201
|
Zhang H, Chi M, Chen L, Sun X, Wan L, Yang Q, Guo C. Linalool Prevents Cisplatin Induced Muscle Atrophy by Regulating IGF-1/Akt/FoxO Pathway. Front Pharmacol 2020; 11:598166. [PMID: 33390985 PMCID: PMC7774296 DOI: 10.3389/fphar.2020.598166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle atrophy is an important feature of cancer cachexia, which can be induced by chemotherapy, and affects the survival and quality of life of cancer patients seriously. No specific drugs for cancer cachexia have been applied in clinical practice. This study explored the therapeutic effect of linalool (LIN) on cisplatin (DDP) induced skeletal muscle atrophy. In vivo, LIN can improve skeletal muscle weight loss, anorexia, muscle strength decline and other cachexia symptoms caused by cisplatin treatment in a Lewis lung cancer tumor bearing mouse model, and cause no adverse effects on the anti-tumour effect. LIN treatment decreased the expression of muscle RING-finger protein-1 (MuRF1) and Atrogin1(MAFbx) in muscle, and the activation of insulin-like growth factor-1 (IGF-1)/protein kinase B (Akt)/forkhead box O (FoxO) pathway was observed. In vitro, LIN alleviated DDP induced C2C12 myotube atrophy, and IGF-1 receptor inhibitor Picropodophyllin (PIC), which had no adverse effect on C2C12 myotube cells, could reverse the protective effect of LIN. These results indicate that LIN down-regulates the expression of Atrogin1 and MuRF1 through the IGF-1/Akt/FoxO pathway, alleviating DDP-induced muscle atrophy and improving cachexia symptoms. LIN has the potential to be developed as a drug against cancer cachexia.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyi Chi
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
202
|
Expanding the spectrum of congenital myopathies: prenatal onset with extreme hyperextension of the neck. Neurol Sci 2020; 42:1549-1553. [PMID: 33244741 DOI: 10.1007/s10072-020-04937-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
We describe the case of a male newborn presenting with a prenatal diagnosis of persistent hyperextension of the fetal neck and severe hypotonia and respiratory insufficiency at birth. Facial weakness, increased serum creatine kinase levels, and abnormal feeding, together with other signs, such as severe contractures, also classically associated with congenital myopathies prompted to perform a muscle biopsy showing internal rods suggestive of a possible nemaline myopathy. These findings suggest that a careful neurological examination should be performed in infants with persistent hyperextension of the fetal neck to exclude weakness and a possible underlying muscle disorder.
Collapse
|
203
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
204
|
Hettige P, Tahir U, Nishikawa KC, Gage MJ. Comparative analysis of the transcriptomes of EDL, psoas, and soleus muscles from mice. BMC Genomics 2020; 21:808. [PMID: 33213377 PMCID: PMC7678079 DOI: 10.1186/s12864-020-07225-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. RESULTS EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. CONCLUSIONS The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.
Collapse
Affiliation(s)
- Pabodha Hettige
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA.,UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Uzma Tahir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kiisa C Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA. .,UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
205
|
Yamaguchi K, Hara K, Nakagawa K, Yoshimi K, Ariya C, Nakane A, Furuya J, Tohara H. Ultrasonography Shows Age-related Changes and Related Factors in the Tongue and Suprahyoid Muscles. J Am Med Dir Assoc 2020; 22:766-772. [PMID: 33229307 DOI: 10.1016/j.jamda.2020.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate age and other factors related to the deterioration of the muscles used for swallowing, including the tongue and suprahyoid muscles. DESIGN Cross-sectional study. SETTING AND PARTICIPANTS This study included 146 participants: 47 younger adults (23 men and 24 women; age range 23-44 years) recruited from a dental hospital and 99 community-dwelling older adults (37 men and 62 women, age range 65-86 years). METHODS Age (<65 years or ≥65 years), body mass index (BMI), skeletal muscle mass index (SMI), and tooth loss (Eichner classification) were measured. The cross-sectional areas (CSAs) of the tongue, geniohyoid muscle, and anterior belly of the digastric muscle were measured using an ultrasonic diagnostic apparatus. The correlation between each muscle's CSA and strength was examined. Multiple regression analyses were performed separately for each sex using each muscle CSA as the dependent variable and age, BMI, SMI, and the Eichner classification as explanatory variables. RESULTS Older men had a significant positive correlation between tongue pressure and CSA (r = 0.35, P = .031). Jaw opening force was positively correlated with geniohyoid muscle CSA (r = 0.41, P = .001) in older women. In the multiple regression analysis, age, BMI, and SMI were significantly associated with tongue CSA in men. Age was significantly and inversely associated with suprahyoid muscle CSA in both men and women. No explanatory variables were significantly associated with geniohyoid muscle CSA except age. CONCLUSIONS AND IMPLICATIONS The tongue increased in volume, and the suprahyoid muscles underwent atrophy with age. The study results suggest that interventions to prevent dysphagia associated with aging should be tailored toward specific muscles. Direct muscle training is required for the suprahyoid muscles, whereas the maintenance of tongue muscle mass and function, as well as training for the tongue, requires attention to ensure optimal nutritional status and whole-body skeletal muscle mass.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Department of Dysphagia Rehabilitation, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Koji Hara
- Department of Dysphagia Rehabilitation, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuharu Nakagawa
- Department of Dysphagia Rehabilitation, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kanako Yoshimi
- Department of Dysphagia Rehabilitation, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chantaramanee Ariya
- Department of Dysphagia Rehabilitation, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Nakane
- Department of Dysphagia Rehabilitation, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Furuya
- Department of Dysphagia Rehabilitation, Tokyo Medical and Dental University, Tokyo, Japan; Department of Geriatric Dentistry, Showa University School of Dentistry, Tokyo, Japan
| | - Haruka Tohara
- Department of Dysphagia Rehabilitation, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
206
|
Neuromuscular Specializations of the Human Hypopharyngeal Muscles. Dysphagia 2020; 36:769-785. [PMID: 33159539 DOI: 10.1007/s00455-020-10212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
The hypopharyngeal muscles in humans play a vital role in swallowing, speech, and respiration. Increasing evidence indicates that these muscles are specialized to perform life-sustaining upper aerodigestive functions. This review aims to provide current knowledge regarding the key structural, physiological, and biochemical features of the hypopharyngeal muscles, including innervation, contractile properties, histochemistry, biochemical properties, myosin heavy chain (MyHC) expression and regulation, and age-related alterations. These would clarify the unique neuromuscular specializations of the human hypopharyngeal muscles for a better understanding of the functions and pathological conditions of the pharynx and for the development of novel therapies to treat related upper airway disorders.
Collapse
|
207
|
Wright TJ, Davis RW, Holser RR, Hückstädt LA, Danesi CP, Porter C, Widen SG, Williams TM, Costa DP, Sheffield-Moore M. Changes in Northern Elephant Seal Skeletal Muscle Following Thirty Days of Fasting and Reduced Activity. Front Physiol 2020; 11:564555. [PMID: 33123026 PMCID: PMC7573231 DOI: 10.3389/fphys.2020.564555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Northern elephant seals (NES, Mirounga angustirostris) undergo an annual molt during which they spend ∼40 days fasting on land with reduced activity and lose approximately one-quarter of their body mass. Reduced activity and muscle load in stereotypic terrestrial mammalian models results in decreased muscle mass and capacity for force production and aerobic metabolism. However, the majority of lost mass in fasting female NES is from fat while muscle mass is largely preserved. Although muscle mass is preserved, potential changes to the metabolic and contractile capacity are unknown. To assess potential changes in NES skeletal muscle during molt, we collected muscle biopsies from 6 adult female NES before the molt and after ∼30 days at the end of the molt. Skeletal muscle was assessed for respiratory capacity using high resolution respirometry, and RNA was extracted to assess changes in gene expression. Despite a month of reduced activity, fasting, and weight loss, skeletal muscle respiratory capacity was preserved with no change in OXPHOS respiratory capacity. Molt was associated with 162 upregulated genes including those favoring lipid metabolism. We identified 172 downregulated genes including those coding for ribosomal proteins and genes associated with skeletal muscle force transduction and glucose metabolism. Following ∼30 days of molt, NES skeletal muscle metabolic capacity is preserved although mechanotransduction may be compromised. In the absence of exercise stimulus, fasting-induced shifts in muscle metabolism may stimulate pathways associated with preserving the mass and metabolic capacity of slow oxidative muscle.
Collapse
Affiliation(s)
- Traver J Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Randall W Davis
- Department of Marine Biology, Texas A&M University, Galveston, TX, United States
| | - Rachel R Holser
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Luis A Hückstädt
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Christopher P Danesi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Craig Porter
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Terrie M Williams
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Daniel P Costa
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Melinda Sheffield-Moore
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
208
|
Jaitovich A, Dumas CL, Itty R, Chieng HC, Khan MMHS, Naqvi A, Fantauzzi J, Hall JB, Feustel PJ, Judson MA. ICU admission body composition: skeletal muscle, bone, and fat effects on mortality and disability at hospital discharge-a prospective, cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:566. [PMID: 32958059 PMCID: PMC7507825 DOI: 10.1186/s13054-020-03276-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Background Reduced body weight at the time of intensive care unit (ICU) admission is associated with worse survival, and a paradoxical benefit of obesity has been suggested in critical illness. However, no research has addressed the survival effects of disaggregated body constituents of dry weight such as skeletal muscle, fat, and bone density. Methods Single-center, prospective observational cohort study of medical ICU (MICU) patients from an academic institution in the USA. Five hundred and seven patients requiring CT scanning of chest or abdomen within the first 24 h of ICU admission were evaluated with erector spinae muscle (ESM) and subcutaneous adipose tissue (SAT) areas and with bone density determinations at the time of ICU admission, which were correlated with clinical outcomes accounting for potential confounders. Results Larger admission ESM area was associated with decreased odds of 6-month mortality (OR per cm2, 0.96; 95% CI, 0.94–0.97; p < 0.001) and disability at discharge (OR per cm2, 0.98; 95% CI, 0.96–0.99; p = 0.012). Higher bone density was similarly associated with lower odds of mortality (OR per 100 HU, 0.69; 95% CI, 0.49–0.96; p = 0.027) and disability at discharge (OR per 100 HU, 0.52; 95% CI, 0.37–0.74; p < 0.001). SAT area was not significantly associated with these outcomes’ measures. Multivariable modeling indicated that ESM area remained significantly associated with 6-month mortality and survival after adjusting for other covariates including preadmission comorbidities, albumin, functional independence before admission, severity scores, age, and exercise capacity. Conclusion In our cohort, ICU admission skeletal muscle mass measured with ESM area and bone density were associated with survival and disability at discharge, although muscle area was the only component that remained significantly associated with survival after multivariable adjustments. SAT had no association with the analyzed outcome measures.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA. .,Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Av, Albany, NY, USA.
| | - Camille L Dumas
- Department of Radiology, Albany Medical College, Albany, NY, USA
| | - Ria Itty
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | - Hau C Chieng
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | - Malik M H S Khan
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA.,Present Address: Division of Pulmonary and Critical Care Medicine Spectrum Health-Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Ali Naqvi
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | - John Fantauzzi
- Department of Radiology, Albany Medical College, Albany, NY, USA
| | - Jesse B Hall
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Marc A Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| |
Collapse
|
209
|
Mas MF, González J, Frontera WR. Stroke and sarcopenia. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:452-460. [PMID: 33777503 DOI: 10.1007/s40141-020-00284-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose of review to evaluate recent scientific research studies related to the changes in skeletal muscle after stroke and the presence of sarcopenia in stroke survivors to establish its incidence and effects on function. Recent Findings Recently published findings on stroke-related sarcopenia are limited. This might be due to changes in the consensus definition of sarcopenia. Sarcopenia in stroke patients is estimated at 14 to 54%. The presence of sarcopenia at the time of a stroke can lead to worse recovery and functional outcomes. Summary Presence of sarcopenia prior to a stroke may be more common than suspected and can lead to worse functional recovery. Clinicians should be aware of this to better identify and treat stroke-related sarcopenia. Future research should focus on larger population studies to more accurately establish correlation between stroke and sarcopenia.
Collapse
Affiliation(s)
- Manuel F Mas
- Department of Physical Medicine, Rehabilitation, and Sports Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Javier González
- Department of Physical Medicine, Rehabilitation, and Sports Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Walter R Frontera
- Department of Physical Medicine, Rehabilitation, and Sports Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
210
|
Suhas KM, Alaparthi GK, Krishnan SK, Bairapareddy KC. Upper Limb Extremity Muscle-Dysfunction in Chronic Obstructive Pulmonary Disease: A Narrative Review. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x16999200621201220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background:
Peripheral muscle dysfunction is one of the major comorbidities seen in
chronic obstructive pulmonary disease. Focusing more on upper extremity, unsupported elevation of
arms results in a change in the recruitment pattern of the respiratory muscles. Over the years, many
tests were developed to assess the upper limb capacity and include them in various rehabilitation
protocol.
Objective:
To review the evidence on mechanism, tests, and rehabilitation protocol for the upper
limb extremity muscle-dysfunction occurring in chronic obstructive pulmonary disease.
Methods:
PubMed and Google scholar databases were searched. Based on the inclusion criteria’s:-
Chronic Obstructive Pulmonary Diseases patients, any Randomized Controlled or clinical trials,
systematic reviews, explaining upper limb extremity muscle dysfunction, various tests to assess
upper limb functional capacity and different ways of upper limb extremity training, a total of 15
articles were retrieved.
Results:
The mechanism of upper extremity muscle dysfunction is now well understood. Various
tests were designed in order to assess arm strength, arm endurance and functional capacity. All the
studies which included upper limb extremity training as a part of the rehabilitation program, showed
beneficial results in terms of reduction of dyspnoea and arm fatigue, as well as improving the activity
performing capacity.
Conclusion:
This review concluded that the alteration in the upper limb extremity muscles is an
inevitable consequence of chronic obstructive pulmonary diseases, which can be confirmed by
various upper extremity tests, with patients responding positively to the upper limb training
incorporated during pulmonary rehabilitation protocols.
Collapse
Affiliation(s)
- Kulkarni M. Suhas
- Department of Physiotherapy, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, India
| | - Gopala K. Alaparthi
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shyam K. Krishnan
- Department of Physiotherapy, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, India
| | - Kalyana C. Bairapareddy
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
211
|
Rasulić L, Simić V, Savić A, Lepić M, Kovačević V, Puzović V, Grujić J, Mandić-Rajčević S, Samardžić M. The role of arm volumes evaluation in the functional outcome and patient satisfaction following surgical repair of the brachial plexus traumatic injuries. Neurol Res 2020; 42:995-1002. [PMID: 32900291 DOI: 10.1080/01616412.2020.1819072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Brachial plexus injuries are among the most complex injuries of the peripheral nervous system and among the most devastating injuries overall. In complete lesions, functional priorities include the reinnervation of the musculocutaneous and axillary nerves for proximal functions restoration. Three major nerves - radial, median, and ulnar - and the corresponding muscles remain denervated, which results in subsequent muscle atrophy. This study was aimed at the evaluation of arm volumes in surgically treated patients with brachial plexus injuries, in correlation with the type of palsy, recovery and associated factors. METHODS The study included 36 patients with brachial plexus injuries who were surgically treated in our institution over a 15-year-long period. The evaluation of arm and arm segments volumes was carried out using water displacement testing, based on the Archimedes principle. RESULTS Statistically significant differences were noted between the operated arm and the healthy arm in all of the measured segments (hands, forearms and upper arms), as well as between the patients with complete and upper palsy, and in correlation with the shoulder abduction recovery. CONCLUSIONS Previous studies were mainly focused on the functional outcome and quality of life; although related to both, arm volumes in patients with brachial plexus injuries were not analyzed before. Significant differences between the operated arm and the healthy arm volumes, as well as between the various types of palsy, found in the present study should trigger further prospective research in relation to neurophysiology, useful functional recovery and quality of life.
Collapse
Affiliation(s)
- Lukas Rasulić
- Faculty of Medicine, University of Belgrade , Belgrade, Serbia.,Clinic for Neurosurgery, Clinical Center of Serbia , Belgrade, Serbia
| | - Vesna Simić
- Faculty of Medicine, University of Belgrade , Belgrade, Serbia.,Section for Neurosurgery, Department of Surgery, Ćuprija General Hospital , Ćuprija, Serbia
| | - Andrija Savić
- Clinic for Neurosurgery, Clinical Center of Serbia , Belgrade, Serbia
| | - Milan Lepić
- Faculty of Medicine, University of Belgrade , Belgrade, Serbia.,Faculty of Medicine of the Military Medical Academy, University of Defense , Belgrade, Serbia.,Clinic for Neurosurgery, Military Medical Academy , Belgrade, Serbia
| | - Vojin Kovačević
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac , Kragujevac, Serbia
| | - Vladimir Puzović
- "Sport Academy Belgrade", College of Higher Vocational Studies , Belgrade, Serbia
| | - Jovan Grujić
- Faculty of Medicine, University of Belgrade , Belgrade, Serbia.,Clinic for Neurosurgery, Clinical Center of Serbia , Belgrade, Serbia
| | | | - Miroslav Samardžić
- Faculty of Medicine, University of Belgrade , Belgrade, Serbia.,Clinic for Neurosurgery, Clinical Center of Serbia , Belgrade, Serbia
| |
Collapse
|
212
|
Penna F, Ballarò R, Costelli P. The Redox Balance: A Target for Interventions Against Muscle Wasting in Cancer Cachexia? Antioxid Redox Signal 2020; 33:542-558. [PMID: 32037856 DOI: 10.1089/ars.2020.8041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The management of cancer patients is frequently complicated by the occurrence of a complex syndrome known as cachexia. It is mainly characterized by muscle wasting, a condition that associates with enhanced protein breakdown and with negative energy balance. While the mechanisms underlying cachexia have been only partially elucidated, understanding the pathogenesis of muscle wasting in cancer hosts is mandatory to design new targeted therapeutic strategies. Indeed, most of cancer patients will experience cachexia during the course of their disease, and about 25% of cancer-related deaths are due to this syndrome, rather than to the tumor itself. Recent Advances: Compelling evidence suggests that an altered redox homeostasis likely contributes to cancer-induced muscle protein depletion, directly or indirectly activating the intracellular degradative pathways. In addition, oxidative stress impinges on both mitochondrial number and function; the other way round, altered mitochondria lead to enhanced redox imbalance, creating a vicious loop that eventually results in negative energy metabolism. Critical Issues: The present review focuses on the possibility that pharmacological and nonpharmacological strategies able to restore a physiologic redox balance could be useful components of treatment schedules aimed at counteracting cancer-induced muscle wasting. Future Directions: Exercise and the use of exercise mimetic drugs represent the most promising approaches capable of reinforcing the muscle antioxidant defenses of cancer patients. The results from ongoing and new clinical trials are needed to validate the preclinical studies and provide effective therapies for cancer cachexia. Antioxid. Redox Signal. 33, 542-558.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Riccardo Ballarò
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
213
|
Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, Yasunobe Y, Takeya Y, Yamamoto K, Hirabayashi T, Fujino H, Rakugi H. Differential effects of pre-exercise on cancer cachexia-induced muscle atrophy in fast- and slow-twitch muscles. FASEB J 2020; 34:14389-14406. [PMID: 32892438 DOI: 10.1096/fj.202001330r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
Abstract
We hypothesized that pre-exercise may effectively prevent cancer cachexia-induced muscle atrophy in both fast- and slow-twitch muscle types. Additionally, the fast-twitch muscle may be more affected by cancer cachexia than slow-twitch muscle. This study aimed to evaluate the effects of pre-exercise on cancer cachexia-induced atrophy and on atrophy in fast- and slow-twitch muscles. Twelve male Wistar rats were randomly divided into sedentary and exercise groups, and another 24 rats were randomly divided into control, pre-exercise, cancer cachexia induced by intraperitoneal injections of ascites hepatoma AH130 cells, and pre-exercise plus cancer cachexia groups. We analyzed changes in muscle mass and in gene and protein expression levels of major regulators and indicators of muscle protein degradation and synthesis pathways, angiogenic factors, and mitochondrial function in both the plantaris and soleus muscles. Pre-exercise inhibited muscle mass loss, rescued protein synthesis, prevented capillary regression, and suppressed hypoxia in the plantaris and soleus muscles. Pre-exercise inhibited mitochondrial dysfunction differently in fast- and slow-twitch muscles. These results suggested that pre-exercise has the potential to inhibit cancer-cachexia-induced muscle atrophy in both fast- and slow-twitch muscles. Furthermore, the different progressions of cancer-cachexia-induced muscle atrophy in fast- and slow-twitch muscles are related to differences in mitochondrial function.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Ken Sugimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Fujimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keyu Xie
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimasa Takahashi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Akasaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Yasunobe
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
214
|
p38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int J Mol Sci 2020; 21:ijms21186480. [PMID: 32899870 PMCID: PMC7555282 DOI: 10.3390/ijms21186480] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscles respond to environmental and physiological changes by varying their size, fiber type, and metabolic properties. P38 mitogen-activated protein kinase (MAPK) is one of several signaling pathways that drive the metabolic adaptation of skeletal muscle to exercise. p38 MAPK also participates in the development of pathological traits resulting from excessive caloric intake and obesity that cause metabolic syndrome and type 2 diabetes (T2D). Whereas p38 MAPK increases insulin-independent glucose uptake and oxidative metabolism in muscles during exercise, it contrastingly mediates insulin resistance and glucose intolerance during metabolic syndrome development. This article provides an overview of the apparent contradicting roles of p38 MAPK in the adaptation of skeletal muscles to exercise and to pathological conditions leading to glucose intolerance and T2D. Here, we focus on the involvement of p38 MAPK in glucose metabolism of skeletal muscle, and discuss the possibility of targeting this pathway to prevent the development of T2D.
Collapse
|
215
|
Aquila G, Re Cecconi AD, Forti M, Frapolli R, Bello E, Novelli D, Russo I, Licandro SA, Staszewsky L, Martinelli GB, Talamini L, Pasetto L, Resovi A, Giavazzi R, Scanziani E, Careccia G, Vénéreau E, Masson S, Latini R, D’Incalci M, Piccirillo R. Trabectedin and Lurbinectedin Extend Survival of Mice Bearing C26 Colon Adenocarcinoma, without Affecting Tumor Growth or Cachexia. Cancers (Basel) 2020; 12:cancers12082312. [PMID: 32824440 PMCID: PMC7463843 DOI: 10.3390/cancers12082312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Trabectedin (ET743) and lurbinectedin (PM01183) limit the production of inflammatory cytokines that are elevated during cancer cachexia. Mice carrying C26 colon adenocarcinoma display cachexia (i.e., premature death and body wasting with muscle, fat and cardiac tissue depletion), high levels of inflammatory cytokines and subsequent splenomegaly. We tested whether such drugs protected these mice from cachexia. Ten-week-old mice were inoculated with C26 cells and three days later randomized to receive intravenously vehicle or 0.05 mg/kg ET743 or 0.07 mg/kg PM01183, three times a week for three weeks. ET743 or PM01183 extended the lifespan of C26-mice by 30% or 85%, respectively, without affecting tumor growth or food intake. Within 13 days from C26 implant, both drugs did not protect fat, muscle and heart from cachexia. Since PM01183 extended the animal survival more than ET743, we analyzed PM01183 further. In tibialis anterior of C26-mice, but not in atrophying myotubes, PM01183 restrained the NF-κB/PAX7/myogenin axis, possibly reducing the pro-inflammatory milieu, and failed to limit the C/EBPβ/atrogin-1 axis. Inflammation-mediated splenomegaly of C26-mice was inhibited by PM01183 for as long as the treatment lasted, without reducing IL-6, M-CSF or IL-1β in plasma. ET743 and PM01183 extend the survival of C26-bearing mice unchanging tumor growth or cachexia but possibly restrain muscle-related inflammation and C26-induced splenomegaly.
Collapse
Affiliation(s)
- Giorgio Aquila
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.); (M.F.); (G.B.M.)
| | - Andrea David Re Cecconi
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.); (M.F.); (G.B.M.)
| | - Mara Forti
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.); (M.F.); (G.B.M.)
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (R.F.); (E.B.); (S.A.L.); (R.G.); (M.D.)
| | - Ezia Bello
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (R.F.); (E.B.); (S.A.L.); (R.G.); (M.D.)
| | - Deborah Novelli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (D.N.); (I.R.); (L.S.); (S.M.); (R.L.)
| | - Ilaria Russo
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (D.N.); (I.R.); (L.S.); (S.M.); (R.L.)
| | - Simonetta Andrea Licandro
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (R.F.); (E.B.); (S.A.L.); (R.G.); (M.D.)
| | - Lidia Staszewsky
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (D.N.); (I.R.); (L.S.); (S.M.); (R.L.)
| | - Giulia Benedetta Martinelli
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.); (M.F.); (G.B.M.)
| | - Laura Talamini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (L.T.); (L.P.)
| | - Laura Pasetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (L.T.); (L.P.)
| | - Andrea Resovi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy;
| | - Raffaella Giavazzi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (R.F.); (E.B.); (S.A.L.); (R.G.); (M.D.)
| | - Eugenio Scanziani
- Dipartimento di Medicina Veterinaria, Università di Milano, 20133 Milan, Italy;
- Mouse and Animal Pathology Lab (MAPLab), Fondazione UniMi, Università di Milano, 20139 Milan, Italy
| | - Giorgia Careccia
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.C.); (E.V.)
| | - Emilie Vénéreau
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.C.); (E.V.)
| | - Serge Masson
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (D.N.); (I.R.); (L.S.); (S.M.); (R.L.)
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (D.N.); (I.R.); (L.S.); (S.M.); (R.L.)
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (R.F.); (E.B.); (S.A.L.); (R.G.); (M.D.)
| | - Rosanna Piccirillo
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.); (M.F.); (G.B.M.)
- Correspondence: ; Tel.: +39-02-39014371
| |
Collapse
|
216
|
Sachdev U, Ferrari R, Cui X, Pius A, Sahu A, Reynolds M, Liao H, Sun P, Shinde S, Ambrosio F, Shiva S, Loughran P, Scott M. Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine. Mol Med 2020; 26:69. [PMID: 32641037 PMCID: PMC7341481 DOI: 10.1186/s10020-020-00190-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We previously showed that the autophagy inhibitor chloroquine (CQ) increases inflammatory cleaved caspase-1 activity in myocytes, and that caspase-1/11 is protective in sterile liver injury. However, the role of caspase-1/11 in the recovery of muscle from ischemia caused by peripheral arterial disease is unknown. We hypothesized that caspase-1/11 mediates recovery in muscle via effects on autophagy and this is modulated by CQ. METHODS C57Bl/6 J (WT) and caspase-1/11 double-knockout (KO) mice underwent femoral artery ligation (a model of hind-limb ischemia) with or without CQ (50 mg/kg IP every 2nd day). CQ effects on autophagosome formation, microtubule associated protein 1A/1B-light chain 3 (LC3), and caspase-1 expression was measured using electron microscopy and immunofluorescence. Laser Doppler perfusion imaging documented perfusion every 7 days. After 21 days, in situ physiologic testing in tibialis anterior muscle assessed peak force contraction, and myocyte size and fibrosis was also measured. Muscle satellite cell (MuSC) oxygen consumption rate (OCR) and extracellular acidification rate was measured. Caspase-1 and glycolytic enzyme expression was detected by Western blot. RESULTS CQ increased autophagosomes, LC3 consolidation, total caspase-1 expression and cleaved caspase-1 in muscle. Perfusion, fibrosis, myofiber regeneration, muscle contraction, MuSC fusion, OCR, ECAR and glycolytic enzyme expression was variably affected by CQ depending on presence of caspase-1/11. CQ decreased perfusion recovery, fibrosis and myofiber size in WT but not caspase-1/11KO mice. CQ diminished peak force in whole muscle, and myocyte fusion in MuSC and these effects were exacerbated in caspase-1/11KO mice. CQ reductions in maximal respiration and ATP production were reduced in caspase-1/11KO mice. Caspase-1/11KO MuSC had significant increases in protein kinase isoforms and aldolase with decreased ECAR. CONCLUSION Caspase-1/11 signaling affects the response to ischemia in muscle and effects are variably modulated by CQ. This may be critically important for disease treated with CQ and its derivatives, including novel viral diseases (e.g. COVID-19) that are expected to affect patients with comorbidities like cardiovascular disease.
Collapse
Affiliation(s)
- Ulka Sachdev
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - Ricardo Ferrari
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Xiangdong Cui
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Abish Pius
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA
| | - Amrita Sahu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA
| | - Michael Reynolds
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA
| | - Hong Liao
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Surgery 11/20/2018-11/19/202, Visiting scholar, University of Pittsburgh, Pittsburgh, USA
| | - Sunita Shinde
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA
| | - Patricia Loughran
- Center for Biologic Imaging (CBI), University of Pittsburgh Medical Center, Biomedical Sciences Tower, Pittsburgh, PA, 15213, USA
| | - Melanie Scott
- Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| |
Collapse
|
217
|
Molenaar JP, Verhoeven JI, Rodenburg RJ, Kamsteeg EJ, Erasmus CE, Vicart S, Behin A, Bassez G, Magot A, Péréon Y, Brandom BW, Guglielmi V, Vattemi G, Chevessier F, Mathieu J, Franques J, Suetterlin K, Hanna MG, Guyant-Marechal L, Snoeck MM, Roberts ME, Kuntzer T, Fernandez-Torron R, Martínez-Arroyo A, Seeger J, Kusters B, Treves S, van Engelen BG, Eymard B, Voermans NC, Sternberg D. Clinical, morphological and genetic characterization of Brody disease: an international study of 40 patients. Brain 2020; 143:452-466. [PMID: 32040565 PMCID: PMC7009512 DOI: 10.1093/brain/awz410] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
Brody disease is an autosomal recessive myopathy characterized by exercise-induced muscle stiffness due to mutations in the ATP2A1 gene. Almost 50 years after the initial case presentation, only 18 patients have been reported and many questions regarding the clinical phenotype and results of ancillary investigations remain unanswered, likely leading to incomplete recognition and consequently under-diagnosis. Additionally, little is known about the natural history of the disorder, genotype-phenotype correlations, and the effects of symptomatic treatment. We studied the largest cohort of Brody disease patients to date (n = 40), consisting of 22 new patients (19 novel mutations) and all 18 previously published patients. This observational study shows that the main feature of Brody disease is an exercise-induced muscle stiffness of the limbs, and often of the eyelids. Onset begins in childhood and there was no or only mild progression of symptoms over time. Four patients had episodes resembling malignant hyperthermia. The key finding at physical examination was delayed relaxation after repetitive contractions. Additionally, no atrophy was seen, muscle strength was generally preserved, and some patients had a remarkable athletic build. Symptomatic treatment was mostly ineffective or produced unacceptable side effects. EMG showed silent contractures in approximately half of the patients and no myotonia. Creatine kinase was normal or mildly elevated, and muscle biopsy showed mild myopathic changes with selective type II atrophy. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity was reduced and western blot analysis showed decreased or absent SERCA1 protein. Based on this cohort, we conclude that Brody disease should be considered in cases of exercise-induced muscle stiffness. When physical examination shows delayed relaxation, and there are no myotonic discharges at electromyography, we recommend direct sequencing of the ATP2A1 gene or next generation sequencing with a myopathy panel. Aside from clinical features, SERCA activity measurement and SERCA1 western blot can assist in proving the pathogenicity of novel ATP2A1 mutations. Finally, patients with Brody disease may be at risk for malignant hyperthermia-like episodes, and therefore appropriate perioperative measures are recommended. This study will help improve understanding and recognition of Brody disease as a distinct myopathy in the broader field of calcium-related myopathies.
Collapse
Affiliation(s)
- Joery P Molenaar
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jamie I Verhoeven
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Translational Metabolic Laboratory, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Erik J Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E Erasmus
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Savine Vicart
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Anthony Behin
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Guillaume Bassez
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Armelle Magot
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Nantes, France
| | - Yann Péréon
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Nantes, France
| | - Barbara W Brandom
- Department of Anesthesiology, Children's Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | | | - Jean Mathieu
- Neuromuscular Clinic, Centre de Réadaptation en Déficience Physique de Jonquière, Jonquière, Québec, Canada
| | - Jérôme Franques
- Centre de référence des maladies neuromusculaires et de la SLA, hôpital La Timone, AP-HM, Aix-Marseille université, avenue Jean-Moulin, Marseille, France
| | - Karen Suetterlin
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | - Marc M Snoeck
- Department of Anaesthesiology, Canisius-Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Mark E Roberts
- Department of Neurology, Salford Royal NHS Foundation Trust, Greater Manchester, UK
| | - Thierry Kuntzer
- Nerve-Muscle Unit, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Roberto Fernandez-Torron
- Neuromuscular Area, Biodonostia Health Research Institute, Department of Neurology, University Hospital Donostia, CIBERNED, San Sebastián, Spain
| | | | - Juergen Seeger
- Sozialpädiatrisches Zentrum Frankfurt Mitte, Neuromuskulares Zentrum, Frankfurt, Germany
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Susan Treves
- Departments of Anesthesia and Biomedicine, Basel University and Basel University Hospital, Basel, Switzerland.,Department of Life Sciences, University of Ferrara, Ferrara, Italy
| | - Baziel G van Engelen
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bruno Eymard
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nicol C Voermans
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Damien Sternberg
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
218
|
Bloise FF, Santos AT, de Brito J, de Andrade CBV, Oliveira TS, de Souza AFP, Fontes KN, Silva JD, Blanco N, Silva PL, Rocco PRM, Fliers E, Boelen A, da-Silva WS, Ortiga-Carvalho TM. Sepsis Impairs Thyroid Hormone Signaling and Mitochondrial Function in the Mouse Diaphragm. Thyroid 2020; 30:1079-1090. [PMID: 32200709 DOI: 10.1089/thy.2019.0124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Sepsis can cause the nonthyroidal illness syndrome (NTIS), resulting in perturbed thyroid hormone (TH) signaling and reduced thyroxine (T4) levels. TH is a major regulator of muscle function, via its influence on mitochondria. This study aimed at evaluating the relationship between TH signaling, mitochondrial function, and the antioxidant defense system in the diaphragms of septic mice. Methods: Male C57Bl/6 mice were divided into two groups: cecal ligation and puncture (CLP) and sham. Twenty-four hours after surgery, plasma, diaphragms, and livers were collected. TH metabolism and responses were analyzed by measuring messenger RNA (mRNA) expression of Dio1 in the liver, and Thra, Thrb, Dio2, Slc16a10, and Slc16a2 (encodes MCT 10 and 8), in the diaphragm. T4 plasma levels were measured by radioimmunoassay. Damage to diaphragm mitochondria was assessed by electron microscopy and real-time polymerase chain reaction (qPCR), and function with oxygraphy. The diaphragm antioxidative defense system was examined by qPCR, analyzing superoxide dismutase (SOD) 1 (Sod1), mitochondrial superoxide dismutase (SOD 2; Sod2), extracellular superoxide dismutase (SOD 3; Sod3), glutathione peroxidase 1 (Gpx1), and catalase (Cat) expression. The effect of TH replacement was tested by treating the mice with T4 and triiodothyronine (T3) (CLP+TH) after surgery. Results: CLP mice presented reduced total plasma T4 concentrations, downregulated Dio1, and upregulated Il1b mRNA expression in the liver. CLP mice also displayed downregulated Thra, Thrb, Slc16a10, and Slc16a2 expression in the diaphragm, suggesting that TH signaling was compromised. The expression of Ppargc1a (encoding PGC1a) was downregulated, which correlated with the decrease in the number of total mitochondria, increase in the percentage of injured mitochondria, downregulation of respiratory chain complex 2 and 3 mRNA expression, and reduced maximal respiration. In addition, septic animals presented a three-fold increase in Ucp3 and G6pdh expression; downregulated Sod3, Gpx1, and Cat expression; and upregulated Sod2 expression, potentially due to elevated reactive oxygen species levels. The mitochondrial number and the percentage of injured mitochondrial were similar between sham and CLP+TH mice. Conclusions: Sepsis induced responses consistent with NTIS, resulted in mitochondrial damage and functional impairment, and modulated the expression of key antioxidant enzymes in the diaphragm. Thus, impaired diaphragm function during sepsis seems to involve altered local TH signaling, mitochondrial dysfunction, and oxidative stress defense.
Collapse
Affiliation(s)
- Flavia Fonseca Bloise
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson Teixeira Santos
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana de Brito
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira de Andrade
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamires Siqueira Oliveira
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Fonseca Pereira de Souza
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Klaus Novaes Fontes
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eric Fliers
- Department of Endocrinology & Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology & Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Endocrinology Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Wagner Seixas da-Silva
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tânia Maria Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
219
|
Pérez-Rial S, Barreiro E, Fernández-Aceñero MJ, Fernández-Valle ME, González-Mangado N, Peces-Barba G. Early detection of skeletal muscle bioenergetic deficit by magnetic resonance spectroscopy in cigarette smoke-exposed mice. PLoS One 2020; 15:e0234606. [PMID: 32569331 PMCID: PMC7307759 DOI: 10.1371/journal.pone.0234606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscle dysfunction is a common complication and an important prognostic factor in patients with chronic obstructive pulmonary disease (COPD). It is associated with intrinsic muscular abnormalities of the lower extremities, but it is not known whether there is an easy way to predict its presence. Using a mouse model of chronic cigarette smoke exposure, we tested the hypothesis that magnetic resonance spectroscopy allows us to detect muscle bioenergetic deficit in early stages of lung disease. We employed this technique to evaluate the synthesis rate of adenosine triphosphate (ATP) and characterize concomitant mitochondrial dynamics patterns in the gastrocnemius muscle of emphysematous mice. The fibers type composition and citrate synthase (CtS) and cytochrome c oxidase subunit IV (COX4) enzymatic activities were evaluated. We found that the rate of ATP synthesis was reduced in the distal skeletal muscle of mice exposed to cigarette smoke. Emphysematous mice showed a significant reduction in body weight gain, in the cross-sectional area of the total fiber and in the COX4 to CtS activity ratio, due to a significant increase in CtS activity of the gastrocnemius muscle. Taken together, these data support the hypothesis that in the early stage of lung disease, we can detect a decrease in ATP synthesis in skeletal muscle, partly caused by high oxidative mitochondrial enzyme activity. These findings may be relevant to predict the presence of skeletal bioenergetic deficit in the early stage of lung disease besides placing the mitochondria as a potential therapeutic target for the treatment of COPD comorbidities.
Collapse
Affiliation(s)
- Sandra Pérez-Rial
- Respiratory Research Unit, Biomedical Research Institute—Fundación Jiménez Díaz, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, M.P (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Barreiro
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, M.P (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Respiratory Medicine Department—Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar, Barcelona Biomedical Research Park, Barcelona, Spain
| | | | | | - Nicolás González-Mangado
- Respiratory Research Unit, Biomedical Research Institute—Fundación Jiménez Díaz, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, M.P (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Germán Peces-Barba
- Respiratory Research Unit, Biomedical Research Institute—Fundación Jiménez Díaz, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, M.P (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
220
|
Senoo N, Miyoshi N, Kobayashi E, Morita A, Tanihata J, Takeda S, Miura S. Glycerophospholipid profile alterations are associated with murine muscle-wasting phenotype. Muscle Nerve 2020; 62:413-418. [PMID: 32496590 DOI: 10.1002/mus.26993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Phospholipids are essential components of cellular membranes and are closely associated with cellular functions, but relationships involving skeletal muscle phospholipid profiles and their physiological phenotypes have remained unclear. METHODS We carried out comprehensive phospholipid analyses using liquid chromatography-tandem mass spectrometry to determine the phospholipid profiles of skeletal muscles derived from muscle-wasting mouse models, including denervated and Duchenne muscular dystrophy mouse models (mdx) as well as rescued mdx mice expressing truncated dystrophin. RESULTS Consistent phosphatidylcholine and phosphatidylethanolamine alterations in skeletal muscles isolated from denervated and mdx mice were observed. Notably, the levels of these phospholipids binding polyunsaturated fatty acids were reduced in denervated and mdx muscles. Moreover, rescuing the mdx pathology by expressing truncated dystrophin led to the restoration of phospholipid profiles. DISCUSSION Our findings support the hypothesis that phospholipid profiles of the skeletal muscle may be associated with skeletal muscle function.
Collapse
Affiliation(s)
- Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Eri Kobayashi
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akihito Morita
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center for Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center for Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
221
|
Ehmsen JT, Höke A. Cellular and molecular features of neurogenic skeletal muscle atrophy. Exp Neurol 2020; 331:113379. [PMID: 32533969 DOI: 10.1016/j.expneurol.2020.113379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Neurogenic atrophy refers to the loss of muscle mass and function that results directly from injury or disease of the peripheral nervous system. Individuals with neurogenic atrophy may experience reduced functional status and quality of life and, in some circumstances, reduced survival. Distinct pathological findings on muscle histology can aid in diagnosis of a neurogenic cause for muscle dysfunction, and provide indicators for the chronicity of denervation. Denervation induces pleiotypic responses in skeletal muscle, and the molecular mechanisms underlying neurogenic muscle atrophy appear to share common features with other causes of muscle atrophy, including activation of FOXO transcription factors and corresponding induction of ubiquitin-proteasomal and lysosomal degradation. In this review, we provide an overview of histologic features of neurogenic atrophy and a summary of current understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Jeffrey T Ehmsen
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
222
|
Incitti T, Magli A, Jenkins A, Lin K, Yamamoto A, Perlingeiro RCR. Pluripotent stem cell-derived skeletal muscle fibers preferentially express myosin heavy-chain isoforms associated with slow and oxidative muscles. Skelet Muscle 2020; 10:17. [PMID: 32493438 PMCID: PMC7268645 DOI: 10.1186/s13395-020-00234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal muscle function is essential for health, and it depends on the proper activity of myofibers and their innervating motor neurons. Each adult muscle is composed of different types of myofibers with distinct contractile and metabolic characteristics. The proper balance of myofiber types is disrupted in most muscle degenerative disorders, representing another factor compromising muscle function. One promising therapeutic approach for the treatment of these diseases is cell replacement based on the targeted differentiation of pluripotent stem cells (PSCs) towards the myogenic lineage. We have previously shown that transient induction of Pax3 or Pax7 in PSCs allows for the generation of skeletal myogenic progenitors endowed with myogenic regenerative potential, but whether they contribute to different fiber types remains unknown. RESULTS Here, we investigate the fiber type composition of mouse PSC-derived myofibers upon their transplantation into dystrophic and non-dystrophic mice. Our data reveal that PSC-derived myofibers express slow and oxidative myosin heavy-chain isoforms, along with developmental myosins, regardless of the recipient background. Furthermore, transplantation of the mononuclear cell fraction re-isolated from primary grafts into secondary recipients results in myofibers that maintain preferential expression of slow and oxidative myosin heavy-chain isoforms but no longer express developmental myosins, thus indicating postnatal composition. CONCLUSIONS Considering oxidative fibers are commonly spared in the context of dystrophic pathogenesis, this feature of PSC-derived myofibers could be advantageous for therapeutic applications.
Collapse
Affiliation(s)
- Tania Incitti
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Asher Jenkins
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Karena Lin
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Ami Yamamoto
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA. .,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
223
|
Keilich SR, Lorenzo EC, Torrance BL, Harrison AG, Bartley JM, Haynes L. Vaccination mitigates influenza-induced muscular declines in aged mice. GeroScience 2020; 42:1593-1608. [PMID: 32472355 DOI: 10.1007/s11357-020-00206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022] Open
Abstract
Influenza (flu) infection increases the risk for disability, falls, and broken bones in older adults. We have employed a preclinical model to examine the impact of flu on muscle function, which has a direct impact on fall risk. In mice, flu causes mobility and strength impairments with induction of inflammatory and muscle degradation genes that are increased and prolonged with aging. To determine if vaccination could reduce flu-induced muscle decrements, mice were vaccinated with flu nucleoprotein, infected, and muscle parameters were measured. Vaccination of aged mice resulted in significant protection from functional decrements, muscle gene expressions alterations, and morphological damage. Vaccination also improved protection from lung localized and systemic inflammation in aged mice. Despite documented decreased vaccine efficacy with aging, vaccination still provided partial protection to aged mice and represents a potential strategy to prevent flu-induced disability. These findings provide translational insight on ways to reduce flu-induced disability with aging. Graphical abstract .
Collapse
Affiliation(s)
- Spencer R Keilich
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Erica C Lorenzo
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Blake L Torrance
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jenna M Bartley
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Laura Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA. .,Department of Immunology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
224
|
Ravn MK, Ostergaard TI, Schroeder HD, Nyengaard JR, Lambertsen KL, Frich LH. Supraspinatus and deltoid muscle fiber composition in rotator cuff tear conditions. JSES Int 2020; 4:431-437. [PMID: 32939464 PMCID: PMC7479021 DOI: 10.1016/j.jseint.2020.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Rotator cuff (RC) tears are associated with RC muscle atrophy and changes in composition that are crucial to the prognosis of RC repair. The aim of this study was to characterize muscle fiber composition in the supraspinatus (SS) muscle under tear conditions. Methods Muscle biopsies were obtained from 21 patients undergoing surgery for an RC tendon tear. Biopsies were obtained from the musculotendinous junction of the SS muscle, and control biopsies were harvested from the deltoid muscle (DT). Biopsies were immunohistochemically processed for detection of type 1 (slow type) and type 2 (fast type) fibers and analyzed using unbiased, stereological principles. We counted the total numbers of type 1 and 2 muscle fibers/mm2, and fiber diameter was used to estimate muscle fiber atrophy and hypertrophy. Results We found significantly more type 2 cells/mm2 in the SS compared with the DT (P < .01). In addition, we found a significantly higher fraction of type 1 fibers than type 2 fibers in the DT (P < .01), whereas both fiber types were equally present in the SS. The diameters of SS cells were generally smaller than those of DT cells. Atrophy of especially SS type 2 fibers was also demonstrated. Fiber atrophy was more pronounced in men than women. Conclusion The changes in the composition of SS muscle cell types suggest a shift from type 1 to type 2 muscle fibers and atrophy of both type 1 and 2 fibers. This composition indicates loss of endurance and rapid fatigue of the SS muscle under RC tear conditions.
Collapse
Affiliation(s)
- Morten Kjaer Ravn
- Department of Orthopaedics, Odense University Hospital, Odense, Denmark.,The Orthopaedic Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Trine Ivarsen Ostergaard
- Department of Orthopaedics, Odense University Hospital, Odense, Denmark.,The Orthopaedic Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Jens Randel Nyengaard
- Department of Clinical Medicine - Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Henrik Frich
- Department of Orthopaedics, Odense University Hospital, Odense, Denmark.,The Orthopaedic Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
225
|
Korponay TC, Balnis J, Vincent CE, Singer DV, Chopra A, Adam AP, Ginnan R, Singer HA, Jaitovich A. High CO 2 Downregulates Skeletal Muscle Protein Anabolism via AMP-activated Protein Kinase α2-mediated Depressed Ribosomal Biogenesis. Am J Respir Cell Mol Biol 2020; 62:74-86. [PMID: 31264907 DOI: 10.1165/rcmb.2019-0061oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High CO2 retention, or hypercapnia, is associated with worse outcomes in patients with chronic pulmonary diseases. Skeletal muscle wasting is also an independent predictor of poor outcomes in patients with acute and chronic pulmonary diseases. Although previous evidence indicates that high CO2 accelerates skeletal muscle catabolism via AMPK (AMP-activated protein kinase)-FoxO3a-MuRF1 (E3-ubiquitin ligase muscle RING finger protein 1), little is known about the role of high CO2 in regulating skeletal muscle anabolism. In the present study, we investigated the potential role of high CO2 in attenuating skeletal muscle protein synthesis. We found that locomotor muscles from patients with chronic CO2 retention demonstrated depressed ribosomal gene expression in comparison with locomotor muscles from non-CO2-retaining individuals, and analysis of the muscle proteome of normo- and hypercapnic mice indicates reduction of important components of ribosomal structure and function. Indeed, mice chronically kept under a high-CO2 environment show evidence of skeletal muscle downregulation of ribosomal biogenesis and decreased protein synthesis as measured by the incorporation of puromycin into skeletal muscle. Hypercapnia did not regulate the mTOR pathway, and rapamycin-induced deactivation of mTOR did not cause a decrease in ribosomal gene expression. Loss-of-function studies in cultured myotubes showed that AMPKα2 regulates CO2-mediated reductions in ribosomal gene expression and protein synthesis. Although previous evidence has implicated TIF1A (transcription initiation factor-1α) and KDM2A (lysine-specific demethylase 2A) in AMPK-driven regulation of ribosomal gene expression, we found that these mediators were not required in the high CO2-induced depressed protein anabolism. Our research supports future studies targeting ribosomal biogenesis and protein synthesis to alleviate the effects of high CO2 on skeletal muscle turnover.
Collapse
Affiliation(s)
- Tanner C Korponay
- Division of Pulmonary and Critical Care Medicine.,Department of Molecular and Cellular Physiology, and
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine.,Department of Molecular and Cellular Physiology, and
| | | | | | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, and.,Department of Ophthalmology, Albany Medical College, Albany, New York; and
| | - Roman Ginnan
- Department of Molecular and Cellular Physiology, and
| | | | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine.,Department of Molecular and Cellular Physiology, and
| |
Collapse
|
226
|
Marco E, Sánchez-Rodríguez D, Meza D, Cruz-Jentoft AJ. [Evolution of the concept of sarcopenia. Rehabilitation perspectives]. Rehabilitacion (Madr) 2020; 54:75-78. [PMID: 32370831 DOI: 10.1016/j.rh.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 11/18/2022]
Affiliation(s)
- E Marco
- Servei de Medicina Física i Rehabilitació, Parc de Salut Mar, Barcelona, España; Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, España; Grupo de Investigación en Rehabilitación, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, España.
| | - D Sánchez-Rodríguez
- Grupo de Investigación en Rehabilitación, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, España; WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Bélgica; Servei de Geriatria, Parc de Salut Mar, Barcelona, España; Departament de Ciències de la Salut, Universitat Pompeu Fabra, Barcelona, España
| | - D Meza
- Grupo de Investigación en Rehabilitación, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, España
| | - A J Cruz-Jentoft
- Servicio de Geriatría, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, España
| |
Collapse
|
227
|
Gorgey AS, Graham ZA, Chen Q, Rivers J, Adler RA, Lesnefsky EJ, Cardozo CP. Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury. J Appl Physiol (1985) 2020; 128:1487-1496. [PMID: 32352341 DOI: 10.1152/japplphysiol.00865.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of testosterone replacement therapy (TRT) with and without evoked resistance training (RT) on protein expression of key metabolic and hypertrophy regulators, muscle fiber cross-sectional area (CSA), and markers of mitochondrial health after spinal cord injury (SCI). Twenty-two men with chronic motor complete SCI were randomly assigned to either TRT + RT (n = 11) or TRT (n = 11) for 16 wk. TRT + RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Muscle biopsies were obtained before and after 16 wk from the right vastus lateralis. Expression of proteins associated with oxidative muscles and mechanical loading (PGC-1α and FAK), muscle hypertrophy (total and phosphorylated Akt, total and phosphorylated mTOR), and cellular metabolism (total and phosphorylated AMPK and GLUT4) were evaluated. Immunohistochemistry analysis was performed to measure fiber CSA and succinate dehydrogenase (SDH) activity as well as mitochondrial citrate synthase (CS) activity and complex III (CIII) activities. TRT + RT demonstrated a robust 27.5% increase in average fiber CSA compared with a -9% decrease following TRT only (P = 0.01). GLUT4 protein expression was elevated in the TRT + RT group compared with TRT only (P = 0.005). Total Akt (P = 0.06) and phosphorylated Akt Ser389 (P = 0.049) were also elevated in the TRT + RT group. Mitochondrial activity of SDH (P = 0.03) and CS (P = 0.006) increased in the TRT + RT group, with no changes in the TRT-only group. Sixteen weeks of TRT with RT resulted in fiber hypertrophy and beneficial changes in markers of skeletal muscle health and function.NEW & NOTEWORTHY Fiber cross-sectional area (CSA), protein expression, mitochondrial citrate synthase (CS), and succinate dehydrogenase (SDH) were measured following 16 wk of low-dose testosterone replacement therapy (TRT) with and without electrically evoked resistance training (RT) in men with spinal cord injury (SCI). Fiber CSA and protein expression of total GLUT4, total Akt, and phosphorylated Akt increased following TRT + RT but not in the TRT-only group. Mitochondrial CS and SDH increased after TRT + RT but not in TRT-only group.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Virginia Commonwealth University, Department of Physical Medicine and Rehabilitation, Richmond, Virginia
| | - Zachary A Graham
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Jeannie Rivers
- Surgery Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
228
|
Fernndez SSM, Ribeiro SML. Low Appendicular Lean Mass Index and Associations with Metabolic and Demographic Parameters in Wheelchair Athletes with Spinal Cord Injury. J Neuromuscul Dis 2020; 6:517-525. [PMID: 31640107 DOI: 10.3233/jnd-190409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND People suffering from spinal cord injury (SCI) undergo metabolic and physical disturbances that target the skeletal muscle, causing a progressive loss of muscle mass. OBJECTIVE To estimate the appendicular lean mass index (ALMI) in athletes with traumatic (T-group) and non-traumatic (NT-group) SCI, and its association with metabolic and demographic parameters. METHODS Wheelchair athletes with SCI aged 18 to 52 years old were included (n = 62). From DEXA assessment, we estimated the ALM index (ALMI = appendicular lean mass/height2) and classified participants according to the degree of muscle loss (ALMI < 2 SD from the reference populations). Fasting blood was assayed for glycaemia, insulin, cortisol, and IGF-1 serum levels. Data were compared by T-test and Fisher's Exact Test; predictors of ALMI were investigated by linear regression models. RESULTS The frequency of low ALMI was 63% in overall sample, 55% T-group and 71% NT-group. Low ALMI had no significant association with the origin of injury (X2 = 1.1, p = 0.29). Linear regression analyses showed significant association, in the whole sample, between ALMI and serum levels of IGF-1 (Beta = 0.69; p < 0.001), age (Beta=-5.8; p < 0.001), percentage fat mass (Beta=-0.26; p = 0.001), and energy intake (Beta = 0.32; p = 0.02). These significances were not maintained in the NT-group sub-analyses. CONCLUSIONS Low ALMI was very frequent in our SCI participants, despite exercising and independently of the type of injury. Metabolic and demographic variables associated with low ALMI were different according to the origin of injury, which possibly relies on physiopathology particularities. More studies are necessary to clarify our findings.
Collapse
Affiliation(s)
| | - Sandra Maria Lima Ribeiro
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
229
|
Characterization and Functional Analysis of Polyadenylation Sites in Fast and Slow Muscles. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2626584. [PMID: 32258109 PMCID: PMC7102456 DOI: 10.1155/2020/2626584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 01/16/2020] [Indexed: 12/05/2022]
Abstract
Many increasing documents have proved that alternative polyadenylation (APA) events with different polyadenylation sites (PAS) contribute to posttranscriptional regulation. However, little is known about the detailed molecular features of PASs and its role in porcine fast and slow skeletal muscles through microRNAs (miRNAs) and RNA binding proteins (RBPs). In this study, we combined single-molecule real-time sequencing and Illumina RNA-seq datasets to comprehensively analyze polyadenylation in pigs. We identified a total of 10,334 PASs, of which 8734 were characterized by reference genome annotation. 32.86% of PAS-associated genes were determined to have more than one PAS. Further analysis demonstrated that tissue-specific PASs between fast and slow muscles were enriched in skeletal muscle development pathways. In addition, we obtained 1407 target genes regulated by APA events through potential binding 69 miRNAs and 28 RBPs in variable 3′ UTR regions and some are involved in myofiber transformation. Furthermore, the de novo motif search confirmed that the most common usage of canonical motif AAUAAA and three types of PASs may be related to the strength of motifs. In summary, our results provide a useful annotation of PASs for pig transcriptome and suggest that APA may serve as a role in fast and slow muscle development under the regulation of miRNAs and RBPs.
Collapse
|
230
|
Garnham JO, Roberts LD, Espino-Gonzalez E, Whitehead A, Swoboda PP, Koshy A, Gierula J, Paton MF, Cubbon RM, Kearney MT, Egginton S, Bowen TS, Witte KK. Chronic heart failure with diabetes mellitus is characterized by a severe skeletal muscle pathology. J Cachexia Sarcopenia Muscle 2020; 11:394-404. [PMID: 31863644 PMCID: PMC7113493 DOI: 10.1002/jcsm.12515] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Patients with coexistent chronic heart failure (CHF) and diabetes mellitus (DM) demonstrate greater exercise limitation and worse prognosis compared with CHF patients without DM, even when corrected for cardiac dysfunction. Understanding the origins of symptoms in this subgroup may facilitate development of targeted treatments. We therefore characterized the skeletal muscle phenotype and its relationship to exercise limitation in patients with diabetic heart failure (D-HF). METHODS In one of the largest muscle sampling studies in a CHF population, pectoralis major biopsies were taken from age-matched controls (n = 25), DM (n = 10), CHF (n = 52), and D-HF (n = 28) patients. In situ mitochondrial function and reactive oxygen species, fibre morphology, capillarity, and gene expression analyses were performed and correlated to whole-body exercise capacity. RESULTS Mitochondrial respiration, content, coupling efficiency, and intrinsic function were lower in D-HF patients compared with other groups (P < 0.05). A unique mitochondrial complex I dysfunction was present in D-HF patients only (P < 0.05), which strongly correlated to exercise capacity (R2 = 0.64; P < 0.001). Mitochondrial impairments in D-HF corresponded to higher levels of mitochondrial reactive oxygen species (P < 0.05) and lower gene expression of anti-oxidative enzyme superoxide dismutase 2 (P < 0.05) and complex I subunit NDUFS1 (P < 0.05). D-HF was also associated with severe fibre atrophy (P < 0.05) and reduced local fibre capillarity (P < 0.05). CONCLUSIONS Patients with D-HF develop a specific skeletal muscle pathology, characterized by mitochondrial impairments, fibre atrophy, and derangements in the capillary network that are linked to exercise intolerance. These novel preliminary data support skeletal muscle as a potential therapeutic target for treating patients with D-HF.
Collapse
Affiliation(s)
- Jack O Garnham
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Ever Espino-Gonzalez
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Anna Whitehead
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Aaron Koshy
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John Gierula
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Maria F Paton
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
231
|
Signorelli M, Ayoglu B, Johansson C, Lochmüller H, Straub V, Muntoni F, Niks E, Tsonaka R, Persson A, Aartsma-Rus A, Nilsson P, Al-Khalili Szigyarto C, Spitali P. Longitudinal serum biomarker screening identifies malate dehydrogenase 2 as candidate prognostic biomarker for Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2020; 11:505-517. [PMID: 31881125 PMCID: PMC7113516 DOI: 10.1002/jcsm.12517] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/13/2019] [Accepted: 10/17/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal disease for which no cure is available. Clinical trials have shown to be largely underpowered due to inter-individual variability and noisy outcome measures. The availability of biomarkers able to anticipate clinical benefit is highly needed to improve clinical trial design and facilitate drug development. METHODS In this study, we aimed to appraise the value of protein biomarkers to predict prognosis and monitor disease progression or treatment outcome in patients affected by DMD. We collected clinical data and 303 blood samples from 157 DMD patients in three clinical centres; 78 patients contributed multiple blood samples over time, with a median follow-up time of 2 years. We employed linear mixed models to identify biomarkers that are associated with disease progression, wheelchair dependency, and treatment with corticosteroids and performed survival analysis to find biomarkers whose levels are associated with time to loss of ambulation. RESULTS Our analysis led to the identification of 21 proteins whose levels significantly decrease with age and nine proteins whose levels significantly increase. Seven of these proteins are also differentially expressed in non-ambulant patients, and three proteins are differentially expressed in patients treated with glucocorticosteroids. Treatment with corticosteroids was found to partly counteract the effect of disease progression on two biomarkers, namely, malate dehydrogenase 2 (MDH2, P = 0.0003) and ankyrin repeat domain 2 (P = 0.0005); however, patients treated with corticosteroids experienced a further reduction on collagen 1 serum levels (P = 0.0003), especially following administration of deflazacort. A time to event analysis allowed to further support the use of MDH2 as a prognostic biomarker as it was associated with an increased risk of wheelchair dependence (P = 0.0003). The obtained data support the prospective evaluation of the identified biomarkers in natural history and clinical trials as exploratory biomarkers. CONCLUSIONS We identified a number of serum biomarkers associated with disease progression, loss of ambulation, and treatment with corticosteroids. The identified biomarkers are promising candidate prognostic and surrogate biomarkers, which may support drug developers if confirmed in prospective studies. The serum levels of MDH2 are of particular interest, as they correlate with disease stage and response to treatment with corticosteroids, and are also associated with the risk of wheelchair dependency and pulmonary function.
Collapse
Affiliation(s)
- Mirko Signorelli
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Burcu Ayoglu
- Department of Protein Sciences, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Camilla Johansson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Volker Straub
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
| | - Erik Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Anja Persson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Annemieke Aartsma-Rus
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Nilsson
- Division of Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili Szigyarto
- Department of Protein Sciences, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
232
|
Bawa S, Brooks DS, Neville KE, Tipping M, Sagar MA, Kollhoff JA, Chawla G, Geisbrecht BV, Tennessen JM, Eliceiri KW, Geisbrecht ER. Drosophila TRIM32 cooperates with glycolytic enzymes to promote cell growth. eLife 2020; 9:52358. [PMID: 32223900 PMCID: PMC7105379 DOI: 10.7554/elife.52358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cell growth and/or proliferation may require the reprogramming of metabolic pathways, whereby a switch from oxidative to glycolytic metabolism diverts glycolytic intermediates towards anabolic pathways. Herein, we identify a novel role for TRIM32 in the maintenance of glycolytic flux mediated by biochemical interactions with the glycolytic enzymes Aldolase and Phosphoglycerate mutase. Loss of Drosophila TRIM32, encoded by thin (tn), shows reduced levels of glycolytic intermediates and amino acids. This altered metabolic profile correlates with a reduction in the size of glycolytic larval muscle and brain tissue. Consistent with a role for metabolic intermediates in glycolysis-driven biomass production, dietary amino acid supplementation in tn mutants improves muscle mass. Remarkably, TRIM32 is also required for ectopic growth - loss of TRIM32 in a wing disc-associated tumor model reduces glycolytic metabolism and restricts growth. Overall, our results reveal a novel role for TRIM32 for controlling glycolysis in the context of both normal development and tumor growth.
Collapse
Affiliation(s)
- Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Kathryn E Neville
- Department of Biology, Providence College, Providence, United States
| | - Marla Tipping
- Department of Biology, Providence College, Providence, United States
| | - Md Abdul Sagar
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States
| | - Joseph A Kollhoff
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, India.,Department of Biology, Indiana University, Bloomington, United States
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, United States
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, United States
| |
Collapse
|
233
|
Raz Y, Akker EB, Roest T, Riaz M, Rest O, Suchiman HED, Lakenberg N, Stassen SA, Putten M, Feskens EJM, Reinders MJT, Goeman J, Beekman M, Raz V, Slagboom PE. A data‐driven methodology reveals novel myofiber clusters in older human muscles. FASEB J 2020; 34:5525-5537. [DOI: 10.1096/fj.201902350r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yotam Raz
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Erik B. Akker
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
- Leiden Computational Biology Center Leiden University Medical Center Leiden the Netherlands
- The Delft Bioinformatics Lab Delft University of Technology Delft the Netherlands
| | - Tijmen Roest
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Muhammad Riaz
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | - Ondine Rest
- Division of Human Nutrition Wageningen University & Research Wageningen the Netherlands
| | - H. Eka D. Suchiman
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Nico Lakenberg
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Stefanie A. Stassen
- Section of Gerontology and Geriatrics Leiden University Medical Center Leiden the Netherlands
| | - Maaike Putten
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | - Edith J. M. Feskens
- Division of Human Nutrition Wageningen University & Research Wageningen the Netherlands
| | - Marcel J. T. Reinders
- Leiden Computational Biology Center Leiden University Medical Center Leiden the Netherlands
- The Delft Bioinformatics Lab Delft University of Technology Delft the Netherlands
| | - Jelle Goeman
- Department of Medical Statistics Leiden University Medical Center Leiden the Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Vered Raz
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | | |
Collapse
|
234
|
Hitachi K, Nakatani M, Funasaki S, Hijikata I, Maekawa M, Honda M, Tsuchida K. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass. Int J Mol Sci 2020; 21:ijms21051628. [PMID: 32120896 PMCID: PMC7084395 DOI: 10.3390/ijms21051628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly plastic organ that is necessary for homeostasis and health of the human body. The size of skeletal muscle changes in response to intrinsic and extrinsic stimuli. Although protein-coding RNAs including myostatin, NF-κβ, and insulin-like growth factor-1 (IGF-1), have pivotal roles in determining the skeletal muscle mass, the role of long non-coding RNAs (lncRNAs) in the regulation of skeletal muscle mass remains to be elucidated. Here, we performed expression profiling of nine skeletal muscle differentiation-related lncRNAs (DRR, DUM1, linc-MD1, linc-YY1, LncMyod, Neat1, Myoparr, Malat1, and SRA) and three genomic imprinting-related lncRNAs (Gtl2, H19, and IG-DMR) in mouse skeletal muscle. The expression levels of these lncRNAs were examined by quantitative RT-PCR in six skeletal muscle atrophy models (denervation, casting, tail suspension, dexamethasone-administration, cancer cachexia, and fasting) and two skeletal muscle hypertrophy models (mechanical overload and deficiency of the myostatin gene). Cluster analyses of these lncRNA expression levels were successfully used to categorize the muscle atrophy models into two sub-groups. In addition, the expression of Gtl2, IG-DMR, and DUM1 was altered along with changes in the skeletal muscle size. The overview of the expression levels of lncRNAs in multiple muscle atrophy and hypertrophy models provides a novel insight into the role of lncRNAs in determining the skeletal muscle mass.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Shiori Funasaki
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Ikumi Hijikata
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Mizuki Maekawa
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masahiko Honda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan;
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita 564-8565, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
- Correspondence: ; Tel.: +81-562-93-9384
| |
Collapse
|
235
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
236
|
Balnis J, Korponay TC, Jaitovich A. AMP-Activated Protein Kinase (AMPK) at the Crossroads Between CO 2 Retention and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease (COPD). Int J Mol Sci 2020; 21:E955. [PMID: 32023946 PMCID: PMC7037951 DOI: 10.3390/ijms21030955] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle dysfunction is a major comorbidity in chronic obstructive pulmonary disease (COPD) and other pulmonary conditions. Chronic CO2 retention, or hypercapnia, also occur in some of these patients. Both muscle dysfunction and hypercapnia associate with higher mortality in these populations. Over the last years, we have established a mechanistic link between hypercapnia and skeletal muscle dysfunction, which is regulated by AMPK and causes depressed anabolism via reduced ribosomal biogenesis and accelerated catabolism via proteasomal degradation. In this review, we discuss the main findings linking AMPK with hypercapnic pulmonary disease both in the lungs and skeletal muscles, and also outline potential avenues for future research in the area based on knowledge gaps and opportunities to expand mechanistic research with translational implications.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Tanner C. Korponay
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
237
|
Hara K, Tohara H, Namiki C, Yamaguchi K, Chantaramanee A, Kobayashi K, Saito T, Nakagawa K, Okumura T, Yoshimi K, Nakane A, Furuya J, Minakuchi S. Relationship between displacement of the masseter muscle during biting and masseter muscle quality and bite force in healthy elderly persons. J Oral Rehabil 2020; 47:441-448. [DOI: 10.1111/joor.12915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Koji Hara
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| | - Haruka Tohara
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| | - Chizuru Namiki
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| | - Kohei Yamaguchi
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| | - Ariya Chantaramanee
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| | | | | | - Kazuharu Nakagawa
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| | - Takuma Okumura
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| | - Kanako Yoshimi
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| | - Ayako Nakane
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| | - Junichi Furuya
- Graduate School of Medical and Dental Sciences Oral Health Sciences for Community Welfare Tokyo Medical and Dental University Tokyo Japan
| | - Shunsuke Minakuchi
- Department of Gerodontology Division of Gerontology and Gerodontology Tokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
238
|
Melby JA, Jin Y, Lin Z, Tucholski T, Wu Z, Gregorich ZR, Diffee GM, Ge Y. Top-Down Proteomics Reveals Myofilament Proteoform Heterogeneity among Various Rat Skeletal Muscle Tissues. J Proteome Res 2020; 19:446-454. [PMID: 31647247 PMCID: PMC7487979 DOI: 10.1021/acs.jproteome.9b00623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterogeneity in skeletal muscle contraction time, peak power output, and resistance to fatigue, among others, is necessary to accommodate the wide range of functional demands imposed on the body. Underlying this functional heterogeneity are a myriad of differences in the myofilament protein isoform expression and post-translational modifications; yet, characterizing this heterogeneity remains challenging. Herein, we have utilized top-down liquid chromatography (LC)-mass spectrometry (MS)-based proteomics to characterize myofilament proteoform heterogeneity in seven rat skeletal muscle tissues including vastus lateralis, vastus medialis, vastus intermedius, rectus femoris, soleus, gastrocnemius, and plantaris. Top-down proteomics revealed that myofilament proteoforms varied greatly across the seven different rat skeletal muscle tissues. Subsequently, we quantified and characterized myofilament proteoforms using online LC-MS. We have comprehensively characterized the fast and slow skeletal troponin I isoforms, which demonstrates the ability of top-down MS to decipher isoforms with high sequence homology. Taken together, we have shown that top-down proteomics can be used as a robust and high-throughput method to characterize the molecular heterogeneity of myofilament proteoforms from various skeletal muscle tissues.
Collapse
Affiliation(s)
- Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
239
|
Yang X, Xue P, Chen H, Yuan M, Kang Y, Duscher D, Machens HG, Chen Z. Denervation drives skeletal muscle atrophy and induces mitochondrial dysfunction, mitophagy and apoptosis via miR-142a-5p/MFN1 axis. Theranostics 2020; 10:1415-1432. [PMID: 31938072 PMCID: PMC6956801 DOI: 10.7150/thno.40857] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Peripheral nerve injury is common in clinic, which leads to severe atrophy and dysfunction of the denervated muscles, but the underlying mechanism is not fully understood. Recent studies advanced the causative role of mitochondrial dysfunction in muscle atrophy, while the upstream triggers remained unclear. Methods: In the present study, Atrophy of gastrocnemius and tibialis anterior (TA) were evaluated in mice sciatic nerve transection model. Transmission electron microscopy (TEM) was then used to observe the microstructure of atrophic gastrocnemius and mitochondria. Subsequently, small RNA sequencing, luciferase reporter assay and Electrophoretic Mobility Shift (EMSA) were performed to explore the potential signaling pathway involved in skeletal muscle atrophy. The effects of the corresponding pathway on mitochondrial function, mitophagy, apoptosis and muscle atrophy were further determined in C2C12 cells and denervated gastrocnemius. Results: Gastrocnemius and TA atrophied rapidly after denervation. Obvious decrease of mitochondria number and activation of mitophagy was further observed in atrophic gastrocnemius. Further, miR-142a-5p/ mitofusin-1 (MFN1) axis was confirmed to be activated in denervated gastrocnemius, which disrupted the tubular mitochondrial network, and induced mitochondrial dysfunction, mitophagy and apoptosis. Furthermore, the atrophy of gastrocnemius induced by denervation was relieved through targeting miR-142a-5p/MFN1 axis. Conclusions: Collectively, our data revealed that miR-142a-5p was able to function as an important regulator of denervation-induced skeletal muscle atrophy by inducing mitochondrial dysfunction, mitophagy, and apoptosis via targeting MFN1. Our findings provide new insights into the mechanism of skeletal muscle atrophy following denervation and propose a viable target for therapeutic intervention in individuals suffering from muscle atrophy after peripheral nerve injury.
Collapse
|
240
|
Saul D, Kosinsky RL. Dextran Sodium Sulfate-induced Colitis as a Model for Sarcopenia in Mice. Inflamm Bowel Dis 2020; 26:56-65. [PMID: 31228348 DOI: 10.1093/ibd/izz127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recent studies implicate that 42% of inflammatory bowel disease (IBD) patients suffer from sarcopenia, the loss of muscle mass and strength, increasing the risk of falls and fall-related injuries. To determine the impact and molecular basis of IBD-associated sarcopenia, we sought to establish and characterize an experimental model for IBD-associated sarcopenia in vivo. METHODS To induce colitis, male mice were treated with 0.75% dextran sodium sulfate (DSS) over a period of 14 days. Upon sacrifice, colon length and epithelial damage were determined to test local inflammation, and bone fragility was used as an indication for systemic inflammation. Muscle weight was measured, and morphology and fiber type distribution were assessed histologically. The molecular basis of sarcopenia was tested in M. quadriceps using qRT-PCR and by measuring the total protein content. RESULTS The overall weight of Mm. quadriceps and gastrocnemius was reduced, and the muscle damage marker creatine kinase was slightly elevated upon DSS treatment. The successful induction of sarcopenia was further supported by the decrease in muscle fiber size, affecting both type 1 and 2 fibers. Moreover, these muscles displayed increased mRNA expression of the E3 ligases MuRF1 and Atrogin1/MAFbx, and accordingly, the overall protein content was reduced. CONCLUSIONS Our findings demonstrate that DSS-induced colitis leads to severe muscle loss in mice and therefore is a suitable model to induce inflammation-associated sarcopenia.
Collapse
Affiliation(s)
- Dominik Saul
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
241
|
Yakabe M, Hosoi T, Akishita M, Ogawa S. Updated concept of sarcopenia based on muscle-bone relationship. J Bone Miner Metab 2020; 38:7-13. [PMID: 31583540 DOI: 10.1007/s00774-019-01048-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023]
Abstract
Sarcopenia is an age-related loss of skeletal muscle mass and strength. It has been widely recognized that low muscle mass was essential in the diagnosis of sarcopenia, whereas recent studies have emphasized the importance of muscle strength. In practice, muscle quality as well as muscle mass might determine the strength and physical performance. A new diagnostic algorithm of sarcopenia has recently been established, in which low muscle strength is a key characteristic factor for the diagnosis of sarcopenia. Although many factors are supposed to be involved in the pathology and development of sarcopenia, precise mechanisms remain to be elucidated. Recent studies have also focused on the crosstalk between muscles and bones, including functional involvement of myokines and osteokines.
Collapse
Affiliation(s)
- Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Hosoi
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
242
|
Namuduri AV, Heras G, Lauschke VM, Vitadello M, Traini L, Cacciani N, Gorza L, Gastaldello S. Expression of SUMO enzymes is fiber type dependent in skeletal muscles and is dysregulated in muscle disuse. FASEB J 2019; 34:2269-2286. [PMID: 31908008 DOI: 10.1096/fj.201901913r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/06/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022]
Abstract
SUMOylation is a dynamic, reversible, enzymatic drug-targetable post-translational modification (PTM) reaction where the Small Ubiquitin-like Modifier (SUMO) moieties are attached to proteins. This reaction regulates various biological functions like cell growth, differentiation, and it is crucial for maintaining organ homeostasis. However, the actions of SUMO in skeletal muscle pathophysiology are still not investigated. In this study, we quantified the abundance of the SUMO enzymes and determined the distribution of SUMOylated proteins along the fibers of nine different muscles. We find that skeletal muscles contain a distinctive group of SUMO enzymes and SUMOylated proteins in relation to their different metabolism, functions, and fiber type composition. In addition, before the activation of protein degradation pathways, this unique set is quickly altered in response to muscle sedentariness. Finally, we demonstrated that PAX6 acts as an upstream regulator of the SUMO conjugation reaction, which can become a potential therapeutic marker to prevent muscle diseases generated by inactivity.
Collapse
Affiliation(s)
| | - Gabriel Heras
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Leonardo Traini
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology University Hospital, Heidelberg, Germany
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - Luisa Gorza
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Precision Medicine Research Center, Binzhou Medical University, Yantai, China
| |
Collapse
|
243
|
Ucci S, Renzini A, Russi V, Mangialardo C, Cammarata I, Cavioli G, Santaguida MG, Virili C, Centanni M, Adamo S, Moresi V, Verga-Falzacappa C. Thyroid Hormone Protects from Fasting-Induced Skeletal Muscle Atrophy by Promoting Metabolic Adaptation. Int J Mol Sci 2019; 20:ijms20225754. [PMID: 31731814 PMCID: PMC6888244 DOI: 10.3390/ijms20225754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Thyroid hormones regulate a wide range of cellular responses, via non-genomic and genomic actions, depending on cell-specific thyroid hormone transporters, co-repressors, or co-activators. Skeletal muscle has been identified as a direct target of thyroid hormone T3, where it regulates stem cell proliferation and differentiation, as well as myofiber metabolism. However, the effects of T3 in muscle-wasting conditions have not been yet addressed. Being T3 primarily responsible for the regulation of metabolism, we challenged mice with fasting and found that T3 counteracted starvation-induced muscle atrophy. Interestingly, T3 did not prevent the activation of the main catabolic pathways, i.e., the ubiquitin-proteasome or the autophagy-lysosomal systems, nor did it stimulate de novo muscle synthesis in starved muscles. Transcriptome analyses revealed that T3 mainly affected the metabolic processes in starved muscle. Further analyses of myofiber metabolism revealed that T3 prevented the starvation-mediated metabolic shift, thus preserving skeletal muscle mass. Our study elucidated new T3 functions in regulating skeletal muscle homeostasis and metabolism in pathological conditions, opening to new potential therapeutic approaches for the treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Sarassunta Ucci
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
| | - Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, 00161 Rome, Italy; (A.R.); (G.C.); (S.A.)
| | - Valentina Russi
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
| | - Claudia Mangialardo
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
| | - Ilenia Cammarata
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
| | - Giorgia Cavioli
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, 00161 Rome, Italy; (A.R.); (G.C.); (S.A.)
| | - Maria Giulia Santaguida
- Department of Medico-Surgical Sciences and Biotechnologies Sapienza University of Rome, 04100 Latina, Italy; (M.G.S.); (C.V.); (M.C.)
| | - Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies Sapienza University of Rome, 04100 Latina, Italy; (M.G.S.); (C.V.); (M.C.)
| | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies Sapienza University of Rome, 04100 Latina, Italy; (M.G.S.); (C.V.); (M.C.)
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, 00161 Rome, Italy; (A.R.); (G.C.); (S.A.)
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, 00161 Rome, Italy; (A.R.); (G.C.); (S.A.)
- Correspondence:
| | - Cecilia Verga-Falzacappa
- Pasteur Institute, 00161 Rome, Italy; (S.U.); (V.R.); (C.M.); (I.C.); (C.V.-F.)
- Department of Medico-Surgical Sciences and Biotechnologies Sapienza University of Rome, 04100 Latina, Italy; (M.G.S.); (C.V.); (M.C.)
| |
Collapse
|
244
|
Benz E, Trajanoska K, Lahousse L, Schoufour JD, Terzikhan N, De Roos E, de Jonge GB, Williams R, Franco OH, Brusselle G, Rivadeneira F. Sarcopenia in COPD: a systematic review and meta-analysis. Eur Respir Rev 2019; 28:28/154/190049. [PMID: 31722892 PMCID: PMC9488535 DOI: 10.1183/16000617.0049-2019] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022] Open
Abstract
COPD is associated with a progressive loss of muscle mass and function. However, there is an unmet need to define and standardise methods to estimate the prevalence of sarcopenia in COPD patients. We performed a systematic review and meta-analysis of the prevalence of this extrapulmonary manifestation in COPD patients. We searched Embase, Medline (Ovid), CINAHL (EBSCO), Web of Science, Scopus and Google Scholar for studies published up to January 17, 2019, assessing sarcopenia in COPD patients based on low muscle mass and decreased muscle function. Interventional studies, in vitro experiments, protocols or reviews and meta-analyses were excluded. We estimated heterogeneity (I2) and assessed significance (Q) using a Chi-squared test for estimates obtained from random-effects models. 4465 articles were initially identified. After removing the duplicates and applying the selection criteria, we reviewed 62 full-text articles. Finally, 10 articles (n=2565 COPD patients) were included in this systematic review and meta-analyses. Overall, the prevalence of sarcopenia in patients with COPD was 21.6% (95% CI 14.6–30.9%, I2=94%), ranging from 8% in population-based to 21% in clinic-based studies, and 63% in COPD patients residing in nursing homes. Sarcopenia is frequently observed in COPD patients, with varying prevalence across population settings. Sarcopenia in COPD should be assessed using standardised tests and cut-off points from sarcopenia consensus criteria for clinical practice and international comparisons. We confirmed a high prevalence of sarcopenia in COPD patients, with varying prevalence across population settings. We recommend adhering to the sarcopenia consensus criteria to systematically evaluate the muscle health of COPD patients.http://bit.ly/2KA6weh
Collapse
Affiliation(s)
- Elizabeth Benz
- Dept of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Dept of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Both authors contributed equally
| | - Katerina Trajanoska
- Dept of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Dept of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Both authors contributed equally
| | - Lies Lahousse
- Dept of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Dept of Bioanalysis, FFW, Ghent University, Ghent, Belgium
| | - Josje D Schoufour
- Dept of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Dept of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Natalie Terzikhan
- Dept of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Dept of Respiratory Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Emmely De Roos
- Dept of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Dept of Respiratory Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Gerdien B de Jonge
- Medical Library, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ross Williams
- Dept of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Oscar H Franco
- Dept of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Guy Brusselle
- Dept of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands .,Dept of Respiratory Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium.,Dept of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Dept of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
245
|
Cistanche tubulosa (Schenk) Wight Extract Enhances Hindlimb Performance and Attenuates Myosin Heavy Chain IId/IIx Expression in Cast-Immobilized Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9283171. [PMID: 31885674 PMCID: PMC6925718 DOI: 10.1155/2019/9283171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Skeletal muscle atrophy is encountered in many clinical conditions, but a pharmacological treatment has not yet been established. Cistanche tubulosa (Schenk) Wight is an herbal medicine used in traditional Japanese and Chinese medicine. In the current study, we investigated the effect of C. tubulosa extract (CTE) on atrophied muscle in vivo. We also investigated hindlimb cast immobilization in mice and devised a novel type of hindlimb-immobilizing cast, consisting of sponge-like tape and a thin plastic tube. Using this method, 3 out of 4 groups of mice (n = 11 for each group) were cast-immobilized in the hindlimbs and administered CTE or vehicle for 13 days. A sham procedure was performed in the mice of the fourth group to which the vehicle was administered. Next, the triceps surae muscles (TS) were excised. To analyze the effect of the novel cast system and CTE administration on muscle atrophy, we evaluated TS wet weight and myofiber cross-sectional area (CSA). We also determined MyHC IId/IIx expression levels by western blotting, since their increase is a hallmark of disuse muscle atrophy, suggesting slow-to-fast myofiber type shift. Moreover, we performed two tests of hindlimb performance. The novel cast immobilization method significantly reduced TS wet weight and myofiber CSA. This was accompanied by deterioration of hindlimb function and an increase in MyHC IId/IIx expression. CTE administration did not alter TS wet weight or myofiber CSA; however, it showed a trend of amelioration of the loss of hindlimb function and of suppression of the increased MyHC IId/IIx expression in cast-immobilized mice. Our novel hindlimb cast immobilization method effectively induced muscle atrophy. CTE did not affect muscle mass, but suppressed the shift from slow to fast myofiber type in cast-immobilized mice, ameliorating hindlimb function deterioration.
Collapse
|
246
|
Musclin, A Myokine Induced by Aerobic Exercise, Retards Muscle Atrophy During Cancer Cachexia in Mice. Cancers (Basel) 2019; 11:cancers11101541. [PMID: 31614775 PMCID: PMC6826436 DOI: 10.3390/cancers11101541] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Physical activity improves the prognosis of cancer patients, partly by contrasting the associated muscle wasting (cachexia), through still unknown mechanisms. We asked whether aerobic exercise causes secretion by skeletal muscles of proteins (myokines) that may contrast cachexia. Media conditioned by peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α)-expressing myotubes, reproducing some metabolic adaptations of aerobic exercise, as increased mitochondrial biogenesis and oxidative phosphorylation, restrained constitutively active Forkhead box-containing subfamily O3 (caFoxO3)-induced proteolysis. Microarray analysis identified amphiregulin (AREG), natriuretic peptide precursor B (NppB), musclin and fibroblast growth factor 18 (FGF18) as myokines highly induced by PGC1α. Notably, only musclin tended to be low in muscle of mice with a rare human renal carcinoma; it was reduced in plasma and in muscles of C26-bearing mice and in atrophying myotubes, where PGC1α expression is impaired. Therefore, we electroporated the Tibialis Anterior (TA) of C26-bearing mice with musclin or (its receptor) natriuretic peptide receptor 3 (Npr3)-encoding plasmids and found a preserved fiber area, as a result of restrained proteolysis. Musclin knockout (KO) mice lose more muscle tissue during growth of two distinct cachexia-causing tumors. Running protected C26-bearing mice from cachexia, not changing tumor growth, and rescued the C26-induced downregulation of musclin in muscles and plasma. Musclin expression did not change in overloaded plantaris of mice, recapitulating partially muscle adaptations to anaerobic exercise. Musclin might, therefore, be beneficial to cancer patients who cannot exercise and are at risk of cachexia and may help to explain how aerobic exercise alleviates cancer-induced muscle wasting.
Collapse
|
247
|
Kim YJ, Seo DW, Kang J, Huh JW, Kim KW, Kim WY. Impact of Body Composition Status on 90-Day Mortality in Cancer Patients with Septic Shock: Sex Differences in the Skeletal Muscle Index. J Clin Med 2019; 8:jcm8101583. [PMID: 31581650 PMCID: PMC6832584 DOI: 10.3390/jcm8101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Abnormalities in body composition are associated with poor prognosis in cancer patients. We investigated the association between body composition and 90-day mortality in cancer patients who developed septic shock. We included consecutive septic shock patients with active cancer from 2010 to 2017. The muscle area at the level of the third lumbar vertebra was measured by computed tomography upon emergency department admission and adjusted by height squared, yielding the Skeletal Muscle Index (SMI). Hazard ratios (HRs) and 95% confidence intervals (CIs) for 90-day mortality were estimated using a Cox proportional hazards model. Among 478 patients, the prevalence of muscle depletion was 87.7%. Among markers of body composition, the SMI only differed significantly between non-survivors and survivors (mean, 35.48 vs. 33.32 cm2/m2; P = 0.002) and was independently associated with lower 90-day mortality (adjusted HR, 0.970; P = 0.001). The multivariable-adjusted HRs (95% CI) for 90-day mortality comparing quartiles 2, 3, and 4 of the SMI to the lowest quartile were 0.646 (0.916–1.307), 0.620 (0.424–0.909), and 0.529 (0.355–0.788), respectively. The associations were evident in male patients, but not in female patients. The SMI was independently associated with 90-day mortality in cancer patients with septic shock. The graded association between the SMI and 90-day mortality was observed in male patients.
Collapse
Affiliation(s)
- Youn-Jung Kim
- Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Dong-Woo Seo
- Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
- Department of Biomedical Informatics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| | - Jihoon Kang
- Department of Hematology/Oncology, Department of Internal Medicine, Kangbuk Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03181, Korea.
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Kyung Won Kim
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Won Young Kim
- Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| |
Collapse
|
248
|
Skeletal Muscle-Specific Methyltransferase METTL21C Trimethylates p97 and Regulates Autophagy-Associated Protein Breakdown. Cell Rep 2019; 23:1342-1356. [PMID: 29719249 DOI: 10.1016/j.celrep.2018.03.136] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/29/2018] [Indexed: 01/04/2023] Open
Abstract
Protein aggregates and cytoplasmic vacuolization are major hallmarks of multisystem proteinopathies (MSPs) that lead to muscle weakness. Here, we identify METTL21C as a skeletal muscle-specific lysine methyltransferase. Insertion of a β-galactosidase cassette into the Mettl21c mouse locus revealed that METTL21C is specifically expressed in MYH7-positive skeletal muscle fibers. Ablation of the Mettl21c gene reduced endurance capacity and led to age-dependent accumulation of autophagic vacuoles in skeletal muscle. Denervation-induced muscle atrophy highlighted further impairments of autophagy-related proteins, including LC3, p62, and cathepsins, in Mettl21c-/- muscles. In addition, we demonstrate that METTL21C interacts with the ATPase p97 (VCP), which is mutated in various human MSP conditions. We reveal that METTL21C trimethylates p97 on the Lys315 residue and found that loss of this modification reduced p97 hexamer formation and ATPase activity in vivo. We conclude that the methyltransferase METTL21C is an important modulator of protein degradation in skeletal muscle under both normal and enhanced protein breakdown conditions.
Collapse
|
249
|
Depletion of HuR in murine skeletal muscle enhances exercise endurance and prevents cancer-induced muscle atrophy. Nat Commun 2019; 10:4171. [PMID: 31519904 PMCID: PMC6744452 DOI: 10.1038/s41467-019-12186-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The master posttranscriptional regulator HuR promotes muscle fiber formation in cultured muscle cells. However, its impact on muscle physiology and function in vivo is still unclear. Here, we show that muscle-specific HuR knockout (muHuR-KO) mice have high exercise endurance that is associated with enhanced oxygen consumption and carbon dioxide production. muHuR-KO mice exhibit a significant increase in the proportion of oxidative type I fibers in several skeletal muscles. HuR mediates these effects by collaborating with the mRNA decay factor KSRP to destabilize the PGC-1α mRNA. The type I fiber-enriched phenotype of muHuR-KO mice protects against cancer cachexia-induced muscle loss. Therefore, our study uncovers that under normal conditions HuR modulates muscle fiber type specification by promoting the formation of glycolytic type II fibers. We also provide a proof-of-principle that HuR expression can be targeted therapeutically in skeletal muscles to combat cancer-induced muscle wasting. HuR is an RNA-binding protein that regulates myotube differentiation in vitro. Here, the authors show that the muscle-specific ablation of HuR in mice leads to enhanced endurance capacity and an increase in oxidative fibres by destabilising PGC1α-mRNA, and show that the mice are protected against cancer cachexia
Collapse
|
250
|
Jaitovich A, Barreiro E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am J Respir Crit Care Med 2019; 198:175-186. [PMID: 29554438 DOI: 10.1164/rccm.201710-2140ci] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle dysfunction occurs in patients with chronic obstructive pulmonary disease (COPD) and affects both ventilatory and nonventilatory muscle groups. It represents a very important comorbidity that is associated with poor quality of life and reduced survival. It results from a complex combination of functional, metabolic, and anatomical alterations leading to suboptimal muscle work. Muscle atrophy, altered fiber type and metabolism, and chest wall remodeling, in the case of the respiratory muscles, are relevant etiological contributors to this process. Muscle dysfunction worsens during COPD exacerbations, rendering patients progressively less able to perform activities of daily living, and it is also associated with poor outcomes. Muscle recovery measures consisting of a combination of pulmonary rehabilitation, optimized nutrition, and other strategies are associated with better prognosis when administered in stable patients as well as after exacerbations. A deeper understanding of this process' pathophysiology and clinical relevance will facilitate the use of measures to alleviate its effects and potentially improve patients' outcomes. In this review, a general overview of skeletal muscle dysfunction in COPD is offered to highlight its relevance and magnitude to expert practitioners and scientists as well as to the average clinician dealing with patients with chronic respiratory diseases.
Collapse
Affiliation(s)
- Ariel Jaitovich
- 1 Division of Pulmonary and Critical Care Medicine and.,2 Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Esther Barreiro
- 3 Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain; and.,4 Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|