201
|
Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat Neurosci 2020; 23:771-781. [DOI: 10.1038/s41593-020-0621-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
|
202
|
Knop J, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Maternal care of heterozygous dopamine receptor D4 knockout mice: Differential susceptibility to early-life rearing conditions. GENES BRAIN AND BEHAVIOR 2020; 19:e12655. [PMID: 32306548 PMCID: PMC7540036 DOI: 10.1111/gbb.12655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022]
Abstract
The differential susceptibility hypothesis proposes that individuals who are more susceptible to the negative effects of adverse rearing conditions may also benefit more from enriched environments. Evidence derived from human experiments suggests the lower efficacy dopamine receptor D4 (DRD4) 7‐repeat as a main factor in exhibiting these for better and for worse characteristics. However, human studies lack the genetic and environmental control offered by animal experiments, complicating assessment of causal relations. To study differential susceptibility in an animal model, we exposed Drd4+/− mice and control litter mates to a limited nesting/bedding (LN), standard nesting (SN) or communal nesting (CN) rearing environment from postnatal day (P) 2‐14. Puberty onset was examined from P24 to P36 and adult females were assessed on maternal care towards their own offspring. In both males and females, LN reared mice showed a delay in puberty onset that was partly mediated by a reduction in body weight at weaning, irrespective of Drd4 genotype. During adulthood, LN reared females exhibited characteristics of poor maternal care, whereas dams reared in CN environments showed lower rates of unpredictability towards their own offspring. Differential susceptibility was observed only for licking/grooming levels of female offspring towards their litter; LN reared Drd4+/− mice exhibited the lowest and CN reared Drd4+/− mice the highest levels of licking/grooming. These results indicate that both genetic and early‐environmental factors play an important role in shaping maternal care of the offspring for better and for worse.
Collapse
Affiliation(s)
- Jelle Knop
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rixt van der Veen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
203
|
Ponzi D, Flinn MV, Muehlenbein MP, Nepomnaschy PA. Hormones and human developmental plasticity. Mol Cell Endocrinol 2020; 505:110721. [PMID: 32004677 DOI: 10.1016/j.mce.2020.110721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Natural selection favors the evolution of mechanisms that optimize the allocation of resources and time among competing traits. Hormones mediate developmental plasticity, the changes in the phenotype that occur during ontogeny. Despite their highly conserved functions, the flexibilities of human hormonal systems suggest a strong history of adaptation to variable environments. Physiological research on developmental plasticity has focused on the early programming effects of stress, the hypothalamus-pituitary-adrenal axis (HPAA) and the hypothalamus-pituitary-gonadal axis (HPGA) during critical periods, when the hormones produced have the strongest influence on the developing brain. Often this research emphasizes the maladaptive effects of early stressful experiences. Here we posit that the HPAA and HPAG systems in human developmental plasticity have evolved to be responsive to complex and dynamic problems associated with human sociality. The lengthy period of human offspring dependency, and its associated brain development and risks, is linked to the uniquely human combination of stable breeding bonds, extensive paternal effort in a multi-male group, extended bilateral kin recognition, grandparenting, and controlled exchange of mates among kin groups. We evaluate an evolutionary framework that integrates proximate physiological explanations with ontogeny, phylogeny, adaptive function, and comparative life history data.
Collapse
Affiliation(s)
- Davide Ponzi
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Italy.
| | - Mark V Flinn
- Department of Anthropology, Baylor University, Waco, TX, USA
| | | | | |
Collapse
|
204
|
Stoffel M, Gardini E, Ehrenthal J, Abbruzzese E, Ditzen B. Evaluation of Stress Management and Stress Prevention Using Epigenetic Markers. VERHALTENSTHERAPIE 2020. [DOI: 10.1159/000506323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
205
|
Murthy S, Gould E. How Early Life Adversity Influences Defensive Circuitry. Trends Neurosci 2020; 43:200-212. [PMID: 32209452 DOI: 10.1016/j.tins.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Childhood maltreatment increases the likelihood of developing anxiety disorders in humans. Early life adversity (ELA) paradigms in rodents produce lasting increases in avoidant and inhibitory responses to both immediate and nonspecific threats, collectively referred to as defensive behaviors. This approach provides an opportunity to thoroughly investigate the underlying mechanisms, an effort that is currently under way. In this review, we consider the growing literature indicating that ELA alters the rhythmic firing of neurons in brain regions associated with defensive behavior, as well as potential neuronal, glial, and extracellular matrix contributions to functional changes in this circuitry. We also consider how ELA studies in rodents may inform us about both susceptible and resilient outcomes in humans.
Collapse
Affiliation(s)
- Sahana Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
206
|
Abstract
Epigenetic mechanisms govern the transcription of the genome. Research with model systems reveals that environmental conditions can directly influence epigenetic mechanisms that are associated with interindividual differences in gene expression in brain and neural function. In this review, we provide a brief overview of epigenetic mechanisms and research with relevant rodent models. We emphasize more recent translational research programs in epigenetics as well as the challenges inherent in the integration of epigenetics into developmental and clinical psychology. Our objectives are to present an update with respect to the translational relevance of epigenetics for the study of psychopathology and to consider the state of current research with respect to its potential importance for clinical research and practice in mental health.
Collapse
Affiliation(s)
- Kieran J O'Donnell
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3H 1R4, Canada.,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada
| | - Michael J Meaney
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 117609 Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| |
Collapse
|
207
|
Cecil CAM, Zhang Y, Nolte T. Childhood maltreatment and DNA methylation: A systematic review. Neurosci Biobehav Rev 2020; 112:392-409. [PMID: 32081689 DOI: 10.1016/j.neubiorev.2020.02.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
DNA methylation (DNAm) - an epigenetic process that regulates gene expression - may represent a mechanism for the biological embedding of early traumatic experiences, including childhood maltreatment. Here, we conducted the first systematic review of human studies linking childhood maltreatment to DNAm. In total, 72 studies were included in the review (2008-2018). The majority of extant studies (i) were based on retrospective data in adults, (ii) employed a candidate gene approach (iii) focused on global maltreatment, (iv) were based on easily accessible peripheral tissues, typically blood; and (v) were cross-sectional. Two-thirds of studies (n = 48) also examined maltreatment-related outcomes, such as stress reactivity and psychiatric symptoms. While findings generally support an association between childhood maltreatment and altered patterns of DNAm, factors such as the lack of longitudinal data, low comparability across studies as well as potential genetic and 'pre-exposure' environmental confounding currently limit the conclusions that can be drawn. Key challenges are discussed and concrete recommendations for future research are provided to move the field forward.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Yuning Zhang
- Centre for Innovation in Mental Health, University of Southampton; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Tobias Nolte
- The Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Anna Freud National Centre for Children and Families, London, United Kingdom
| |
Collapse
|
208
|
Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice. Int J Mol Sci 2020; 21:ijms21031154. [PMID: 32050516 PMCID: PMC7037343 DOI: 10.3390/ijms21031154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cognitive and behavioural disturbances are a growing public healthcare issue for the modern society, as stressful lifestyle is becoming more and more common. Besides, several pieces of evidence state that environment is crucial in the development of several diseases as well as compromising healthy aging. Therefore, it is important to study the effects of stress on cognition and its relationship with aging. To address these queries, Chronic Mild Stress (CMS) paradigm was used in the senescence-accelerated mouse prone 8 (SAMP8) and resistant 1 (SAMR1). On one hand, we determined the changes produced in the three main epigenetic marks after 4 weeks of CMS treatment, such as a reduction in histone posttranslational modifications and DNA methylation, and up-regulation or down-regulation of several miRNA involved in different cellular processes in mice. In addition, CMS treatment induced reactive oxygen species (ROS) damage accumulation and loss of antioxidant defence mechanisms, as well as inflammatory signalling activation through NF-κB pathway and astrogliosis markers, like Gfap. Remarkably, CMS altered mTORC1 signalling in both strains, decreasing autophagy only in SAMR1 mice. We found a decrease in glycogen synthase kinase 3 β (GSK-3β) inactivation, hyperphosphorylation of Tau and an increase in sAPPβ protein levels in mice under CMS. Moreover, reduction in the non-amyloidogenic secretase ADAM10 protein levels was found in SAMR1 CMS group. Consequently, detrimental effects on behaviour and cognitive performance were detected in CMS treated mice, affecting mainly SAMR1 mice, promoting a turning to SAMP8 phenotype. In conclusion, CMS is a feasible intervention to understand the influence of stress on epigenetic mechanisms underlying cognition and accelerating senescence.
Collapse
|
209
|
Baumbach JL, Zovkic IB. Hormone-epigenome interactions in behavioural regulation. Horm Behav 2020; 118:104680. [PMID: 31927018 DOI: 10.1016/j.yhbeh.2020.104680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Interactions between hormones and epigenetic factors are key regulators of behaviour, but the mechanisms that underlie their effects are complex. Epigenetic factors can modify sensitivity to hormones by altering hormone receptor expression, and hormones can regulate epigenetic factors by recruiting epigenetic regulators to DNA. The bidirectional nature of this relationship is becoming increasingly evident and suggests that the ability of hormones to regulate certain forms of behaviour may depend on their ability to induce changes in the epigenome. Moreover, sex differences have been reported for several epigenetic modifications, and epigenetic factors are thought to regulate sexual differentiation of behaviour, although specific mechanisms remain to be understood. Indeed, hormone-epigenome interactions are highly complex and involve both canonical and non-canonical regulatory pathways that may permit for highly specific gene regulation to promote variable forms of behavioural adaptation.
Collapse
Affiliation(s)
- Jennet L Baumbach
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|
210
|
Picardi A, Giuliani E, Gigantesco A. Genes and environment in attachment. Neurosci Biobehav Rev 2020; 112:254-269. [PMID: 32014527 DOI: 10.1016/j.neubiorev.2020.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
In the last two decades, there has been increasing research interest in disentangling the contribution of genetic and environmental factors to individual differences in attachment, and in identifying the genes involved in shaping attachment. Twin studies suggest that as attachment changes during the course of development, genetic factors may play a progressively more important role, while shared environmental effects might decrease. However, most of this literature is limited by low power, measurement issues, and cross-sectional design. The findings of molecular genetic studies are, overall, inconclusive. The literature on main genetic effects and gene-by-environment interactions on attachment is filled with inconsistent and unreplicated findings. Also, most studies are underpowered. Challenges for future research are to identify the unshared environmental mechanisms involved in shaping attachment, and to better elucidate the genes involved and their interaction with the environment. Some pioneer studies suggested that the incorporation of epigenetic processes into G × E interaction models might represent a promising future way for investigating the complex, dynamic interplay between genes, environment, and attachment.
Collapse
Affiliation(s)
- Angelo Picardi
- Centre for Behavioural Sciences and Mental Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Eugenia Giuliani
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 291-293, 00161 Rome, Italy
| | - Antonella Gigantesco
- Centre for Behavioural Sciences and Mental Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
211
|
Abstract
Suicide is a global health issue accounting for at least 800,000 deaths per annum. Numerous models have been proposed that differ in their emphasis on the role of psychological, social, psychiatric and neurobiological factors in explaining suicide risk. Central to many models is a stress-diathesis component which states that suicidal behavior is the result of an interaction between acutely stressful events and a susceptibility to suicidal behavior (a diathesis). This article presents an overview of studies that demonstrate that stress and dysregulated hypothalamic-pituitary-adrenal (HPA) axis activity, as measured by cortisol levels, are important additional risk factors for suicide. Evidence for other putative stress-related suicide risk factors including childhood trauma, impaired executive function, impulsivity and disrupted sleep are considered together with the impact of family history of suicide, perinatal and epigenetic influences on suicide risk.
Collapse
|
212
|
Stoffel M, Gardini E, Ehrenthal J, Abbruzzese E, Ditzen B. Evaluation von Stressprävention und Stressbewältigung mittels epigenetischer Marker. VERHALTENSTHERAPIE 2020. [DOI: 10.1159/000505595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
213
|
Garcia-Ruiz B, Moreno L, Muntané G, Sánchez-Gistau V, Gutiérrez-Zotes A, Martorell L, Labad J, Vilella E. Leukocyte and brain DDR1 hypermethylation is altered in psychosis and is correlated with stress and inflammatory markers. Epigenomics 2020; 12:251-265. [PMID: 31920096 DOI: 10.2217/epi-2019-0191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: To investigate DDR1 methylation in blood and brain DNA in psychosis and its relationship with stress markers. Materials & methods: Saliva cortisol, blood neutrophil and lymphocyte counts, leukocyte DNA and psychological variables were collected from 60 patients with nonaffective psychosis and 40 healthy controls (HC). Brain dorsolateral prefrontal cortex DNA from 35 patients with schizophrenia and 34 HC was studied. DDR1 methylation at 43 CpG sites was measured using the MassARRAY EpiTYPER platform. Results: We describe leukocyte DDR1 hypermethylation in patients with psychosis compared with HC; this hypermethylation is associated with psychological stress, neutrophil-to-lymphocyte ratios, and, in the dorsolateral prefrontal cortex, DDR1 methylation correlated with DDR1 isoform expression. Conclusion: We confirmed a relationship between stress and blood and brain DDR1 methylation in psychosis.
Collapse
Affiliation(s)
- Beatriz Garcia-Ruiz
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/, 43206, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, C/ Escorxador s/n, 42003, Tarragona, Spain.,Universitat Rovira i Virgili, C/ Sant Llorenç, 21. 43201, Reus, Spain
| | - Lorena Moreno
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/, 43206, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, C/ Escorxador s/n, 42003, Tarragona, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/, 43206, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, C/ Escorxador s/n, 42003, Tarragona, Spain.,Universitat Rovira i Virgili, C/ Sant Llorenç, 21. 43201, Reus, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| | - Vanessa Sánchez-Gistau
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/, 43206, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, C/ Escorxador s/n, 42003, Tarragona, Spain.,Universitat Rovira i Virgili, C/ Sant Llorenç, 21. 43201, Reus, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| | - Alfonso Gutiérrez-Zotes
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/, 43206, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, C/ Escorxador s/n, 42003, Tarragona, Spain.,Universitat Rovira i Virgili, C/ Sant Llorenç, 21. 43201, Reus, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/, 43206, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, C/ Escorxador s/n, 42003, Tarragona, Spain.,Universitat Rovira i Virgili, C/ Sant Llorenç, 21. 43201, Reus, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| | - Javier Labad
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain.,Hospital Parc Taulí, C/ Parc Taulí, 1, 08208, Sabadell, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Ctra de l'Institut Pere Mata, s/, 43206, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, C/ Escorxador s/n, 42003, Tarragona, Spain.,Universitat Rovira i Virgili, C/ Sant Llorenç, 21. 43201, Reus, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| |
Collapse
|
214
|
Madaro A, Kristiansen TS, Pavlidis MA. How Fish Cope with Stress? Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
215
|
Abstract
Depression is one of the most common psychiatric disorders affecting public health. Studies over the past years suggest that the methylations of some specific genes such as BDNF, SLC6A4, and NR3C1 play an important role in the development of depression. Recently, epigenetic evidences suggest that the expression levels of DNA methyltransferases differ in several brain areas including the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens in depression patients and animal models, but the potential link between the expression levels of DNA methylatransferases and the methylations of specific genes needs further investigation to clarify the pathogenesis of depression.
Collapse
Affiliation(s)
- Zhenghao Duan
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
216
|
Abstract
Suicidal behaviors have been associated with both heritable genetic variables and environmental risk factors. Epigenetic processes, such as DNA methylation, have important roles in mediating the effects of the environment on behavior. Dysregulation of these processes has been observed in many psychiatric disorders, and evidence suggests that they may also be involved in suicidal behaviors. Herein, we have summarized candidate gene and epigenome-wide studies which have investigated DNA methylation in relation to suicidal behaviors, as well as discussed some of the limitations of the field to date.
Collapse
Affiliation(s)
- Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada.
| |
Collapse
|
217
|
Rajan KE, Soundarya S, Karen C, Shanmugapriya V, Radhakrishnan K. Presence of Mother Reduces Early-Life Social Stress: Linking the Alteration in Hypothalamic-Pituitary-Adrenal Axis and Serotonergic System. Dev Neurosci 2019; 41:212-222. [PMID: 31865338 DOI: 10.1159/000504508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/30/2019] [Indexed: 11/19/2022] Open
Abstract
In this study, we examined whether the presence of mother suppresses early-life stressful social experience (SSE)-induced anxiety-like behavior and impairment of short-term memory later in life. On postnatal day (PND)-5, mothers with pups were grouped as follows: (i) control; (ii) maternal separation (MS); (iii) pups with mother experience the presence of a stranger (M+P-ST); and (iv) maternal separated pups experience the presence of a stranger (MSP-ST). Individuals were subjected to light-dark box and spontaneous alternation from PND-29 to 32. We observed that the MSP-ST group exhibits anxiety-like behavior and impairment in short-term memory. Further, SSE significantly elevated the adrenocorticotropic hormone, corticosterone and expression of glucocorticoid receptor (GR) in MSP-ST pups. Similarly, serotonin (5-hydroxytryptamine; 5-HT), dopamine, noradrenaline and expression of serotonin transporter levels were significantly elevated in MSP-ST pups. These observations suggest that during early postnatal days, the pups may recognize strangers by the sense of smell, and the presence of mother reduces the SSE-induced stress.
Collapse
Affiliation(s)
- Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India,
| | - Suba Soundarya
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.,School of Molecular Sciences, The University of Western Australia, Perth, Washington, Australia
| | - Christopher Karen
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Vasudevan Shanmugapriya
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Karuppasamy Radhakrishnan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.,Department of Zoology, Government Arts College, Karur, India
| |
Collapse
|
218
|
Goldstein Ferber S, Trezza V, Weller A. Early life stress and development of the endocannabinoid system: A bidirectional process in programming future coping. Dev Psychobiol 2019; 63:143-152. [PMID: 31849055 DOI: 10.1002/dev.21944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system (ECS) critically regulates stress responsivity and emotional behavior throughout development. It regulates anxiety-like behaviors in humans and animal models. In addition, it is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain. The ECS modulates the neuroendocrine and behavioral effects of stress, and is also capable of being affected by stress exposure itself. Early life stress interferes with the development of corticolimbic circuits, a major location of endocannabinoid receptors, and increases vulnerability to adult psychopathology. Early life stress alters the ontogeny of the ECS, resulting in a sustained deficit in its function, particularly within the hippocampus. Specifically, exposure to early stress results in bidirectional changes in anandamide and 2-AG tissue levels within the amygdala and hippocampus and reduces hippocampal endocannabinoid function at puberty. CB1 receptor densities across all brain regions are downregulated later in life following exposure to early life stress. Manipulations affecting the glucocorticoid and the endocannabinoid systems persistently adjust individual emotional responses and synaptic plasticity. This review aims to show the bidirectional trajectories of endocannabinoid modulation of emotionality in reaction to early life stress.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | | | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
219
|
Siller SJ, Rubenstein DR. A Tissue Comparison of DNA Methylation of the Glucocorticoid Receptor Gene (Nr3c1) in European Starlings. Integr Comp Biol 2019; 59:264-272. [PMID: 31076777 DOI: 10.1093/icb/icz034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Negative feedback of the vertebrate stress response via the hypothalamic-pituitary-adrenal (HPA) axis is regulated by glucocorticoid receptors in the brain. Epigenetic modification of the glucocorticoid receptor gene (Nr3c1), including DNA methylation of the promoter region, can influence expression of these receptors, impacting behavior, physiology, and fitness. However, we still know little about the long-term effects of these modifications on fitness. To better understand these fitness effects, we must first develop a non-lethal method to assess DNA methylation in the brain that allows for multiple measurements throughout an organism's lifetime. In this study, we aimed to determine if blood is a viable biomarker for Nr3c1 DNA methylation in two brain regions (hippocampus and hypothalamus) in adult European starlings (Sturnus vulgaris). We found that DNA methylation of CpG sites in the complete Nr3c1 putative promoter varied among tissue types and was lowest in blood. Although we identified a similar cluster of correlated Nr3c1 putative promoter CpG sites within each tissue, this cluster did not show any correlation in DNA methylation among tissues. Additional studies should consider the role of the developmental environment in producing epigenetic modifications in different tissues.
Collapse
Affiliation(s)
- Stefanie J Siller
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 10th Floor Schermerhorn Extension, 1200 Amsterdam Avenue, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 10th Floor Schermerhorn Extension, 1200 Amsterdam Avenue, New York, NY, USA
| |
Collapse
|
220
|
Gettler LT, Lin DTS, Miegakanda V, Lew-Levy S, Eick GN, Snodgrass JJ, MacIsaac JL, Ramadori KE, Kobor MS, Boyette AH. Epigenetic aging in children from a small-scale farming society in The Congo Basin: Associations with child growth and family conflict. Dev Psychobiol 2019; 62:138-153. [PMID: 31724171 DOI: 10.1002/dev.21935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Developmental environments influence individuals' long-term health trajectories, and there is increasing emphasis on understanding the biological pathways through which this occurs. Epigenetic aging evaluates DNA methylation at a suite of distinct CpG sites in the genome, and epigenetic age acceleration (EAA) is linked to heightened chronic morbidity and mortality risks in adults. Consequently, EAA provides insights on trajectories of biological aging, which early life experiences may help shape. However, few studies have measured correlates of children's epigenetic aging, especially outside of the U.S. and Europe. In particular, little is known about how children's growth and development relate to EAA in ecologies in which energetic and pathogenic stressors are commonplace. We studied EAA from dried blood spots among Bondongo children (n = 54) residing in a small-scale, fisher-farmer society in a remote region of the Republic of the Congo. Here, infectious disease burdens and their resultant energy demands are high. Children who were heavier for height or taller for age, respectively, exhibited greater EAA, including intrinsic EAA, which is considered to measure EAA internal to cells. Furthermore, we found that children in families with more conflict between parents had greater intrinsic EAA. These results suggest that in contexts in which limited energy must be allocated to competing demands, more investment in growth may coincide with greater EAA, which parallels findings in European children who do not face similar energetic constraints. Our findings also indicate that associations between adverse family environments and greater intrinsic EAA were nonetheless observable but only after adjustment for covariates relevant to the energetically and immunologically demanding nature of the local ecology.
Collapse
Affiliation(s)
- Lee T Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,William J. Shaw Center for Children and Families, University of Notre Dame, South Bend, IN, USA
| | - David T S Lin
- BC Children's Hospital Research, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Valchy Miegakanda
- Institut National de Santé Publique, Brazzaville, Republic of the Congo
| | - Sheina Lew-Levy
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - Geeta N Eick
- Department of Anthropology, University of Oregon, Eugene, OR, USA
| | - J Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, OR, USA
| | - Julia L MacIsaac
- BC Children's Hospital Research, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katia E Ramadori
- BC Children's Hospital Research, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- BC Children's Hospital Research, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Adam H Boyette
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
221
|
Jiang S, Postovit L, Cattaneo A, Binder EB, Aitchison KJ. Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma. Front Psychiatry 2019; 10:808. [PMID: 31780969 PMCID: PMC6857662 DOI: 10.3389/fpsyt.2019.00808] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Adverse childhood experiences (ACEs) may be referred to by other terms (e.g., early life adversity or stress and childhood trauma) and have a lifelong impact on mental and physical health. For example, childhood trauma has been associated with posttraumatic stress disorder (PTSD), anxiety, depression, bipolar disorder, diabetes, and cardiovascular disease. The heritability of ACE-related phenotypes such as PTSD, depression, and resilience is low to moderate, and, moreover, is very variable for a given phenotype, which implies that gene by environment interactions (such as through epigenetic modifications) may be involved in the onset of these phenotypes. Currently, there is increasing interest in the investigation of epigenetic contributions to ACE-induced differential health outcomes. Although there are a number of studies in this field, there are still research gaps. In this review, the basic concepts of epigenetic modifications (such as methylation) and the function of the hypothalamic-pituitary-adrenal (HPA) axis in the stress response are outlined. Examples of specific genes undergoing methylation in association with ACE-induced differential health outcomes are provided. Limitations in this field, e.g., uncertain clinical diagnosis, conceptual inconsistencies, and technical drawbacks, are reviewed, with suggestions for advances using new technologies and novel research directions. We thereby provide a platform on which the field of ACE-induced phenotypes in mental health may build.
Collapse
Affiliation(s)
- Shui Jiang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Lynne Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine J. Aitchison
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
222
|
Wheeler RV, Franklin TB. The importance of the epigenome for social-related neural circuits. Epigenomics 2019; 11:1557-1560. [PMID: 31701758 DOI: 10.2217/epi-2019-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ryan V Wheeler
- Department of Psychology & Neuroscience, The Social Lab, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tamara B Franklin
- Department of Psychology & Neuroscience, The Social Lab, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
223
|
Jimeno B, Hau M, Gómez-Díaz E, Verhulst S. Developmental conditions modulate DNA methylation at the glucocorticoid receptor gene with cascading effects on expression and corticosterone levels in zebra finches. Sci Rep 2019; 9:15869. [PMID: 31676805 PMCID: PMC6825131 DOI: 10.1038/s41598-019-52203-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Developmental conditions can impact the adult phenotype via epigenetic changes that modulate gene expression. In mammals, methylation of the glucocorticoid receptor gene Nr3c1 has been implicated as mediator of long-term effects of developmental conditions, but this evidence is limited to humans and rodents, and few studies have simultaneously tested for associations between DNA methylation, gene expression and phenotype. Adverse environmental conditions during early life (large natal brood size) or adulthood (high foraging costs) exert multiple long-term phenotypic effects in zebra finches, and we here test for effects of these manipulations on DNA methylation and expression of the Nr3c1 gene in blood. Having been reared in a large brood induced higher DNA methylation of the Nr3c1 regulatory region in adulthood, and this effect persisted over years. Nr3c1 expression was negatively correlated with methylation at 2 out of 8 CpG sites, and was lower in hard foraging conditions, despite foraging conditions having no effect on Nr3c1 methylation at our target region. Nr3c1 expression also correlated with glucocorticoid traits: higher expression level was associated with lower plasma baseline corticosterone concentrations and enhanced corticosterone reactivity. Our results suggest that methylation of the Nr3c1 regulatory region can contribute to the mechanisms underlying the emergence of long-term effects of developmental conditions in birds, but in our system current adversity dominated over early life experiences with respect to receptor expression.
Collapse
Affiliation(s)
- Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
- Max Planck Institute for Ornithology, Seewiesen, Germany.
- University of Montana, Missoula, MT, United States.
| | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
- University of Konstanz, Konstanz, Germany
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Granada, Spain
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
224
|
Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm (Vienna) 2019; 126:1383-1408. [PMID: 31584111 PMCID: PMC6815270 DOI: 10.1007/s00702-019-02084-y] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Major depression is a leading contributor to the global burden of disease. This situation is mainly related to the chronicity and/or recurrence of the disorder, and to poor response to antidepressant therapy. Progress in this area requires valid animal models. Current models are based either on manipulating the environment to which rodents are exposed (during the developmental period or adulthood) or biological underpinnings (i.e. gene deletion or overexpression of candidate genes, targeted lesions of brain areas, optogenetic control of specific neuronal populations, etc.). These manipulations can alter specific behavioural and biological outcomes that can be related to different symptomatic and pathophysiological dimensions of major depression. However, animal models of major depression display substantial shortcomings that contribute to the lack of innovative pharmacological approaches in recent decades and which hamper our capabilities to investigate treatment-resistant depression. Here, we discuss the validity of these models, review putative models of treatment-resistant depression, major depression subtypes and recurrent depression. Furthermore, we identify future challenges regarding new paradigms such as those proposing dimensional rather than categorical approaches to depression.
Collapse
Affiliation(s)
| | | | - Catherine Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
- UMR 1253, iBrain, UFR Sciences et Techniques, Parc Grandmont, 37200, Tours, France.
| |
Collapse
|
225
|
Abstract
Although recent years have seen large decreases in the overall global rate of suicide fatalities, this trend is not reflected everywhere. Suicide and suicidal behaviour continue to present key challenges for public policy and health services, with increasing suicide deaths in some countries such as the USA. The development of suicide risk is complex, involving contributions from biological (including genetics), psychological (such as certain personality traits), clinical (such as comorbid psychiatric illness), social and environmental factors. The involvement of multiple risk factors in conveying risk of suicide means that determining an individual's risk of suicide is challenging. Improving risk assessment, for example, by using computer testing and genetic screening, is an area of ongoing research. Prevention is key to reduce the number of suicide deaths and prevention efforts include universal, selective and indicated interventions, although these interventions are often delivered in combination. These interventions, combined with psychological (such as cognitive behavioural therapy, caring contacts and safety planning) and pharmacological treatments (for example, clozapine and ketamine) along with coordinated social and public health initiatives, should continue to improve the management of individuals who are suicidal and decrease suicide-associated morbidity.
Collapse
|
226
|
Ju C, Fiori LM, Belzeaux R, Theroux JF, Chen GG, Aouabed Z, Blier P, Farzan F, Frey BN, Giacobbe P, Lam RW, Leri F, MacQueen GM, Milev R, Müller DJ, Parikh SV, Rotzinger S, Soares CN, Uher R, Li Q, Foster JA, Kennedy SH, Turecki G. Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Transl Psychiatry 2019; 9:254. [PMID: 31594917 PMCID: PMC6783543 DOI: 10.1038/s41398-019-0589-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 01/19/2023] Open
Abstract
Major depressive disorder (MDD) is primarily treated with antidepressants, yet many patients fail to respond adequately, and identifying antidepressant response biomarkers is thus of clinical significance. Some hypothesis-driven investigations of epigenetic markers for treatment response have been previously made, but genome-wide approaches remain unexplored. Healthy participants (n = 112) and MDD patients (n = 211) between 18-60 years old were recruited for an 8-week trial of escitalopram treatment. Responders and non-responders were identified using differential Montgomery-Åsberg Depression Rating Scale scores before and after treatment. Genome-wide DNA methylation and gene expression analyses were assessed using the Infinium MethylationEPIC Beadchip and HumanHT-12 v4 Expression Beadchip, respectively, on pre-treatment peripheral blood DNA and RNA samples. Differentially methylated positions (DMPs) located in regions of differentially expressed genes between responders (n = 82) and non-responders (n = 95) were identified, and technically validated using a targeted sequencing approach. Three DMPs located in the genes CHN2 (cg23687322, p = 0.00043 and cg06926818, p = 0.0014) and JAK2 (cg08339825, p = 0.00021) were the most significantly associated with mRNA expression changes and subsequently validated. Replication was then conducted with non-responders (n = 76) and responders (n = 71) in an external cohort that underwent a similar antidepressant trial. One CHN2 site (cg06926818; p = 0.03) was successfully replicated. Our findings indicate that differential methylation at CpG sites upstream of the CHN2 and JAK2 TSS regions are possible peripheral predictors of antidepressant treatment response. Future studies can provide further insight on robustness of our candidate biomarkers, and greater characterization of functional components.
Collapse
Affiliation(s)
- Chelsey Ju
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Laura M. Fiori
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Raoul Belzeaux
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,0000 0001 2176 4817grid.5399.6Department of Psychiatry, Assistance Publique-Hopitaux de Marseille, Aix Marseille University, Marseille, France
| | - Jean-Francois Theroux
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Gary Gang Chen
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Zahia Aouabed
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Pierre Blier
- 0000 0001 2182 2255grid.28046.38University of Ottawa Institute of Mental Health Research, Ottawa, K1Z 7K4 ON Canada
| | - Faranak Farzan
- 0000 0000 8793 5925grid.155956.bCentre for Addiction and Mental Health, Toronto, ON M6J 1A8 Canada
| | - Benicio N. Frey
- 0000 0004 1936 8227grid.25073.33Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University; Women’s Health Concerns Clinic, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7 Canada
| | - Peter Giacobbe
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, University Health Network, University of Toronto, Toronto, ON M5T 2S8 Canada
| | - Raymond W. Lam
- 0000 0001 2288 9830grid.17091.3eDepartment of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1 Canada
| | - Francesco Leri
- 0000 0004 1936 8198grid.34429.38Department of Psychology, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Glenda M. MacQueen
- 0000 0004 1936 7697grid.22072.35University of Calgary Hotchkiss Brain Institute, Calgary, AB T2N 1N4 Canada
| | - Roumen Milev
- Providence Care Hospital, Kingston, ON K7L 4×3 Canada ,0000 0004 1936 8331grid.410356.5Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6 Canada
| | - Daniel J Müller
- 0000 0000 8793 5925grid.155956.bCentre for Addiction and Mental Health, Toronto, ON M6J 1A8 Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University Health Network, University of Toronto, Toronto, ON M5T 2S8 Canada
| | - Sagar V. Parikh
- 0000000086837370grid.214458.eUniversity of Michigan, Ann Arbor, MI 48109 USA
| | - Susan Rotzinger
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, University Health Network, University of Toronto, Toronto, ON M5T 2S8 Canada
| | - Claudio N. Soares
- Providence Care Hospital, Kingston, ON K7L 4×3 Canada ,0000 0004 1936 8331grid.410356.5Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6 Canada ,grid.415502.7St Michael’s Hospital, Toronto, ON M5B 1M4 Canada
| | - Rudolf Uher
- 0000 0001 2322 6764grid.13097.3cMRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, SE5 8AF UK ,0000 0004 1936 8200grid.55602.34Department of Psychiatry, Dalhousie University, Halifax, NS B3H 2E2 Canada
| | - Qingqin Li
- 0000 0004 0389 4927grid.497530.cJanssen Research & Development, LLC, Pennington, NJ USA
| | - Jane A. Foster
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, University Health Network, University of Toronto, Toronto, ON M5T 2S8 Canada
| | - Sidney H. Kennedy
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, University Health Network, University of Toronto, Toronto, ON M5T 2S8 Canada ,grid.415502.7St Michael’s Hospital, Toronto, ON M5B 1M4 Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, Assistance Publique-Hopitaux de Marseille, Aix Marseille University, Marseille, France.
| |
Collapse
|
227
|
Humphreys KL, Moore SR, Davis EG, MacIsaac JL, Lin DTS, Kobor MS, Gotlib IH. DNA methylation of HPA-axis genes and the onset of major depressive disorder in adolescent girls: a prospective analysis. Transl Psychiatry 2019; 9:245. [PMID: 31582756 PMCID: PMC6776528 DOI: 10.1038/s41398-019-0582-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 12/28/2022] Open
Abstract
The stress response system is disrupted in individuals with major depressive disorder (MDD) as well as in those at elevated risk for developing MDD. We examined whether DNA methylation (DNAm) levels of CpG sites within HPA-axis genes predict the onset of MDD. Seventy-seven girls, approximately half (n = 37) of whom were at familial risk for MDD, were followed longitudinally. Saliva samples were taken in adolescence (M age = 13.06 years [SD = 1.52]) when participants had no current or past MDD diagnosis. Diagnostic interviews were administered approximately every 18 months until the first onset of MDD or early adulthood (M age of last follow-up = 19.23 years [SD = 2.69]). We quantified DNAm in saliva samples using the Illumina EPIC chip and examined CpG sites within six key HPA-axis genes (NR3C1, NR3C2, CRH, CRHR1, CRHR2, FKBP5) alongside 59 genotypes for tagging SNPs capturing cis genetic variability. DNAm levels within CpG sites in NR3C1, CRH, CRHR1, and CRHR2 were associated with risk for MDD across adolescence and young adulthood. To rule out the possibility that findings were merely due to the contribution of genetic variability, we re-analyzed the data controlling for cis genetic variation within these candidate genes. Importantly, methylation levels in these CpG sites continued to significantly predict the onset of MDD, suggesting that variation in the epigenome, independent of proximal genetic variants, prospectively predicts the onset of MDD. These findings suggest that variation in the HPA axis at the level of the methylome may predict the development of MDD.
Collapse
Affiliation(s)
- Kathryn L. Humphreys
- 0000 0001 2264 7217grid.152326.1Department of Psychology and Human Development, Vanderbilt University, Nashville, TN USA
| | - Sarah R. Moore
- 0000 0001 2288 9830grid.17091.3eBC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Elena Goetz Davis
- 0000000419368956grid.168010.eDepartment of Psychology, Stanford University, Stanford, USA
| | - Julie L. MacIsaac
- 0000 0001 2288 9830grid.17091.3eBC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
| | - David T. S. Lin
- 0000 0001 2288 9830grid.17091.3eBC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Michael S. Kobor
- 0000 0001 2288 9830grid.17091.3eBC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
| | - Ian H. Gotlib
- 0000000419368956grid.168010.eDepartment of Psychology, Stanford University, Stanford, USA
| |
Collapse
|
228
|
Tachi S, Asamizu M, Uchida Y, Katayama S, Naruse M, Masuya J, Ichiki M, Inoue T. Victimization In Childhood Affects Depression In Adulthood Via Neuroticism:A Path Analysis Study. Neuropsychiatr Dis Treat 2019; 15:2835-2841. [PMID: 31632031 PMCID: PMC6781847 DOI: 10.2147/ndt.s220349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/12/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Adverse experiences, such as low care, overprotection, or abuse in childhood increase the likelihood of depression via their effects on personality traits. Similarly, being victimized in childhood may affect the likelihood of depression via personality traits. In this case-control study, we hypothesized that being victimized in childhood is associated with depression in adulthood via its effect on neuroticism, and verified this hypothesis using path analysis. SUBJECTS AND METHODS Eighty-two major depressive disorder (MDD) patients and 350 age-and-sex matched healthy controls completed self-administered questionnaires of demographic data, Patient Health Questionnaire-9, neuroticism, and victimization. The association between victimization, neuroticism, and depressive symptoms or having major depression was investigated by path analysis. RESULTS Multiple group path analysis, in which depressive symptoms were considered as dependent variables, showed that the direct effect of victimization in childhood on depressive symptoms was not statistically significant in either healthy controls or MDD patients (standardized path coefficient: 0.079 and 0.084, respectively), but their indirect effects via neuroticism were statistically significant (standardized path coefficient: 0.059 and 0.141, respectively). Path analysis, in which the distinction between healthy controls and MDD patients was a dependent variable, showed that both direct effects and indirect effects of victimization in childhood via neuroticism on the distinction between healthy controls and MDD patients were statistically significant (standardized path coefficient: 0.186 and 0.164, respectively). LIMITATIONS Recall bias and the relatively small number of MDD patients are limitations of this study. Because it was a case-control survey, this study could not make any conclusions regarding causal associations. CONCLUSION This study suggests the possibility of causal associations between victimization in childhood and depressive symptoms or MDD in adulthood, and the mediation of this association by neuroticism.
Collapse
Affiliation(s)
- Shuichiro Tachi
- Department of Psychiatry, Tokyo Medical University, Tokyo160-0023, Japan
- Seijin Hospital, Tokyo121-0815, Japan
| | | | - Yoshihiro Uchida
- Department of Psychiatry, Tokyo Medical University, Tokyo160-0023, Japan
- Seijin Hospital, Tokyo121-0815, Japan
- Department of Psychiatry, Ibaraki Medical Center, Tokyo Medical University, Ibaraki300-0395, Japan
| | - Shigemasa Katayama
- Department of Psychiatry, Tokyo Medical University, Tokyo160-0023, Japan
- Seijin Hospital, Tokyo121-0815, Japan
| | - Mayu Naruse
- Department of Psychiatry, Tokyo Medical University, Tokyo160-0023, Japan
| | - Jiro Masuya
- Department of Psychiatry, Tokyo Medical University, Tokyo160-0023, Japan
- Department of Psychiatry, Ibaraki Medical Center, Tokyo Medical University, Ibaraki300-0395, Japan
| | - Masahiko Ichiki
- Department of Psychiatry, Tokyo Medical University, Tokyo160-0023, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Tokyo Medical University, Tokyo160-0023, Japan
| |
Collapse
|
229
|
Xu B, Lang L, Li S, Yuan J, Wang J, Yang H, Lian S. Corticosterone Excess-Mediated Mitochondrial Damage Induces Hippocampal Neuronal Autophagy in Mice Following Cold Exposure. Animals (Basel) 2019; 9:ani9090682. [PMID: 31540011 PMCID: PMC6770033 DOI: 10.3390/ani9090682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/18/2023] Open
Abstract
Simple Summary In this study, the phenomenon of ‘autophagy’ was demonstrated in the hippocampus following cold exposure. Persistent neuronal stimulation of the hippocampus after corticosterone (CORT) treatment induced mitochondrial damage and autophagy by activating the AMPK/mTOR signaling pathway, which did not rely on glucocorticoid receptors (GRs). The phenomenon in the hippocampus of the cold stress mice was also a sex-related difference in the response to cold stress; the phenomenon of autophagy was more severe in males. These findings provided a new understanding of the underlying mechanisms of the cold stress response, which may influence the selection of animal models in future stress-related studies. Abstract Cold stress can induce autophagy mediated by excess corticosterone (CORT) in the hippocampus, but the internal mechanism induced by cold stress is not clear. In vivo, male and female C57BL/6 mice were stimulated in 4 °C, 3 h per day for 1 week to build the model of cold sress. In vitro, hippocampal neuronal cell line (HT22) cells were incubated with or without mifepristone (RU486) for 1 h, then treated with 400 μM cortisol (CORT) for 3 h. In vivo, autophagy was measured by western blotting. In vitro, monodansylcadaverine staining, western blotting, flow cytometry, transmission electron microscopy, and immunofluorescence were used to characterize the mechanism of autophagy induced by excess CORT. Autophagy was shown in mouse hippocampus tissues following cold exposure, including mitochondrial damage, autophagy, and 5’ AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway activation after CORT treatment. Autophagy did not rely on the glucocorticoid receptor. In addition, autophagy in male mice was more severe. The study would provide new insight into the mechanisms and the negative effect of the cold stress response, which can inform the development of new strategies to combat the effects of hypothermia.
Collapse
Affiliation(s)
- Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Limin Lang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Jianbin Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
230
|
Lu A, Petrullo L, Carrera S, Feder J, Schneider-Crease I, Snyder-Mackler N. Developmental responses to early-life adversity: Evolutionary and mechanistic perspectives. Evol Anthropol 2019; 28:249-266. [PMID: 31498945 DOI: 10.1002/evan.21791] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Adverse ecological and social conditions during early life are known to influence development, with rippling effects that may explain variation in adult health and fitness. The adaptive function of such developmental plasticity, however, remains relatively untested in long-lived animals, resulting in much debate over which evolutionary models are most applicable. Furthermore, despite the promise of clinical interventions that might alleviate the health consequences of early-life adversity, research on the proximate mechanisms governing phenotypic responses to adversity have been largely limited to studies on glucocorticoids. Here, we synthesize the current state of research on developmental plasticity, discussing both ultimate and proximate mechanisms. First, we evaluate the utility of adaptive models proposed to explain developmental responses to early-life adversity, particularly for long-lived mammals such as humans. In doing so, we highlight how parent-offspring conflict complicates our understanding of whether mothers or offspring benefit from these responses. Second, we discuss the role of glucocorticoids and a second physiological system-the gut microbiome-that has emerged as an additional, clinically relevant mechanism by which early-life adversity can influence development. Finally, we suggest ways in which nonhuman primates can serve as models to study the effects of early-life adversity, both from evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| | - Lauren Petrullo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - Sofia Carrera
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Jacob Feder
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - India Schneider-Crease
- Department of Anthropology, Stony Brook University, Stony Brook, New York.,Department of Psychology, University of Washington, Seattle, Washington
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, Washington.,Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington
| |
Collapse
|
231
|
Seebacher F, Krause J. Epigenetics of Social Behaviour. Trends Ecol Evol 2019; 34:818-830. [DOI: 10.1016/j.tree.2019.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
|
232
|
Solomon-Lane TK, Hofmann HA. Early-life social environment alters juvenile behavior and neuroendocrine function in a highly social cichlid fish. Horm Behav 2019; 115:104552. [PMID: 31276665 DOI: 10.1016/j.yhbeh.2019.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early-life experiences can shape adult behavior, with consequences for fitness and health, yet fundamental questions remain unanswered about how early-life social experiences are translated into variation in brain and behavior. The African cichlid fish Astatotilapia burtoni, a model system in social neuroscience, is well known for its highly plastic social phenotypes in adulthood. Here, we rear juveniles in either social groups or pairs to investigate the effects of early-life social environments on behavior and neuroendocrine gene expression. We find that both juvenile behavior and neuroendocrine function are sensitive to early-life effects. Behavior robustly co-varies across multiple contexts (open field, social cue investigation, and dominance behavior assays) to form a behavioral syndrome, with pair-reared juveniles towards the end of syndrome that is less active and socially interactive. Pair-reared juveniles also submit more readily as subordinates. In a separate cohort, we measured whole brain expression of stress and sex hormone genes. Expression of glucocorticoid receptor 1a was elevated in group-reared juveniles, supporting a highly-conserved role for the stress axis mediating early-life effects. The effect of rearing environment on androgen receptor α and estrogen receptor α expression was mediated by treatment duration (1 vs. 5 weeks). Finally, expression of corticotropin-releasing factor and glucocorticoid receptor 2 decreased significantly over time. Rearing environment also caused striking differences in gene co-expression, such that expression was tightly integrated in pair-reared juveniles but not group-reared or isolates. Together, this research demonstrates the important developmental origins of behavioral phenotypes and identifies potential behavioral and neuroendocrine mechanisms.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America.
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
233
|
Molecular programs underlying differences in the expression of mood disorders in males and females. Brain Res 2019; 1719:89-103. [DOI: 10.1016/j.brainres.2019.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023]
|
234
|
Abstract
Socioeconomic status (SES) is associated with health (physical and mental) and cognitive ability. Understanding and ameliorating the problems of low SES have long been goals of economics and sociology; in recent years, these have also become goals of neuroscience. However, opinion varies widely on the relevance of neuroscience to SES-related policy. The present article addresses the question of whether and how neuroscience can contribute to the development of social policy concerning poverty and the social and ethical risks inherent in trying. I argue that the neuroscience approach to SES-related policy has been both prematurely celebrated and peremptorily dismissed and that some of its possible social impacts have been viewed with excessive alarm. Neuroscience has already made modest contributions to SES-related policy, and its potential to have a more effective and beneficial influence can be expected to grow over the coming years.
Collapse
|
235
|
Taff CC, Campagna L, Vitousek MN. Genome-wide variation in DNA methylation is associated with stress resilience and plumage brightness in a wild bird. Mol Ecol 2019; 28:3722-3737. [PMID: 31330076 DOI: 10.1111/mec.15186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
Individuals often differ in their ability to cope with challenging environmental and social conditions. Evidence from model systems suggests that patterns of DNA methylation are associated with variation in coping ability. These associations could arise directly if methylation plays a role in controlling the physiological response to stressors by, among other things, regulating the release of glucocorticoids in response to challenges. Alternatively, the association could arise indirectly if methylation and resilience have a common cause, such as early-life conditions. In either case, methylation might act as a biomarker for coping ability. At present, however, relatively little is known about whether variation in methylation is associated with organismal performance and resilience under natural conditions. We studied genome-wide patterns of DNA methylation in free-living female tree swallows (Tachycineta bicolor) using methylated DNA immunoprecipitation (MeDIP) and a tree swallow genome that was assembled for this study. We identified areas of the genome that were differentially methylated with respect to social signal expression (breast brightness) and physiological traits (ability to terminate the glucocorticoid stress response through negative feedback). We also asked whether methylation predicted resilience to a subsequent experimentally imposed challenge. Individuals with brighter breast plumage and higher stress resilience had lower methylation at differentially methylated regions across the genome. Thus, widespread differences in methylation predicted both social signal expression and the response to future challenges under natural conditions. These results have implications for predicting individual differences in resilience, and for understanding the mechanistic basis of resilience and its environmental and social mediators.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| | - Leonardo Campagna
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| | - Maren N Vitousek
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| |
Collapse
|
236
|
Sawyer KM, Zunszain PA, Dazzan P, Pariante CM. Intergenerational transmission of depression: clinical observations and molecular mechanisms. Mol Psychiatry 2019; 24:1157-1177. [PMID: 30283036 DOI: 10.1038/s41380-018-0265-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Maternal mental illness can have a devastating effect during the perinatal period, and has a profound impact on the care that the baby receives and on the relationships that the baby forms. This review summarises clinical evidence showing the effects of perinatal depression on offspring physical and behavioural development, and on the transmission of psychopathology between generations. We then evaluate a number of factors which influence this relationship, such as genetic factors, the use of psychotropic medications during pregnancy, the timing within the perinatal period, the sex of the foetus, and exposure to maltreatment in childhood. Finally, we examine recent findings regarding the molecular mechanisms underpinning these clinical observations, and identify relevant epigenetic and biomarker changes in the glucocorticoid, oxytocin, oestrogen and immune systems, as key biological mediators of these clinical findings. By understanding these molecular mechanisms in more detail, we will be able to improve outcomes for both mothers and their offspring for generations.
Collapse
Affiliation(s)
- Kristi M Sawyer
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
237
|
Epigenetics and meditation. Curr Opin Psychol 2019; 28:76-80. [DOI: 10.1016/j.copsyc.2018.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
|
238
|
Morris G, Berk M, Maes M, Carvalho AF, Puri BK. Socioeconomic Deprivation, Adverse Childhood Experiences and Medical Disorders in Adulthood: Mechanisms and Associations. Mol Neurobiol 2019; 56:5866-5890. [PMID: 30685844 PMCID: PMC6614134 DOI: 10.1007/s12035-019-1498-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
Severe socioeconomic deprivation (SED) and adverse childhood experiences (ACE) are significantly associated with the development in adulthood of (i) enhanced inflammatory status and/or hypothalamic-pituitary-adrenal (HPA) axis dysfunction and (ii) neurological, neuroprogressive, inflammatory and autoimmune diseases. The mechanisms by which these associations take place are detailed. The two sets of consequences are themselves strongly associated, with the first set likely contributing to the second. Mechanisms enabling bidirectional communication between the immune system and the brain are described, including complex signalling pathways facilitated by factors at the level of immune cells. Also detailed are mechanisms underpinning the association between SED, ACE and the genesis of peripheral inflammation, including epigenetic changes to immune system-related gene expression. The duration and magnitude of inflammatory responses can be influenced by genetic factors, including single nucleotide polymorphisms, and by epigenetic factors, whereby pro-inflammatory cytokines, reactive oxygen species, reactive nitrogen species and nuclear factor-κB affect gene DNA methylation and histone acetylation and also induce several microRNAs including miR-155, miR-181b-1 and miR-146a. Adult HPA axis activity is regulated by (i) genetic factors, such as glucocorticoid receptor polymorphisms; (ii) epigenetic factors affecting glucocorticoid receptor function or expression, including the methylation status of alternative promoter regions of NR3C1 and the methylation of FKBP5 and HSD11β2; (iii) chronic inflammation and chronic nitrosative and oxidative stress. Finally, it is shown how severe psychological stress adversely affects mitochondrial structure and functioning and is associated with changes in brain mitochondrial DNA copy number and transcription; mitochondria can act as couriers of childhood stress into adulthood.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
239
|
Zeng Y, Zhu X, Chen C, Banerjee K, Sun L, Yu W, Zheng B, Wu R. A unified DNA sequence and non-DNA sequence mapping model of complex traits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:784-795. [PMID: 31009159 DOI: 10.1111/tpj.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/10/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Increasing evidence shows that quantitative inheritance is based on both DNA sequence and non-DNA sequence variants. However, how to simultaneously detect these variants from a mapping study has been unexplored, hampering our effort to illustrate the detailed genetic architecture of complex traits. We address this issue by developing a unified model of quantitative trait locus (QTL) mapping based on an open-pollinated design composed of randomly sampling maternal plants from a natural population and their half-sib seeds. This design forms a two-level hierarchical platform for a joint linkage-linkage disequilibrium analysis of population structure. The EM algorithm was implemented to estimate and test DNA sequence-based effects and non-DNA sequence-based effects of QTLs. We applied this model to analyze genetic mapping data from the OP design of a gymnosperm coniferous species, Torreya grandis, identifying 25 significant DNA sequence and non-DNA sequence QTLs for seedling height and diameter growth in different years. Results from computer simulation show that the unified model has good statistical properties and is powerful for QTL detection. Our model enables the tests of how a complex trait is affected differently by DNA-based effects and non-DNA sequence-based transgenerational effects, thus allowing a more comprehensive picture of genetic architecture to be charted and quantified.
Collapse
Affiliation(s)
- Yanru Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chixiang Chen
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Kalins Banerjee
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Lidan Sun
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Rongling Wu
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, Pennsylvania State University, Hershey, PA, 17033, USA
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
240
|
Rodríguez-Martínez S, Galván I. Exposure to a competitive social environment activates an epigenetic mechanism that limits pheomelanin synthesis in zebra finches. Mol Ecol 2019; 28:3698-3708. [PMID: 31290207 DOI: 10.1111/mec.15171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Competitive environments promote high testosterone levels, produce oxidative stress and, consequently, impair cellular homeostasis. The regulation of genes involved in the synthesis of the pigment pheomelanin in melanocytes seems to help to maintain homeostasis against environmental oxidative stress. Here, we experimentally increased social interactions in some zebra finch (Taeniopygia guttata) males by keeping them in groups of six birds during feather growth, while others were kept alone, to test if melanocytes show epigenetic lability under a competitive social environment. As these changes may depend on the oxidative status, we administrated buthionine sulfoximine (BSO) to decrease the antioxidant capacity of some birds. The competitive environment downregulated a gene involved in pheomelanin synthesis (Slc7a11) by changing the level of DNA methylation in feather melanocytes. In other genes involved in pheomelanin synthesis (Slc45a2, MC1R and AGRP), DNA methylation was also affected, but no changes in expression were detected. Exposure to the competitive environment did not affect systemic oxidative stress and damage, indicating that a protective epigenetic mechanism that changes the expression of Slc7a11 may have been activated. However, no changes to the pigmentation phenotype of birds were found, probably due to the short duration or low intensity of the competitive environment. BSO treatment did not affect the epigenetic mechanism, suggesting that the antioxidant capacity of birds was high enough to deal with the competitive environment. An epigenetic mechanism limiting pheomelanin synthesis therefore becomes activated under exposure to a competitive environment in male zebra finches, which may help to avoid damage caused by competitive interactions.
Collapse
Affiliation(s)
| | - Ismael Galván
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| |
Collapse
|
241
|
Marrocco J, Gray JD, Kogan JF, Einhorn NR, O’Cinneide EM, Rubin TG, Carroll TS, Schmidt EF, McEwen BS. Early Life Stress Restricts Translational Reactivity in CA3 Neurons Associated With Altered Stress Responses in Adulthood. Front Behav Neurosci 2019; 13:157. [PMID: 31354448 PMCID: PMC6637287 DOI: 10.3389/fnbeh.2019.00157] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Early life experiences program brain structure and function and contribute to behavioral endophenotypes in adulthood. Epigenetic control of gene expression by those experiences affect discrete brain regions involved in mood, cognitive function and regulation of hypothalamic-pituitary-adrenal (HPA) axis. In rodents, acute restraint stress increases the expression of the repressive histone H3 lysine 9 tri-methylation (H3K9me3) in hippocampal fields, including the CA3 pyramidal neurons. These CA3 neurons are crucially involved in cognitive function and mood regulation as well as activation of glucocorticoid (CORT) secretion. CA3 neurons also exhibit structural and functional changes after early-life stress (ELS) as well as after chronic stress in adulthood. Using a protocol of chronic ELS induced by limited bedding and nesting material followed by acute-swim stress (AS) in adulthood, we show that mice with a history of ELS display a blunted CORT response to AS, despite exhibiting activation of immediate early genes after stress similar to that found in control mice. We find that ELS induced persistently increased expression of the repressive H3K9me3 histone mark in the CA3 subfield at baseline that was subsequently decreased following AS. In contrast, AS induced a transient increase of this mark in control mice. Using translating ribosome affinity purification (TRAP) method to isolate CA3 translating mRNAs, we found that expression of genes of the epigenetic gene family, GABA/glutamate family, and glucocorticoid receptors binding genes were decreased transiently in control mice by AS and showed a persistent reduction in ELS mice. In most cases, AS in ELS mice did not induce gene expression changes. A stringent filtering of genes affected by AS in control and ELS mice revealed a noteworthy decrease in gene expression change in ELS mice compared to control. Only 18 genes were selectively regulated by AS in ELS mice and encompassed pathways such as circadian rhythm, inflammatory response, opioid receptors, and more genes included in the glucocorticoid receptor binding family. Thus, ELS programs a restricted translational response to stress in stress-sensitive CA3 neurons leading to persistent changes in gene expression, some of which mimic the transient effects of AS in control mice, while leaving in operation the immediate early gene response to AS.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Joshua F. Kogan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Nathan R. Einhorn
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Emma M. O’Cinneide
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Todd G. Rubin
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, United States
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
242
|
Stress, epigenetics and depression: A systematic review. Neurosci Biobehav Rev 2019; 102:139-152. [DOI: 10.1016/j.neubiorev.2019.04.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
|
243
|
Wolf OT. Memories of and influenced by the Trier Social Stress Test. Psychoneuroendocrinology 2019; 105:98-104. [PMID: 30409385 DOI: 10.1016/j.psyneuen.2018.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Psychosocial stress influences cognition, affect and behavior. This current review summarizes the impact of acute stress on human long-term memory taking a neuroendocrine perspective. In this respect the stress associated increase in activity of the sympathetic nervous system (SNS) and the hypothalamus-pituitary-adrenal (HPA) axis are key. A special focus will be placed on findings obtained with the Trier Social Stress Test (TSST). This paradigm can be used to induce stress before or after a memory task. It was shown repeatedly that stress enhances long-term consolidation but impairs long term memory retrieval. However the TSST can also be used to assess memories of this stressful episode itself. The latter requires a standardized presentation of relevant stimuli during the TSST as well as a carefully designed control condition. Moreover special care has to be taken to control potential influences on visual exploration and working memory in order to correctly interpret observed effects on memory. The results obtained so far fit to the idea of enhanced encoding of salient information under stress. These findings are of relevance for educational, organizational and clinical applications.
Collapse
Affiliation(s)
- Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University, Bochum, Germany.
| |
Collapse
|
244
|
McKee CL, Stapleton P, Pidgeon AM. Delphi Expert Parent Study: Factors Needed for 21st Century Pre- and Perinatal Parenting Programs. J Perinat Educ 2019; 28:163-179. [PMID: 31341375 PMCID: PMC6613731 DOI: 10.1891/1058-1243.28.3.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Using Delphi methodology, the current study utilized a panel of "expert" parents (N = 23 after three rounds) to examine nine content-based and logistical factors perceived to be important when developing pre-and perinatal (PPN) parenting programs for the modern day. The aim was to attain consensus on 235 items generated from literature and panelists. Consensus was reached on 126 items (53.62%). The most notable related to needs-based content, barriers to fathers' attendance, and groups of parents who may benefit most from programs. Consistent with the literature, clarity was not achieved for appropriate timing and length of programs. With the diversity of recommendations, next steps involve developing a range of programs that use randomized clinical trials with control groups, effective sample sizes, and are pre-and posttested.
Collapse
|
245
|
Lovallo WR, Acheson A, Cohoon AJ, Sorocco KH, Vincent AS, Hodgkinson CA, Goldman D. Working memory reflects vulnerability to early life adversity as a risk factor for substance use disorder in the FKBP5 cortisol cochaperone polymorphism, rs9296158. PLoS One 2019; 14:e0218212. [PMID: 31185043 PMCID: PMC6559710 DOI: 10.1371/journal.pone.0218212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022] Open
Abstract
Early life adversity (ELA) negatively affects health behaviors in adulthood, but pathways from ELA exposure to behavioral outcomes are poorly understood. ELA in childhood and adolescence may translate into adult outcomes by way of modified glucocorticoid signaling. The cortisol cotransporter, FKBP5 has a G-to-A substitution (rs9296158) that hinders cortisol trafficking within target cells, and this impaired glucocorticoid signaling may shape the long-term response to ELA. We used performance on the Stroop test to assess working memory in 546 healthy young adults who had experienced 0, 1, or > 1 forms of ELA in childhood and adolescence and were genotyped for the FKBP5 rs9296158 G-to-A polymorphism. We observed a robust Gene x Environment interaction (F = 9.49, p < .0001) in which increased ELA exposure led to progressively greater Stroop interference in persons carrying AG and AA genotypes of FKBP5 with no such effect in GG carriers. Further work is needed to explore the modification of cognitive function resulting from ELA. Impairments in working memory illustrate how ELA may use glucocorticoid pathways to influence working memory with potential implications for decision-making and risky behavior including substance use disorders.
Collapse
Affiliation(s)
- William R. Lovallo
- Behavioral Sciences Laboratories, Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- * E-mail:
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Andrew J. Cohoon
- Behavioral Sciences Laboratories, Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
| | - Kristen H. Sorocco
- Behavioral Sciences Laboratories, Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
- Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Andrea S. Vincent
- Cognitive Science Research Center, University of Oklahoma, Norman, OK, United States of America
| | - Colin A. Hodgkinson
- Laboratory of Neurogenetics, NIH, NIAAA, Bethesda, MD, United States of America
| | - David Goldman
- Laboratory of Neurogenetics, NIH, NIAAA, Bethesda, MD, United States of America
| |
Collapse
|
246
|
Orri M, Gunnell D, Richard-Devantoy S, Bolanis D, Boruff J, Turecki G, Geoffroy MC. In-utero and perinatal influences on suicide risk: a systematic review and meta-analysis. Lancet Psychiatry 2019; 6:477-492. [PMID: 31029623 DOI: 10.1016/s2215-0366(19)30077-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Adverse in-utero and perinatal conditions might contribute to an increased suicide risk throughout the lifespan; however, existing evidence is sparse and contradictory. We aimed to investigate in-utero and perinatal exposures associated with suicide, suicide attempt, and suicidal ideation. METHODS We did a systematic review and meta-analysis and searched MEDLINE, Embase, and PsycINFO from inception to Jan 24, 2019, for population-based prospective studies that investigated the association between in-utero and perinatal factors and suicide, suicide attempt, and suicidal ideation. Only papers published in English in peer-reviewed journals were considered. Two researchers independently extracted formal information (eg, country, year, duration of follow-up) and number of cases and non-cases exposed and non-exposed to each risk factor. We calculated pooled odds ratios (ORs) with 95% CIs using random-effects models and used meta-regression to investigate heterogeneity. This study was registered with PROSPERO, number CRD42018091205. FINDINGS We identified 42 eligible studies; they had a low risk of bias (median quality score 9/9 [IQR 8-9]). Family or parental characteristics, such as high birth order (eg, for fourth-born or later-born vs first-born, pooled OR 1·51 [95% CIs 1·21-1·88]), teenage mothers (1·80 [1·52-2·14]), single mothers (1·57 [1·31-1·89]); indices of socioeconomic position, such as low maternal (1·36 [1·28-1·46]) and paternal (1·38 [1·27-1·51]) education; and fetal growth (eg, low birthweight 1·30 [1·09-1·55] and small for gestational age 1·18 [1·00-1·40]) were associated with higher suicide risk. Father's age, low gestational age, obstetric characteristics (eg, caesarean section), and condition or exposure during pregnancy (eg, maternal smoking or hypertensive disease) were not associated with higher suicide risk. Similar patterns of associations were observed for suicide attempt and suicidal ideation; however, these results were based on a lower number of studies. In meta-regression, differences in length of follow-up explained most between-study heterogeneity (inital I2 ranged from 0 to 79·5). INTERPRETATION These findings suggest that prenatal and perinatal characteristics are associated with increased suicide risk during the life course, supporting the developmental origin of health and diseases hypothesis for suicide. The low number of studies for some risk factors, especially for suicide attempt and ideation, leaves gaps in knowledge that need to be addressed. The mechanisms underlying the reported associations and their causal nature still remain unclear. FUNDING Horizon 2020 (EU).
Collapse
Affiliation(s)
- Massimiliano Orri
- McGill Group for Suicide Studies, Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada; Bordeaux Population Health Research Centre, Inserm U1219, University of Bordeaux, Bordeaux, France
| | - David Gunnell
- Population Health Sciences, University of Bristol, Bristol, UK; National Institute of Health Research Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Stephane Richard-Devantoy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Despina Bolanis
- McGill Group for Suicide Studies, Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jill Boruff
- Schulich Library of Physical Sciences, Life Sciences, and Engineering, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Marie-Claude Geoffroy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Educational and Counselling Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
247
|
Toffol E, Rantalainen V, Lahti-Pulkkinen M, Girchenko P, Lahti J, Tuovinen S, Lipsanen J, Villa PM, Laivuori H, Hämäläinen E, Kajantie E, Pesonen AK, Räikkönen K. Infant regulatory behavior problems during first month of life and neurobehavioral outcomes in early childhood. Eur Child Adolesc Psychiatry 2019; 28:847-859. [PMID: 30392118 PMCID: PMC6555774 DOI: 10.1007/s00787-018-1243-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/20/2018] [Indexed: 12/31/2022]
Abstract
Whether infant regulatory behavior problems already in the first month of life indicate an increased risk of childhood neurobehavioral problems, and whether maternal depression in the postpartum and early childhood underpins these associations remain unclear. Altogether, 2049-2364 mothers from the Prediction and Prevention of Pre-eclampsia and Intrauterine Growth Restriction (PREDO) study completed the Neonatal Perception Inventory on regulatory behavior problems at the infant's age of 15.6 days (SD 3.2, range 1-30), the Infant Behavior Questionnaire-Revised on temperament at 6.5 months (SD 0.9, range 4.2-12.4), and the Ages and Stages Questionnaire-3 on developmental milestones and the Child Behavior Checklist on behavioral problems at 3.5 years (SD 0.7, range 1.9-6.0). Maternal depressive symptoms were measured by the Center for Epidemiological Studies Depression Scale (infancy follow-ups) and Beck Depression Inventory-II (childhood follow-up). Father-rated infant temperament and paternal depressive symptoms were also available (n = 1474). Higher levels of infant regulatory behavior problems predicted higher levels of mother- and father-rated negative affectivity temperament (0.13 SD units per SD unit, 95% confidence interval 0.09-0.17; and 0.09, 0.04-0.14, respectively), lower levels of mother-rated orienting/regulation temperament (- 0.09, - 0.13 to - 0.05) and problem-solving skills (- 0.12, - 0.21 to - 0.04), and higher levels of Externalizing (0.07, 0.03-0.11) and Total behavioral problems (0.07, 0.03-0.11). Regulatory behaviors partially mediated the effect of maternal depressive symptoms. Regulatory behavior problems already during the first month of life predict neurobehavioral outcomes, and partially mediate the effect of maternal depressive symptoms. Our study may inform design of interventions aimed at timely prevention in children at risk.
Collapse
Affiliation(s)
- Elena Toffol
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Ville Rantalainen
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Helsinki, Finland
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Helsinki, Finland.
- National Institute for Health and Welfare, Helsinki, Finland.
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | - Polina Girchenko
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Helsinki, Finland
- Helsinki Collegium for Advance Studies, University of Helsinki, Helsinki, Finland
| | - Soile Tuovinen
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Helsinki, Finland
| | - Jari Lipsanen
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Helsinki, Finland
| | - Pia M Villa
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland/Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland
| | - Esa Hämäläinen
- HUSLAB and Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki, Finland
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Anu-Katriina Pesonen
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Helsinki, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Helsinki, Finland
| |
Collapse
|
248
|
The role of the genome in experience-dependent plasticity: Extending the analogy of the genomic action potential. Proc Natl Acad Sci U S A 2019; 117:23252-23260. [PMID: 31127037 DOI: 10.1073/pnas.1820837116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our past experiences shape our current and future behavior. These experiences must leave some enduring imprint on our brains, altering neural circuits that mediate behavior and contributing to our individual differences. As a framework for understanding how experiences might produce lasting changes in neural circuits, Clayton [D. F. Clayton, Neurobiol. Learn. Mem. 74, 185-216 (2000)] introduced the concept of the genomic action potential (gAP)-a structured genomic response in the brain to acute experience. Similar to the familiar electrophysiological action potential (eAP), the gAP also provides a means for integrating afferent patterns of activity but on a slower timescale and with longer-lasting effects. We revisit this concept in light of contemporary work on experience-dependent modification of neural circuits. We review the "Immediate Early Gene" (IEG) response, the starting point for understanding the gAP. We discuss evidence for its involvement in the encoding of experience to long-term memory across time and biological levels of organization ranging from individual cells to cell ensembles and whole organisms. We explore distinctions between memory encoding and homeostatic functions and consider the potential for perpetuation of the imprint of experience through epigenetic mechanisms. We describe a specific example of a gAP in humans linked to individual differences in the response to stress. Finally, we identify key objectives and new tools for continuing research in this area.
Collapse
|
249
|
Seow WJ, Ngo CS, Pan H, Barathi VA, Tompson SW, Whisenhunt KN, Vithana E, Chong YS, Juo SHH, Hysi P, Young TL, Karnani N, Saw SM. In-utero epigenetic factors are associated with early-onset myopia in young children. PLoS One 2019; 14:e0214791. [PMID: 31100065 PMCID: PMC6524791 DOI: 10.1371/journal.pone.0214791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives To assess whether epigenetic mechanisms affecting gene expression may be involved in the pathogenesis of early-onset myopia, we performed genome-wide DNA methylation analyses of umbilical cord tissues, and assessed any associations between CpG site-specific methylation and the development of the disorder when the children were 3 years old. Methods Genome-wide DNA methylation profiling of umbilical cord samples from 519 Singaporean infants involved in a prospective birth cohort ‘Growing Up in Singapore Towards healthy Outcomes’ (GUSTO) was performed using the Illumina Infinium HumanMethylation450K chip microarray. Multivariable logistic regression models were used to assess any associations between site-specific CpG methylation of umbilical cord tissue at birth and myopia risk in 3 year old children, adjusting for potential confounders. Gene expression of genes located near CpG sites that demonstrated statistically significant associations were measured in relevant ocular tissues using human and mouse fetal and adult eye samples. Results We identified statistically significant associations between DNA methylation levels at five CpG sites and early-onset myopia risk after correcting for multiple comparisons using a false discovery rate of 5%. Two statistically significant CpG sites were identified in intergenic regions: 8p23(p = 1.70×10−7) and 12q23.2(p = 2.53×10−7). The remaining 3 statistically significant CpG sites were identified within the following genes: FGB (4q28, p = 3.60×10−7), PQLC1 (18q23, p = 8.9×10−7) and KRT12 (17q21.2, p = 1.2×10−6). Both PQLC1 and KRT12 were found to be significantly expressed in fetal and adult cornea and sclera tissues in both human and mouse. Conclusions We identified five CpG methylation sites that demonstrate a statistically significant association with increased risk of developing early-onset myopia. These findings suggest that variability in the neonatal cord epigenome may influence early-onset myopia risk in children. Further studies of the epigenetic influences on myopia risk in larger study populations, and the associations with adulthood myopia risk are warranted.
Collapse
Affiliation(s)
- Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Cheryl S. Ngo
- Department of Ophthalmology, National University Health System, Singapore
| | - Hong Pan
- Singapore Institute for Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore
- The Ophthalmology and Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stuart W. Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kristina N. Whisenhunt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | | | - Yap-Seng Chong
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Suh-Hang H. Juo
- Institute of New Drug Development, Center for Myopia and Eye diseases, China Medical University and China Medical University Hospital, Taichung, Taiwan
| | - Pirro Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Johns Hopkins School of Public Health, Baltimore, Maryland, United States
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Seang Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Singapore Eye Research Institute, Singapore
- The Ophthalmology and Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore
- * E-mail:
| |
Collapse
|
250
|
Coley EJL, Demaestri C, Ganguly P, Honeycutt JA, Peterzell S, Rose N, Ahmed N, Holschbach M, Trivedi M, Brenhouse HC. Cross-Generational Transmission of Early Life Stress Effects on HPA Regulators and Bdnf Are Mediated by Sex, Lineage, and Upbringing. Front Behav Neurosci 2019; 13:101. [PMID: 31143105 PMCID: PMC6521572 DOI: 10.3389/fnbeh.2019.00101] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Early life stress (ELS) is a potent developmental disruptor and increases the risk for psychopathology. Various forms of ELS have been studied in both humans and rodents, and have been implicated in altered DNA methylation, gene transcription, stress hormone levels, and behavior. Although recent studies have focused on stress-induced epigenetic changes, the extent to which ELS alters HPA axis function and stress responsivity across generations, whether these effects are sex-specific, and how lineage interacts with upbringing to impact these effects, remain unclear. To address these points, two generations of rodents were utilized, with the first generation subjected to ELS via maternal separation, and the second to a balanced cross-fostering paradigm. We hypothesized that ELS would disrupt normative development in both generations, manifesting as altered methylation and expression of genes associated with stress signaling pathways (Nr3c1, Nr3c2, and Bdnf), blunted corticosterone (CORT), and anxiety-like behaviors. Additionally, we expected deficits in the second generation to be modulated by caretaking environment and for the pattern of results to differ between the sexes. Results suggest that direct exposure to ELS leads to sex-specific effects on gene regulation and HPA functioning in adulthood, with maternal separation leading to increases in Bdnf methylation in both sexes, decreases in Bdnf expression in females, and decreases in Nr3c1 methylation in males, as well as blunted CORT and less anxiety-like behavior in females. These alterations converged with caretaking to impart perturbations upon the subsequent generation. Across sex, ELS lineage led to decreased methylation of Nr3c1, and increased methylation of Bdnf. In fostered animals, upbringing by a previously stressed mother interacted with offspring lineage to impact methylation of Nr3c1 and Bdnf. Upbringing was also implicated in altered anxiety-like behavior in males, and baseline CORT levels in females. Such effects may correspond with observed alterations in maternal behavior across groups. In conclusion, ELS conferred enduring sex-specific alterations, both first-hand and trans-generationally via lineage and upbringing. Importantly, lineage of cross-fostered pups was sufficient to normalize or disturb maternal behavior of foster-dams, an observation requiring further elucidation. These results have implications for multi-generational effects of ELS in humans and may motivate early interventions.
Collapse
Affiliation(s)
- Elena J L Coley
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Camila Demaestri
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Prabarna Ganguly
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Jennifer A Honeycutt
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Shayna Peterzell
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Natasha Rose
- Neural Metabolism and Epigenetics Laboratory, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Nida Ahmed
- Neural Metabolism and Epigenetics Laboratory, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Mary Holschbach
- Department of Behavioral Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Malav Trivedi
- Neural Metabolism and Epigenetics Laboratory, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States.,Department of Behavioral Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Heather C Brenhouse
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|