201
|
Zhang Y, Lu L, Song F, Zou X, Liu Y, Zheng X, Qian J, Gu C, Huang P, Yang Y. Research progress on non-protein-targeted drugs for cancer therapy. J Exp Clin Cancer Res 2023; 42:62. [PMID: 36918935 PMCID: PMC10011800 DOI: 10.1186/s13046-023-02635-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Non-protein target drugs, especially RNA-based gene therapies for treating hereditary diseases, have been recognized worldwide. As cancer is an insurmountable challenge, no miracle drug is currently available. With the advancements in the field of biopharmaceuticals, research on cancer therapy has gradually focused on non-protein target-targeted drugs, especially RNA therapeutics, including oligonucleotide drugs and mRNA vaccines. This review mainly summarizes the clinical research progress in RNA therapeutics and highlights that appropriate target selection and optimized delivery vehicles are key factors in increasing the effectiveness of cancer treatment in vivo.
Collapse
Affiliation(s)
- Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China
| | - Lu Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China
| | - Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Chunyan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China. .,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
202
|
Fernandez C, Giorgees I, Goss E, Desaulniers JP. Effective carrier-free gene-silencing activity of sphingosine-modified siRNAs. Org Biomol Chem 2023; 21:2107-2117. [PMID: 36645381 DOI: 10.1039/d2ob02099h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA interference (RNAi) is a natural cellular process that silences the expression of target genes in a sequence-specific way by mediating targeted mRNA degradation. One of the main challenges in RNAi research is developing an effective career-free delivery system and targeting cells in the central nervous system (CNS). Recently, lipid-conjugated systems involving fatty acids have shown promising potential as safe and effective delivery systems of oligonucleotides to CNS cells due to their hydrophobic tails and interactions with the cell's hydrophobic membrane. Therefore, in this study, we are interested in creating career-free siRNA therapeutics for potential applications in drug delivery to the CNS. Here we explore different synthetic pathways of conjugating sphingolipids containing long-carbon chains to siRNA and assess their effectiveness as career-free delivery systems. In this project, a library of sphingosine-modified siRNAs was created, and their gene-silencing effect was evaluated in both the presence and absence of a transfection carrier. siRNAs modified with one or two sphingosine moieties resulted in dose-dependent gene knockdown while demonstrating promising results for their use as carrier-free agents. The IC50 values of single-modified siRNAs ranged from 49.9 nM to 670.7 nM, whereas double-modified siRNAs had IC50 values in the range of 49.9 nM to 66.4 nM. In conclusion, sphingosine-modified siRNAs show promising results in advancing carrier-free siRNA therapeutics.
Collapse
Affiliation(s)
- Charlene Fernandez
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada.
| | - Ifrodet Giorgees
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada.
| | - Eva Goss
- Synthose Inc., 50 Viceroy Road Unit 7, Concord, Ontario, L4K 3A7 Canada
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada.
| |
Collapse
|
203
|
Jones JD, Grassmyer KT, Kennedy RT, Koutmou KS, Maloney TD. Nuclease P1 Digestion for Bottom-Up RNA Sequencing of Modified siRNA Therapeutics. Anal Chem 2023; 95:4404-4411. [PMID: 36812429 DOI: 10.1021/acs.analchem.2c04902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
siRNA therapeutics provide a selective and powerful approach to reduce the expression of disease-causing genes. For regulatory approval, these modalities require sequence confirmation which is typically achieved by intact tandem mass spectrometry sequencing. However, this process produces highly complex spectra which are difficult to interpret and typically results in less than full sequence coverage. We sought to develop a bottom-up siRNA sequencing platform to ease sequencing data analysis and provide full sequence coverage. Analogous to bottom-up proteomics, this process requires chemical or enzymatic digestion to reduce the oligonucleotide length down to analyzable lengths, but siRNAs commonly contain modifications that inhibit the degradation process. We tested six digestion schemes for their feasibility to digest the 2' modified siRNAs and identified that nuclease P1 provides an effective digestion workflow. Using a partial digestion, nuclease P1 provides high 5' and 3' end sequence coverage with multiple overlapping digestion products. Additionally, this enzyme provides high-quality and highly reproducible RNA sequencing no matter the RNA phosphorothioate content, 2'-fluorination status, sequence, or length. Overall, we developed a robust enzymatic digestion scheme for bottom-up siRNA sequencing using nuclease P1, which can be implemented into existing sequence confirmation workflows.
Collapse
Affiliation(s)
- Joshua D Jones
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, Michigan 48109, United States.,Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Kathleen T Grassmyer
- Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, Michigan 48109, United States
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, Michigan 48109, United States
| | - Todd D Maloney
- Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
204
|
Li M, Yang J, Yao X, Li X, Xu Z, Tang S, Sun B, Lin S, Yang C, Liu J. Multifunctional Mesoporous Silica-Coated Gold Nanorods Mediate Mild Photothermal Heating-Enhanced Gene/Immunotherapy for Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15030854. [PMID: 36986715 PMCID: PMC10057058 DOI: 10.3390/pharmaceutics15030854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths in the world. It is urgent to search for safe and effective therapies to address the CRC crisis. The siRNA-based RNA interference targeted silencing of PD-L1 has extensive potential in CRC treatment but is limited by the lack of efficient delivery vectors. In this work, the novel cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs)/siPD-L1 co-delivery vectors AuNRs@MS/CpG ODN@PEG-bPEI (ASCP) were successfully prepared by two-step surface modification of CpG ODNs-loading and polyethylene glycol-branched polyethyleneimine-coating around mesoporous silica-coated gold nanorods. ASCP promoted dendritic cells (DCs) maturation by delivering CpG ODNs, exhibiting excellent biosafety. Next, mild photothermal therapy (MPTT) mediated by ASCP killed tumor cells and released tumor-associated antigens, further promoting DC maturation. Furthermore, ASCP exhibited mild photothermal heating-enhanced performance as gene vectors, resulting in an increased PD-L1 gene silencing effect. Enhanced DCs maturity and enhanced PD-L1 gene silencing significantly promoted the anti-tumor immune response. Finally, the combination of MPTT and mild photothermal heating-enhanced gene/immunotherapy effectively killed MC38 cells, leading to strong inhibition of CRC. Overall, this work provided new insights into the design of mild photothermal/gene/immune synergies for tumor therapy and may contribute to translational nanomedicine for CRC treatment.
Collapse
Affiliation(s)
- Meirong Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Jingyu Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinhuang Yao
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Xiang Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shiqi Tang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Bangxu Sun
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Suxia Lin
- Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518048, China
| | - Chengbin Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Correspondence: (C.Y.); (J.L.)
| | - Jia Liu
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
- Correspondence: (C.Y.); (J.L.)
| |
Collapse
|
205
|
Oba M, Shibuya M, Yamaberi Y, Yokoo H, Uchida S, Ueda A, Tanaka M. An Amphipathic Structure of a Dipropylglycine-Containing Helical Peptide with Sufficient Length Enables Safe and Effective Intracellular siRNA Delivery. Chem Pharm Bull (Tokyo) 2023; 71:250-256. [PMID: 36858531 DOI: 10.1248/cpb.c22-00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Amphipathic peptides composed of cationic amino acids and hydrophobic amino acids have cell-penetrating ability and are often used as a delivery tool for membrane-impermeable compounds. Small interfering RNA (siRNAs) are one of the delivery targets for such cell-penetrating peptides (CPPs). Cationic CPPs can associate with anionic siRNAs by electrostatic interactions resulting in the formation of nano-sized complexes, which can deliver siRNAs intracellularly. CPPs containing unnatural amino acids offer promising tools to siRNA delivery. However, the detailed structure-activity relationship in siRNA delivery has been rarely studied. In the current study, we designed peptides containing dipropylglycine (Dpg) and explored the cellular uptake and cytotoxicity of peptide/siRNA complexes. The amphipathic structure of the peptides played a key role in complexation with siRNAs and intracellular siRNA delivery. In the amphipathic peptides, cellular uptake of siRNA increased with increasing peptide length, but cytotoxicity was reduced. A peptide containing four Dpg exhibited an effective gene-silencing effect with small amounts of peptides without cytotoxicity in medium containing serum. These findings will be helpful for the design of novel CPPs for siRNA delivery.
Collapse
Affiliation(s)
- Makoto Oba
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Mika Shibuya
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Yuto Yamaberi
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Hidetomo Yokoo
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Satoshi Uchida
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Atsushi Ueda
- Graduate School of Biomedical Sciences, Nagasaki University
| | | |
Collapse
|
206
|
Vatish M, Powys VR, Cerdeira AS. Novel therapeutic and diagnostic approaches for preeclampsia. Curr Opin Nephrol Hypertens 2023; 32:124-133. [PMID: 36683536 DOI: 10.1097/mnh.0000000000000870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW This review will summarize recent findings relating to the diagnostic approach to preeclampsia and current avenues of research aimed at modifying the underlying disease process. RECENT FINDINGS Growing international consensus supports a broad preeclampsia definition that incorporates maternal end-organ and uteroplacental dysfunction. Recent evidence demonstrates that this definition better identifies women and babies at risk of adverse outcomes compared to the traditional definition of hypertension and proteinuria. Multiple studies have demonstrated the usefulness and cost-effectiveness of angiogenic biomarkers such as soluble fms-like tyrosine kinase-1 and placental growth factor as a clinical adjunct to diagnose and predict severity of preeclampsia associated outcomes. Current novel therapeutic approaches to preeclampsia target pathogenic pathways (e.g. antiangiogenesis) or downstream effects such as oxidative stress and nitric oxide. Recent findings relating to these promising candidates are discussed. Multicenter clinical trials are needed to evaluate their effectiveness and ability to improve fetal and maternal outcomes. SUMMARY We provide an updated framework of the current approaches to define and diagnose preeclampsia. Disease modifying therapies (in particular, targeting the angiogenic pathway) are being developed for the first time and promise to revolutionize the way we manage preeclampsia.
Collapse
Affiliation(s)
- Manu Vatish
- Nuffield Department of Women's Health and Reproductive Research, University of Oxford, Oxford
| | | | - Ana Sofia Cerdeira
- Nuffield Department of Women's Health and Reproductive Research, University of Oxford, Oxford
| |
Collapse
|
207
|
Zhang X, Hai L, Gao Y, Yu G, Sun Y. Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharm Sin B 2023; 13:903-915. [PMID: 36970213 PMCID: PMC10031258 DOI: 10.1016/j.apsb.2022.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/04/2022] [Accepted: 09/18/2022] [Indexed: 11/01/2022] Open
Abstract
We summarize the most important advances in RNA delivery and nanomedicine. We describe lipid nanoparticle-based RNA therapeutics and the impacts on the development of novel drugs. The fundamental properties of the key RNA members are described. We introduced recent advances in the nanoparticles to deliver RNA to defined targets, with a focus on lipid nanoparticles (LNPs). We review recent advances in biomedical therapy based on RNA drug delivery and state-of-the-art RNA application platforms, including the treatment of different types of cancer. This review presents an overview of current LNPs based RNA therapies in cancer treatment and provides deep insight into the development of future nanomedicines sophisticatedly combining the unparalleled functions of RNA therapeutics and nanotechnology.
Collapse
Affiliation(s)
- Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, MA, USA
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yibo Gao
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingli Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
208
|
Transforming Genes to Protect Against Liver Disease: Will siRNA-based Therapeutics Reduce the Need for Liver Transplantation? Transplantation 2023; 107:556-557. [PMID: 36808843 DOI: 10.1097/tp.0000000000004474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
209
|
Remmers RCPA, Neumann K. Reaching new lights: a review on photo-controlled nanomedicines and their in vivo evaluation. Biomater Sci 2023; 11:1607-1624. [PMID: 36727448 DOI: 10.1039/d2bm01621d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The selective and efficient delivery of bioactive molecules to sites of interest remains a formidable challenge in medicine. In recent years, it has been shown that stimuli-responsive drug delivery systems display several advantages over traditional drug administration such as an improved pharmacokinetic profile and the desirable ability to gain control over release. Light emerged as one of the most powerful stimuli due to its high biocompatibility, spatio-temporal control, and non-invasiveness. On the road to clinical translation, various chemical systems of high complexity have been reported with the aim to improve efficacy, safety, and versatility of drug delivery under complex biological conditions. For future research on the chemical design of such photo-controlled nanomedicines, it is essential to gain an understanding of their in vivo translation and efficiency. Here, we discuss photo-controlled nanomedicines that have been evaluated in vivo and provide an overview of the state-of-the-art that should guide future research design.
Collapse
Affiliation(s)
- Rik C P A Remmers
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
210
|
Gene knockdown in HaCaT cells by small interfering RNAs entrapped in grapefruit-derived extracellular vesicles using a microfluidic device. Sci Rep 2023; 13:3102. [PMID: 36813850 PMCID: PMC9947018 DOI: 10.1038/s41598-023-30180-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Small interfering RNAs (siRNAs) knockdown the expression of target genes by causing mRNA degradation and are a promising therapeutic modality. In clinical practice, lipid nanoparticles (LNPs) are used to deliver RNAs, such as siRNA and mRNA, into cells. However, these artificial nanoparticles are toxic and immunogenic. Thus, we focused on extracellular vesicles (EVs), natural drug delivery systems, for the delivery of nucleic acids. EVs deliver RNAs and proteins to specific tissues to regulate various physiological phenomena in vivo. Here, we propose a novel method for the preparation siRNAs encapsulated in EVs using a microfluidic device (MD). MDs can be used to generate nanoparticles, such as LNPs, by controlling flow rate to the device, but the loading of siRNAs into EVs using MDs has not been reported previously. In this study, we demonstrated a method for loading siRNAs into grapefruit-derived EVs (GEVs), which have gained attention in recent years for being plant-derived EVs developed using an MD. GEVs were collected from grapefruit juice using the one-step sucrose cushion method, and then GEVs-siRNA-GEVs were prepared using an MD device. The morphology of GEVs and siRNA-GEVs was observed using a cryogenic transmission electron microscope. Cellular uptake and intracellular trafficking of GEVs or siRNA-GEVs to human keratinocytes were evaluated by microscopy using HaCaT cells. The prepared siRNA-GEVs encapsulated 11% of siRNAs. Moreover, intracellular delivery of siRNA and gene suppression effects in HaCaT cells were achieved using these siRNA-GEVs. Our findings suggested that MDs can be used to prepare siRNA-EV formulations.
Collapse
|
211
|
Togawa H, Okubo T, Nonaka Y, Yamaguchi T, Obika S. Retention behavior of short double-stranded oligonucleotide and its potential impurities by anion-exchange chromatography under non-denaturing conditions. J Chromatogr A 2023; 1691:463808. [PMID: 36706652 DOI: 10.1016/j.chroma.2023.463808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Small interfering RNA (siRNA), consisting of two complementary single-stranded RNAs with overhanging bases, is being adopted as a potent and specific inhibitor of target gene expression. However, non-duplexed single strands and undesired double strands composed of impurities (e.g., n-1 mer) could be produced in addition to the target double strand in the siRNA manufacturing process. Compared to the liquid chromatography analysis of single strands, the analysis of the duplexes under non-denaturing conditions is challenging, since restricted chromatographic conditions are required to maintain the Watson-Crick hydrogen bonds. This study reports the analysis of double-stranded oligomers having approximately 20 base pairs with some overhanging bases as non-denatured forms by anion-exchange chromatography (AEX). Optimization of the chromatographic conditions could potentially achieve the adequate separation of excess single strands from the double strand. Non-optimal duplexes, such as duplexes with long overhangs or bulge structures, were prepared by intentionally deleting terminal or middle nucleotide(s) of either the sense or the antisense strand, and these non-optimal duplexes were eluted at different retention times in most of the cases. Interestingly, under alkaline chromatographic conditions (pH 9.0), non-optimal duplexes containing a shortmer tended to exhibit a stronger retention than their parent duplexes, although they possessed a less negative charge. This study demonstrated some retention behavior of double strands with overhangs by AEX under non-denaturing conditions.
Collapse
Affiliation(s)
- Hiroyuki Togawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; CERI Hita, Chemicals Evaluation and Research Institute, Japan, 3-822 Ishii-machi, Hita, Oita 877-0061, Japan
| | - Takashi Okubo
- CERI Hita, Chemicals Evaluation and Research Institute, Japan, 3-822 Ishii-machi, Hita, Oita 877-0061, Japan
| | - Yumi Nonaka
- CERI Kurume, Chemicals Evaluation and Research Institute, Japan, 3-2-7 Miyanojin, Kurume, Fukuoka 839-0801, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
212
|
Ebenezer O, Comoglio P, Wong GKS, Tuszynski JA. Development of Novel siRNA Therapeutics: A Review with a Focus on Inclisiran for the Treatment of Hypercholesterolemia. Int J Mol Sci 2023; 24:4019. [PMID: 36835426 PMCID: PMC9966809 DOI: 10.3390/ijms24044019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Over the past two decades, it was discovered that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm facilitates effective gene-targeted silencing. This compromises gene expression and regulation by repressing transcription or stimulating sequence-specific RNA degradation. Substantial investments in developing RNA therapeutics for disease prevention and treatment have been made. We discuss the application to proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to and degrades the low-density lipoprotein cholesterol (LDL-C) receptor, interrupting the process of LDL-C uptake into hepatocytes. PCSK9 loss-of-function modifications show significant clinical importance by causing dominant hypocholesterolemia and lessening the risk of cardiovascular disease (CVD). Monoclonal antibodies and small interfering RNA (siRNA) drugs targeting PCSK9 are a significant new option for managing lipid disorders and improving CVD outcomes. In general, monoclonal antibodies are restricted to binding with cell surface receptors or circulating proteins. Similarly, overcoming the intracellular and extracellular defenses that prevent exogenous RNA from entering cells must be achieved for the clinical application of siRNAs. N-acetylgalactosamine (GalNAc) conjugates are a simple solution to the siRNA delivery problem that is especially suitable for treating a broad spectrum of diseases involving liver-expressed genes. Inclisiran is a GalNAc-conjugated siRNA molecule that inhibits the translation of PCSK9. The administration is only required every 3 to 6 months, which is a significant improvement over monoclonal antibodies for PCSK9. This review provides an overview of siRNA therapeutics with a focus on detailed profiles of inclisiran, mainly its delivery strategies. We discuss the mechanisms of action, its status in clinical trials, and its prospects.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa
| | - Pietro Comoglio
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jack A. Tuszynski
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
213
|
Research Status and Prospect of Non-Viral Vectors Based on siRNA: A Review. Int J Mol Sci 2023; 24:ijms24043375. [PMID: 36834783 PMCID: PMC9962405 DOI: 10.3390/ijms24043375] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Gene therapy has attracted much attention because of its unique mechanism of action, non-toxicity, and good tolerance, which can kill cancer cells without damaging healthy tissues. siRNA-based gene therapy can downregulate, enhance, or correct gene expression by introducing some nucleic acid into patient tissues. Routine treatment of hemophilia requires frequent intravenous injections of missing clotting protein. The high cost of combined therapy causes most patients to lack the best treatment resources. siRNA therapy has the potential of lasting treatment and even curing diseases. Compared with traditional surgery and chemotherapy, siRNA has fewer side effects and less damage to normal cells. The available therapies for degenerative diseases can only alleviate the symptoms of patients, while siRNA therapy drugs can upregulate gene expression, modify epigenetic changes, and stop the disease. In addition, siRNA also plays an important role in cardiovascular diseases, gastrointestinal diseases, and hepatitis B. However, free siRNA is easily degraded by nuclease and has a short half-life in the blood. Research has found that siRNA can be delivered to specific cells through appropriate vector selection and design to improve the therapeutic effect. The application of viral vectors is limited because of their high immunogenicity and low capacity, while non-viral vectors are widely used because of their low immunogenicity, low production cost, and high safety. This paper reviews the common non-viral vectors in recent years and introduces their advantages and disadvantages, as well as the latest application examples.
Collapse
|
214
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
215
|
Abosalha AK, Ahmad W, Boyajian J, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications. Expert Opin Drug Discov 2023; 18:149-161. [PMID: 36514963 DOI: 10.1080/17460441.2022.2155630] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION RNA interference (RNAi) using small interfering RNA (siRNA) is a promising strategy to control many genetic disorders by targeting the mRNA of underlying genes and degrade it. However, the delivery of siRNA to targeted organs is highly restricted by several intracellular and extracellular barriers. AREAS COVERED This review discusses various design strategies developed to overcome siRNA delivery obstacles. The applied techniques involve chemical modification, bioconjugation to specific ligands, and carrier-mediated strategies. Nanotechnology-based systems like liposomes, niosomes, solid lipid nanoparticles (SLNs), dendrimers, and polymeric nanoparticles (PNs) are also discussed. EXPERT OPINION Although the mechanism of siRNA as a gene silencer is well-established, only a few products are available as therapeutics. There is a great need to develop and establish siRNA delivery systems that protects siRNAs and delivers them efficiently to the desired sitesare efficient and capable of targeted delivery. Several diseases are reported to be controlled by siRNA at their early stages. However, their targeted delivery is a daunting challenge.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada.,Pharmaceutical Technology department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| |
Collapse
|
216
|
Chen Y, Zhang Y. CircDLG1 promotes malignant development of non-small cell lung cancer through regulation of the miR-630/CENPF axis. Strahlenther Onkol 2023; 199:169-181. [PMID: 35748916 DOI: 10.1007/s00066-022-01965-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/22/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to be crucial modulatory molecules in the etiology of non-small cell lung cancer (NSCLC). This study aimed to probe the precise role and mechanism of circRNA discs large MAGUK scaffold protein 1 (circDLG1) in the malignant progression of NSCLC. METHODS The abundances of circDLG1, miR-630, and centromere protein F (CENPF) mRNAs were gauged by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was tested in 3‑(4, 5‑dimethylthiazol-2-yl)-2, 5‑diphenyltetrazolium bromide (MTT) assay and 5‑ethynyl-2'-deoxyuridine (EdU)-incorporation assay. Cell apoptosis was analyzed by flow cytometry. Cell migration and invasion were assessed by transwell assay. Western blot was exploited to examine the levels of all proteins. The interaction between miR-630 and circDLG1 or CENPF was verified by dual-luciferase reporter, RNA pull-down, and/or RNA immunoprecipitation assays. Tumor xenograft assay and immunohistochemistry (IHC) were executed for the role of circDLG1 in tumor growth in vivo. RESULTS CircDLG1 and CENPF were highly expressed in NSCLC, while miR-630 was downregulated. CircDLG1 silencing repressed proliferation, migration, and invasion, and expedited apoptosis of NSCLC cells in vitro. Mechanistically, circDLG1 deficiency modulated NSCLC cell malignant development through interacting with miR-630. Furthermore, CENPF was targeted by miR-630, and circDLG1 could positively control CENPF expression through acting as an miR-630 sponge. Furthermore, CENPF overexpression reversed the repressive impacts of circDLG1 inhibition in the malignant behaviors of NSCLC cells. Besides, circDLG1 interference hindered tumor growth in vivo. CONCLUSION CircDLG1 knockdown could impede NSCLC advancement through modulating the miR-630/CENPF axis, manifesting as a promising molecular target for NSCLC treatment.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ying Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, 110022, Tiexi District, Shenyang, Liaoning Province, China.
| |
Collapse
|
217
|
Brayford S, Duly A, Teo WS, Dwarte T, Gonzales-Aloy E, Ma Z, McVeigh L, Failes TW, Arndt GM, McCarroll JA, Kavallaris M. βIII-tubulin suppression enhances the activity of Amuvatinib to inhibit cell proliferation in c-Met positive non-small cell lung cancer cells. Cancer Med 2023; 12:4455-4471. [PMID: 35946957 PMCID: PMC9972117 DOI: 10.1002/cam4.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/07/2022] Open
Abstract
Non-Small Cell Lung Carcinoma (NSCLC) remains a leading cause of cancer death. Resistance to therapy is a significant problem, highlighting the need to find new ways of sensitising tumour cells to therapeutic agents. βIII-tubulin is associated with aggressive tumours and chemotherapy resistance in a range of cancers including NSCLC. βIII-tubulin expression has been shown to impact kinase signalling in NSCLC cells. Here, we sought to exploit this interaction by identifying co-activity between βIII-tubulin suppression and small-molecule kinase inhibitors. To achieve this, a forced-genetics approach combined with a high-throughput drug screen was used. We show that activity of the multi-kinase inhibitor Amuvatinib (MP-470) is enhanced by βIII-tubulin suppression in independent NSCLC cell lines. We also show that this compound significantly inhibits cell proliferation among βIII-tubulin knockdown cells expressing the receptor tyrosine kinase c-Met. Together, our results highlight that βIII-tubulin suppression combined with targeting specific receptor tyrosine kinases may represent a novel therapeutic approach for otherwise difficult-to-treat lung carcinomas.
Collapse
Affiliation(s)
- Simon Brayford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Alastair Duly
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Wee Siang Teo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Tanya Dwarte
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Zerong Ma
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Laura McVeigh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Timothy W Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia.,ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| |
Collapse
|
218
|
Engelbeen S, Pasteuning-Vuhman S, Boertje-van der Meulen J, Parmar R, Charisse K, Sepp-Lorenzino L, Manoharan M, Aartsma-Rus A, van Putten M. Efficient Downregulation of Alk4 in Skeletal Muscle After Systemic Treatment with Conjugated siRNAs in a Mouse Model for Duchenne Muscular Dystrophy. Nucleic Acid Ther 2023; 33:26-34. [PMID: 36269327 PMCID: PMC9940804 DOI: 10.1089/nat.2022.0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Downregulation of genes involved in the secondary pathology of Duchenne muscular dystrophy, for example, inflammation, fibrosis, and adiposis, is an interesting approach to ameliorate degeneration of muscle and replacement by fibrotic and adiposis tissue. Small interfering RNAs (siRNAs) are able to downregulate target genes, however, delivery of siRNAs to skeletal muscle still remains a challenge. We investigated delivery of fully chemically modified, cholesterol-conjugated siRNAs targeting Alk4, a nontherapeutic target that is expressed highly in muscle. We observed that a single intravenous or intraperitoneal (IP) injection of 10 mg/kg resulted in significant downregulation of Alk4 mRNA expression in skeletal muscles in both wild-type and mdx mice. Treatment with multiple IP injections of 10 mg/kg led to an overall reduction of Alk4 expression, reaching significance in tibialis anterior (39.7% ± 6.2%), diaphragm (32.7% ± 5.8%), and liver (41.3% ± 29.9%) in mdx mice. Doubling of the siRNA dose did not further increase mRNA silencing in muscles of mdx mice. The chemically modified conjugated siRNAs used in this study are very promising for delivery to both nondystrophic and dystrophic muscles and could have major implications for treatment of muscular dystrophy pathology.
Collapse
Affiliation(s)
- Sarah Engelbeen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Rubina Parmar
- Alnalym Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | | | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Address correspondence to: Maaike van Putten, PhD, Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| |
Collapse
|
219
|
Khaitov M, Nikonova A, Kofiadi I, Shilovskiy I, Smirnov V, Elisytina O, Maerle A, Shatilov A, Shatilova A, Andreev S, Sergeev I, Trofimov D, Latysheva T, Ilyna N, Martynov A, Rabdano S, Ruzanova E, Savelev N, Pletiukhina I, Safi A, Ratnikov V, Gorelov V, Kaschenko V, Kucherenko N, Umarova I, Moskaleva S, Fabrichnikov S, Zuev O, Pavlov N, Kruchko D, Berzin I, Goryachev D, Merkulov V, Shipulin G, Udin S, Trukhin V, Valenta R, Skvortsova V. Treatment of COVID-19 patients with a SARS-CoV-2-specific siRNA-peptide dendrimer formulation. Allergy 2023. [PMID: 36721963 DOI: 10.1111/all.15663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome corona virus (SARS-CoV-2) infection frequently causes severe and prolonged disease but only few specific treatments are available. We aimed to investigate safety and efficacy of a SARS-CoV-2-specific siRNA-peptide dendrimer formulation MIR 19® (siR-7-EM/KK-46) targeting a conserved sequence in known SARS-CoV-2 variants for treatment of COVID-19. METHODS We conducted an open-label, randomized, controlled multicenter phase II trial (NCT05184127) evaluating safety and efficacy of inhaled siR-7-EM/KK-46 (3.7 mg and 11.1 mg/day: low and high dose, respectively) in comparison with standard etiotropic drug treatment (control group) in patients hospitalized with moderate COVID-19 (N = 52 for each group). The primary endpoint was the time to clinical improvement according to predefined criteria within 14 days of randomization. RESULTS Patients from the low-dose group achieved the primary endpoint defined by simultaneous achievement of relief of fever, normalization of respiratory rate, reduction of coughing, and oxygen saturation of >95% for 48 h significantly earlier (median 6 days; 95% confidence interval [CI]: 5-7, HR 1.75, p = .0005) than patients from the control group (8 days; 95% CI: 7-10). No significant clinical efficacy was observed for the high-dose group. Adverse events were reported in 26 (50.00%), 25 (48.08%), and 28 (53.85%) patients from the low-, high-dose and control group, respectively. None of them were associated with siR-7-EM/KK-46. CONCLUSIONS siR-7-EM/KK-46, a SARS-CoV-2-specific siRNA-peptide dendrimer formulation is safe, well tolerated and significantly reduces time to clinical improvement in patients hospitalized with moderate COVID-19 compared to standard therapy in a randomized controlled trial.
Collapse
Affiliation(s)
- Musa Khaitov
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexandra Nikonova
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,RUDN University, Moscow, Russia
| | - Ilya Kofiadi
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Igor Shilovskiy
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Valeriy Smirnov
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Elisytina
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,RUDN University, Moscow, Russia
| | - Artem Maerle
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Artem Shatilov
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Anastasia Shatilova
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Sergey Andreev
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Ilya Sergeev
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Dmitry Trofimov
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Tatyana Latysheva
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Natalia Ilyna
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Alexander Martynov
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Sevastyan Rabdano
- Federal State Unitary Enterprise "The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations" of Federal Medical and Biologic Agency (FSUE SPbSRIVS FMBA of Russia), St. Petersburg, Russia
| | - Ellina Ruzanova
- Federal State Unitary Enterprise "The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations" of Federal Medical and Biologic Agency (FSUE SPbSRIVS FMBA of Russia), St. Petersburg, Russia
| | - Nikita Savelev
- Federal State Unitary Enterprise "The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations" of Federal Medical and Biologic Agency (FSUE SPbSRIVS FMBA of Russia), St. Petersburg, Russia
| | - Iuliia Pletiukhina
- Federal State Unitary Enterprise "The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations" of Federal Medical and Biologic Agency (FSUE SPbSRIVS FMBA of Russia), St. Petersburg, Russia
| | - Ariana Safi
- Federal State Unitary Enterprise "The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations" of Federal Medical and Biologic Agency (FSUE SPbSRIVS FMBA of Russia), St. Petersburg, Russia
| | - Vyacheslav Ratnikov
- North-West District Scientific and Clinical Center named after L.G. Sokolov Federal Medical and Biological Agency, St. Petersburg, Russia
| | - Viktor Gorelov
- North-West District Scientific and Clinical Center named after L.G. Sokolov Federal Medical and Biological Agency, St. Petersburg, Russia
| | - Viktor Kaschenko
- North-West District Scientific and Clinical Center named after L.G. Sokolov Federal Medical and Biological Agency, St. Petersburg, Russia
| | - Natalya Kucherenko
- North-West District Scientific and Clinical Center named after L.G. Sokolov Federal Medical and Biological Agency, St. Petersburg, Russia
| | - Irina Umarova
- North-West District Scientific and Clinical Center named after L.G. Sokolov Federal Medical and Biological Agency, St. Petersburg, Russia
| | - Svetlana Moskaleva
- North-West District Scientific and Clinical Center named after L.G. Sokolov Federal Medical and Biological Agency, St. Petersburg, Russia
| | - Sergei Fabrichnikov
- North-West District Scientific and Clinical Center named after L.G. Sokolov Federal Medical and Biological Agency, St. Petersburg, Russia
| | - Oleg Zuev
- Federal Clinical Center of High Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Nikolai Pavlov
- Federal Clinical Center of High Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Daria Kruchko
- Federal Medico-biological Agency of Russia (FMBA Russia), Moscow, Russia
| | - Igor Berzin
- Federal Medico-biological Agency of Russia (FMBA Russia), Moscow, Russia
| | - Dmitriy Goryachev
- Centre for Evaluation and Control of Finished Pharmaceutical Products, Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vadim Merkulov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Centre for Evaluation and Control of Finished Pharmaceutical Products, Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - German Shipulin
- Centre for Strategic Planning of FMBA of Russia Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Moscow, Russia
| | - Sergey Udin
- Centre for Strategic Planning of FMBA of Russia Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Moscow, Russia
| | - Victor Trukhin
- Federal State Unitary Enterprise "The Saint Petersburg Scientific Research Institute of Vaccines and Serums and the Enterprise for the Production of Bacterial Preparations" of Federal Medical and Biologic Agency (FSUE SPbSRIVS FMBA of Russia), St. Petersburg, Russia
| | - Rudolf Valenta
- National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Healthcare, Krems, Austria
| | | |
Collapse
|
220
|
Kiełbowski K, Bakinowska E, Pawlik A. The Potential Role of Connexins in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032600. [PMID: 36768920 PMCID: PMC9916887 DOI: 10.3390/ijms24032600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell-cell messengers such as 3',5'-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among others. Therefore, they play a significant role in regulating cell homeostasis, proliferation, and differentiation. Alterations in Cx distribution, degradation, and post-translational modifications have been correlated with cancers, as well as cardiovascular and neurological diseases. Depending on the isoform, Cx have been shown either to promote or suppress the development of atherosclerosis, a progressive inflammatory disease affecting large and medium-sized arteries. Cx might contribute to the progression of the disease by enhancing endothelial dysfunction, monocyte recruitment, vascular smooth muscle cell (VSMC) activation, or by inhibiting VSMC autophagy. Inhibition or modulation of the expression of specific isoforms could suppress atherosclerotic plaque formation and diminish pro-inflammatory conditions. A better understanding of the complexity of atherosclerosis pathophysiology linked with Cx could result in developing novel therapeutic strategies. This review aims to present the role of Cx in the pathogenesis of atherosclerosis and discusses whether they can become novel therapeutic targets.
Collapse
|
221
|
Aggeletopoulou I, Mouzaki A, Thomopoulos K, Triantos C. miRNA Molecules-Late Breaking Treatment for Inflammatory Bowel Diseases? Int J Mol Sci 2023; 24:2233. [PMID: 36768556 PMCID: PMC9916785 DOI: 10.3390/ijms24032233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a critical role in regulating epigenetic mechanisms in inflammation-related diseases. Inflammatory bowel diseases (IBDs), which primarily include ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic recurrent inflammation of intestinal tissues. Due to the multifactorial etiology of these diseases, the development of innovative treatment strategies that can effectively maintain remission and alleviate disease symptoms is a major challenge. In recent years, evidence for the regulatory role of miRNAs in the pathogenetic mechanisms of various diseases, including IBD, has been accumulating. In light of these findings, miRNAs represent potential innovative candidates for therapeutic application in IBD. In this review, we discuss recent findings on the role of miRNAs in regulating inflammatory responses, maintaining intestinal barrier integrity, and developing fibrosis in clinical and experimental IBD. The focus is on the existing literature, indicating potential therapeutic application of miRNAs in both preclinical experimental IBD models and translational data in the context of clinical IBD. To date, a large and diverse data set, which is growing rapidly, supports the potential use of miRNA-based therapies in clinical practice, although many questions remain unanswered.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
222
|
Li QL, Tang J, Zhao L, Ruze A, Shan XF, Gao XM. The role of CD74 in cardiovascular disease. Front Cardiovasc Med 2023; 9:1049143. [PMID: 36712241 PMCID: PMC9877307 DOI: 10.3389/fcvm.2022.1049143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Leukocyte differentiation antigen 74 (CD74), also known as invariant chain, is a molecular chaperone of major histocompatibility complex class II (MHC II) molecules involved in antigen presentation. CD74 has recently been shown to be a receptor for the macrophage migration inhibitory factor family proteins (MIF/MIF2). Many studies have revealed that CD74 plays an important role in cardiovascular disease. In this review, we summarize the structure and main functions of CD74 and then focus on the recent research progress on the role of CD74 in cardiovascular diseases. In addition, we also discuss potential treatment strategies that target CD74. Our systematic review of the role of CD74 in cardiovascular disease will fill some knowledge gaps in the field.
Collapse
Affiliation(s)
- Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China,Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China,Clinical Medical Research Institute of Xinjiang Medical University, Ürümqi, China,*Correspondence: Xiao-Ming Gao,
| |
Collapse
|
223
|
Rashid F, Zaongo SD, Song F, Chen Y. The diverse roles of miRNAs in HIV pathogenesis: Current understanding and future perspectives. Front Immunol 2023; 13:1091543. [PMID: 36685589 PMCID: PMC9849909 DOI: 10.3389/fimmu.2022.1091543] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Despite noteworthy progress made in the management and treatment of HIV/AIDS-related disease, including the introduction of the now almost ubiquitous HAART, there remains much to understand with respect to HIV infection. Although some roles that miRNAs play in some diseases have become more obvious of late, the roles of miRNAs in the context of HIV pathogenesis have not, as yet, been elucidated, and require further investigations. miRNAs can either be beneficial or harmful to the host, depending upon the genes they target. Some miRNAs target the 3' UTR of viral mRNAs to accomplish restriction of viral infection. However, upon HIV-1 infection, there are several dysregulated host miRNAs which target their respective host factors to either facilitate or abrogate viral infection. In this review, we discuss the miRNAs which play roles in various aspects of viral pathogenesis. We describe in detail the various mechanisms thereby miRNAs either directly or indirectly regulate HIV-1 infection. Moreover, the predictive roles of miRNAs in various aspects of the HIV viral life cycle are also discussed. Contemporary antiretroviral therapeutic drugs have received much attention recently, due to their success in the treatment of HIV/AIDS; therefore, miRNA involvement in various aspects of antiretroviral therapeutics are also elaborated upon herein. The therapeutic potential of miRNAs are discussed, and we also propose herein that the therapeutic potential of one specific miRNA, miR-34a, warrants further exploration, as this miRNA is known to target three host proteins to promote HIV-1 pathogenesis. Finally, future perspectives and some controversy around the expression of miRNAs by HIV-1 are also discussed.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,*Correspondence: Yaokai Chen,
| |
Collapse
|
224
|
Activity-Dependent Non-Coding RNA MAPK Interactome of the Human Epileptic Brain. Noncoding RNA 2023; 9:ncrna9010003. [PMID: 36649033 PMCID: PMC9844323 DOI: 10.3390/ncrna9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
The human brain has evolved to have extraordinary capabilities, enabling complex behaviors. The uniqueness of the human brain is increasingly posited to be due in part to the functions of primate-specific, including human-specific, long non-coding RNA (lncRNA) genes, systemically less conserved than protein-coding genes in evolution. Patients who have surgery for drug-resistant epilepsy are subjected to extensive electrical recordings of the brain tissue that is subsequently removed in order to treat their epilepsy. Precise localization of brain tissues with distinct electrical properties offers a rare opportunity to explore the effects of brain activity on gene expression. Here, we identified 231 co-regulated, activity-dependent lncRNAs within the human MAPK signaling cascade. Six lncRNAs, four of which were antisense to known protein-coding genes, were further examined because of their high expression and potential impact on the disease phenotype. Using a model of repeated depolarizations in human neuronal-like cells (Sh-SY5Y), we show that five out of six lncRNAs were electrical activity-dependent, with three of four antisense lncRNAs having reciprocal expression patterns relative to their protein-coding gene partners. Some were directly regulated by MAPK signaling, while others effectively downregulated the expression of the protein-coding genes encoded on the opposite strands of their genomic loci. These lncRNAs, therefore, likely contribute to highly evolved and primate-specific human brain regulatory functions that could be therapeutically modulated to treat epilepsy.
Collapse
|
225
|
Dreismann AK, Hallam TM, Tam LC, Nguyen CV, Hughes JP, Ellis S, Harris CL. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunol Rev 2023; 313:402-419. [PMID: 36369963 PMCID: PMC10099504 DOI: 10.1111/imr.13149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement alternative pathway (AP) is implicated in numerous diseases affecting many organs, ranging from the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH), to the common blinding disease age-related macular degeneration (AMD). Critically, the AP amplifies any activating trigger driving a downstream inflammatory response; thus, components of the pathway have become targets for drugs of varying modality. Recent validation from clinical trials using drug modalities such as inhibitory antibodies has paved the path for gene targeting of the AP or downstream effectors. Gene targeting in the complement field currently focuses on supplementation or suppression of complement regulators in AMD and PNH, largely because the eye and liver are highly amenable to drug delivery through local (eye) or systemic (liver) routes. Targeting the liver could facilitate treatment of numerous diseases as this organ generates most of the systemic complement pool. This review explains key concepts of RNA and DNA targeting and discusses assets in clinical development for the treatment of diseases driven by the alternative pathway, including the RNA-targeting therapeutics ALN-CC5, ARO-C3, and IONIS-FB-LRX, and the gene therapies GT005 and HMR59. These therapies are but the spearhead of potential drug candidates that might revolutionize the field in coming years.
Collapse
|
226
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
227
|
The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol 2023; 38:327-344. [PMID: 35507149 PMCID: PMC9066145 DOI: 10.1007/s00467-021-05352-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparticles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development for kidney diseases, with particular interest in inherited kidney disorders.
Collapse
|
228
|
Traber GM, Yu AM. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies. J Pharmacol Exp Ther 2023; 384:133-154. [PMID: 35680378 PMCID: PMC9827509 DOI: 10.1124/jpet.122.001234] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/26/2023] Open
Abstract
RNA interference (RNAi) provides researchers with a versatile means to modulate target gene expression. The major forms of RNAi molecules, genome-derived microRNAs (miRNAs) and exogenous small interfering RNAs (siRNAs), converge into RNA-induced silencing complexes to achieve posttranscriptional gene regulation. RNAi has proven to be an adaptable and powerful therapeutic strategy where advancements in chemistry and pharmaceutics continue to bring RNAi-based drugs into the clinic. With four siRNA medications already approved by the US Food and Drug Administration (FDA), several RNAi-based therapeutics continue to advance to clinical trials with functions that closely resemble their endogenous counterparts. Although intended to enhance stability and improve efficacy, chemical modifications may increase risk of off-target effects by altering RNA structure, folding, and biologic activity away from their natural equivalents. Novel technologies in development today seek to use intact cells to yield true biologic RNAi agents that better represent the structures, stabilities, activities, and safety profiles of natural RNA molecules. In this review, we provide an examination of the mechanisms of action of endogenous miRNAs and exogenous siRNAs, the physiologic and pharmacokinetic barriers to therapeutic RNA delivery, and a summary of the chemical modifications and delivery platforms in use. We overview the pharmacology of the four FDA-approved siRNA medications (patisiran, givosiran, lumasiran, and inclisiran) as well as five siRNAs and several miRNA-based therapeutics currently in clinical trials. Furthermore, we discuss the direct expression and stable carrier-based, in vivo production of novel biologic RNAi agents for research and development. SIGNIFICANCE STATEMENT: In our review, we summarize the major concepts of RNA interference (RNAi), molecular mechanisms, and current state and challenges of RNAi drug development. We focus our discussion on the pharmacology of US Food and Drug Administration-approved RNAi medications and those siRNAs and miRNA-based therapeutics that entered the clinical investigations. Novel approaches to producing new true biological RNAi molecules for research and development are highlighted.
Collapse
Affiliation(s)
- Gavin M Traber
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| |
Collapse
|
229
|
Li M, Lin ZI, Yang J, Huang H, Liu GL, Liu Q, Zhang X, Zhang Y, Xu Z, Lin H, Chai Y, Chen X, Ko BT, Liu J, Chen CK, Yang C. Biodegradable Carbon Dioxide-Derived Non-Viral Gene Vectors for Osteosarcoma Gene Therapy. Adv Healthc Mater 2023; 12:e2201306. [PMID: 36308025 DOI: 10.1002/adhm.202201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/22/2022] [Indexed: 01/29/2023]
Abstract
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2 -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G2 /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.
Collapse
Affiliation(s)
- Meirong Li
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan ROC
| | - Jingyu Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying Zhang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haoming Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yujuan Chai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan ROC
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
230
|
RNA therapeutics: updates and future potential. SCIENCE CHINA. LIFE SCIENCES 2023; 66:12-30. [PMID: 36100838 PMCID: PMC9470505 DOI: 10.1007/s11427-022-2171-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023]
Abstract
Recent advancements in the production, modification, and cellular delivery of RNA molecules facilitated the expansion of RNA-based therapeutics. The increasing understanding of RNA biology initiated a corresponding growth in RNA therapeutics. In this review, the general concepts of five classes of RNA-based therapeutics, including RNA interference-based therapies, antisense oligonucleotides, small activating RNA therapies, circular RNA therapies, and messenger RNA-based therapeutics, will be discussed. Moreover, we also provide an overview of RNA-based therapeutics that have already received regulatory approval or are currently being evaluated in clinical trials, along with challenges faced by these technologies. RNA-based drugs demonstrated positive clinical trial results and have the ability to address previously "undruggable" targets, which delivers great promise as a disruptive therapeutic technology to fulfill its full clinical potentiality.
Collapse
|
231
|
Moreno PMD, Cortinhas J, Martins AS, Pêgo AP. Engineering a Novel Self-Assembled Multi-siRNA Nanocaged Architecture with Controlled Enzyme-Mediated siRNA Release. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56483-56497. [PMID: 36519952 PMCID: PMC9801385 DOI: 10.1021/acsami.2c15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The RNA interference (RNAi) chemical and structural design space has evolved since its original definitions. Although this has led to the development of RNAi molecules that are starting to address the issues of silencing efficiency and delivery to target organs and cells, there is an on-going interest to improve upon their properties to attain wider therapeutic applicability. Taking advantage of the flexibility given by DNA and RNA structural and chemical properties, we here investigated unconventional RNAi encoding structures, designated by caged-siRNA structures (CsiRNAs), to explore novel features that could translate into advantageous properties for cellular delivery and intracellular activity. Using the principles of controlled nucleic acid self-assembly, branched DNA-RNA hybrid intermediates were formed, ultimately leading to the assembly of a "closed" structure encompassing multiple RNAi units. The RNAi active regions are further triggered by an encoded RNAse H-mediated release mechanism, while the overall structure possesses easily addressable anchors for hybridization-based functionalization with active biological moieties. We confirmed the production of correct structures and demonstrated that the encoded RNAi sequences maintain gene silencing activity even within this novel unconventional nanoarchitecture, aided by the intracellularly triggered RNAse H release mechanism. With this design, functionalization is easily achieved with no negative effects on the silencing activity, warranting further development of these novel molecular structures as a multi-RNAi platform for therapeutic delivery.
Collapse
Affiliation(s)
- Pedro M. D. Moreno
- i3S
- Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB
- Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - João Cortinhas
- i3S
- Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB
- Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana S. Martins
- i3S
- Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB
- Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade
de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| | - Ana P. Pêgo
- i3S
- Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade
de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- Instituto
de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
232
|
Qu Y, Kirby R, Davies R, Jinat A, Stabilini S, Wu B, Yu L, Gao B, Vargas HM. Time Is a Critical Factor When Evaluating Oligonucleotide Therapeutics in Human Ether-a-Go-Go-Related Gene Assays. Nucleic Acid Ther 2022; 33:132-140. [PMID: 36576986 PMCID: PMC10066779 DOI: 10.1089/nat.2022.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In accord with International Conference on Harmonization S7B guidelines, an in vitro human ether-a-go-go-related gene (hERG) assay is one component of an integrated risk assessment for delayed ventricular repolarization. Function of hERG could be affected by direct (acute) mechanisms, or by indirect (chronic) mechanisms. Some approved oligonucleotide therapeutics had submitted hERG data to regulatory agents, which were all collected with the same protocol used for small-molecule testing (incubation time <20 min; acute), however, oligonucleotides have unique mechanisms and time courses of action (indirect). To reframe the hERG testing strategy for silencing RNA (siRNA), an investigation was performed to assess the time course for siRNA-mediated inhibition of hERG function and gene expression. Commercially available siRNAs of hERG were evaluated in a stable hERG-expressed cell line by whole-cell voltage clamp using automated electrophysiology and polymerase chain reaction. In the acute hERG study, no effects were observed after treatment with 100 nM siRNA for 20 min. The chronic effects of 100 nM siRNAs on hERG function were evaluated and recorded over 8-48 h following transfection. At 8 h there was no significant effect, whereas 77% reduction was observed at 48 h. Measurement of hERG mRNA levels demonstrated a 79% and 93% decrease of hERG mRNA at 8 and 48 h, respectively, consistent with inhibition of hERG transcription. The results indicate that an anti-hERG siRNA requires a long exposure time (48 h) in the hERG assay to produce a maximal reduction in hERG current; short exposures (20 min-8 h) had no effect. These findings imply that off-target profiling of novel oligonucleotides could benefit from using hERG protocol with long incubation times to de-risk potential off-target (indirect) effects on the hERG channel. This hERG assay modification may be important to consider if the findings are used to support an integrated nonclinical-clinical risk assessment for QTc (the duration of the QT interval adjusted for heart rate) prolongation.
Collapse
Affiliation(s)
- Yusheng Qu
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Robert Kirby
- Metrion Biosciences Ltd, Granta Center, Cambridge, United Kingdom
| | - Richard Davies
- Metrion Biosciences Ltd, Granta Center, Cambridge, United Kingdom
| | - Ayesha Jinat
- Metrion Biosciences Ltd, Granta Center, Cambridge, United Kingdom
| | | | - Bin Wu
- Hybrid Modality Engineering, Amgen, Inc., Thousand Oaks, California, USA
| | - Longchuan Yu
- Cardiometabolic Disorders, Amgen, Inc., Thousand Oaks, California, USA
| | - BaoXi Gao
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Hugo M Vargas
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| |
Collapse
|
233
|
Metwally AA, Nayel AA, Hathout RM. In silico prediction of siRNA ionizable-lipid nanoparticles In vivo efficacy: Machine learning modeling based on formulation and molecular descriptors. Front Mol Biosci 2022; 9:1042720. [PMID: 36619167 PMCID: PMC9811823 DOI: 10.3389/fmolb.2022.1042720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
In silico prediction of the in vivo efficacy of siRNA ionizable-lipid nanoparticles is desirable as it can save time and resources dedicated to wet-lab experimentation. This study aims to computationally predict siRNA nanoparticles in vivo efficacy. A data set containing 120 entries was prepared by combining molecular descriptors of the ionizable lipids together with two nanoparticles formulation characteristics. Input descriptor combinations were selected by an evolutionary algorithm. Artificial neural networks, support vector machines and partial least squares regression were used for QSAR modeling. Depending on how the data set is split, two training sets and two external validation sets were prepared. Training and validation sets contained 90 and 30 entries respectively. The results showed the successful predictions of validation set log (siRNA dose) with Rval 2= 0.86-0.89 and 0.75-80 for validation sets one and two, respectively. Artificial neural networks resulted in the best Rval 2 for both validation sets. For predictions that have high bias, improvement of Rval 2 from 0.47 to 0.96 was achieved by selecting the training set lipids lying within the applicability domain. In conclusion, in vivo performance of siRNA nanoparticles was successfully predicted by combining cheminformatics with machine learning techniques.
Collapse
Affiliation(s)
- Abdelkader A. Metwally
- Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Kuwait City, Kuwait,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt,*Correspondence: Abdelkader A. Metwally,
| | - Amira A. Nayel
- Clinical Pharmacy Department, Alexandria Ophthalmology Hospital, Alexandria, Egypt,Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
234
|
Zhang L, Liang Y, Liang G, Tian Z, Zhang Y, Liu Z, Ji X. The therapeutic prospects of N-acetylgalactosamine-siRNA conjugates. Front Pharmacol 2022; 13:1090237. [PMID: 36588695 PMCID: PMC9794871 DOI: 10.3389/fphar.2022.1090237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
RNA interference has become increasingly used for genetic therapy following the rapid development of oligonucleotide drugs. Significant progress has been made in its delivery system and implementation in the treatment of target organs. After a brief introduction of RNA interference technology and siRNA, the efficiency and stability of GalNAc-siRNA conjugates are highlighted since several oligonucleotide drugs of GalNAc have been approved for clinical use in recent years. The structure and features of GalNAc-siRNA conjugates are studied and the clinical efficiency and limitations of oligonucleotide-based drugs are summarized and investigated. Furthermore, another delivery system, lipid nanoparticles, that confer many advantages, is concluded, includ-ing stability and mass production, compared with GalNAc-siRNA conjugates. Importantly, developing new approaches for the use of oligonucleotide drugs brings hope to genetic therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yayu Liang
- School of Stomatology, Henan University, Kaifeng, China
| | - Guohui Liang
- School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Zhili Tian
- School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Yue Zhang
- Department of Obstetrics and Gynecology, Zhengzhou, China
| | - Zhihui Liu
- Department of General Practice, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Xinying Ji
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
235
|
Magadum A. Modified mRNA Therapeutics for Heart Diseases. Int J Mol Sci 2022; 23:ijms232415514. [PMID: 36555159 PMCID: PMC9779737 DOI: 10.3390/ijms232415514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) remain a substantial global health problem and the leading cause of death worldwide. Although many conventional small-molecule treatments are available to support the cardiac function of the patient with CVD, they are not effective as a cure. Among potential targets for gene therapy are severe cardiac and peripheral ischemia, heart failure, vein graft failure, and some forms of dyslipidemias. In the last three decades, multiple gene therapy tools have been used for heart diseases caused by proteins, plasmids, adenovirus, and adeno-associated viruses (AAV), but these remain as unmet clinical needs. These gene therapy methods are ineffective due to poor and uncontrolled gene expression, low stability, immunogenicity, and transfection efficiency. The synthetic modified mRNA (modRNA) presents a novel gene therapy approach which provides a transient, stable, safe, non-immunogenic, controlled mRNA delivery to the heart tissue without any risk of genomic integration, and achieves a therapeutic effect in different organs, including the heart. The mRNA translation starts in minutes, and remains stable for 8-10 days (pulse-like kinetics). The pulse-like expression of modRNA in the heart induces cardiac repair, cardiomyocyte proliferation and survival, and inhibits cardiomyocyte apoptosis post-myocardial infarction (MI). Cell-specific (cardiomyocyte) modRNA translation developments established cell-specific modRNA therapeutics for heart diseases. With these laudable characteristics, combined with its expression kinetics in the heart, modRNA has become an attractive therapeutic for the treatment of CVD. This review discusses new developments in modRNA therapy for heart diseases.
Collapse
Affiliation(s)
- Ajit Magadum
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
236
|
Abstract
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Collapse
Affiliation(s)
| | | | | | - W. Mark Saltzman
- Department of Biomedical Engineering
- Department of Chemical & Environmental Engineering
- Department of Cellular & Molecular Physiology
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
237
|
Boianelli A, Aoki Y, Ivanov M, Dahlén A, Gennemark P. Cross-Species Translation of Biophase Half-Life and Potency of GalNAc-Conjugated siRNAs. Nucleic Acid Ther 2022; 32:507-512. [PMID: 35867041 PMCID: PMC9784597 DOI: 10.1089/nat.2022.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Small interfering RNAs (siRNAs) with N-acetylgalactosamine (GalNAc) conjugation for improved liver uptake represent an emerging class of drugs to treat liver diseases. Understanding how pharmacokinetics and pharmacodynamics translate is pivotal for in vivo study design and human dose prediction. However, the literature is sparse on translational data for this modality, and pharmacokinetics in the liver is seldom measured. To overcome these difficulties, we collected time-course biomarker data for 11 GalNAc-siRNAs in various species and applied the kinetic-pharmacodynamic modeling approach to estimate the biophase (liver) half-life and the potency. Our analysis indicates that the biophase half-life is 0.6-3 weeks in mouse, 1-8 weeks in monkey, and 1.5-14 weeks in human. For individual siRNAs, the biophase half-life is 1-8 times longer in human than in mouse, and generally 1-3 times longer in human than in monkey. The analysis indicates that the siRNAs are more potent in human than in mouse and monkey.
Collapse
Affiliation(s)
- Alessandro Boianelli
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Alessandro Boianelli, PhD, Drug Metabolism and Pharmacokinetics Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Yasunori Aoki
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maxim Ivanov
- Quantitative Biology SE, Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
238
|
Lemoine S, Courbebaisse M. Petits ARN interférents : applications potentielles pour les néphrologues Small interfering RNA: potential applications for nephrologists. Nephrol Ther 2022; 18:6S1-6S6. [PMID: 36585119 DOI: 10.1016/s1769-7255(22)00646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small interfering RNA (siRNAs) are double-stranded RNAs of around 20 base pairs in length that trigger RNAi machinery, which promotes degradation of a target mRNA avoiding protein translation. SiRNAs are liver-targeted, using tris N-acetylgalactosamine (GalNAc) as the targeting ligand. This discovery received the Nobel Prize for medicine and physiology in 2006 and lead to substantial therapeutic advances. Application field and development of these siRNA has been very fast. Indeed, patisiran has been released in 2018 for hereditary transthyretin amyloidosis. This first treatment showed the security and efficacy of such a product. Since, treatments have been developed for acute hepatic porphyria and primary hyperoxaluria. The current pipeline for new siRNA development is ambitious; clinical trial are ongoing in nephrology, as in the IgA nephropathy. Frequent diseases are also targeted such as hypertension or hypercholesterolemia. © 2022 Published by Elsevier Masson SAS on behalf of Société francophone de néphrologie, dialyse et transplantation.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Service de néphrologie et d'exploration fonctionnelle rénale, centre de référence maladies rénales rares Néphrogones, Hospices civils de Lyon, université de Lyon, France.
| | - Marie Courbebaisse
- Service de physiologie, hôpital européen Georges-Pompidou, AP-HP, INSERM U1151, université de Paris, Paris, France
| |
Collapse
|
239
|
Wu H, Wahane A, Alhamadani F, Zhang K, Parikh R, Lee S, McCabe EM, Rasmussen TP, Bahal R, Zhong XB, Manautou JE. Nephrotoxicity of marketed antisense oligonucleotide drugs. CURRENT OPINION IN TOXICOLOGY 2022; 32:100373. [PMID: 37193356 PMCID: PMC10174585 DOI: 10.1016/j.cotox.2022.100373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of antisense oligonucleotide (ASO)-based therapies have been making strides in precision medicine due to their potent therapeutic application. Early successes in treating some genetic diseases are now attributed to an emerging class of antisense drugs. After two decades, the US Food and Drug Administration (FDA) has approved a considerable number of ASO drugs, primarily to treat rare diseases with optimal therapeutic outcomes. However, safety is one of the biggest challenges to the therapeutic utility of ASO drugs. Due to patients' and health care practitioners' urgent demands for medicines for untreatable conditions, many ASO drugs have been approved. However, a complete understanding of the mechanisms of adverse drug reactions (ADRs) and toxicities of ASOs still need to be resolved. The range of ADRs is unique to a specific drug, while few ADRs are common to a section of drugs as a whole. Nephrotoxicity is an important concern that needs to be addressed considering the clinical translation of any drug candidates ranging from small molecules to ASO-based drugs. This article encompasses what is known about the nephrotoxicity of ASO drugs, the potential mechanisms of action(s), and recommendations for future investigations on the safety of ASO drugs.
Collapse
Affiliation(s)
- Hangyu Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Feryal Alhamadani
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Kristy Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Rajvi Parikh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - SooWan Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Evan M McCabe
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
240
|
Chatterjee S, Bhattacharya M, Agoramoorthy G, Chakraborty C. Current status in clinical advancement of RNA therapeutics - Correspondence. Int J Surg 2022; 108:106996. [PMID: 36368421 DOI: 10.1016/j.ijsu.2022.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Srijan Chatterjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India College of Pharmacy and Health Care, Tajen University, Yanpu, Pingtung, 907, Taiwan
| | | | | | | |
Collapse
|
241
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
242
|
Surface Design Options in Polymer- and Lipid-Based siRNA Nanoparticles Using Antibodies. Int J Mol Sci 2022; 23:ijms232213929. [PMID: 36430411 PMCID: PMC9692731 DOI: 10.3390/ijms232213929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism of RNA interference (RNAi) could represent a breakthrough in the therapy of all diseases that arise from a gene defect or require the inhibition of a specific gene expression. In particular, small interfering RNA (siRNA) offers an attractive opportunity to achieve a new milestone in the therapy of human diseases. The limitations of siRNA, such as poor stability, inefficient cell uptake, and undesired immune activation, as well as the inability to specifically reach the target tissue in the body, can be overcome by further developments in the field of nanoparticulate drug delivery. Therefore, types of surface modified siRNA nanoparticles are presented and illustrate how a more efficient and safer distribution of siRNA at the target site is possible by modifying the surface properties of nanoparticles with antibodies. However, the development of such efficient and safe delivery strategies is currently still a major challenge. In consideration of that, this review article aims to demonstrate the function and targeted delivery of siRNA nanoparticles, focusing on the surface modification via antibodies, various lipid- and polymer-components, and the therapeutic effects of these delivery systems.
Collapse
|
243
|
Liu A, Zhao J, Shah M, Migliorati JM, Tawfik SM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. Nedosiran, a Candidate siRNA Drug for the Treatment of Primary Hyperoxaluria: Design, Development, and Clinical Studies. ACS Pharmacol Transl Sci 2022; 5:1007-1016. [PMID: 36407951 PMCID: PMC9667536 DOI: 10.1021/acsptsci.2c00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Due to the lack of treatment options for the genetic disease primary hyperoxaluria (PH), including three subtypes PH1, PH2, and PH3, caused by accumulation of oxalate forming kidney stones, there is an urgent need for the development of a drug therapy aside from siRNA drug lumasiran for patients with PH1. After the recent success of drug therapies based on small interfering RNA (siRNA), nedosiran is currently being developed for the treatment of three types of PH as a siRNA-based modality. Through specific inhibition of lactate dehydrogenase enzyme, the key enzyme in biosynthesis of oxalate in liver, phase 1, 2, and 3 clinical trials of nedosiran have achieved the desired primary end point of reduction of urinary oxalate levels in patients with PH1. More PH2 and PH3 patients need to be tested for efficacy. It has also produced a favorable secondary end point on safety and toxicity in PH patients. In addition to common injection site reactions that resolved spontaneously, no severe nedosiran treatment-associated adverse events were reported. Based on the positive results in the clinical studies, nedosiran is a candidate siRNA drug to treat PH patients.
Collapse
Affiliation(s)
- Anna Liu
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Connecticut, Storrs, Connecticut06269, United States
| | - Jenny Zhao
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Connecticut, Storrs, Connecticut06269, United States
| | - Milan Shah
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Connecticut, Storrs, Connecticut06269, United States
| | - Julia M. Migliorati
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Connecticut, Storrs, Connecticut06269, United States
| | - Sherouk M. Tawfik
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Connecticut, Storrs, Connecticut06269, United States
| | - Raman Bahal
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Connecticut, Storrs, Connecticut06269, United States
| | - Theodore P. Rasmussen
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Connecticut, Storrs, Connecticut06269, United States
| | - Jose E. Manautou
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Connecticut, Storrs, Connecticut06269, United States
| | - Xiao-bo Zhong
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Connecticut, Storrs, Connecticut06269, United States
| |
Collapse
|
244
|
Johnson LT, Zhang D, Zhou K, Lee SM, Liu S, Dilliard SA, Farbiak L, Chatterjee S, Lin YH, Siegwart DJ. Lipid Nanoparticle (LNP) Chemistry Can Endow Unique In Vivo RNA Delivery Fates within the Liver That Alter Therapeutic Outcomes in a Cancer Model. Mol Pharm 2022; 19:3973-3986. [PMID: 36154076 PMCID: PMC9888001 DOI: 10.1021/acs.molpharmaceut.2c00442] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Within the field of lipid nanoparticles (LNPs) for RNA delivery, the focus has been mainly placed on organ level delivery, which can mask cellular level effects consequential to therapeutic applications. Here, we studied a pair of LNPs with similar physical properties and discovered how the chemistry of the ionizable amino lipid can control the endogenous LNP identity, affecting cellular uptake in the liver and altering therapeutic outcomes in a model of liver cancer. Although most LNPs accumulate in the liver after intravenous administration (suggesting that liver delivery is straightforward), we observed an unexpected behavior when comparing two similar LNP formulations (5A2-SC8 and 3A5-SC14 LNPs) that resulted in distinct RNA delivery within the organ. Despite both LNPs possessing similar physical properties, ability to silence gene expression in vitro, strong accumulation within the liver, and a shared pKa of 6.5, only 5A2-SC8 LNPs were able to functionally deliver RNA to hepatocytes. Factor VII (FVII) activity was reduced by 87%, with 5A2-SC8 LNPs carrying FVII siRNA (siFVII), while 3A5-SC14 LNPs carrying siFVII produced baseline FVII activity levels comparable to the nontreatment control at a dosage of 0.5 mg/kg. Protein corona analysis indicated that 5A2-SC8 LNPs bind apolipoprotein E (ApoE), which can drive LDL-R receptor-mediated endocytosis in hepatocytes. In contrast, the surface of 3A5-SC14 LNPs was enriched in albumin but depleted in ApoE, which likely led to Kupffer cell delivery and detargeting of hepatocytes. In an aggressive MYC-driven liver cancer model relevant to hepatocytes, 5A2-SC8 LNPs carrying let-7g miRNA were able to significantly extend survival up to 121 days. Since disease targets exist in an organ- and cell-specific manner, the clinical development of RNA LNP therapeutics will require an improved understanding of LNP cellular tropism within organs. The results from our work illustrate the importance of understanding the cellular localization of RNA delivery and incorporating further checkpoints when choosing nanoparticles beyond biochemical and physical characterization, as small changes in the chemical composition of LNPs can have an impact on both the biofate of LNPs and therapeutic outcomes.
Collapse
Affiliation(s)
- Lindsay T Johnson
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| | - Di Zhang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| | - Kejin Zhou
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| | - Sang M Lee
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| | - Shuai Liu
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| | - Sean A Dilliard
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| | - Lukas Farbiak
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| | - Sumanta Chatterjee
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| | - Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas 75390, Texas, United States
| |
Collapse
|
245
|
Gupta S, Das U, Sinha S. IGT mediated Nanog siRNA delivery in prostate cancer cells improves chemosensitization of Epirubicin in vitro. Bioorg Med Chem Lett 2022; 76:129017. [DOI: 10.1016/j.bmcl.2022.129017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022]
|
246
|
Lee JW, Choi J, Choi Y, Kim K, Yang Y, Kim SH, Yoon HY, Kwon IC. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy. J Control Release 2022; 351:713-726. [DOI: 10.1016/j.jconrel.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
|
247
|
Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf B Biointerfaces 2022; 221:113002. [PMID: 36370645 DOI: 10.1016/j.colsurfb.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.e., silencing the expression of oncogenic genes responsible for producing abnormal proteins (via messenger RNAs (mRNAs)). However, the future clinical translation of NAT is majorly dependent upon the effective delivery of the exogenous nucleic acids (especially RNAs - e.g., short interfering RNAs (siRNAs) - herein called biological drugs). Moreover, nano-based vehicles (i.e., nanocarriers) are involved in delivering them to prevent degradation and undesired bioaccumulation while enhancing the stability of siRNAs. Herein, we have initially discussed about three major types of self-assembling nanocarriers (liposomes, polymeric nanoparticles and exosomes). Later, we have majorly reviewed recent developments in non-targeted/targeted nanocarriers for delivery of biological drugs (individual/dual) to silence the most important genes/mRNAs accountable for inducing protein abnormality. These proteins include polo-like kinase 1 (PLK1), survivin, vascular endothelial growth factor (VEGF), B-cell lymphoma/leukaemia-2 (Bcl-2) and multi-drug resistance (MDR). Besides, the consequent therapeutic effects on cancer growth, invasion and/or metastasis have also been discussed. Finally, we have comprehensively reviewed the improvements achieved in the cutting-edge cancer therapeutics while delivering siRNAs in combination with clinically approved chemotherapeutic drugs.
Collapse
|
248
|
Abosalha AK, Boyajian J, Ahmad W, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. Clinical pharmacology of siRNA therapeutics: current status and future prospects. Expert Rev Clin Pharmacol 2022; 15:1327-1341. [PMID: 36251525 DOI: 10.1080/17512433.2022.2136166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately twenty years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada.,Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
249
|
Lyu F, An S, Kobayashi Y, Nomura K, Baba R, Abe N, Hiraoka H, Hashiya F, Shu Z, Ui-Tei K, Kimura Y, Abe H. A 2'-modified uridine analog, 2'-O-(methylthiomethoxy)methyl uridine, for siRNA applications. Bioorg Med Chem Lett 2022; 74:128939. [PMID: 35964844 DOI: 10.1016/j.bmcl.2022.128939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
The medicinal applications of siRNAs have been intensively examined but are still hindered by their low molecular stability under biological conditions and off-target effects, etc. The introduction of chemical modifications to the nucleoside is a promising strategy for solving these limitations. Herein, we describe the development of a new uridine analog, U*, that has a (methylthiomethoxy)methoxy group at the 2' position. The phosphoramidite reagent corresponding to U* was easily synthesized and the RNA oligonucleotides containing U* were stably prepared using a standard protocol for oligonucleotide synthesis. The introduction of U* into the siRNA resulted in positive or negative effects on the targeted gene silencing in a position-dependent manner, and the positive effects were attributed to the improved stability under biological conditions. The thermodynamic analysis of the U*-modified RNAs revealed a slight destabilization of the dsRNA, based depending on which U was strategically utilized to restrain the off-target effects of the siRNA. This study describes a rare example of nucleoside analogs with a large substitution at the 2'-position in the context of an siRNA application and is informative for the development of other analogs to further improve the molecular properties of siRNAs for medicinal applications.
Collapse
Affiliation(s)
- Fangjie Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Seongjin An
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Yoshiaki Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohei Nomura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Rintaro Baba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Zhaoma Shu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kumiko Ui-Tei
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
250
|
Chen Z, Krishnamachary B, Mironchik Y, Ray Banerjee S, Pomper MG, Bhujwalla ZM. PSMA-specific degradable dextran for multiplexed immunotargeted siRNA therapeutics against prostate cancer. NANOSCALE 2022; 14:14014-14022. [PMID: 36093754 PMCID: PMC9844541 DOI: 10.1039/d2nr02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Small interfering RNA (siRNA) is ideal for gene silencing through a sequence-specific RNA interference process. The redundancy and complexity of molecular pathways in cancer create a need for multiplexed targeting that can be achieved with multiplexed siRNA delivery. Here, we delivered multiplexed siRNA with a PSMA-targeted biocompatible dextran nanocarrier to downregulate CD46 and PD-L1 in PSMA expressing prostate cancer cells. The selected gene targets, PD-L1 and CD46, play important roles in the escape of cancer cells from immune surveillance. PSMA, abundantly expressed by prostate cancer cells, allowed the prostate cancer-specific delivery of the nanocarrier. The nanocarrier was modified with acid cleavable acetal bonds for a rapid release of siRNA. Cell imaging and flow cytometry studies confirmed the PSMA-specific delivery of CD46 and PD-L1 siRNA to high PSMA expressing PC-3 PIP cells. Immunoblot, qRT-PCR and flow cytometry methods confirmed the downregulation of CD46 and PD-L1 following treatment with multiplexed siRNA.
Collapse
Affiliation(s)
- Zhihang Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Balaji Krishnamachary
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Yelena Mironchik
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Zaver M Bhujwalla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|