201
|
Doyle JM, Croll RP. A Critical Review of Zebrafish Models of Parkinson's Disease. Front Pharmacol 2022; 13:835827. [PMID: 35370740 PMCID: PMC8965100 DOI: 10.3389/fphar.2022.835827] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
A wide variety of human diseases have been modelled in zebrafish, including various types of cancer, cardiovascular diseases and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Recent reviews have summarized the currently available zebrafish models of Parkinson’s Disease, which include gene-based, chemically induced and chemogenetic ablation models. The present review updates the literature, critically evaluates each of the available models of Parkinson’s Disease in zebrafish and compares them with similar models in invertebrates and mammals to determine their advantages and disadvantages. We examine gene-based models, including ones linked to Early-Onset Parkinson’s Disease: PARKIN, PINK1, DJ-1, and SNCA; but we also examine LRRK2, which is linked to Late-Onset Parkinson’s Disease. We evaluate chemically induced models like MPTP, 6-OHDA, rotenone and paraquat, as well as chemogenetic ablation models like metronidazole-nitroreductase. The article also reviews the unique advantages of zebrafish, including the abundance of behavioural assays available to researchers and the efficiency of high-throughput screens. This offers a rare opportunity for assessing the potential therapeutic efficacy of pharmacological interventions. Zebrafish also are very amenable to genetic manipulation using a wide variety of techniques, which can be combined with an array of advanced microscopic imaging methods to enable in vivo visualization of cells and tissue. Taken together, these factors place zebrafish on the forefront of research as a versatile model for investigating disease states. The end goal of this review is to determine the benefits of using zebrafish in comparison to utilising other animals and to consider the limitations of zebrafish for investigating human disease.
Collapse
Affiliation(s)
- Jillian M Doyle
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
202
|
Clement A, Madsen MJ, Kastaniegaard K, Wiborg O, Asuni AA, Stensballe A. Chronic Stress Induces Hippocampal Mitochondrial Damage in APPPS1 Model Mice and Wildtype Littermates. J Alzheimers Dis 2022; 87:259-272. [PMID: 35275551 DOI: 10.3233/jad-220064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. Despite decades of investigation, the etiology of AD is not fully understood, although emerging evidence suggest that chronic environmental and psychological stress plays a role in the mechanisms and contributes to the risk of developing AD. Thus, dissecting the impact of stress on the brain could improve our understanding of the pathological mechanisms. OBJECTIVE We aimed to study the effect of chronic stress on the hippocampal proteome in male APPPS1 transgenic mice and wildtype (WT) littermates. METHODS APPPS1 and WT mice were subjected to 4 weeks of chronic stress followed by 3 weeks of continued diurnal disruption. Hippocampal tissue was used for proteomics analysis using label-free quantitative DIA based LC-MS/MS analysis. RESULTS We identified significantly up- and downregulated proteins in both APPPS1 and WT mice exposed to chronic stress compared to the control groups. Via interaction network mapping, significant proteins could be annotated to specific pathways of mitochondrial function (oxidative phosphorylation and TCA cycle), metabolic pathways, AD pathway and synaptic functions (long term potentiation). In WT mice, chronic stress showed the highest impact on complex I of the oxidative phosphorylation pathway, while in APPPS1 mice this pathway was compromised broadly by chronic stress. CONCLUSION Our data shows that chronic stress and amyloidosis additively contribute to mitochondrial damage in hippocampus. Although these results do not explain all effects of chronic stress in AD, they add to the scientific knowledge on the topic.
Collapse
Affiliation(s)
- Amalie Clement
- Department of Health Science and Technology, Aalborg University, Denmark.,Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| | | | | | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Denmark
| | - Ayodeji A Asuni
- Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Denmark
| |
Collapse
|
203
|
Hussein RM, Youssef AM, Magharbeh MK, Al-Dalaen SM, Al-Jawabri NA, Al-Nawaiseh TN, Al-Jwanieh A, Al-Ani FS. Protective Effect of Portulaca oleracea Extract Against Lipopolysaccharide-Induced Neuroinflammation, Memory Decline, and Oxidative Stress in Mice: Potential Role of miR-146a and miR-let 7. J Med Food 2022; 25:807-817. [PMID: 35235435 DOI: 10.1089/jmf.2021.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is an adaptive immune response to the central nervous system (CNS) injury induced by infection or toxins. MicroRNAs (miRs) showed critical roles in neuroinflammation as either proinflammatory or anti-inflammatory molecules. Interestingly, Portulaca oleracea (purslane) is an edible plant capable of ameliorating several diseases, including headache, burns, and diabetes; however, its effect on the neuroinflammation-associated miRs was not previously investigated. This study aimed to investigate the effect of aqueous purslane extract on the neuroinflammation induced by lipopolysaccharide (LPS) in mice and to identify its effect on animal cognition, oxidative stress, and expressions of miR-146a and miR-let 7. Adult mice were divided into the following groups: Normal group, LPS group, and Purslane+LPS group. Novel target recognition test, brain histopathology, and measurement of oxidative stress and inflammatory markers were performed. The results showed that LPS group exhibited significant decline in the cognitive memory, brain histopathological injury and a decrease in the number of intact neurons compared to the normal group. Furthermore, the LPS group showed a significant increase in malondialdehyde concentration, whereas superoxide dismutase and catalase activities were decreased. The LPS group also showed an increase in the inflammatory markers tumor necrosis factor-α and nuclear factor kappa B and downregulation of miR-146a and miR-let 7 expressions in the brain cells compared to the normal group, P value <.05. Interestingly, all these changes were reversed by administration of the aqueous purslane extract. In conclusion, the aqueous purslane extract protected from LPS-induced neuroinflammation and memory decline in mice through antioxidant and anti-inflammatory effect where upregulation of miR-146a and miR-1et 7 expressions was involved.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.,Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mousa K Magharbeh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Saed M Al-Dalaen
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Nariman A Al-Jawabri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Taymaa N Al-Nawaiseh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Abdullah Al-Jwanieh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Fakhir S Al-Ani
- Department of Physiology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
204
|
Zhang L, Piao X. Different dietary protein sources influence growth performance, antioxidant capacity, immunity, fecal microbiota and metabolites in weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:71-81. [PMID: 34977377 PMCID: PMC8669252 DOI: 10.1016/j.aninu.2021.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
The inclusion of high-quality proteins are commonly used in swine production. Our research investigated the effects of hydrolyzed wheat protein (HWP), fermented soybean meal (FSBM), and enzyme-treated soybean meal (ESBM) on growth performance, antioxidant capacity, immunity, fecal microbiota and metabolites of weaned piglets. A total of 144 piglets (weaned at 28 d) were allotted to 3 dietary treatments with 6 replicate pens per treatment and 8 piglets per pen. This study included 2 periods: d 0 to14 for phase 1 and d 15 to 28 for phase 2. Dietary treatments contained 15.90% HWP, 15.80% FSBM, and 15.10% ESBM in phase 1, and 7.90% HWP, 7.80% FSBM, and 7.50% ESBM in phase 2, respectively. The ADG of piglets in ESBM was increased (P < 0.05) compared with HWP and FSBM during d 1-28. Compared with HWP and FSBM, ESBM increased (P < 0.05) the ferric reducing ability of plasma (FRAP), and the serum level of superoxide dismutase (SOD) in piglets on d 14, as well as increased (P < 0.05) the serum FRAP level in piglets on d 28. ESBM decreased (P < 0.05) serum levels of DAO and IL-1β in piglets compared with HWP on d 28. ESBM enhanced (P < 0.05) the relative abundance of Bacteroidetes, Oscillospiraceae and Christensenellaceae, as well as reduced the relative abundance of Clostridiaceae in the feces compared with HWP and FSBM. The PICRUSt analysis revealed that the number of gene tags related to degradation of valine, leucine and isoleucine, as well as lysine degradation in ESBM were lower (P < 0.05) than that in HWP and FSBM. ESBM increased (P < 0.05) the fecal butyrate level in piglets compared with FSBM, and ESBM tended to decrease (P = 0.076) the fecal cadaverine level. Overall, ESBM had advantages over HWP and FSBM in improving antioxidant status, immune function, fecal bacteria and metabolites for weaned piglets.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
205
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
206
|
Gomes MT, Bai Y, Potje SR, Zhang L, Lockett AD, Machado RF. Signal Transduction during Metabolic and Inflammatory Reprogramming in Pulmonary Vascular Remodeling. Int J Mol Sci 2022; 23:2410. [PMID: 35269553 PMCID: PMC8910500 DOI: 10.3390/ijms23052410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by (mal)adaptive remodeling of the pulmonary vasculature, which is associated with inflammation, fibrosis, thrombosis, and neovascularization. Vascular remodeling in PAH is associated with cellular metabolic and inflammatory reprogramming that induce profound endothelial and smooth muscle cell phenotypic changes. Multiple signaling pathways and regulatory loops act on metabolic and inflammatory mediators which influence cellular behavior and trigger pulmonary vascular remodeling in vivo. This review discusses the role of bioenergetic and inflammatory impairments in PAH development.
Collapse
Affiliation(s)
- Marta T. Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Simone R. Potje
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Biological Science, Minas Gerais State University (UEMG), Passos 37900-106, Brazil
| | - Lu Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Angelia D. Lockett
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| |
Collapse
|
207
|
Comparison of Various Solvent Extracts and Major Bioactive Components from Portulaca oleracea for Antioxidant, Anti-Tyrosinase, and Anti-α-Glucosidase Activities. Antioxidants (Basel) 2022; 11:antiox11020398. [PMID: 35204280 PMCID: PMC8869629 DOI: 10.3390/antiox11020398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Portulaca oleracea is a well-known species for traditional medicine and food homology in Taiwan. In traditional medicine, P. oleracea is also used to treat gastrointestinal disorders, liver inflammation, fever, severe inflammation, and headaches. We investigated antioxidant, anti-tyrosinase, and anti-α-glucosidase activities of various solvent extracts and major bioactive components from P. oleracea. Ethanol and acetone extracts showed potent DPPH, ABTS, and hydroxyl radical scavenging activities. Chloroform and n-hexane extracts displayed significant superoxide radical scavenging activity. Furthermore, ethyl acetate and acetone extracts of P. oleracea showed potent anti-tyrosinase and anti-α-glucosidase activities. Examined and compared to the various solvent extracts for their chemical compositions using HPLC analysis, we isolated seven major compounds and analyzed their antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. Seven active compounds of P. oleracea, especially quercetin, rosmarinic acid, and kaempferol, exhibited obvious antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. The molecular docking model and the hydrophilic interactive mode of tyrosinase and α-glucosidase revealed that active compounds might have a higher antagonistic effect than commonly inhibitors. Our result shows that the active solvent extracts and their components of P. oleracea have the potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors. Our results suggest that the active solvent extracts of P. oleracea and their components have potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors.
Collapse
|
208
|
Acquaroni M, Svartz G, Pérez Coll C. Acute, chronic and neurotoxic effects of dimethoate pesticide on Rhinella arenarum throughout the development. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:142-152. [PMID: 35132945 DOI: 10.1080/03601234.2022.2034459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Among the factors implicated in amphibian global decline, agrochemicals have been gaining increasing attention. In order to evaluate the toxicity of a dimethoate-based insecticide on the early development of an autochthonous amphibian, Rhinella arenarum, continuous and 24 h pulse exposure bioassays were carried out. Lethal and sublethal effects, neurotoxicity and the ecological risk were assessed. Results demonstrate that larvae were more sensitive than embryos with 504 h-LC50 of 12.82 and 16.38 mg L-1, respectively. 24 h pulse experiments showed a high toxicity increment at early embryonic stages, while the sensitivity at later stages was high and constant. Dimethoate caused teratogenesis and several sublethal effects as morphological and behavioral alterations but also disruption in the metamorphic process. About neurotoxicity, dimethoate inhibited the activity of butyrylcholinesterase at 0.5 and 1 mg L-1 exposed larvae. The results obtained in this study as the risk assessment revealed that dimethoate represents a hazard on Rhinella arenarum survival and development but also a potential risk for the continuity of the populations of this species in agroecosystems.
Collapse
Affiliation(s)
- Mercedes Acquaroni
- Instituto de Investigación e Ingeniería Ambiental-IIIA, UNSAM, CONICET, San Martín, Provincia de Buenos Aires, Argentina
| | - Gabriela Svartz
- Instituto de Investigación e Ingeniería Ambiental-IIIA, UNSAM, CONICET, San Martín, Provincia de Buenos Aires, Argentina
| | - Cristina Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental-IIIA, UNSAM, CONICET, San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
209
|
Nie Y, Yang J, Zhou L, Yang Z, Liang J, Liu Y, Ma X, Qian Z, Hong P, Kalueff AV, Song C, Zhang Y. Marine fungal metabolite butyrolactone I prevents cognitive deficits by relieving inflammation and intestinal microbiota imbalance on aluminum trichloride-injured zebrafish. J Neuroinflammation 2022; 19:39. [PMID: 35130930 PMCID: PMC8822793 DOI: 10.1186/s12974-022-02403-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/30/2022] Open
Abstract
Background Mounting evidences indicate that oxidative stress, neuroinflammation, and dysregulation of gut microbiota are related to neurodegenerative disorders (NDs). Butyrolactone I (BTL-I), a marine fungal metabolite, was previously reported as an in vitro neuroprotectant and inflammation inhibitor. However, little is known regarding its in vivo effects, whereas zebrafish (Danio rerio) could be used as a convenient in vivo model of toxicology and central nervous system (CNS) diseases.
Methods Here, we employed in vivo and in silico methods to investigate the anti-NDs potential of BTL-I. Specifically, we established a cognitive deficit model in zebrafish by intraperitoneal (i.p.) injection of aluminum trichloride (AlCl3) (21 μg) and assessed their behaviors in the T-maze test. The proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) as well as acetylcholinesterase (AChE) activity or glutathione (GSH) levels were assayed 24 h after AlCl3 injection. The intestinal flora variation of the zebrafish was investigated by 16S rDNA high-throughput analysis. The marine fungal metabolite, butyrolactone I (BTL-I), was used to modulate zebrafish cognitive deficits evoked by AlCl3 and evaluated about its effects on the above inflammatory, cholinergic, oxidative stress, and gut floral indicators. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of BTL-I were studied by the in silico tool ADMETlab. Results BTL-I dose-dependently ameliorated AlCl3-induced cognitive deficits in zebrafish. While AlCl3 treatment elevated the levels of central and peripheral proinflammatory cytokines, increased AChE activity, and lowered GSH in the brains of zebrafish, these effects, except GSH reduction, were reversed by 25–100 mg/kg BTL-I administration. Besides, 16S rDNA high-throughput sequencing of the intestinal flora of zebrafish showed that AlCl3 decreased Gram-positive bacteria and increased proinflammatory Gram-negative bacteria, while BTL-I contributed to maintaining the predominance of beneficial Gram-positive bacteria. Moreover, the in silico analysis indicated that BTL-I exhibits acceptable drug-likeness and ADMET profiles. Conclusions The present findings suggest that BTL-I is a potential therapeutic agent for preventing CNS deficits caused by inflammation, neurotoxicity, and gut flora imbalance. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02403-3.
Collapse
Affiliation(s)
- Yingying Nie
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingming Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Longjian Zhou
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinyue Liang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yayue Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxiang Ma
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongji Qian
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Allan V Kalueff
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.,Ural Federal University, Ekaterinburg, 620002, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, 199034, Russia
| | - Cai Song
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
210
|
Madireddy S, Madireddy S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int J Mol Sci 2022; 23:ijms23031844. [PMID: 35163764 PMCID: PMC8836876 DOI: 10.3390/ijms23031844] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive–behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence:
| | | |
Collapse
|
211
|
Ademosun AO, Oboh G, Ajeigbe OF. Influence of Moringa (Moringa oleifera) enriched ice creams on rats’ brain: Exploring the redox and cholinergic systems. Curr Res Food Sci 2022; 5:366-373. [PMID: 35198996 PMCID: PMC8850994 DOI: 10.1016/j.crfs.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
The broad application of Moringa oleifera leaves in the treatment of numerous diseases is prevalent globally where it extends to the management of diabetes, hypertension, inflammation, hypercholesterolemia and neurodegenerative diseases. This study provides findings on the role of Moringa oleifera leaves (MO) [MO leaves] formulated ice creams on brain cholinergic enzymes [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)], antioxidant enzymes, glycemic index and blood lipid profile of rats. Thirty (30) adult male rats acclimatized for 2 weeks were divided into five groups: Group 1 rats received commercial ice cream, Group 2 rats were received plain ice-cream, Group 3, 4 and 5 received 0.5 g, 1.0 g and 2.0 g of MO-formulated ice creams. Rats were fed on normal pellets and exposed to ice creams produced from whipping cream, skimmed milk and Moringa oleifera leaves for 30 consecutive days. Following administration, results from this study revealed that rats that received Moringa formulated ice-creams had reduced brain butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes activities, glycemic index (GI), total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels and significantly increased high-density lipoprotein-cholesterol (HDL-C) level in the plasma while revealing elevated brain antioxidant status (Superoxide dismutase (SOD) and Catalase (CAT)) when compared against rats consuming commercial ice creams. Therefore, results from this study attests to the intake of ice creams made from blends of Moringa leaves in the reduction of rats’ body weight, glycemic index and lipid profile (TC, TG, LDL-C), inhibition of brain cholinergic enzymes (AChE and BChE) while increasing brain antioxidant enzymes activities (SOD and CAT). Ice creams enriched with Moringa leaves reduces rats' body weight gain and GI. Also, rats' brain antioxidant and cholinergic enzymes activities was modulated. This study shows the influence of Moringa ice creams on brain enzymes activities.
Collapse
Affiliation(s)
- Ayokunle Olubode Ademosun
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
- Corresponding author.
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| | - Olufunke Florence Ajeigbe
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
- Department of Physical and Chemical Sciences, Biochemistry Programme, Elizade University, P.M.B. 002, Ilara-Mokin, Ondo State, Nigeria
| |
Collapse
|
212
|
Isolation of chemical compositions as dietary antioxidant supplements and neuroprotectants from Chaga mushroom (Inonotus obliquus). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
213
|
Ontario ML, Siracusa R, Modafferi S, Scuto M, Sciuto S, Greco V, Bertuccio MP, Salinaro AT, Crea R, Calabrese EJ, Di Paola R, Calabrese V. POTENTIAL PREVENTION AND TREATMENT OF NEURODEGENERATIVE DISORDERS BY OLIVE POLYPHENOLS AND HYDROX. Mech Ageing Dev 2022; 203:111637. [DOI: 10.1016/j.mad.2022.111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
|
214
|
Ruankham W, Suwanjang W, Phopin K, Songtawee N, Prachayasittikul V, Prachayasittikul S. Modulatory Effects of Alpha-Mangostin Mediated by SIRT1/3-FOXO3a Pathway in Oxidative Stress-Induced Neuronal Cells. Front Nutr 2022; 8:714463. [PMID: 35155508 PMCID: PMC8835347 DOI: 10.3389/fnut.2021.714463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Backgroundalpha-Mangostin, a polyphenolic xanthone, is primarily found in the pericarp of mangosteen throughout Southeast Asia and is considered as the “Queen of Fruit” in Thailand. Nonetheless, it is not clarified how alpha-mangostin protects neuronal cells against oxidative stress.ObjectiveIn this study, molecular mechanisms underlying the neuroprotective effect of alpha-mangostin in defending hydrogen peroxide (H2O2)-induced neurotoxicity was explored.Methodscytotoxicity, reactive oxygen species (ROS) generation, apoptotic cascades, and protein expression profiles were performed incorporation of molecular docking.ResultsHuman SH-SY5Y cells were pretreated with 1 μM alpha-mangostin for 3 h prior to exposure to 400 μM H2O2. alpha-Mangostin significantly inhibited oxidative stress-induced cell death in neuronal cells by reducing BAX protein, decreasing caspase-3/7 activation, and increasing anti-apoptotic BCL-2 protein. Collectively, alpha-mangostin was demonstrated to be a prominent ROS suppressor which reversed the reduction of antioxidant enzymes (CAT and SOD2). Surprisingly, alpha-mangostin significantly promoted the expression of the sirtuin family and the FOXO3a transcription factor exerting beneficial effects on cell survival and longevity. A molecular docking study predicted that alpha-mangostin is directly bound to the active site of SIRT1.ConclusionFindings from this study suggest that alpha-mangostin potentially serves as a promising therapeutic compound against oxidative stress by activation of the SIRT1/3-FOXO3a pathway comparable to the effect of memantine, an anti-AD drug used for the treatment of moderate to severe dementia.
Collapse
Affiliation(s)
- Waralee Ruankham
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
- *Correspondence: Wilasinee Suwanjang
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
215
|
Vike NL, Bari S, Stetsiv K, Walter A, Newman S, Kawata K, Bazarian JJ, Martinovich Z, Nauman EA, Talavage TM, Papa L, Slobounov SM, Breiter HC. A preliminary model of football-related neural stress that integrates metabolomics with transcriptomics and virtual reality. iScience 2022; 25:103483. [PMID: 35106455 PMCID: PMC8786649 DOI: 10.1016/j.isci.2021.103483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/06/2022] Open
Abstract
Research suggests contact sports affect neurological health. This study used permutation-based mediation statistics to integrate measures of metabolomics, neuroinflammatory miRNAs, and virtual reality (VR)-based motor control to investigate multi-scale relationships across a season of collegiate American football. Fourteen significant mediations (six pre-season, eight across-season) were observed where metabolites always mediated the statistical relationship between miRNAs and VR-based motor control (pSobelperm≤ 0.05; total effect > 50%), suggesting a hypothesis that metabolites sit in the statistical pathway between transcriptome and behavior. Three results further supported a model of chronic neuroinflammation, consistent with mitochondrial dysfunction: (1) Mediating metabolites were consistently medium-to-long chain fatty acids, (2) tricarboxylic acid cycle metabolites decreased across-season, and (3) accumulated head acceleration events statistically moderated pre-season metabolite levels to directionally model post-season metabolite levels. These preliminary findings implicate potential mitochondrial dysfunction and highlight probable peripheral blood biomarkers underlying repetitive head impacts in otherwise healthy collegiate football athletes. Permutation-based mediation statistics can be applied to multi-scale biology problems Fatty acids were a critical link between elevated miRNAs and motor control HAEs interacted with pre-season metabolite levels to model post-season levels Together, our observations point to brain-related mitochondrial dysfunction
Collapse
Affiliation(s)
- Nicole L Vike
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sumra Bari
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Khrystyna Stetsiv
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexa Walter
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16801, USA
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA.,Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Zoran Martinovich
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas M Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL 32806, USA
| | - Semyon M Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16801, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA 02114, USA
| |
Collapse
|
216
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
217
|
Scutellariae Radix and Citri Reticulatae Pericarpium Mixture Regulate PPAR γ/RXR Signaling in Reflux Esophagitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6969241. [PMID: 35027935 PMCID: PMC8752236 DOI: 10.1155/2022/6969241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Objective Gastroesophageal reflux disease (GERD) is a gastrointestinal disorder in which stomach contents reflux into the esophagus, causing complications such as mucosal damage. GERD is a very common disease and is on the rise worldwide. The aim of this study was to assess the impact of a Scutellariae Radix and Citri Reticulatae Pericarpium mixture (SC) on esophageal mucosal injury in rats with chronic acid reflux esophagitis (CARE). Methods After inducing reflux esophagitis through surgery, the group was separated and the drug was administered for 2 weeks: normal rats (Normal, n = 8), CARE-induced rats were treated with distilled water (Control, n = 8), CARE-induced rats were treated with vitamin E 30 mg/kg body weight (VitE, n = 8), CARE-induced rats were treated with SC 100 mg/kg body weight (SC100, n = 8), and CARE-induced rats were treated with SC 200 mg/kg body weight (SC200, n = 8). Results SC treatment significantly reduced the degree of esophageal mucosal damage, significantly reduced levels of MDA and MPO, and inhibited the activation of the NF-κB inflammatory pathway by activating the PPARγ/RXR pathway. In addition, SC treatment significantly regulated the expression of arachidonic acid-related proteins (COX-1, COX-2, and PGE2) and modulated the MMP/TIMP proteins in reflux esophagitis. Conclusion Consequently, SC improved the damage to the esophageal mucosa. Also, the anti-inflammatory effects of the SC suggested the inhibition of NF-κB pathway through the activation of the PPARγ/RXR pathway, thereby reducing the expression of inflammation-related cytokines.
Collapse
|
218
|
Liu M, Guo S, Huang D, Hu D, Wu Y, Zhou W, Song W. Chronic Alcohol Exposure Alters Gene Expression and Neurodegeneration Pathways in the Brain of Adult Mice. J Alzheimers Dis 2022; 86:315-331. [PMID: 35034908 DOI: 10.3233/jad-215508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chronic alcohol consumption can alter the structure of the central nervous system and disrupt cognitive function. Alcoholics are more likely to develop neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, the role of alcohol in promoting neurotoxicity and neurodegeneration remains unclear. OBJECTIVE In this study, we aimed at estimating the effects of chronic binge alcohol exposure on brain transcriptome and behavior changes in a chronic "Drinking in the Dark" (DID) mouse model. METHODS The adult C57BL/6J male mice were exposed to alcohol for 4 weeks. RNA-seq was applied to assess the effects of chronic alcohol exposure on transcriptome in brain. The open field test and novel object recognition test were used to assess the changes of anxiety level, locomotive function, and short-term memory induced by alcohol. RNA-seq analysis revealed that chronic alcohol exposure caused significant change in the brain transcriptome, especially in prefrontal cortex. RESULTS The gene dysregulation caused by chronic alcohol exposure includes pathways related to mitochondrial energy metabolism (such as oxidative phosphorylation) and multiple neurodegenerative diseases (such as AD and PD). Furthermore, the pathway and network analyses suggest that the genes involved in mitochondrial energy metabolism, ubiquitin-proteasome system, Wnt signaling pathway, and microtubules may attribute to the neurotoxicity and neurodegeneration caused by chronic alcohol consumption. Additionally, locomotive function was also significantly impaired. CONCLUSION This work provides gene transcriptional profile data for future research on alcohol-induced neurodegenerative diseases, especially AD and PD.
Collapse
Affiliation(s)
- Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daochao Huang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
219
|
Alvi AM, Shah FA, Muhammad AJ, Feng J, Li S. 1,3,4, Oxadiazole Compound A3 Provides Robust Protection Against PTZ-Induced Neuroinflammation and Oxidative Stress by Regulating Nrf2-Pathway. J Inflamm Res 2022; 14:7393-7409. [PMID: 35002275 PMCID: PMC8721032 DOI: 10.2147/jir.s333451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Epilepsy is a common neurological disorder that is characterized by recurrent episodes of seizures. Various studies have demonstrated a direct association between oxidative stress and inflammation in several neurological disorders including epilepsy. This study aimed to investigate the neuroprotective effects of a synthetic 1,3,4, oxadiazole compound A3 against pentylenetetrazole (PTZ)-induced kindling and seizure model. Methodology PTZ was administered in a sub-convulsive dose of 40 mg/kg for 15 days, at 48-hour intervals to male Swiss-Albino mice until animals were fully kindled. Two different doses of A3 (10 mg/kg and 30 mg/kg) were administered to find out the effective dose of A3 and to further demonstrate the relative role of nuclear factor E2-related factor (Nrf2) in the PTZ-induced kindled model. Results Our results demonstrated a compromised antioxidant capacity associated with a low level of catalase (CAT), superoxide dismutase (SOD), glutathione (GST), and glutathione S-transferase (GSH) in the kindled group. However, the PTZ-induced group demonstrated an elevated level of lipid peroxidation (LPO) level parallel to pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), mediators as cyclooxygenase (COX-2), and nuclear factor kappa B (NFκB). Furthermore, the A3 treatment reversed these changes and overexpressed the antioxidant Nrf2 gene and its downstream HO-1. To further investigate the involvement of Nrf2, we employed an Nrf2-inhibitor, ie, all-trans retinoic acid (ATRA), that further aggravated the PTZ toxicity. Moreover, vascular endothelial growth factor (VEGF) expression was evaluated to assess the extent of BBB disruption. Conclusion The findings of this study suggest that A3 could mediate neuroprotection possibly by activating Nrf2 dependent downregulation of inflammatory cascades.
Collapse
Affiliation(s)
- Arooj Mohsin Alvi
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Asmaa Jan Muhammad
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|
220
|
Dehkordi MM, Asgarshamsi MH, Fassihi A, Zborowski KK. A Comparative DFT Study on the Antioxidant Activity of some Novel 3-hydroxypyridine-4-one Derivatives. Chem Biodivers 2022; 19:e202100703. [PMID: 34997823 DOI: 10.1002/cbdv.202100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
The current study on the antioxidant activity of Kojic acid and 3-hydroxypyridine-4-one derivatives was performed by implementation of density functional theory calculations with the B3LYP hybrid functional and the 6-311++ G** basis set in Polarizable Continuum Model. Compounds under evaluation were previously synthesized by our research group. The DPPH scavenging effect and IC 50 values of them in mM concentrations were evaluated. Subsequently, various electronic and energetic descriptors such as HOMO and LUMO energy gaps, bonding dissociation enthalpy of OH bond, ionization potential, electron affinity, hardness, and softness, NBOs and spin density of radical and neutral species were used to study antioxidant properties of investigated compounds. The computations detected two compounds, HP3 and HP4 , with significant antioxidant activity. Energetic descriptors indicated that SPLET mechanism is preferred over than other antioxidant mechanism and computational results were in accordance with the experimental results.
Collapse
Affiliation(s)
- Mehrdad M Dehkordi
- Isfahan University of Medical Sciences, School of Pharmacy, Hezar Jerib street, 81746-73461, Isfahan, IRAN (ISLAMIC REPUBLIC OF)
| | - Mohammad H Asgarshamsi
- Isfahan University of Medical Sciences, School of Pharmacy, Hezar Jerib street, 81746-73461, Isfahan, IRAN (ISLAMIC REPUBLIC OF)
| | - Afshin Fassihi
- Isfahan University of Medical Sciences, School of Pharmacy, Hezar Jerib street, 81746-73461, Isfahan, IRAN (ISLAMIC REPUBLIC OF)
| | | |
Collapse
|
221
|
Aluani D, Kondeva-Burdina M, Tosheva A, Yoncheva K, Tzankova V. Improvement of in vitro antioxidant activity of kaempferol by encapsulation in copolymer micelles. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e77678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antioxidant capacity of poorly soluble natural antioxidant kaempferol, in particular free or loaded in two types of cationic micelles, was studied on non-enzyme induced lipid peroxidation (LPO) in vitro. The micelles were based on triblock copolymers - poly(2-(dimethylamino)ethyl methacrylate-b-poly(propylene oxide)-b-poly(2-(dimethylamino)ethyl methacrylate (PDMAEMA-PPO-PDMAEMA) and poly(2-(dimethylamino)ethyl methacrylate-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate (PDMAEMA-PCL-PDMAEMA). The lipid peroxidation was induced by incubating of rat liver microsomes with iron sulphate and ascorbic acid (Fe2+/AA). The effect of free and micellar kaempferol (at concentrations 25, 50 and 75 μg/ml) was assessed after 20 min incubation time. In the non-enzyme lipid peroxidation model, the kaempferol-loaded micelles significantly decreased the formation of malondialdehyde (MDA). The effect of kaempferol loaded in PDMAEMA-PCL-PDMAEMA micelles was more pronounced, showing an improved antioxidant activity in the conditions of oxidative stress and lipid peroxidation in vitro.
Collapse
|
222
|
Liu W, Wang B, Yang S, Xu T, Yu L, Wang X, Cheng M, Zhou M, Chen W. Associations of propylene oxide exposure with fasting plasma glucose and diabetes: Roles of oxidative DNA damage and lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118453. [PMID: 34737025 DOI: 10.1016/j.envpol.2021.118453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/10/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Whether propylene oxide (PO) exposure is associated with hyperglycemia were rarely explored. We aimed to determine the relationship between PO exposure and glucose metabolism, and potential role of oxidative stress. Among 3294 Chinese urban adults, urinary PO metabolite (N-Acetyl-S-(2-hydroxypropyl)-L-cysteine, 2HPMA), biomarkers of oxidative DNA damage (8-oxo-7,8-dihydro-20-deoxyguanosine, 8-OHdG) and lipid peroxidation (8-isoprostane, 8-iso-PGF2α) in urine were determined. The associations of 2HPMA with 8-OHdG, 8-iso-PGF2α, fasting plasma glucose (FPG), and risk of diabetes were explored. The roles of 8-OHdG and 8-iso-PGF2α on association of 2HPMA with FPG and risk of diabetes were detected. After adjusted for potential confounders, each 1-unit increase in log-transformed concentration of 2HPMA was associated with a 0.15-mmol/L increase in FPG level, and the adjusted OR (95% CI) of diabetes by the associations of log-transformed urinary 2HPMA concentrations was 1.47 (95% CI: 1.03-2.11). Combination effects of 2HPMA with 8-OHdG or 8-iso-PGF2α on risk of diabetes were detected, and elevated 8-iso-PGF2α significantly mediated 34.5% of the urinary 2HPMA-associated FPG elevation. PO exposure was positively associated with FPG levels and risk of diabetes. PO exposure combined with DNA oxidative damage or lipid peroxidation may increase the risk of diabetes, and lipid peroxidation may partially mediate the PO exposure-induced FPG elevation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
223
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. Brain Mitochondrial Dysfunction: A Possible Mechanism Links Early Life Anxiety to Alzheimer’s Disease in Later Life. Aging Dis 2022; 13:1127-1145. [PMID: 35855329 PMCID: PMC9286915 DOI: 10.14336/ad.2022.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengna Lu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinyu Zhu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Correspondence should be addressed to: Dr. Mingmei Zhou, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. E-mail:
| |
Collapse
|
224
|
Li S, Huang C, Li X, Meng X, Wen R, Zhang X, Zhang C, Li M. Bellidifolin from Gentianella acuta (Michx.) Hulten protects H9c2 cells from hydrogen peroxide-induced injury via the PI3K-Akt signal pathway. Toxicol Rep 2022; 9:1655-1665. [DOI: 10.1016/j.toxrep.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022] Open
|
225
|
Ramadan WS, Alkarim S. Ellagic Acid Modulates the Amyloid Precursor Protein Gene via Superoxide Dismutase Regulation in the Entorhinal Cortex in an Experimental Alzheimer's Model. Cells 2021; 10:3511. [PMID: 34944019 PMCID: PMC8700605 DOI: 10.3390/cells10123511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Patients suffering from Alzheimer's disease (AD) are still increasing worldwide. The development of (AD) is related to oxidative stress and genetic factors. This study investigated the therapeutic effects of ellagic acid (EA) on the entorhinal cortex (ERC), which plays a major role in episodic memory, in the brains of an AD rat model. AD was induced using AlCl3 (50 mg/kg orally for 4 weeks). Rats were divided into four groups: control, AD model, EA (treated with 50 mg/kg EA orally for 4 weeks), and ADEA (AD rats treated with EA after AlCl3 was stopped) groups. All rats were investigated for episodic memory using the novel object recognition test (NORT), antioxidant serum biomarkers, lipid peroxidation, histopathology of the ERC, and quantitative PCR for the superoxide dismutase (SOD) gene. EA therapy in AD rats significantly increased the discrimination index for NORT and the levels of SOD, glutathione, and total antioxidant capacity. Lipid peroxidation products were decreased, and the neurofibrillary tangles and neuritic plaques in the ERC sections were reduced after EA administration. The decrease in ERC thickness in the AD group, caused by caspase-3-mediated apoptosis and neurotoxicity due to amyloid precursor protein, was modulated by the increased SOD mRNA expression. Adjustment of the ERC antioxidant environment and decreased oxidative stress under EA administration enhanced SOD expression, resulting in the modulation of amyloid precursor protein toxicity and caspase-3-mediated apoptosis, thereby restoring episodic memory.
Collapse
Affiliation(s)
- Wafaa S. Ramadan
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh Alkarim
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
226
|
Kaźmierski J, Miler P, Pawlak A, Jerczyńska H, Woźniak J, Frankowska E, Brzezińska A, Nowakowska K, Woźniak K, Krejca M, Wilczyński M. Oxidative stress and soluble receptor for advanced glycation end-products play a role in the pathophysiology of delirium after cardiac surgery. Sci Rep 2021; 11:23646. [PMID: 34880331 PMCID: PMC8655063 DOI: 10.1038/s41598-021-03007-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Coronary-artery bypass graft (CABG) surgery is known to improve cardiac function and decrease mortality, albeit, this method of treatment is also associated with a neuropsychiatric complications including postoperative delirium. The pathophysiology of delirium after cardiac surgery remains poorly understood. Thus, the purpose of this study was to investigate whether oxidative stress reflected by decreased preoperative and postoperative plasma antioxidant activity is independently associated with delirium after cardiac surgery. The second aim was to assess whether decreased antioxidant activity is stress-related or mediated by other pathologies such as major depressive disorder (MDD), anxiety disorders, and cognitive impairment. Furthermore, the putative relationship between pre- and postoperative soluble receptor for advanced glycation end-products (sRAGE) overexpression and plasma antioxidant capacity was evaluated. The patients cognitive status was assessed 1 day preoperatively with the use of the Mini-Mental State Examination Test and the Clock Drawing Test. A diagnosis of MDD and anxiety disorders was established on the basis of DSM-5 criteria. Blood samples for antioxidant capacity and sRAGE levels were collected both preoperatively and postoperatively. The Confusion Assessment Method for the Intensive Care Unit was used within the first 5 days postoperatively to screen for a diagnosis of delirium. Postoperative delirium was diagnosed in 34% (61 of 177) of individuals. Multivariate logistic regression analysis revealed that low baseline antioxidant capacity was independently associated with postoperative delirium development. Moreover, increased risk of delirium was observed among patients with a preoperative diagnosis of MDD associated with antioxidant capacity decreased postoperatively. According to receiver operating characteristic analysis, the most optimal cutoff values of the preoperative and postoperative antioxidant capacity that predict the development of delirium were 1.72 mM and 1.89 mM, respectively. Pre- and postoperative antioxidant capacity levels were negatively correlated with postoperative sRAGE concentration (Spearman's Rank Correlation − 0.198 and − 0.158, p < 0.05, respectively). Patients with decreased preoperative antioxidant activity and those with depressive episodes complicated with lower postoperative antioxidant activity are at significantly higher risk of delirium after cardiac surgery development. sRAGE overexpression may be considered as protective mechanism against increased oxidative stress and subsequent cell damage.
Collapse
Affiliation(s)
- Jakub Kaźmierski
- Department of Old Age Psychiatry and Psychotic Disorders, Faculty of Gerontology, Medical University of Lodz, Czechoslowacka 8/10, 92-216, Lodz, Poland.
| | - Piotr Miler
- Central Clinical Hospital, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Pawlak
- Central Clinical Hospital, Medical University of Lodz, Lodz, Poland
| | - Hanna Jerczyńska
- CoreLab Central Scientific Laboratory of Medical University of Lodz, Medical University of Lodz, Lodz, Poland
| | - Joanna Woźniak
- Department of Old Age Psychiatry and Psychotic Disorders, Faculty of Gerontology, Medical University of Lodz, Czechoslowacka 8/10, 92-216, Lodz, Poland
| | - Emilia Frankowska
- Department of Old Age Psychiatry and Psychotic Disorders, Faculty of Gerontology, Medical University of Lodz, Czechoslowacka 8/10, 92-216, Lodz, Poland
| | | | - Karina Nowakowska
- Department of Old Age Psychiatry and Psychotic Disorders, Faculty of Gerontology, Medical University of Lodz, Czechoslowacka 8/10, 92-216, Lodz, Poland
| | - Katarzyna Woźniak
- Department of Cardiac Surgery, Central Clinical Hospital, Medical University of Lodz, Lodz, Poland
| | - Michał Krejca
- Department of Cardiac Surgery, Central Clinical Hospital, Medical University of Lodz, Lodz, Poland
| | - Mirosław Wilczyński
- Department of Cardiac Surgery, Central Clinical Hospital, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
227
|
Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, Green M, Harper D, Ren B, Forester BP, Öngür D, Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev 2021; 72:101503. [PMID: 34751136 PMCID: PMC8662951 DOI: 10.1016/j.arr.2021.101503] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Accumulating evidence demonstrates that metabolic changes in the brain associated with neuroinflammation, oxidative stress, and mitochondrial dysfunction play an important role in the pathophysiology of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neural signatures associated with these metabolic alterations and underlying molecular mechanisms are still elusive. Accordingly, we reviewed the literature on in vivo human brain 1H and 31P-MRS studies and use meta-analyses to identify patterns of brain metabolic alterations in MCI and AD. 40 and 39 studies on MCI and AD, respectively, were classified according to brain regions. Our results indicate decreased N-acetyl aspartate and creatine but increased myo-inositol levels in both MCI and AD, decreased glutathione level in MCI as well as disrupted energy metabolism in AD. In addition, the hippocampus shows the strongest alterations in most of these metabolites. This meta-analysis also illustrates progressive metabolite alterations from MCI to AD. Taken together, it suggests that 1) neuroinflammation and oxidative stress may occur in the early stages of AD, and likely precede neuron loss in its progression; 2) the hippocampus is a sensitive region of interest for early diagnosis and monitoring the response of interventions; 3) targeting bioenergetics associated with neuroinflammation/oxidative stress is a promising approach for treating AD.
Collapse
Affiliation(s)
- Tao Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenyawen Zhu
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA
| | - Regan Patrick
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Department of Neuropsychology, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Miranda Skurla
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | | | - Morgan Green
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | - David Harper
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Boyu Ren
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brent P Forester
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
228
|
Xue H, Thaivalappil A, Cao K. The Potentials of Methylene Blue as an Anti-Aging Drug. Cells 2021; 10:cells10123379. [PMID: 34943887 PMCID: PMC8699482 DOI: 10.3390/cells10123379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/05/2023] Open
Abstract
Methylene blue (MB), as the first fully man-made medicine, has a wide range of clinical applications. Apart from its well-known applications in surgical staining, malaria, and methemoglobinemia, the anti-oxidative properties of MB recently brought new attention to this century-old drug. Mitochondrial dysfunction has been observed in systematic aging that affects many different tissues, including the brain and skin. This leads to increaseding oxidative stress and results in downstream phenotypes under age-related conditions. MB can bypass Complex I/III activity in mitochondria and diminish oxidative stress to some degree. This review summarizes the recent studies on the applications of MB in treating age-related conditions, including neurodegeneration, memory loss, skin aging, and a premature aging disease, progeria.
Collapse
|
229
|
Wong-Guerra M, Montano-Peguero Y, Ramírez-Sánchez J, Jiménez-Martin J, Fonseca-Fonseca LA, Hernández-Enseñat D, Nonose Y, Valdés O, Mondelo-Rodriguez A, Ortiz-Miranda Y, Bergado G, Carmenate T, Soto Del Valle RM, Pardo-Andreu G, Outeiro TF, Padrón-Yaquis AS, Martimbianco de Assis A, O Souza D, Nuñez-Figueredo Y. JM-20 treatment prevents neuronal damage and memory impairment induced by aluminum chloride in rats. Neurotoxicology 2021; 87:70-85. [PMID: 34481871 DOI: 10.1016/j.neuro.2021.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
The number of people with dementia worldwide is estimated at 50 million by 2018 and continues to rise mainly due to increasing aging and population growth. Clinical impact of current interventions remains modest and all efforts aimed at the identification of new therapeutic approaches are therefore critical. Previously, we showed that JM-20, a dihydropyridine-benzodiazepine hybrid molecule, protected memory processes against scopolamine-induced cholinergic dysfunction. In order to gain further insight into the therapeutic potential of JM-20 on cognitive decline and Alzheimer's disease (AD) pathology, here we evaluated its neuroprotective effects after chronic aluminum chloride (AlCl3) administration to rats and assessed possible alterations in several types of episodic memory and associated pathological mechanisms. Oral administration of aluminum to rodents recapitulates several neuropathological alterations and cognitive impairment, being considered a convenient tool for testing the efficacy of new therapies for dementia. We used behavioral tasks to test spatial, emotional- associative and novel object recognition memory, as well as molecular, enzymatic and histological assays to evaluate selected biochemical parameters. Our study revealed that JM-20 prevented memory decline alongside the inhibition of AlCl3 -induced oxidative stress, increased AChE activity, TNF-α and pro-apoptotic proteins (like Bax, caspase-3, and 8) levels. JM-20 also protected against neuronal damage in the hippocampus and prefrontal cortex. Our findings expanded our understanding of the ability of JM-20 to preserve memory in rats under neurotoxic conditions and confirm its potential capacity to counteract cognitive impairment and etiological factors of AD by breaking the progression of key steps associated with neurodegeneration.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yanay Montano-Peguero
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Jeney Ramírez-Sánchez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Javier Jiménez-Martin
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, 9016, New Zealand
| | - Luis Arturo Fonseca-Fonseca
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Daniela Hernández-Enseñat
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yasmine Nonose
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Odalys Valdés
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Abel Mondelo-Rodriguez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yaquelin Ortiz-Miranda
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Gretchen Bergado
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Tania Carmenate
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | | | - Gilberto Pardo-Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Calle 222, No. 2317, e/ 23 y 31, La Coronela, La Lisa, CP 13600, La Habana, Cuba
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Gottingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle, UK
| | - Alejandro Saúl Padrón-Yaquis
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Adriano Martimbianco de Assis
- University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yanier Nuñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba.
| |
Collapse
|
230
|
Association between metabolic syndrome and incidence of ocular motor nerve palsy. Sci Rep 2021; 11:23033. [PMID: 34845329 PMCID: PMC8630222 DOI: 10.1038/s41598-021-02517-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
To assess the association between metabolic syndrome (MetS) and the development of third, fourth, and sixth cranial nerve palsy (CNP). Health checkup data of 4,067,842 individuals aged between 20 and 90 years provided by the National Health Insurance Service (NHIS) of South Korea between January 1, 2009, and December 31, 2009, were analyzed. Participants were followed up to December 31, 2017. Hazard ratio (HR) and 95% confidence interval (CI) of CNP were estimated using Cox proportional hazards regression analysis after adjusting for potential confounders. Model 1 included only incident CNP as a time-varying covariate. Model 2 included model 1 and individual’s age and sex. Model 3 included model 2, smoking status, alcohol consumption, and physical activity of individuals. We identified 5,835 incident CNP cases during the follow-up period (8.22 ± 0.94 years). Individuals with MetS (n = 851,004) showed an increased risk of CNP compared to individuals without MetS (n = 3,216,838) after adjustment (model 3: HR = 1.35, 95% CI 1.273–1.434). CNP incidence was positively correlated with the number of MetS components (log-rank p < 0.0001). The HR of CNP for males with MetS compared to males without MetS was higher than that of females with MetS compared to females without MetS (HR: 1.407, 95% CI 1.31–1.51 in men and HR: 1.259, 95% CI 1.13–1.40 in women, p for interaction = 0.0017). Our population-based large-scale cohort study suggests that MetS and its components might be risk factors for CNP development.
Collapse
|
231
|
Huang SS, Sheng YC, Jiang YY, Liu N, Lin MM, Wu JC, Liang ZQ, Qin ZH, Wang Y. TIGAR plays neuroprotective roles in KA-induced excitotoxicity through reducing neuroinflammation and improving mitochondrial function. Neurochem Int 2021; 152:105244. [PMID: 34826530 DOI: 10.1016/j.neuint.2021.105244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/30/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023]
Abstract
Excitotoxicity refers to the ability of excessive extracellular excitatory amino acids to damage neurons via receptor activation. It is a crucial pathogenetic process in neurodegenerative diseases. TP53 is confirmed to be involved in excitotoxicity. It is demonstrated that TP53 induced glycolysis and apoptotic regulator (TIGAR)-regulated metabolic pathway can protect against neuronal injury. However, the role of TIGAR in excitotoxicity and specific mechanisms is still unknown. In this study, an in vivo excitotoxicity model was constructed via stereotypical kainic acid (KA) injection into the striatum of mice. KA reduced TIGAR expression levels, neuroinflammatory responses and mitochondrial dysfunction. TIGAR overexpression could reverse KA-induced neuronal injury by reducing neuroinflammation and improving mitochondrial function, thereby exerting neuroprotective effects. Therefore, this study could provide a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Si-Si Huang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi-Chao Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi-Yue Jiang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Na Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao-Miao Lin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhong-Qin Liang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
232
|
Salvia miltiorrhiza Protects Endothelial Dysfunction against Mitochondrial Oxidative Stress. Life (Basel) 2021; 11:life11111257. [PMID: 34833133 PMCID: PMC8622679 DOI: 10.3390/life11111257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Salvia miltiorrhiza (SM) is a common traditional Chinese medicine used in the treatment of cardiovascular and cerebrovascular diseases. Endothelial dysfunction plays an important role in the pathology of cardiovascular diseases. Endothelial dysfunction may induce inflammation and change vascular tone and permeability. The main pathological mechanism of endothelial dysfunction is the formation of reactive oxygen species (ROS). Mitochondria are the main source of energy and can also produce large amounts of ROS. Recent studies have shown that extracts of SM have antioxidative, anti-inflammatory, and antithrombus properties. In this review, we discuss the mechanism of oxidative stress in the mitochondria, endothelial dysfunction, and the role of SM in these oxidative events.
Collapse
|
233
|
Li X, Lin H, Zhang X, Jaspers RT, Yu Q, Ji Y, Forouzanfar T, Wang D, Huang S, Wu G. Notoginsenoside R1 attenuates oxidative stress-induced osteoblast dysfunction through JNK signalling pathway. J Cell Mol Med 2021; 25:11278-11289. [PMID: 34786818 PMCID: PMC8650043 DOI: 10.1111/jcmm.17054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress (OS)‐induced mitochondrial damage and the subsequent osteoblast dysfunction contributes to the initiation and progression of osteoporosis. Notoginsenoside R1 (NGR1), isolated from Panax notoginseng, has potent antioxidant effects and has been widely used in traditional Chinese medicine. This study aimed to investigate the protective property and mechanism of NGR1 on oxidative‐damaged osteoblast. Osteoblastic MC3T3‐E1 cells were pretreated with NGR1 24 h before hydrogen peroxide administration simulating OS attack. Cell viability, apoptosis rate, osteogenic activity and markers of mitochondrial function were examined. The role of C‐Jun N‐terminal kinase (JNK) signalling pathway on oxidative injured osteoblast and mitochondrial function was also detected. Our data indicate that NGR1 (25 μM) could reduce apoptosis as well as restore osteoblast viability and osteogenic differentiation. NGR1 also reduced OS‐induced mitochondrial ROS and restored mitochondrial membrane potential, adenosine triphosphate production and mitochondrial DNA copy number. NGR1 could block JNK pathway and antagonize the destructive effects of OS. JNK inhibitor (SP600125) mimicked the protective effects of NGR1while JNK agonist (Anisomycin) abolished it. These data indicated that NGR1 could significantly attenuate OS‐induced mitochondrial damage and restore osteogenic differentiation of osteoblast via suppressing JNK signalling pathway activation, thus becoming a promising agent in treating osteoporosis.
Collapse
Affiliation(s)
- Xumin Li
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, Amsterdam, The Netherlands.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands
| | - Haiyan Lin
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, PR China
| | - Xiaorong Zhang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands.,Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Richard T Jaspers
- Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands
| | - Qihao Yu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Yinghui Ji
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Dongyun Wang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Shengbin Huang
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| |
Collapse
|
234
|
Liang YY, Zhang LD, Luo X, Wu LL, Chen ZW, Wei GH, Zhang KQ, Du ZA, Li RZ, So KF, Li A. All roads lead to Rome - a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer's disease. Neural Regen Res 2021; 17:1210-1227. [PMID: 34782555 PMCID: PMC8643060 DOI: 10.4103/1673-5374.325012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related neurodegenerative disorders such as Alzheimer’s disease (AD) have become a critical public health issue due to the significantly extended human lifespan, leading to considerable economic and social burdens. Traditional therapies for AD such as medicine and surgery remain ineffective, impractical, and expensive. Many studies have shown that a variety of bioactive substances released by physical exercise (called “exerkines”) help to maintain and improve the normal functions of the brain in terms of cognition, emotion, and psychomotor coordination. Increasing evidence suggests that exerkines may exert beneficial effects in AD as well. This review summarizes the neuroprotective effects of exerkines in AD, focusing on the underlying molecular mechanism and the dynamic expression of exerkines after physical exercise. The findings described in this review will help direct research into novel targets for the treatment of AD and develop customized exercise therapy for individuals of different ages, genders, and health conditions.
Collapse
Affiliation(s)
- Yi-Yao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Dan Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University; Guangdong Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhao-Wei Chen
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Guang-Hao Wei
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Kai-Qing Zhang
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze-An Du
- Department of Clinical Medicine, International School, Jinan University, Guangzhou, Guangdong Province, China
| | - Ren-Zhi Li
- International Department of the Affiliated High School of South China Normal University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| |
Collapse
|
235
|
Zhao H, Li S, He L, Tang F, Han X, Deng W, Lin Z, Huang R, Li Z. Ameliorating Effect of Umbilical Cord Mesenchymal Stem Cells in a Human Induced Pluripotent Stem Cell Model of Dravet Syndrome. Mol Neurobiol 2021; 59:748-761. [PMID: 34766239 DOI: 10.1007/s12035-021-02633-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023]
Abstract
Dravet syndrome (DS) is a form of severe childhood-onset refractory epilepsy typically caused by a heterozygous loss-of-function mutation. DS patient-derived induced pluripotent stem cells (iPSCs) are appropriate human cells for exploring disease mechanisms and testing new therapeutic strategies in vitro. Repeated spontaneous seizures can cause neuroinflammatory reactions and oxidative stress, resulting in neuronal toxicity, neuronal dysfunction, blood-brain barrier disruption, and hippocampal inflammation. Antiepileptic drug therapy does not delay the development of chronic epilepsy. The application of mesenchymal stem cells (MSCs) is one therapeutic strategy for thwarting epilepsy development. This study evaluated the effects of human umbilical cord mesenchymal stem cell-conditioned medium (HUMSC-CM) in a new in vitro model of neurons differentiated from DS patient-derived iPSCs. In the presence of HUMSC-CM, increases in superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase (GPX), and glutathione (GSH) levels were found to contribute to a reduction in reactive oxygen species (ROS) levels. In parallel, inflammation was rescued in DS patient-derived neuronal cells via increased expression of anti-inflammatory cytokines (TGF-β, IL-6, and IL-10) and significant downregulation of tumor necrosis factor-α and interleukin-1β expression. The intracellular calcium concentration ([Ca2+]i) and malondialdehyde (MDA) and ROS levels were decreased in DS patient-derived cells. In addition, action potential (AP) firing ability was enhanced by HUMSC-CM. In conclusion, HUMSC-CM can effectively eliminate ROS, affect migration and neurogenesis, and promote neurons to enter a highly functional state. Therefore, HUMSC-CM is a promising therapeutic strategy for the clinical treatment of refractory epilepsy such as DS.
Collapse
Affiliation(s)
- Huifang Zhao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shuai Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Tang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobo Han
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyue Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zuoxian Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhiyuan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
236
|
Kou RW, Gao YQ, Xia B, Wang JY, Liu XN, Tang JJ, Yin X, Gao JM. Ganoderterpene A, a New Triterpenoid from Ganoderma lucidum, Attenuates LPS-Induced Inflammation and Apoptosis via Suppressing MAPK and TLR-4/NF-κB Pathways in BV-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12730-12740. [PMID: 34666484 DOI: 10.1021/acs.jafc.1c04905] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An investigation of the fruiting bodies of edible mushroom Ganoderma lucidum produced 13 steroids, containing one new lanostane-type triterpene compound, named ganoderterpene A (1). Nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry data were used to deduce these structures. All the isolates were evaluated for their ability to suppress NO generation in BV-2 microglial cells treated with lipopolysaccharide (LPS) and exhibited moderate to strong inhibition effects, with IC50 values in the range 7.15-36.88 μM. Among the tested compounds, compound 1 exhibited the most marked activity with an IC50 value of 7.15 μM, and the structure-activity relationships were studied. This study showed that compound 1 significantly suppressed the activation of MAPK and TLR-4/NF-κB signaling pathways, as evidenced by an immunofluorescence assay and a molecular docking experiment. Furthermore, compound 1 effectively improved the LPS-induced mitochondrial membrane potential and apoptosis. These findings suggest that ganoderterpene A could exert protective effects in microglial cells from apoptosis by restraining the inflammatory response. Hence, G. lucidum could be used as a novel preventative agent for neurodegenerative disorders.
Collapse
Affiliation(s)
- Rong-Wei Kou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Jia-Yun Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Xiao-Ning Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Xia Yin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| |
Collapse
|
237
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
238
|
Liu W, Wang X, Du L, Sun Y. Remifentanil Suppresses Oxidative Stress and Inflammation Induced by Glutamate via Activation of PPARγ/HO-1 Signaling Pathway in Hippocampal Neuronal Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Excitotoxicity caused by glutamate severely damages the central nervous system, contributing to the progress of neurodegenerative diseases. Remifentanil is an ultra-short acting synthetic α-opioid receptor agonist and it protects the body against oxidative stress. Oxidative
stress is a causative factor for neuronal cell death, contributing to the pathogenesis of neurological diseases. More importantly, remifentanil has been confirmed to have neuroprotective effects on cerebral ischemia. Hence, the aim of the present study was to investigate the molecular mechanism
underlying the effect of remifentanil on glutamate (Glu)-induced oxidative stress and inflammation in hippocampal cells. In present study, the cell viability was detected via CCk-8 assay. The cell apoptosis was evaluated by tunel assay. Western blot was performed for measurement of protein
expression level. Generation of ROS level was detected by the ROS Activity Assay Kit (KA3842, Abnova) and DCF-DA staining method. MDA and SOD levels were detected by corresponding kits. The results from the present study suggested that remifentanil enhanced cell viability, reduced cell apoptosis
rate and prevented oxidative stress in glutamate-induced HT22 cells. The PPARγ/HO-1 pathway was activated by remifentanil. After inhibition of PPARγ/HO-1 pathway, the anti-apoptosis and anti-oxidative stress effects of remifentanil were abolished. In conclusion,
remifentanil has anti-apoptosis and anti-oxidative stress effects on glutamate-induced HT22 Cells via PPARγ/HO-1 pathway. Hence, remifentanil is a promising agent for attenuation of cytotoxicity induced by glutamate, providing a new strategy for treatment of excitotoxicity
caused by glutamate in the central nervous system.
Collapse
Affiliation(s)
- Weihua Liu
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), Guangzhou City, Guangdong Province, 511518, China
| | - Xinli Wang
- Department of Anesthesiology, Capital Health Care Hospital for Children and Women, Beijing City, 100069, China
| | - Liangqin Du
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), Guangzhou City, Guangdong Province, 511518, China
| | - Yanlin Sun
- Department of Anesthesiology, Qingdao Lianchi Maternity and Infant Hospital, Qingdao City, Shandong Province, 266000, China
| |
Collapse
|
239
|
Riemslagh FW, Verhagen RFM, van der Toorn EC, Smits DJ, Quint WH, van der Linde HC, van Ham TJ, Willemsen R. Reduction of oxidative stress suppresses poly-GR-mediated toxicity in zebrafish embryos. Dis Model Mech 2021; 14:272601. [PMID: 34693978 PMCID: PMC8649169 DOI: 10.1242/dmm.049092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
The hexanucleotide (G4C2)-repeat expansion in the C9ORF72 gene is the most common pathogenic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This repeat expansion can be translated into dipeptide repeat proteins (DPRs), and distribution of the poly-GR DPR correlates with neurodegeneration in postmortem C9FTD/ALS brains. Here, we assessed poly-GR toxicity in zebrafish embryos, using an annexin A5-based fluorescent transgenic line (secA5) that allows for detection and quantification of apoptosis in vivo. Microinjection of RNA encoding poly-GR into fertilized oocytes evoked apoptosis in the brain and abnormal motor neuron morphology in the trunk of 1-4-days postfertilization embryos. Poly-GR can be specifically detected in protein homogenates from injected zebrafish and in the frontal cortexes of C9FTD/ALS cases. Poly-GR expression further elevated MitoSOX levels in zebrafish embryos, indicating oxidative stress. Inhibition of reactive oxygen species using Trolox showed full suppression of poly-GR toxicity. Our study indicates that poly-GR can exert its toxicity via oxidative stress. This zebrafish model can be used to find suppressors of poly-GR toxicity and identify its molecular targets underlying neurodegeneration observed in C9FTD/ALS. Summary: Toxicity of C9ALS/FTD poly-GR in zebrafish embryos is suppressed by Trolox, and poly-GR can be detected and quantified in zebrafish model protein homogenates, and in the frontal cortex of C9FTD/ALS cases.
Collapse
Affiliation(s)
- Fréderike W Riemslagh
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Rob F M Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Esmay C van der Toorn
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Daphne J Smits
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Wim H Quint
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
240
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
241
|
Reactive Oxygen Species Mediate 6c-Induced Mitochondrial and Lysosomal Dysfunction, Autophagic Cell Death, and DNA Damage in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms222010987. [PMID: 34681647 PMCID: PMC8536041 DOI: 10.3390/ijms222010987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing the level of reactive oxygen species (ROS) in cancer cells has been suggested as a viable approach to cancer therapy. Our previous study has demonstrated that mitochondria-targeted flavone-naphthalimide-polyamine conjugate 6c elevates the level of ROS in cancer cells. However, the detailed role of ROS in 6c-treated cancer cells is not clearly stated. The biological effects and in-depth mechanisms of 6c in cancer cells need to be further investigated. In this study, we confirmed that mitochondria are the main source of 6c-induced ROS, as demonstrated by an increase in 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSox fluorescence. Compound 6c-induced mitochondrial ROS caused mitochondrial dysfunction and lysosomal destabilization confirmed by absolute quantitation (iTRAQ)-based comparative proteomics. Compound 6c-induced metabolic pathway dysfunction and lysosomal destabilization was attenuated by N-acetyl-L-cysteine (NAC). iTRAQ-based comparative proteomics showed that ROS regulated the expression of 6c-mediated proteins, and treatment with 6c promoted the formation of autophagosomes depending on ROS. Compound 6c-induced DNA damage was characterized by comet assay, p53 phosphorylation, and γH2A.X, which was diminished by pretreatment with NAC. Compound 6c-induced cell death was partially reversed by 3-methyladenine (3-MA), bafilomycin (BAF) A1, and NAC, respectively. Taken together, the data obtained in our study highlighted the involvement of mitochondrial ROS in 6c-induced autophagic cell death, mitochondrial and lysosomal dysfunction, and DNA damage.
Collapse
|
242
|
Gravandi MM, Fakhri S, Zarneshan SN, Yarmohammadi A, Khan H. Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities. Metab Brain Dis 2021; 36:1501-1521. [PMID: 33988807 DOI: 10.1007/s11011-021-00750-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 01/29/2023]
Abstract
As progressive, chronic, incurable and common reasons for disability and death, neurodegenerative diseases (NDDs) are significant threats to human health. Besides, the increasing prevalence of neuronal gradual degeneration and death during NDDs has made them a global concern. Since yet, no effective treatment has been developed to combat multiple dysregulated pathways/mediators and related complications in NDDs. Therefore, there is an urgent need to create influential and multi-target factors to combat neuronal damages. Accordingly, the plant kingdom has drawn a bright future. Among natural entities, flavonoids are considered a rich source of drug discovery and development with potential biological and medicinal activities. Growing studies have reported multiple dysregulated pathways in NDDs, which among those mediator AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) play critical roles. In this line, critical role of flavonoids in the upregulation of AMPK/PGC-1α pathway seems to pave the road in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), aging, central nervous system (brain/spinal cord) damages, stroke, and other NDDs. In the present study, the regulatory role of flavonoids in managing various NDDs has been shown to pass through AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
243
|
Zhang L, Liu H, Liu S, Piao X. Dietary supplementation with 25-hydroxycholecalciferol and phytase in growing-finishing pigs: II. Effects on intestinal antioxidant status, immunity and bone quality. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
244
|
Bortolasci CC, Turner A, Mohebbi M, Liu ZS, Ashton M, Gray L, Marx W, Walker AJ, Kowalski GM, Jacka F, Berk M, Dean OM, Walder K. Baseline serum amino acid levels predict treatment response to augmentation with N-acetylcysteine (NAC) in a bipolar disorder randomised trial. J Psychiatr Res 2021; 142:376-383. [PMID: 34438354 DOI: 10.1016/j.jpsychires.2021.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
N-acetylcysteine (NAC) acts on glutamatergic and redox systems, two systems implicated in the pathophysiology of bipolar disorder (BD). This has led to the investigation of NAC as a potential candidate for the treatment of BD. The aim of this study was to investigate metabolomic markers to identify predictors of NAC response in a cohort of BD participants. This study is a secondary analysis of a 16-week, multi-site, randomized, double-blinded, parallel-group, placebo-controlled trial in BD participants with a current acute depressive episode. This study included trial participants who received either NAC 2000 mg/day, or placebo. Participants (NAC: n = 31, placebo: n = 29) were assessed at baseline and week 16 using the Montgomery Åsberg Depression Rating Scale (MADRS) and were dichotomised into "responders" (MADRS at week 16 < 50% of MADRS at baseline) and "non-responders" (MADRS at week 16 > 50% at baseline). Untargeted gas chromatography-mass spectrometry analysis was performed to analyse baseline levels of 68 serum metabolites. Of the nine metabolites that differentiated placebo and NAC groups, five were amino acids with lower levels in the NAC responder group compared with the NAC non-responders. Further analysis generated a predictive model of MADRS improvement including glycine, norleucine, threonine, proline, phenylalanine, tyrosine, glutamic acid, lysine and leucine (R2 = 0.853; adjusted R2 = 0.733). This prediction model predicted 85% of the variance in MADRS outcome after adjunctive treatment with NAC. BD participants with lower serum levels of free amino acids at baseline may be more likely to respond to adjunctive treatment with NAC.
Collapse
Affiliation(s)
- Chiara C Bortolasci
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| | - Alyna Turner
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia
| | | | - Zoe Sj Liu
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Melanie Ashton
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Laura Gray
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Wolfgang Marx
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Department of Rehabilitation, Nutrition and Sport, School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, Australia
| | - Adam J Walker
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Greg M Kowalski
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Felice Jacka
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Black Dog Institute, Sydney, Australia
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Centre of Youth Mental Health, University of Melbourne, Parkville, Australia; Orygen Youth Health Research Centre, Parkville, Australia
| | - Olivia M Dean
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| |
Collapse
|
245
|
Ahmadov U, Picard D, Bartl J, Silginer M, Trajkovic-Arsic M, Qin N, Blümel L, Wolter M, Lim JKM, Pauck D, Winkelkotte AM, Melcher M, Langini M, Marquardt V, Sander F, Stefanski A, Steltgens S, Hassiepen C, Kaufhold A, Meyer FD, Seibt A, Kleinesudeik L, Hain A, Münk C, Knobbe-Thomsen CB, Schramm A, Fischer U, Leprivier G, Stühler K, Fulda S, Siveke JT, Distelmaier F, Borkhardt A, Weller M, Roth P, Reifenberger G, Remke M. The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and radiotherapy resistance in glioblastoma. Cell Death Dis 2021; 12:885. [PMID: 34584066 PMCID: PMC8478910 DOI: 10.1038/s41419-021-04146-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumor. To date, clinically relevant biomarkers are restricted to isocitrate dehydrogenase (IDH) gene 1 or 2 mutations and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Long non-coding RNAs (lncRNAs) have been shown to contribute to glioblastoma pathogenesis and could potentially serve as novel biomarkers. The clinical significance of HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) was determined by analyzing HOTAIRM1 in multiple glioblastoma gene expression data sets for associations with prognosis, as well as, IDH mutation and MGMT promoter methylation status. Finally, the role of HOTAIRM1 in glioblastoma biology and radiotherapy resistance was characterized in vitro and in vivo. We identified HOTAIRM1 as a candidate lncRNA whose up-regulation is significantly associated with shorter survival of glioblastoma patients, independent from IDH mutation and MGMT promoter methylation. Glioblastoma cell line models uniformly showed reduced cell viability, decreased invasive growth and diminished colony formation capacity upon HOTAIRM1 down-regulation. Integrated proteogenomic analyses revealed impaired mitochondrial function and determination of reactive oxygen species (ROS) levels confirmed increased ROS levels upon HOTAIRM1 knock-down. HOTAIRM1 knock-down decreased expression of transglutaminase 2 (TGM2), a candidate protein implicated in mitochondrial function, and knock-down of TGM2 mimicked the phenotype of HOTAIRM1 down-regulation in glioblastoma cells. Moreover, HOTAIRM1 modulates radiosensitivity of glioblastoma cells both in vitro and in vivo. Our data support a role for HOTAIRM1 as a driver of biological aggressiveness, radioresistance and poor outcome in glioblastoma. Targeting HOTAIRM1 may be a promising new therapeutic approach.
Collapse
Affiliation(s)
- Ulvi Ahmadov
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Picard
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jasmin Bartl
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Manuela Silginer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Nan Qin
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Lena Blümel
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marietta Wolter
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jonathan K M Lim
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Pauck
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alina Marie Winkelkotte
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Marlen Melcher
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maike Langini
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Viktoria Marquardt
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Sander
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Sascha Steltgens
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christina Hassiepen
- Department of Molecular Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Anna Kaufhold
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Frauke-Dorothee Meyer
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lara Kleinesudeik
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anika Hain
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Alexander Schramm
- Department of Molecular Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marc Remke
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
246
|
Fernando KKM, Wijayasinghe YS. Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer's Disease. Front Cell Neurosci 2021; 15:746631. [PMID: 34630044 PMCID: PMC8492950 DOI: 10.3389/fncel.2021.746631] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, which is associated with memory deficit and global cognitive decline. Age is the greatest risk factor for AD and, in recent years, it is becoming increasingly appreciated that aging-related neuroinflammation plays a key role in the pathogenesis of AD. The presence of β-amyloid plaques and neurofibrillary tangles are the primary pathological hallmarks of AD; defects which can then activate a cascade of molecular inflammatory pathways in glial cells. Microglia, the resident macrophages in the central nervous system (CNS), are the major triggers of inflammation; a response which is typically intended to prevent further damage to the CNS. However, persistent microglial activation (i.e., neuroinflammation) is toxic to both neurons and glia, which then leads to neurodegeneration. Growing evidence supports a central role for sirtuins in the regulation of neuroinflammation. Sirtuins are NAD+-dependent protein deacetylases that modulate a number of cellular processes associated with inflammation. This review examines the latest findings regarding AD-associated neuroinflammation, mainly focusing on the connections among the microglial molecular pathways of inflammation. Furthermore, we highlight the biology of sirtuins, and their role in neuroinflammation. Suppression of microglial activity through modulation of the sirtuin activity has now become a key area of research, where progress in therapeutic interventions may slow the progression of Alzheimer's disease.
Collapse
|
247
|
Wan F, Zhong G, Wu S, Jiang X, Liao J, Zhang X, Zhang H, Mehmood K, Tang Z, Hu L. Arsenic and antimony co-induced nephrotoxicity via autophagy and pyroptosis through ROS-mediated pathway in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112442. [PMID: 34166936 DOI: 10.1016/j.ecoenv.2021.112442] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) and antimony (Sb) are commonly accumulated environmental pollutants that often coexist in nature and cause serious widespread biological toxicity. To investigate the nephrotoxicity induced by As and Sb in detail, we explored the mechanism by which As and Sb cotreatment induced autophagy and pyroptosis in vivo and in vitro. In this study, mice were treated with 4 mg/kg arsenic trioxide (ATO) or/and 15 mg/kg antimony trichloride (SbCl3) by intragastric intubation for 60 days. TCMK-1 cells were treated with ATO (12.5 μM), SbCl3 (25 μM) or a combination of As and Sb for 24 h. The results of the in vivo experiment demonstrated that As or/and Sb exposure could induce histopathological changes in the kidneys, and increase the levels of biochemical indicators of nephrotoxicity. In addition, As and Sb can co-induce oxidative stress, which further activate autophagy and pyroptosis. In an in vitro experiment, As and/or Sb coexposure increased ROS generation and decreased MMP. Moreover, the results of related molecular experiments further confirmed that As and Sb coactivated autophagy and pyroptosis. In conclusion, our results indicated that As and Sb co-exposure could cause autophagy and pyroptosis via the ROS pathway, and these two metals might have a synergistic effect on nephrotoxicity.
Collapse
Affiliation(s)
- Fang Wan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | | | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
248
|
Abd Elfattah Noaishi M, Abd Elfattah NK, Allah El-Tayeb TA. Comparative Toxicity Study of Novel Light-Activated Insecticide and Deltamethrin in Albino Rats. Pak J Biol Sci 2021; 24:424-433. [PMID: 34486328 DOI: 10.3923/pjbs.2021.424.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Tri-sodium Copper of chlorophyllins (Agri-Safe) is a novel biocide using recently to control the mosquitoes as a larvicide. Because, the lack of adequate data on the toxicity of this compound, more toxicological studies on this new compound are necessary. Therefore the study aimed to evaluate the adverse effects of this new insecticide and in comparison with the traditional insecticide Deltamethrin (DM). <b>Materials and Methods:</b> Twenty-five adult male rats were randomly divided into five groups. The first group was kept in control. The second and third groups were administered at doses of 0.59 and 0.24 mg kg<sup>1</sup> b.wt., of DM. The fourth and 5th groups were administrated at doses of 250 and 100 mg kg<sup>1</sup> b.wt. of Agri-Safe respectively. The administrations were orally by gavage for 90 consecutive days. The rats were humanly sacrificed and whole blood was collected for hematological parameters and bone marrow was collected for mutagenicity assays. <b>Results:</b> The estimated LD<sub>50</sub> of DM and Agri-Safe were 11.76 and more than 5000 mg kg<sup>1</sup> b.wt., respectively. Both insecticides induced slight hepatotoxicity but not nephrotoxicity. The high and low doses of DM induced prominent oxidative stress while Agri-Safe did not induce oxidative stress. The results of genotoxicity revealed that DM caused greater mutagenic effect at high and low doses, while Agri-Safe induced slight significant genotoxicity at high-dose only. <b>Conclusion:</b> It can be concluded that Deltamethrin (DM) can induce oxidative stress and prominent genotoxicity while tri-sodium copper of chlorophyllins has a low side effect and its effect is due to copper elements.
Collapse
|
249
|
Tsamou M, Pistollato F, Roggen EL. A Tau-Driven Adverse Outcome Pathway Blueprint Toward Memory Loss in Sporadic (Late-Onset) Alzheimer's Disease with Plausible Molecular Initiating Event Plug-Ins for Environmental Neurotoxicants. J Alzheimers Dis 2021; 81:459-485. [PMID: 33843671 DOI: 10.3233/jad-201418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The worldwide prevalence of sporadic (late-onset) Alzheimer's disease (sAD) is dramatically increasing. Aging and genetics are important risk factors, but systemic and environmental factors contribute to this risk in a still poorly understood way. Within the frame of BioMed21, the Adverse Outcome Pathway (AOP) concept for toxicology was recommended as a tool for enhancing human disease research and accelerating translation of data into human applications. Its potential to capture biological knowledge and to increase mechanistic understanding about human diseases has been substantiated since. In pursuit of the tau-cascade hypothesis, a tau-driven AOP blueprint toward the adverse outcome of memory loss is proposed. Sequences of key events and plausible key event relationships, triggered by the bidirectional relationship between brain cholesterol and glucose dysmetabolism, and contributing to memory loss are captured. To portray how environmental factors may contribute to sAD progression, information on chemicals and drugs, that experimentally or epidemiologically associate with the risk of AD and mechanistically link to sAD progression, are mapped on this AOP. The evidence suggests that chemicals may accelerate disease progression by plugging into sAD relevant processes. The proposed AOP is a simplified framework of key events and plausible key event relationships representing one specific aspect of sAD pathology, and an attempt to portray chemical interference. Other sAD-related AOPs (e.g., Aβ-driven AOP) and a better understanding of the impact of aging and genetic polymorphism are needed to further expand our mechanistic understanding of early AD pathology and the potential impact of environmental and systemic risk factors.
Collapse
|
250
|
Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, Jeong YJ, Goh SH, Kim CS, Lee KJ. Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges. Molecules 2021; 26:5327. [PMID: 34500759 PMCID: PMC8433718 DOI: 10.3390/molecules26175327] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Natural products derived from plants, as well as their bioactive compounds, have been extensively studied in recent years for their therapeutic potential in a variety of neurodegenerative diseases (NDs), including Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease. These diseases are characterized by progressive dysfunction and loss of neuronal structure and function. There has been little progress in designing efficient treatments, despite impressive breakthroughs in our understanding of NDs. In the prevention and therapy of NDs, the use of natural products may provide great potential opportunities; however, many clinical issues have emerged regarding their use, primarily based on the lack of scientific support or proof of their effectiveness and patient safety. Since neurodegeneration is associated with a myriad of pathological processes, targeting multi-mechanisms of action and neuroprotection approaches that include preventing cell death and restoring the function of damaged neurons should be employed. In the treatment of NDs, including AD and PD, natural products have emerged as potential neuroprotective agents. This current review will highlight the therapeutic potential of numerous natural products and their bioactive compounds thatexert neuroprotective effects on the pathologies of NDs.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Johny Bajgai
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Ailyn Fadriquela
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Subham Sharma
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Thuy Thi Trinh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Rokeya Akter
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Yun Ju Jeong
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Seong Hoon Goh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| |
Collapse
|