlinico Hospital, Milan, Italy
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine Harvard Medical School, Boston, Massachusetts, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
225
|
Tommasi S, Zheng A, Yoon JI, Li AX, Wu X, Besaratinia A. Whole DNA methylome profiling in mice exposed to secondhand smoke. Epigenetics 2012; 7:1302-14. [PMID: 23051858 DOI: 10.4161/epi.22453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | | | | | |
Collapse
|
226
|
Kim JH, Karnovsky A, Mahavisno V, Weymouth T, Pande M, Dolinoy DC, Rozek LS, Sartor MA. LRpath analysis reveals common pathways dysregulated via DNA methylation across cancer types. BMC Genomics 2012; 13:526. [PMID: 23033966 PMCID: PMC3505188 DOI: 10.1186/1471-2164-13-526] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/27/2012] [Indexed: 12/31/2022] Open
Abstract
Background The relative contribution of epigenetic mechanisms to carcinogenesis is not well understood, including the extent to which epigenetic dysregulation and somatic mutations target similar genes and pathways. We hypothesize that during carcinogenesis, certain pathways or biological gene sets are commonly dysregulated via DNA methylation across cancer types. The ability of our logistic regression-based gene set enrichment method to implicate important biological pathways in high-throughput data is well established. Results We developed a web-based gene set enrichment application called LRpath with clustering functionality that allows for identification and comparison of pathway signatures across multiple studies. Here, we employed LRpath analysis to unravel the commonly altered pathways and other gene sets across ten cancer studies employing DNA methylation data profiled with the Illumina HumanMethylation27 BeadChip. We observed a surprising level of concordance in differential methylation across multiple cancer types. For example, among commonly hypomethylated groups, we identified immune-related functions, peptidase activity, and epidermis/keratinocyte development and differentiation. Commonly hypermethylated groups included homeobox and other DNA-binding genes, nervous system and embryonic development, and voltage-gated potassium channels. For many gene sets, we observed significant overlap in the specific subset of differentially methylated genes. Interestingly, fewer DNA repair genes were differentially methylated than expected by chance. Conclusions Clustering analysis performed with LRpath revealed tightly clustered concepts enriched for differential methylation. Several well-known cancer-related pathways were significantly affected, while others were depleted in differential methylation. We conclude that DNA methylation changes in cancer tend to target a subset of the known cancer pathways affected by genetic aberrations.
Collapse
Affiliation(s)
- Jung H Kim
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
AIM To determine global DNA methylation in paired hepatocellular carcinoma (HCC) samples using several different assays and explore the correlations between hypomethylation and clinical parameters and biomarkers, including that of aflatoxin B(1) exposure. METHODS Using the radio labeled methyl acceptance assay as a measure of global hypomethylation, as well as two repetitive elements, including satellite 2 (Sat2) by MethyLight and long interspersed nucleotide elements (LINE1), by pyrosequencing. RESULTS By all three assays, mean methylation levels in tumor tissues were significantly lower than that in adjacent tissues. Methyl acceptance assay log (mean ± SD) disintegrations/min/ng DNA are 70.0 ± 54.8 and 32.4 ± 15.6, respectively, P = 0.040; percent methylation of Sat2 42.2 ± 55.1 and 117.9 ± 88.8, respectively, P < 0.0001 and percent methylation LINE1 48.6 ± 14.8 and 71.7 ± 1.4, respectively, P < 0.0001. Aflatoxin B(1)-albumin (AFB(1)-Alb) adducts, a measure of exposure to this dietary carcinogen, were inversely correlated with LINE1 methylation (r = -0.36, P = 0.034). CONCLUSION Consistent hypomethylation in tumor compared to adjacent tissue was found by the three different methods. AFB(1) exposure is associated with DNA global hypomethylation, suggesting that chemical carcinogens may influence epigenetic changes in humans.
Collapse
|
228
|
Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor suppressor genes in ovarian cancer. Exp Ther Med 2012; 4:1092-1096. [PMID: 23226780 PMCID: PMC3494110 DOI: 10.3892/etm.2012.715] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022] Open
Abstract
Aberrant methylation of gene promoter regions is one of the mechanisms for inactivation of tumor suppressor genes in human malignancies. In this study, the methylation pattern of 24 tumor suppressor genes was analyzed in 75 samples of ovarian cancer using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assay. Of the 24 tumor suppressor genes examined, aberrant methylation was observed in 17. The three most frequently methylated genes were CDKN2B, CDH13 and RASSF1, followed by ESR1 and MLH1. Methylation frequencies ranged from 1.3% for CDKN2A, RARβ, CASP8, VHL and TP73 to 24% for CDKN2B. The corresponding normal DNA from each patient was also investigated. Methylation was detected in tumors, although not in normal tissues, with the exception of two samples, indicating aberrant methylation in tumors. Clear cell carcinoma samples exhibited a higher frequency of CDKN2B promoter hypermethylation compared to those of other histological types (P=0.05). Our data indicate that methylation of the CDKN2B gene is a frequent event in ovarian carcinogenesis and that analysis of only three genes is sufficient to detect the presence of methylation in 35% of ovarian cancer cases. However, more studies using a much larger sample size are needed to define the potential role of DNA methylation as a marker for ovarian cancer.
Collapse
Affiliation(s)
- Filiz Ozdemir
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty
| | | | | | | | | |
Collapse
|
229
|
Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, Qi YT, Xu Q, Li W, Lu B, Peiper SS, Jiang BH, Liu LZ. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 2012; 5:3-13. [PMID: 22935141 DOI: 10.1093/jmcb/mjs049] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of microRNAs is a common feature in human cancers, including breast cancer (BC). Here we describe the epigenetic regulation of miR-148a and miR-152 and their impact on BC cells. Due to the hypermethylation of CpG island, the expression levels of both miR-148a and miR-152 (miR-148a/152) are decreased in BC tissues and cells. DNMT1, the DNA methyltransferase 1 for the maintenance methylation, is aberrantly up-regulated in BC and its overexpression is responsible for hypermethylation of miR-148a and miR-152 promoters. Intriguingly, we found that DNMT1 expression, which is one of the targets of miR-148a/152, is inversely correlated with the expression levels of miR-148a/152 in BC tissues. Those results lead us to propose a negative feedback regulatory loop between miR-148a/152 and DNMT1 in BC. More importantly, we demonstrate that IGF-IR and IRS1, often overexpressed in BC, are two novel targets of miR-148a/152. Overexpression of miR-148a or miR-152 significantly inhibits BC cell proliferation, colony formation, and tumor angiogenesis via targeting IGF-IR and IRS1 and suppressing their downstream AKT and MAPK/ERK signaling pathways. Our results suggest a novel miR-148a/152-DNMT1 regulatory circuit and reveal that miR-148a and miR-152 act as tumor suppressors by targeting IGF-IR and IRS1, and that restoration of miR-148a/152 expression may provide a strategy for therapeutic application to treat BC patients.
Collapse
Affiliation(s)
- Qing Xu
- State Key Lab of Reproductive Medicine, and Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Li L, Choi JY, Lee KM, Sung H, Park SK, Oze I, Pan KF, You WC, Chen YX, Fang JY, Matsuo K, Kim WH, Yuasa Y, Kang D. DNA methylation in peripheral blood: a potential biomarker for cancer molecular epidemiology. J Epidemiol 2012; 22:384-94. [PMID: 22863985 PMCID: PMC3798632 DOI: 10.2188/jea.je20120003] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aberrant DNA methylation is associated with cancer development and progression. There are several types of specimens from which DNA methylation pattern can be measured and evaluated as an indicator of disease status (from normal biological process to pathologic condition) and even of pharmacologic response to therapy. Blood-based specimens such as cell-free circulating nucleic acid and DNA extracted from leukocytes in peripheral blood may be a potential source of noninvasive cancer biomarkers. In this article, we describe the characteristics of blood-based DNA methylation from different biological sources, detection methods, and the factors affecting DNA methylation. We provide a comprehensive literature review of blood-based DNA methylation as a cancer biomarker and focus on the study of DNA methylation using peripheral blood leukocytes. Although DNA methylation patterns measured in peripheral blood have great potential to be useful and informative biomarkers of cancer risk and prognosis, large systematic and unbiased prospective studies that consider biological plausibility and data analysis issues will be needed in order to develop a clinically feasible blood-based assay.
Collapse
Affiliation(s)
- Lian Li
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Lung cancer and interstitial lung diseases: a systematic review. Pulm Med 2012; 2012:315918. [PMID: 22900168 PMCID: PMC3414065 DOI: 10.1155/2012/315918] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 12/21/2022] Open
Abstract
Interstitial lung diseases (ILDs) represent a heterogeneous group of more than two hundred diseases of either known or unknown etiology with different pathogenesis and prognosis. Lung cancer, which is the major cause of cancer death in the developed countries, is mainly attributed to cigarette smoking and exposure to inhaled carcinogens. Different studies suggest a link between ILDs and lung cancer, through different pathogenetic mechanisms, such as inflammation, coagulation, dysregulated apoptosis, focal hypoxia, activation, and accumulation of myofibroblasts as well as extracellular matrix accumulation. This paper reviews current evidence on the association between lung cancer and interstitial lung diseases such as idiopathic pulmonary fibrosis, sarcoidosis, systemic sclerosis, dermatomyositis/polymyositis, rheumatoid arthritis, systemic lupus erythematosus, and pneumoconiosis.
Collapse
|
232
|
Lindqvist BM, Farkas SA, Wingren S, Nilsson TK. DNA methylation pattern of the SLC25A43 gene in breast cancer. Epigenetics 2012; 7:300-6. [PMID: 22430806 DOI: 10.4161/epi.7.3.19064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Solute carrier family 25A member 43 (SLC25A43) gene is a putative tumor suppressor gene that undergoes loss of heterozygosity (LOH) in human epidermal growth factor receptor 2 (HER2) positive breast cancer. Also, knockdown of SLC25A43 in cell lines influences cell turnover and metabolism. Absence of mutations in this gene in breast cancers prompted us to study methylation as an alternate mechanism for gene inactivation of this X encoded gene. Quantification of CpG site methylation using pyrosequencing was performed upstream of the SLC25A43 gene and at its 5' end in a cohort of breast tumor tissues (n = 80, HER2 positive or negative) with different SLC25A43 gene deletion status. Compared with control tissue, cancer tissues had lower levels of methylation at the 5' and 3' shores of the gene. Cancer tissues with no deletion in the SLC25A43 gene (Del (-)) had higher methylation in the CpG island (CGI) of the gene than cancers carrying the deletion (Del (+)). Methylation in the CGI of the SLC25A43 gene was negatively correlated with age at diagnosis. In HER2 positive breast cancer, ER negativity and lymph node positivity was associated with higher methylation in the CGI and in the adjacent shores of this gene. Our results suggest that methylation in the CGI of the SLC25A43 gene could be an alternate mechanism of gene silencing in the absence of LOH. Also, associations between site-specific methylation and clinicopathological parameters suggest that epigenetic changes in SLC25A43 gene could be of importance in breast carcinogenesis.
Collapse
|
233
|
Linabery AM, Johnson KJ, Ross JA. Childhood cancer incidence trends in association with US folic acid fortification (1986-2008). Pediatrics 2012; 129:1125-33. [PMID: 22614769 PMCID: PMC3362910 DOI: 10.1542/peds.2011-3418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Epidemiologic evidence indicates that prenatal vitamin supplementation reduces risk for some childhood cancers; however, a systematic evaluation of population-based childhood cancer incidence trends after fortification of enriched grain products with folic acid in the United States in 1996-1998 has not been previously reported. Here we describe temporal trends in childhood cancer incidence in association with US folic acid fortification. METHODS Using Surveillance, Epidemiology, and End Results program data (1986-2008), we calculated incidence rate ratios and 95% confidence intervals to compare pre- and postfortification cancer incidence rates in children aged 0 to 4 years. Incidence trends were also evaluated by using joinpoint and loess regression models. RESULTS From 1986 through 2008, 8829 children aged 0 to 4 years were diagnosed with malignancies, including 3790 and 3299 in utero during the pre- and postfortification periods, respectively. Pre- and postfortification incidence rates were similar for all cancers combined and for most specific cancer types. Rates of Wilms tumor (WT), primitive neuroectodermal tumors (PNETs), and ependymomas were significantly lower postfortification. Joinpoint regression models detected increasing WT incidence from 1986 through 1997 followed by a sizable decline from 1997 through 2008, and increasing PNET incidence from 1986 through 1993 followed by a sharp decrease from 1993 through 2008. Loess curves indicated similar patterns. CONCLUSIONS These results provide support for a decrease in WT and possibly PNET incidence, but not other childhood cancers, after US folic acid fortification.
Collapse
Affiliation(s)
- Amy M. Linabery
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kimberly J. Johnson
- Brown School, Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Julie A. Ross
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota;,University of Minnesota Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
234
|
Zhang FF, Santella RM, Wolff M, Kappil MA, Markowitz SB, Morabia A. White blood cell global methylation and IL-6 promoter methylation in association with diet and lifestyle risk factors in a cancer-free population. Epigenetics 2012; 7:606-14. [PMID: 22531363 DOI: 10.4161/epi.20236] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Altered levels of global DNA methylation and gene silencing through methylation of promoter regions can impact cancer risk, but little is known about their environmental determinants. We examined the association between lifestyle factors and levels of global genomic methylation and IL-6 promoter methylation in white blood cell DNA of 165 cancer-free subjects, 18-78 years old, enrolled in the COMIR (Commuting Mode and Inflammatory Response) study, New York, 2009-2010. Besides self-administrated questionnaires on diet and physical activity, we measured weight and height, white blood cell (WBC) counts, plasma levels of high sensitivity C-reactive protein (hs-CRP), and genomic (LINE-1) and gene-specific methylation (IL-6) by pyrosequencing in peripheral blood WBC. Mean levels of LINE-1 and IL-6 promoter methylation were 78.2% and 57.1%, respectively. In multivariate linear regression models adjusting for age, gender, race/ethnicity, body mass index, diet, physical activity, WBC counts and CRP, only dietary folate intake from fortified foods was positively associated with LINE-1 methylation. Levels of IL-6 promoter methylation were not significantly correlated with age, gender, race/ethnicity, body mass index, physical activity or diet, including overall dietary patterns and individual food groups and nutrients. There were no apparent associations between levels of methylation and inflammation markers such as WBC counts and hs-CRP. Overall, among several lifestyle factors examined in association with DNA methylation, only dietary folate intake from fortification was associated with LINE-1 methylation. The long-term consequence of folate fortification on DNA methylation needs to be further evaluated in longitudinal settings.
Collapse
Affiliation(s)
- Fang Fang Zhang
- Department of Nutrition Science; Friedman School of Nutrition Science and Policy; Tufts University; Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
235
|
Zhang YJ, Wu HC, Yazici H, Yu MW, Lee PH, Santella RM. Global hypomethylation in hepatocellular carcinoma and its relationship to aflatoxin B(1) exposure. World J Hepatol 2012; 4:169-75. [PMID: 22666524 PMCID: PMC3365436 DOI: 10.4254/wjh.v4.i5.169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/02/2012] [Accepted: 04/27/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To determine global DNA methylation in paired hepatocellular carcinoma (HCC) samples using several different assays and explore the correlations between hypomethylation and clinical parameters and biomarkers, including that of aflatoxin B(1) exposure. METHODS Using the radio labeled methyl acceptance assay as a measure of global hypomethylation, as well as two repetitive elements, including satellite 2 (Sat2) by MethyLight and long interspersed nucleotide elements (LINE1), by pyrosequencing. RESULTS By all three assays, mean methylation levels in tumor tissues were significantly lower than that in adjacent tissues. Methyl acceptance assay log (mean ± SD) disintegrations/min/ng DNA are 70.0 ± 54.8 and 32.4 ± 15.6, respectively, P = 0.040; percent methylation of Sat2 42.2 ± 55.1 and 117.9 ± 88.8, respectively, P < 0.0001 and percent methylation LINE1 48.6 ± 14.8 and 71.7 ± 1.4, respectively, P < 0.0001. Aflatoxin B(1)-albumin (AFB(1)-Alb) adducts, a measure of exposure to this dietary carcinogen, were inversely correlated with LINE1 methylation (r = -0.36, P = 0.034). CONCLUSION Consistent hypomethylation in tumor compared to adjacent tissue was found by the three different methods. AFB(1) exposure is associated with DNA global hypomethylation, suggesting that chemical carcinogens may influence epigenetic changes in humans.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Yu-Jing Zhang, Hui-Chen Wu, Regina M Santella, Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, 630 W 168 St., New York, NY 10032, United States
| | | | | | | | | | | |
Collapse
|
236
|
Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential. PLoS One 2012; 7:e37009. [PMID: 22615872 PMCID: PMC3352860 DOI: 10.1371/journal.pone.0037009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/11/2012] [Indexed: 01/07/2023] Open
Abstract
Although, increased oxidative stress and hypomethylation of long interspersed nuclear element-1 (LINE-1) associate with bladder cancer (BCa) development, the relationship between these alterations is unknown. We evaluated the oxidative stress and hypomethylation of the LINE-1 in 61 BCa patients and 45 normal individuals. To measure the methylation levels and to differentiate the LINE-1 loci into hypermethylated, partially methylated and hypomethylated, peripheral blood cells, urinary exfoliated cells and cancerous tissues were evaluated by combined bisulfite restriction analysis PCR. The urinary total antioxidant status (TAS) and plasma protein carbonyl content were determined. The LINE-1 methylation levels and patterns, especially hypomethylated loci, in the blood and urine cells of the BCa patients were different from the levels and patterns in the healthy controls. The urinary TAS was decreased, whereas the plasma protein carbonyl content was increased in the BCa patients relative to the controls. A positive correlation between the methylation of LINE-1 in the blood-derived DNA and urinary TAS was found in both the BCa and control groups. The urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content provided the best diagnostic potential for BCa prediction. Based on post-diagnostic samples, the combination test improved the diagnostic power to a sensitivity of 96% and a specificity of 96%. In conclusion, decreased LINE-1 methylation is associated with increased oxidative stress both in healthy and BCa subjects across the various tissue types, implying a dose-response association. Increases in the LINE-1 hypomethylation levels and the number of hypomethylated loci in both the blood- and urine-derived cells and increase in the oxidative stress were found in the BCa patients. The combination test of the urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content may be useful for BCa screening and monitoring of treatment.
Collapse
|
237
|
Hunter A, Spechler PA, Cwanger A, Song Y, Zhang Z, Ying GS, Hunter AK, Dezoeten E, Dunaief JL. DNA methylation is associated with altered gene expression in AMD. Invest Ophthalmol Vis Sci 2012; 53:2089-105. [PMID: 22410570 DOI: 10.1167/iovs.11-8449] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Evidence suggests oxidative stress plays a role in the disease. To assess the potential contribution of epigenetic regulation of antioxidant genes relevant to AMD pathogenesis, we evaluated DNA methylation, a tissue-specific genetic modulation that affects gene expression. METHODS Using the Infinium HumanMethylation27 Illumina platform, we performed DNA bisulfite sequencing to compare the methylation status in postmortem retina pigment epithelium (RPE)/choroid between patients with AMD and age-matched controls. Gene expression was assessed with the Affymetrix Exon Array. TaqMan gene expression assays were used for relative quantification (RT-PCR) confirmation of the expression array results: Glutathione S-transferase isoform mu1 (GSTM1) and mu5 (GSTM5) promoter methylation was confirmed by CpG island bisulfite pyrosequencing. To assess protein levels and localization, we used Western analysis, immunohistochemistry, and immunofluorescence with murine and human samples. RESULTS The mRNA levels of GSTM1 and GSTM5 were significantly reduced in AMD versus age-matched controls in RPE/choroid and neurosensory retina (NSR), which corresponded to hypermethylation of the GSTM1 promoter. mRNA and protein levels were decreased (RPE to a greater extent than NSR) in AMD postmortem samples, irrespective of age. Immunohistochemistry and immunofluorescence confirm the presence of the enzymes in the NSR and RPE. CONCLUSIONS Comparison of DNA methylation, together with mRNA levels, revealed significant differences between AMD versus normal retinas. The evidence presented suggests that GSTM1 and GSTM5 undergo epigenetic repression in AMD RPE/choroid, which may increase susceptibility to oxidative stress in AMD retinas.
Collapse
Affiliation(s)
- Allan Hunter
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
DNA hypomethylation was the initial epigenetic abnormality recognized in human tumors. However, for several decades after its independent discovery by two laboratories in 1983, it was often ignored as an unwelcome complication, with almost all of the attention on the hypermethylation of promoters of genes that are silenced in cancers (e.g., tumor-suppressor genes). Because it was subsequently shown that global hypomethylation of DNA in cancer was most closely associated with repeated DNA elements, cancer linked-DNA hypomethylation continued to receive rather little attention. DNA hypomethylation in cancer can no longer be considered an oddity, because recent high-resolution genome-wide studies confirm that DNA hypomethylation is the almost constant companion to hypermethylation of the genome in cancer, just usually (but not always) in different sequences. Methylation changes at individual CpG dyads in cancer can have a high degree of dependence not only on the regional context, but also on neighboring sites. DNA demethylation during carcinogenesis may involve hemimethylated dyads as intermediates, followed by spreading of the loss of methylation on both strands. In this review, active demethylation of DNA and the relationship of cancer-associated DNA hypomethylation to cancer stem cells are discussed. Evidence is accumulating for the biological significance and clinical relevance of DNA hypomethylation in cancer, and for cancer-linked demethylation and de novo methylation being highly dynamic processes.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Hayward Genetics Program, Department of Biochemistry, Tulane Cancer Center, Tulane Medical School, 1430 TulaneAvenue, New Orleans, LA 70112, USA.
| |
Collapse
|
239
|
Rabinovich EI, Kapetanaki MG, Steinfeld I, Gibson KF, Pandit KV, Yu G, Yakhini Z, Kaminski N. Global methylation patterns in idiopathic pulmonary fibrosis. PLoS One 2012; 7:e33770. [PMID: 22506007 PMCID: PMC3323629 DOI: 10.1371/journal.pone.0033770] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 02/16/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is characterized by profound changes in the lung phenotype including excessive extracellular matrix deposition, myofibroblast foci, alveolar epithelial cell hyperplasia and extensive remodeling. The role of epigenetic changes in determining the lung phenotype in IPF is unknown. In this study we determine whether IPF lungs exhibit an altered global methylation profile. METHODOLOGY/PRINCIPAL FINDINGS Immunoprecipitated methylated DNA from 12 IPF lungs, 10 lung adenocarcinomas and 10 normal histology lungs was hybridized to Agilent human CpG Islands Microarrays and data analysis was performed using BRB-Array Tools and DAVID Bioinformatics Resources software packages. Array results were validated using the EpiTYPER MassARRAY platform for 3 CpG islands. 625 CpG islands were differentially methylated between IPF and control lungs with an estimated False Discovery Rate less than 5%. The genes associated with the differentially methylated CpG islands are involved in regulation of apoptosis, morphogenesis and cellular biosynthetic processes. The expression of three genes (STK17B, STK3 and HIST1H2AH) with hypomethylated promoters was increased in IPF lungs. Comparison of IPF methylation patterns to lung cancer or control samples, revealed that IPF lungs display an intermediate methylation profile, partly similar to lung cancer and partly similar to control with 402 differentially methylated CpG islands overlapping between IPF and cancer. Despite their similarity to cancer, IPF lungs did not exhibit hypomethylation of long interspersed nuclear element 1 (LINE-1) retrotransposon while lung cancer samples did, suggesting that the global hypomethylation observed in cancer was not typical of IPF. CONCLUSIONS/SIGNIFICANCE Our results provide evidence that epigenetic changes in IPF are widespread and potentially important. The partial similarity to cancer may signify similar pathogenetic mechanisms while the differences constitute IPF or cancer specific changes. Elucidating the role of these specific changes will potentially allow better understanding of the pathogenesis of IPF.
Collapse
Affiliation(s)
- Einat I. Rabinovich
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Maria G. Kapetanaki
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Israel Steinfeld
- Department of Computer Sciences, Technion – Israel Institute of Technology, Haifa, Israel
| | - Kevin F. Gibson
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kusum V. Pandit
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Guoying Yu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Zohar Yakhini
- Department of Computer Sciences, Technion – Israel Institute of Technology, Haifa, Israel
- Agilent Laboratories, Tel-Aviv, Israel
| | - Naftali Kaminski
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
240
|
Hamid A. Folate malabsorption and its influence on DNA methylation during cancer development. DNA Cell Biol 2012. [PMID: 22468673 DOI: 10.1089/dna.2011.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The folate transport across the epithelial of the intestine, colon, kidney, and liver is essential for folate homeostasis. The relative localization of transporters in membranes is an important determinant for the vectorial flow of substrates across the epithelia. Folate deficiency is a highly prevalent vitamin deficiency in the world, and alcohol ingestion has been the major contributor. It can develop because of folate malabsorption in tissues, increased renal excretion dietary inadequacy, and altered hepatobiliary metabolism. Additionally, folate-mediated one-carbon metabolism is important for various cellular processes, including DNA synthesis and methylation. In this regard, the contribution of alcohol-associated and dietary folate deficiency to methylation patterns is under intense investigation, especially in cancer. The epigenetic events have increasing relevance in the development of strategies for early diagnosis, prevention, and treatment of cancer.
Collapse
Affiliation(s)
- Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, CSIR, Jammu, India
| |
Collapse
|
241
|
Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 2012; 7:326-34. [PMID: 22419065 DOI: 10.4161/epi.19547] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most pathogenic mitochondrial DNA (mtDNA) mutations induce defects in mitochondrial oxidative phosphorylation (OXPHOS). However, phenotypic effects of these mutations show a large degree of variation depending on the tissue affected. These differences are difficult to reconcile with OXPHOS as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction. In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role.
Collapse
Affiliation(s)
- Sheroy Minocherhomji
- Wilhelm Johannsen Centre for Functional Genome Research, Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
242
|
Genome wide analysis of acute myeloid leukemia reveal leukemia specific methylome and subtype specific hypomethylation of repeats. PLoS One 2012; 7:e33213. [PMID: 22479372 PMCID: PMC3315563 DOI: 10.1371/journal.pone.0033213] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/09/2012] [Indexed: 12/13/2022] Open
Abstract
Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq) has the potential to identify changes in DNA methylation important in cancer development. In order to understand the role of epigenetic modulation in the development of acute myeloid leukemia (AML) we have applied MeDIP-seq to the DNA of 12 AML patients and 4 normal bone marrows. This analysis revealed leukemia-associated differentially methylated regions that included gene promoters, gene bodies, CpG islands and CpG island shores. Two genes (SPHKAP and DPP6) with significantly methylated promoters were of interest and further analysis of their expression showed them to be repressed in AML. We also demonstrated considerable cytogenetic subtype specificity in the methylomes affecting different genomic features. Significantly distinct patterns of hypomethylation of certain interspersed repeat elements were associated with cytogenetic subtypes. The methylation patterns of members of the SINE family tightly clustered all leukemic patients with an enrichment of Alu repeats with a high CpG density (P<0.0001). We were able to demonstrate significant inverse correlation between intragenic interspersed repeat sequence methylation and gene expression with SINEs showing the strongest inverse correlation (R2 = 0.7). We conclude that the alterations in DNA methylation that accompany the development of AML affect not only the promoters, but also the non-promoter genomic features, with significant demethylation of certain interspersed repeat DNA elements being associated with AML cytogenetic subtypes. MeDIP-seq data were validated using bisulfite pyrosequencing and the Infinium array.
Collapse
|
243
|
Specific changes in the expression of imprinted genes in prostate cancer--implications for cancer progression and epigenetic regulation. Asian J Androl 2012; 14:436-50. [PMID: 22367183 DOI: 10.1038/aja.2011.160] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation, enhancer of zeste homologue 2 (EZH2) overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer. DNA methylation, EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes. Although it is therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes, expression changes in cancerous prostates are only well documented for insulin-like growth factor 2 (IGF2). A literature and database survey on imprinted genes in prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic mechanisms. Instead, selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes, which might function in the prostate to limit cell growth induced via the PI3K/Akt pathway, modulate androgen responses and regulate differentiation. Whereas dysregulation of IGF2 may constitute an early change in prostate carcinogenesis, inactivation of this imprinted gene network is rather associated with cancer progression.
Collapse
|
244
|
Wang BX, Yin BL, He B, Chen C, Zhao M, Zhang WX, Xia ZK, Pan YZ, Tang JQ, Zhou XM, Yin N. Overexpression of DNA damage-induced 45 α gene contributes to esophageal squamous cell cancer by promoter hypomethylation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:11. [PMID: 22313682 PMCID: PMC3364148 DOI: 10.1186/1756-9966-31-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/08/2012] [Indexed: 01/23/2023]
Abstract
Background Environmental factors-induced dysfunction of esophageal squamous epithelium, including genomic DNA impairment and apoptosis, play an important role in the pathogenesis of esophageal squamous cell cancer. DNA damage-induced 45α (GADD45α) has been found promoting DNA repair and removing methylation marker, Therefore, in this study we will investigate whether GADD45α expression is induced and its mechanism in esophageal squamous cell cancer. Methods Two human esophageal squamous cell lines (ESCC), ECA109 and KYSE510 were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS). Lipofectamine 2000 was used to transfect cells. mRNA level of GADD45α was measured by reverse transcription-quantitive PCR (RT-qPCR), protein level of GADD45α was detected by western blot and Immunohistochemistry. Global DNA methylation of tissue sample was measured using the Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek Group) and promoter methylation was measured by bisulfite sequencing. Results GADD45a mRNA and protein levels were increased significantly in tumor tissue than that in adjacent normal tissue. Hypomethylation of global genomic DNA and GADD45α promoter were found in ESCC. The cell sensitivity to Cisplatin DDP was decreased significantly in Eca109 and Kyse510 cells, in which GADD45α expression was down-regulated by RNA interference (RNAi). In addition, silence of GADD45a expression in ESCC cells inhibited proliferation and promoted apoptosis. Conclusion Overexpression of GADD45α gene is due to DNA hypomethylation in ESCC. GADD45α may be a protective factor in DDP chemotherapy for esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Bao xiang Wang
- Department of Cardiothoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Adriaens ME, Jaillard M, Eijssen LMT, Mayer CD, Evelo CTA. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies. BMC Genomics 2012; 13:42. [PMID: 22276688 PMCID: PMC3293711 DOI: 10.1186/1471-2164-13-42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. RESULTS We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. CONCLUSION T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially.
Collapse
Affiliation(s)
- Michiel E Adriaens
- Department of Bioinformatics-BiGCaT, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
246
|
Tse MY, Ashbury JE, Zwingerman N, King WD, Taylor SA, Pang SC. A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC Res Notes 2011; 4:565. [PMID: 22204640 PMCID: PMC3284418 DOI: 10.1186/1756-0500-4-565] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 12/28/2011] [Indexed: 12/28/2022] Open
Abstract
Background The methylation of DNA is recognized as a key mechanism in the regulation of genomic stability and evidence for its role in the development of cancer is accumulating. LINE-1 methylation status represents a surrogate measure of genome-wide methylation. Findings Using high resolution melt (HRM) curve analysis technology, we have established an in-tube assay that is linear (r > 0.9986) with a high amplification efficiency (90-105%), capable of discriminating between partcipant samples with small differences in methylation, and suitable for quantifying a wide range of LINE-1 methylation levels (0-100%)--including the biologically relevant range of 50-90% expected in human DNA. We have optimized this procedure to perform using 2 μg of starting DNA and 2 ng of bisulfite-converted DNA for each PCR reaction. Intra- and inter-assay coefficients of variation were 1.44% and 0.49%, respectively, supporting the high reproducibility and precision of this approach. Conclusions In summary, this is a completely linear, quantitative HRM PCR method developed for the measurement of LINE-1 methylation. This cost-efficient, refined and reproducible assay can be performed using minimal amounts of starting DNA. These features make our assay suitable for high throughput analysis of multiple samples from large population-based studies.
Collapse
Affiliation(s)
- M Yat Tse
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | |
Collapse
|
247
|
LINE-1 methylation levels in leukocyte DNA and risk of renal cell cancer. PLoS One 2011; 6:e27361. [PMID: 22076155 PMCID: PMC3208631 DOI: 10.1371/journal.pone.0027361] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/14/2011] [Indexed: 12/31/2022] Open
Abstract
Purpose Leukocyte global DNA methylation levels are currently being considered as biomarkers of cancer susceptibility and have been associated with risk of several cancers. In this study, we aimed to examine the association between long interspersed nuclear elements (LINE-1) methylation levels, as a biomarker of global DNA methylation in blood cell DNA, and renal cell cancer risk. Experimental Design LINE-1 methylation of bisulfite-converted genomic DNA isolated from leukocytes was quantified by pyrosequencing measured in triplicate, and averaged across 4 CpG sites. A total of 328 RCC cases and 654 controls frequency-matched(2∶1) on age(±5years), sex and study center, from a large case-control study conducted in Central and Eastern Europe were evaluated. Results LINE-1 methylation levels were significantly higher in RCC cases with a median of 81.97% (interquartile range[IQR]: 80.84–83.47) compared to 81.67% (IQR: 80.35–83.03) among controls (p = 0.003, Wilcoxon). Compared to the lowest LINE-1 methylation quartile(Q1), the adjusted ORs for increasing methylation quartiles were as follows: OR(Q2) = 1.84(1.20−2.81), OR(Q3) = 1.72(1.11−2.65) and OR(Q4) = 2.06(1.34−3.17), with a p-trend = 0.004. The association was stronger among current smokers (p-trend<0.001) than former or never smokers (p-interaction = 0.03). To eliminate the possibility of selection bias among controls, the relationship between LINE-1 methylation and smoking was evaluated and confirmed in a case-only analysis, as well. Conclusions Higher levels of LINE-1 methylation appear to be positively associated with RCC risk, particularly among current smokers. Further investigations using both post- and pre-diagnostic genomic DNA is warranted to confirm findings and will be necessary to determine whether the observed differences occur prior to, or as a result of carcinogenesis.
Collapse
|
248
|
Michels KB, Harris HR, Barault L. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 2011; 6:e25254. [PMID: 21980406 PMCID: PMC3182185 DOI: 10.1371/journal.pone.0025254] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/30/2011] [Indexed: 12/03/2022] Open
Abstract
Low birthweight, premature birth, intrauterine growth retardation, and maternal malnutrition have been related to an increased risk of cardiovascular disease, type 2 diabetes mellitus, obesity, and neuropsychiatric disorders later in life. Conversely, high birthweight has been linked to future risk of cancer. Global DNA methylation estimated by the methylation of repetitive sequences in the genome is an indicator of susceptibility to chronic diseases. We used data and biospecimens from an epigenetic birth cohort to explore the association between trajectories of fetal and maternal weight and LINE-1 methylation in 319 mother-child dyads. Newborns with low or high birthweight had significantly lower LINE-1 methylation levels in their cord blood compared to normal weight infants after adjusting for gestational age, sex of the child, maternal age at delivery, and maternal smoking during pregnancy (p = 0.007 and p = 0.036, respectively), but the magnitude of the difference was small. Infants born prematurely also had lower LINE-1 methylation levels in cord blood compared to term infants, and this difference, though small, was statistically significant (p = 0.004). We did not find important associations between maternal prepregnancy BMI or gestational weight gain and global methylation of the cord blood or fetal placental tissue. In conclusion, we found significant differences in cord blood LINE-1 methylation among newborns with low and high birthweight as well as among prematurely born infants. Future studies may elucidate whether chromosomal instabilities or other functional consequences of these changes contribute to the increased risk of chronic diseases among individuals with these characteristics.
Collapse
Affiliation(s)
- Karin B Michels
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
249
|
Langevin SM, Houseman EA, Christensen BC, Wiencke JK, Nelson HH, Karagas MR, Marsit CJ, Kelsey KT. The influence of aging, environmental exposures and local sequence features on the variation of DNA methylation in blood. Epigenetics 2011; 6:908-19. [PMID: 21617368 DOI: 10.4161/epi.6.7.16431] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to properly comprehend the epigenetic dysregulation that occurs during the course of disease, there is a need to characterize the epigenetic variability in healthy individuals that arises in response to aging and exposures, and to understand such variation within the biological context of the DNA sequence. We analyzed the methylation of 26,486 autosomal CpG loci in blood from 205 healthy subjects, using three complementary approaches to assess the association between methylation, age or exposures, and local sequence features, such as CpG island status, repeat sequences, location within a polycomb target gene or proximity to a transcription factor binding site. We clustered CpGs (1) using unsupervised recursively partitioned mixture modeling (RPMM) and (2) bioinformatically-informed methods, and (3) also employed a marginal model-based (non-clustering) approach. We observed associations between age and methylation and hair dye use and methylation, where the direction and magnitude was contingent on the local sequence features of the CpGs. Our results demonstrate that CpGs are differentially methylated dependent upon the genomic features of the sequence in which they are embedded, and that CpG methylation is associated with age and hair dye use in a CpG context-dependent manner in healthy individuals.
Collapse
Affiliation(s)
- Scott M Langevin
- Department of Community Health, Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Jin Y, Amaral A, McCann A, Brennan L. Homocysteine levels impact directly on epigenetic reprogramming in astrocytes. Neurochem Int 2011; 58:833-8. [PMID: 21419186 DOI: 10.1016/j.neuint.2011.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/16/2022]
Abstract
Although the neurotoxic effects of homocysteine have been well elucidated, the effects of homocysteine in astrocytes have received little attention until recently. Previously we have demonstrated that elevated levels of homocysteine caused significant metabolic changes and altered mitochondrial function in primary cultures of astrocytes. However, the mechanisms behind such alterations remain unclear. As homocysteine is a key metabolite in one-carbon metabolism the present study examined if the effects of homocysteine on astrocyte function are mediated through an epigenetic mechanism. Following exposure to homocysteine for 72 h, global DNA methylation and H3K9 acetylation were examined using flow cytometric analysis. Total DNA methyltransferase activity and protein levels of DNA methyltransferase 3B were measured. Exposure to homocysteine resulted in global DNA hypomethylation (p<0.05) and histone hyperacetylation (p<0.05). Total DNA methyltransferase activity significantly decreased following exposure to homocysteine (from 11.5 ± 3.9 to 6.0 ± 1.7OD/h/mg protein, p<0.01) which was accompanied by a significant reduction in protein levels of DNA methyltransferase 3B (p<0.05). Treatment of astrocytes with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, mimicked the functional changes induced by homocysteine. In conclusion, the results demonstrate significant epigenetic modifications following exposure to homocysteine in astrocytes and these changes seem to mediate functional alterations.
Collapse
Affiliation(s)
- Ying Jin
- UCD School of Agriculture, Food Science and Veterinary Medicine, Dublin 4, Ireland
| | | | | | | |
Collapse
|