201
|
Gurevich VV, Gurevich EV. Arrestin mutations: Some cause diseases, others promise cure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:29-45. [PMID: 30711028 DOI: 10.1016/bs.pmbts.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrestins play a key role in homologous desensitization of G protein-coupled receptors (GPCRs) and regulate several other vital signaling pathways in cells. Considering the critical roles of these proteins in cellular signaling, surprisingly few disease-causing mutations in human arrestins were described. Most of these are loss-of-function mutations of visual arrestin-1 that cause excessive rhodopsin signaling and hence night blindness. Only one dominant arrestin-1 mutation was discovered so far. It reduces the thermal stability of the protein, which likely results in photoreceptor death via unfolded protein response. In case of the two nonvisual arrestins, only polymorphisms were described, some of which appear to be associated with neurological disorders and altered response to certain treatments. Structure-function studies revealed several ways of enhancing arrestins' ability to quench GPCR signaling. These enhanced arrestins have potential as tools for gene therapy of disorders associated with excessive signaling of mutant GPCRs.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
202
|
Wang W, Han T, Tong W, Zhao J, Qiu X. Overexpression of GPR35 confers drug resistance in NSCLC cells by β-arrestin/Akt signaling. Onco Targets Ther 2018; 11:6249-6257. [PMID: 30288060 PMCID: PMC6163007 DOI: 10.2147/ott.s175606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is the major leading cause of cancer-related death around the world. The resistance to chemotherapy limits the effects of clinical treatment. The aim of this study was to identify novel mechanisms involved in NSCLC chemoresistance. Materials and methods We explored the public database and commercial tissue microarray to evaluate the expression of G protein-coupled receptor 35 (GPR35). We established the chemoresistant A549 cell line to further investigate the biological function of GPR35 in vitro and in vivo. Then, we measured the altered signalings that GPR35 knocking down by Western blot assay. Results We demonstrated that GPR35 expression was significantly elevated in NSCLC tissues and correlated with poor prognosis. GPR35 was upregulated in our in vitro chemoresistance cell model. GPR35 depletion reduced the half maximal inhibitory concentration of chemodrugs and restored the sensitivity both in vitro and in vivo. Mechanically, we found that GPR35-mediated chemoresistance occurred partially via β-arrestin-2/Akt signaling. Furthermore, inhibition of β-arrestin-2 or Akt activation could suppress the GPR35 expression and overcome chemoresistance. Conclusion Our results suggested that GPR35 might serve as a novel therapeutic target to enhance the chemotherapy efficacy in NSCLC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Tianci Han
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Wei Tong
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Jian Zhao
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Xueshan Qiu
- Department of Pathology, The First Hospital of China Medical University, Shenyang 110001, China,
| |
Collapse
|
203
|
Sun YY, Zhao YX, Li XF, Huang C, Meng XM, Li J. β-Arrestin 2 Promotes Hepatocyte Apoptosis by Inhibiting Akt Pathway in Alcoholic Liver Disease. Front Pharmacol 2018; 9:1031. [PMID: 30283336 PMCID: PMC6156347 DOI: 10.3389/fphar.2018.01031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Alcoholic liver disease (ALD) is a complex process that includes a wide range of hepatic lesions, from steatosis to cirrhosis, and even hepatocellular carcinoma (HCC). Accumulating evidence shows that the cytotoxic effects of ethanol metabolism lead to cell apoptosis and necrosis in ALD. Recently, several studies revealed that multifunctional protein β-arrestin 2 (Arrb2) modulated cell apoptosis in liver fibrosis and HCC, but its role in ALD has not been fully understood. The aim of this study is to explore the function and underlying mechanism of Arrb2 in hepatocyte survival and apoptosis in ALD. In our study, the primary hepatocytes were isolated from the livers of C57BL/6 mice fed EtOH-containing diet, it showed an increased level of Arrb2. EtOH also significantly up-regulated Arrb2 production in AML-12 cells in vitro. Furthermore, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and FCM results demonstrated that knockdown of Arrb2 could inhibit hepatocyte apoptosis induced by EtOH in vivo and vitro while over-expression of Arrb2 induced apoptosis in ALD. In addition, western blot results revealed that Arrb2 remarkably suppressed the Akt signaling. Taken together, our data suggested that Arrb2 may serve as a potential therapeutic target for ALD by promoting hepatocyte apoptosis via Akt suppression.
Collapse
Affiliation(s)
- Ying-Yin Sun
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yu-Xin Zhao
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Feng Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
204
|
Cocker PJ, Lin MY, Tremblay M, Kaur S, Winstanley CA. The β-adrenoceptor blocker propranolol ameliorates compulsive-like gambling behaviour in a rodent slot machine task: implications for iatrogenic gambling disorder. Eur J Neurosci 2018; 50:2401-2414. [PMID: 30019362 DOI: 10.1111/ejn.14070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023]
Abstract
Previous work has shown that chronic administration of the dopamine D2/3 receptor agonist ropinirole invigorates performance on a rodent slot machine task (rSMT). This behavioural change appears superficially similar to the iatrogenic gambling disorder (GD) observed in a sub-set of patients with Parkinson's disease (PD), and has been associated with increased activation of the intra-cellular signalling proteins GSK3β and CREB in the striatum. Here, we wanted to determine whether this response to ropinirole could be attenuated by targeting these signalling proteins, and if the loss of dopaminergic innervation characteristic of PD would alter ropinirole's effects on the rSMT. Male Long Evans rats were trained on the rSMT. Dopaminergic terminals innervating the dorsolateral striatum were then lesioned bilaterally using the neurotoxin 6-hydroxydopamine hydrochloride (6-OHDA). Subsequently animals were implanted with osmotic mini-pumps delivering ropinirole. Lastly, animals were given dietary lithium (Li+ ), to inhibit the activation of GSK3β, or injections of the ß-adrenoceptor antagonist propranolol, which potently inhibits CREB as a secondary mechanism of action, and any changes in ropinirole-induced increases in compulsive-like engagement in the rSMT evaluated. Chronic ropinirole increased the number of trials animals completed, reproducing our original finding. This increase in task engagement was not altered in animals with 6-OHDA lesions, a putative model of early PD. In addition, the effects of ropinirole were not attenuated by administration of Li+ , but were ameliorated by propranolol. These data suggest that propranolol may represent a potential pharmacotherapy for the treatment of iatrogenic gambling.
Collapse
Affiliation(s)
- P J Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - M Y Lin
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - M Tremblay
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - S Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - C A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
205
|
Khlghatyan J, Beaulieu JM. Are FXR Family Proteins Integrators of Dopamine Signaling and Glutamatergic Neurotransmission in Mental Illnesses? Front Synaptic Neurosci 2018; 10:22. [PMID: 30087606 PMCID: PMC6066532 DOI: 10.3389/fnsyn.2018.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/29/2018] [Indexed: 01/11/2023] Open
Abstract
Dopamine receptors and related signaling pathways have long been implicated in pathophysiology and treatment of mental illnesses, including schizophrenia and bipolar disorder. Dopamine signaling may impact neuronal activity by modulation of glutamate neurotransmission. Recent evidence indicates a direct and/or indirect involvement of fragile X-related family proteins (FXR) in the regulation and mediation of dopamine receptor functions. FXRs consists of fragile X mental retardation protein 1 (Fmr1/FMRP) and its autosomal homologs Fxr1 and Fxr2. These RNA-binding proteins are enriched in the brain. Loss of function mutation in human FMR1 is the major genetic contributor to Fragile X mental retardation syndrome. Therefore, the role of FXR proteins has mostly been studied in the context of autism spectrum disorders. However, recent genome-wide association studies have linked this family to schizophrenia, bipolar disorders, and mood regulation pointing toward a broader involvement in mental illnesses. FXR family proteins play an important role in the regulation of glutamate-mediated neuronal activity and plasticity. Here, we discuss the brain-specific functions of FXR family proteins by focusing on the regulation of dopamine receptor functions, ionotropic glutamate receptors-mediated synaptic plasticity and contribution to mental illnesses. Based on recent evidence, we propose that FXR proteins are potential integrators of dopamine signaling and ionotropic glutamate transmission.
Collapse
Affiliation(s)
- Jivan Khlghatyan
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
206
|
Wang Y, Jin L, Song Y, Zhang M, Shan D, Liu Y, Fang M, Lv F, Xiao RP, Zhang Y. β-arrestin 2 mediates cardiac ischemia-reperfusion injury via inhibiting GPCR-independent cell survival signalling. Cardiovasc Res 2018; 113:1615-1626. [PMID: 29016703 DOI: 10.1093/cvr/cvx147] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 08/03/2017] [Indexed: 01/14/2023] Open
Abstract
Aims Ischemic heart disease is a leading cause of morbidity and mortality worldwide. Although timely restoration of coronary blood flow (reperfusion) is the most effective therapeutics of myocardial infarction, reperfusion causes further cardiac damage, i.e. ischemia-reperfusion (I/R) injury. β-arrestins (Arrbs) have been traditionally defined as negative regulators of G protein-coupled receptor (GPCR) signalling, but recent studies have shown that they are essential for G protein-independent, GPCR-mediated biased signalling. Several ligands have been reported to be cardioprotective via Arrbs dependent pathway. However, it is unclear whether Arrbs exert receptor-independent physiological or pathological functions in the heart. Here, we sought to determine whether and how Arrbs play a role in regulating cardiomyocyte viability and myocardial remodelling following I/R injury. Methods and results The expression of β-arrestin 2 (Arrb2), but not β-arrestin 1 (Arrb1), is upregulated in rat hearts subjected to I/R injury, or in cultured neonatal rat cardiomyocytes treated with hypoxia-reoxygenation (H/R) injury. Deficiency of Arrb2 in cultured neonatal rat cardiomyocytes alleviates H/R-induced cardiomyocyte death and Arrb2-/- mice are resistant to myocardial damage caused by I/R injury. In contrast, upregulation of Arrb2 triggers cardiomyocyte death and exaggerates I/R (or H/R)-induced detrimental effects. Mechanically, Arrb2 induces cardiomyocyte death by interacting with the p85 subunit of PI3K, and negatively regulating the formation of p85-PI3K/CaV3 survival complex, thus blocking activation of PI3K-Akt-GSK3β cell survival signalling pathway. Conclusion We define an upregulation of Arrb2 as a pathogenic factor in cardiac I/R injury, and also reveal a novel GPCR-independent mechanism of Arrb2-mediated cell death signalling in the heart.
Collapse
Affiliation(s)
- Yimei Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ying Song
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Dan Shan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yuli Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Meng Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
207
|
Abstract
Gonadotropin receptors include the follicle stimulating hormone receptor (FSHR) and the luteinizing hormone/choriogonadotropin receptor (LHCGR), both belong to the G protein-coupled receptor (GPCR) superfamily and are essential to reproduction. FSHR is activated by follicle stimulating hormone (FSH) while LHCGR is activated by either luteinizing hormone (LH) or choriogonadotropin (CG). Upon ligand binding, gonadotropin receptors undergo conformational changes that lead to the activation of the heterotrimeric G protein, resulting in the production of different second messengers. Gonadotropin receptors can also recruit and bind β-arrestins. This particular class of scaffold proteins were initially identified to mediate GPCRs desensitization and recycling, but it is now well established that β-arrestins can also initiate Gs-independent signaling by assembling signaling modules. Furthermore, new advances in structural biology and biophysical techniques have revealed novel activation mechanisms allowing β-arrestins and G proteins to control signaling in time and space. The ability of different ligands to preferentially elicit G- or β-arrestin-mediated signaling is known as functional selectivity or biased signaling. This new concept has switched the view of pharmacology efficacy from monodimensional to multidimensional. Biased signaling offers the possibility to separate therapeutic benefits of a drug from its adverse effects. The proof of concept that gonadotropin receptors can be subjected to biased signaling is now established. The challenge will now be the design of molecules that can specifically activate beneficial signaling pathway at gonadotropin receptors while reducing or abolishing those leading to side effects. Such strategy could for instance lead to improved treatments for infertility.
Collapse
Affiliation(s)
| | - Eric Reiter
- PCR, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France -
| |
Collapse
|
208
|
Ågren R, Århem P, Nilsson J, Sahlholm K. The Beta-Arrestin-Biased Dopamine D2 Receptor Ligand, UNC9994, Is a Partial Agonist at G-Protein-Mediated Potassium Channel Activation. Int J Neuropsychopharmacol 2018; 21:1102-1108. [PMID: 29986044 PMCID: PMC6276031 DOI: 10.1093/ijnp/pyy059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/03/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Previous evidence suggests that UNC9994 is a beta-arrestin2-selective agonist at the dopamine D2 receptor, lacking ability both to activate and antagonize G protein-dependent signaling. However, this has only been reported by one laboratory using a single assay. METHODS We used G protein-coupled inward rectifier potassium channel activation in Xenopus oocytes to investigate UNC9994-induced modulation of G protein-dependent signaling at dopamine D2 receptor and dopamine D3 receptor. RESULTS At dopamine D2 receptor, UNC9994 induced G protein-coupled inward rectifier potassium channel currents that were 15% of the maximal response to dopamine, with an EC50 of 185 nM. At dopamine D3 receptor, the ligand elicited 89% of the maximal dopamine response with an EC50 of 62 nM. Pertussis toxin abolished G protein-coupled inward rectifier potassium channel activation. Furthermore, UNC9994 antagonized dopamine-induced G protein-coupled inward rectifier potassium channel activation at dopamine D2 receptor. CONCLUSIONS UNC9994 modulates G protein-coupled inward rectifier potassium channel channel activation via pertussis toxin-sensitive G proteins at dopamine D2 receptor and dopamine D3 receptor. These findings may have implications for the interpretation of data obtained with this ligand.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Århem
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Nilsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden,Correspondence: Kristoffer Sahlholm, PhD, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden ()
| |
Collapse
|
209
|
Increased platelet glycogen sysnthase kinase 3beta in first-episode psychosis. Schizophr Res 2018; 195:402-405. [PMID: 28888361 DOI: 10.1016/j.schres.2017.08.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 11/23/2022]
Abstract
Past studies have linked intracellular pathways related to psychotic disorders to the GSK3B enzyme. This study aimed to investigate GSK3B protein expression and phosphorylation in drug-naïve first-episode psychosis patients (n=43) at baseline and following symptom remission, and in healthy controls (n=77). At baseline GSK3B total level was higher in patients (p<0.001). In schizophrenia spectrum patients (n=25) GSK3B total and phosphorylated levels were higher than in controls and patients with other non-affective psychotic disorders (n=18) (p<0.001; p=0.027; p=0.05 respectively). No enzyme changes were found after clinical remission. The implication of this finding for the biology of psychoses warrants further studies to clarify whether increased GSK3B may be useful as a biomarker for psychosis in general, and schizophrenia in particular.
Collapse
|
210
|
Weïwer M, Xu Q, Gale JP, Lewis M, Campbell AJ, Schroeder FA, Van de Bittner GC, Walk M, Amaya A, Su P, D Ordevic L, Sacher JR, Skepner A, Fei D, Dennehy K, Nguyen S, Faloon PW, Perez J, Cottrell JR, Liu F, Palmer M, Pan JQ, Hooker JM, Zhang YL, Scolnick E, Wagner FF, Holson EB. Functionally Biased D2R Antagonists: Targeting the β-Arrestin Pathway to Improve Antipsychotic Treatment. ACS Chem Biol 2018; 13:1038-1047. [PMID: 29485852 DOI: 10.1021/acschembio.8b00168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disease that lacks completely effective and safe therapies. As a polygenic disorder, genetic studies have only started to shed light on its complex etiology. To date, the positive symptoms of schizophrenia are well-managed by antipsychotic drugs, which primarily target the dopamine D2 receptor (D2R). However, these antipsychotics are often accompanied by severe side effects, including motoric symptoms. At D2R, antipsychotic drugs antagonize both G-protein dependent (Gαi/o) signaling and G-protein independent (β-arrestin) signaling. However, the relevant contributions of the distinct D2R signaling pathways to antipsychotic efficacy and on-target side effects (motoric) are still incompletely understood. Recent evidence from mouse genetic and pharmacological studies point to β-arrestin signaling as the major driver of antipsychotic efficacy and suggest that a β-arrestin biased D2R antagonist could achieve an additional level of selectivity at D2R, increasing the therapeutic index of next generation antipsychotics. Here, we characterize BRD5814, a highly brain penetrant β-arrestin biased D2R antagonist. BRD5814 demonstrated good target engagement via PET imaging, achieving efficacy in an amphetamine-induced hyperlocomotion mouse model with strongly reduced motoric side effects in a rotarod performance test. This proof of concept study opens the possibility for the development of a new generation of pathway selective antipsychotics at D2R with reduced side effect profiles for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Michel Weïwer
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Qihong Xu
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jennifer P Gale
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Michael Lewis
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Frederick A Schroeder
- Department of Radiology, MGH , Athinoula A. Martinos Center for Biomedical Imaging , Charlestown , Massachusetts 02129 , United States
| | - Genevieve C Van de Bittner
- Department of Radiology, MGH , Athinoula A. Martinos Center for Biomedical Imaging , Charlestown , Massachusetts 02129 , United States
| | - Michelle Walk
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Aldo Amaya
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , University of Toronto , Toronto , Ontario M5T1R8 , Canada
| | - Luka D Ordevic
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Joshua R Sacher
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Adam Skepner
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - David Fei
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Kelly Dennehy
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Shannon Nguyen
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Patrick W Faloon
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jose Perez
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , University of Toronto , Toronto , Ontario M5T1R8 , Canada
| | - Michelle Palmer
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jen Q Pan
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jacob M Hooker
- Department of Radiology, MGH , Athinoula A. Martinos Center for Biomedical Imaging , Charlestown , Massachusetts 02129 , United States
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Edward Scolnick
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Florence F Wagner
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Edward B Holson
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| |
Collapse
|
211
|
Engineered D2R Variants Reveal the Balanced and Biased Contributions of G-Protein and β-Arrestin to Dopamine-Dependent Functions. Neuropsychopharmacology 2018; 43:1164-1173. [PMID: 29068002 PMCID: PMC5854808 DOI: 10.1038/npp.2017.254] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
Abstract
The dopamine D2 receptor (D2R), like many G-protein-coupled receptors, signals through G-protein- and β-arrestin-dependent pathways. Preferential activation of one of these pathways is termed functional selectivity or biased signaling and is a promising therapeutic strategy. Though biased signaling through D2Rs has been demonstrated, acquiring the mechanistic details of biased D2R/G-protein and D2R/β-arrestin signaling in vivo has been challenging because of the lack of techniques that specifically target these interactions in discrete cell populations. To address this question, we employed a cell type-specific viral expression approach to restore D2R variants that preferentially engage either G-protein or β-arrestin signaling in 'indirect pathway' medium spiny neurons (iMSNs), because of their central role in dopamine circuitry. We found that the effect of haloperidol antagonism on D2R metabolic signaling events is largely mediated by acute blockade of D2R/G-protein signaling. We show that a D2R-driven behavior, nestlet shredding, is similarly driven by D2R/G-protein signaling. On the other hand, D2R-driven locomotion and rearing require coordinated D2R/G-protein and D2R/β-arrestin signaling. The acute locomotor response to amphetamine and cocaine similarly depend on both G-protein and β-arrestin D2R signaling. Surprisingly, another psychotropic drug, phencyclidine, displayed a selective D2R/β-arrestin potentiation of locomotion. These findings highlight how D2R mostly relies upon balanced G-protein and β-arrestin signaling in iMSNs. However, the response to haloperidol and phencyclidine indicates that normal D2R signaling homeostasis can be dramatically altered, indicating that targeting a specific D2R signal transduction pathway could allow for more precise modulation of dopamine circuit function.
Collapse
|
212
|
Tóth AD, Turu G, Hunyady L, Balla A. Novel mechanisms of G-protein-coupled receptors functions: AT 1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Pract Res Clin Endocrinol Metab 2018; 32:69-82. [PMID: 29678287 DOI: 10.1016/j.beem.2018.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AT1 angiotensin receptor (AT1R), a prototypical G protein-coupled receptor (GPCR), is the main receptor, which mediates the effects of the renin-angiotensin system (RAS). AT1R plays a crucial role in the regulation of blood pressure and salt-water homeostasis, and in the development of pathological conditions, such as hypertension, heart failure, cardiovascular remodeling, renal fibrosis, inflammation, and metabolic disorders. Stimulation of AT1R leads to pleiotropic signal transduction pathways generating arrays of complex cellular responses. Growing amount of evidence shows that AT1R is a versatile GPCR, which has multiple unique faces with distinct conformations and signaling properties providing new opportunities for functionally selective pharmacological targeting of the receptor. Biased ligands of AT1R have been developed to selectively activate the β-arrestin pathway, which may have therapeutic benefits compared to the conventional angiotensin converting enzyme inhibitors and angiotensin receptor blockers. In this review, we provide a summary about the most recent findings and novel aspects of the AT1R function, signaling, regulation, dimerization or oligomerization and its cross-talk with other receptors, including epidermal growth factor (EGF) receptor, adrenergic receptors and CB1 cannabinoid receptor. Better understanding of the mechanisms and structural aspects of AT1R activation and cross-talk can lead to the development of novel type of drugs for the treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- András D Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
213
|
Robins MT, Chiang T, Berry JN, Ko MJ, Ha JE, van Rijn RM. Behavioral Characterization of β-Arrestin 1 Knockout Mice in Anxiety-Like and Alcohol Behaviors. Front Behav Neurosci 2018; 12:54. [PMID: 29615880 PMCID: PMC5869203 DOI: 10.3389/fnbeh.2018.00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/01/2018] [Indexed: 01/14/2023] Open
Abstract
β-Arrestin 1 and 2 are highly expressed proteins involved in the desensitization of G protein-coupled receptor signaling which also regulate a variety of intracellular signaling pathways. Gene knockout (KO) studies suggest that the two isoforms are not homologous in their effects on baseline and drug-induced behavior; yet, the role of β-arrestin 1 in the central nervous system has been less investigated compared to β-arrestin 2. Here, we investigate how global β-arrestin 1 KO affects anxiety-like and alcohol-related behaviors in male and female C57BL/6 mice. We observed increased baseline locomotor activity in β-arrestin 1 KO animals compared with wild-type (WT) or heterozygous (HET) mice with a sex effect. KO male mice were less anxious in a light/dark transition test, although this effect may have been confounded by increased locomotor activity. No differences in sucrose intake were observed between genotypes or sexes. Female β-arrestin 1 KO mice consumed more 10% alcohol than HET females in a limited 4-h access, two-bottle choice, drinking-in-the-dark model. In a 20% alcohol binge-like access model, female KO animals consumed significantly more alcohol than HET and WT females. A significant sex effect was observed in both alcohol consumption models, with female mice consuming greater amounts of alcohol than males relative to body weight. Increased sensitivity to latency to loss of righting reflex (LORR) was observed in β-arrestin 1 KO mice although no differences were observed in duration of LORR. Overall, our efforts suggest that β-arrestin 1 may be protective against increased alcohol consumption in females and hyperactivity in both sexes.
Collapse
Affiliation(s)
- Meridith T Robins
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Jennifer N Berry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Mee Jung Ko
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Jiwon E Ha
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
214
|
Deletion of dopamine D 2 receptors from parvalbumin interneurons in mouse causes schizophrenia-like phenotypes. Proc Natl Acad Sci U S A 2018. [PMID: 29531031 DOI: 10.1073/pnas.1719897115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Excessive dopamine neurotransmission underlies psychotic episodes as observed in patients with some types of bipolar disorder and schizophrenia. The dopaminergic hypothesis was postulated after the finding that antipsychotics were effective to halt increased dopamine tone. However, there is little evidence for dysfunction within the dopaminergic system itself. Alternatively, it has been proposed that excessive afferent activity onto ventral tegmental area dopaminergic neurons, particularly from the ventral hippocampus, increase dopamine neurotransmission, leading to psychosis. Here, we show that selective dopamine D2 receptor deletion from parvalbumin interneurons in mouse causes an impaired inhibitory activity in the ventral hippocampus and a dysregulated dopaminergic system. Conditional mutant animals show adult onset of schizophrenia-like behaviors and molecular, cellular, and physiological endophenotypes as previously described from postmortem brain studies of patients with schizophrenia. Our findings show that dopamine D2 receptor expression on parvalbumin interneurons is required to modulate and limit pyramidal neuron activity, which may prevent the dysregulation of the dopaminergic system.
Collapse
|
215
|
Besserer-Offroy É, Bérubé P, Côté J, Murza A, Longpré JM, Dumaine R, Lesur O, Auger-Messier M, Leduc R, Marsault É, Sarret P. The hypotensive effect of activated apelin receptor is correlated with β-arrestin recruitment. Pharmacol Res 2018. [PMID: 29530600 DOI: 10.1016/j.phrs.2018.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apelinergic system is an important player in the regulation of both vascular tone and cardiovascular function, making this physiological system an attractive target for drug development for hypertension, heart failure and ischemic heart disease. Indeed, apelin exerts a positive inotropic effect in humans whilst reducing peripheral vascular resistance. In this study, we investigated the signaling pathways through which apelin exerts its hypotensive action. We synthesized a series of apelin-13 analogs whereby the C-terminal Phe13 residue was replaced by natural or unnatural amino acids. In HEK293 cells expressing APJ, we evaluated the relative efficacy of these compounds to activate Gαi1 and GαoA G-proteins, recruit β-arrestins 1 and 2 (βarrs), and inhibit cAMP production. Calculating the transduction ratio for each pathway allowed us to identify several analogs with distinct signaling profiles. Furthermore, we found that these analogs delivered i.v. to Sprague-Dawley rats exerted a wide range of hypotensive responses. Indeed, two compounds lost their ability to lower blood pressure, while other analogs significantly reduced blood pressure as apelin-13. Interestingly, analogs that did not lower blood pressure were less effective at recruiting βarrs. Finally, using Spearman correlations, we established that the hypotensive response was significantly correlated with βarr recruitment but not with G protein-dependent signaling. In conclusion, our results demonstrated that the βarr recruitment potency is involved in the hypotensive efficacy of activated APJ.
Collapse
Affiliation(s)
- Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Patrick Bérubé
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Alexandre Murza
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Robert Dumaine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Olivier Lesur
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Mannix Auger-Messier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Éric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
216
|
Amphetamine Neurotoxicity in PC12 Cells through the PP2A/AKT/GSK3β Pathway. Neurotox Res 2018; 34:233-240. [DOI: 10.1007/s12640-018-9880-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
|
217
|
Mototani Y, Okamura T, Goto M, Shimizu Y, Yanobu-Takanashi R, Ito A, Kawamura N, Yagisawa Y, Umeki D, Nariyama M, Suita K, Ohnuki Y, Shiozawa K, Sahara Y, Kozasa T, Saeki Y, Okumura S. Role of G protein-regulated inducer of neurite outgrowth 3 (GRIN3) in β-arrestin 2-Akt signaling and dopaminergic behaviors. Pflugers Arch 2018; 470:937-947. [PMID: 29500670 DOI: 10.1007/s00424-018-2124-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/21/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
The G protein-regulated inducer of neurite growth (GRIN) family has three isoforms (GRIN1-3), which bind to the Gαi/o subfamily of G protein that mediate signal processing via G protein-coupled receptors (GPCRs). Here, we show that GRIN3 is involved in regulation of dopamine-dependent behaviors and is essential for activation of the dopamine receptors (DAR)-β-arrestin signaling cascade. Analysis of functional regions of GRIN3 showed that a di-cysteine motif (Cys751/752) is required for plasma membrane localization. GRIN3 was co-immunoprecipitated with GPCR kinases 2/6 and β-arrestins 1/2. Among GRINs, only GRIN3, which is highly expressed in striatum, strongly interacted with β-arrestin 2. We also generated GRIN3-knockout mice (GRIN3KO). GRIN3KO exhibited reduced locomotor activity and increased anxiety-like behavior in the elevated maze test, as well as a reduced locomoter response to dopamine stimulation. We also examined the phosphorylation of Akt at threonine 308 (phospho308-Akt), which is dephosphorylated via a β-arrestin 2-mediated pathway. Dephosphorylation of phospho308-Akt via the D2R-β-arrestin 2 signaling pathway was completely abolished in striatum of GRIN3KO. Our results suggest that GRIN3 has a role in recruitment and assembly of proteins involved in β-arrestin-dependent, G protein-independent signaling.
Collapse
Affiliation(s)
- Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Tadashi Okamura
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Motohito Goto
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yukiko Shimizu
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Rieko Yanobu-Takanashi
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Aiko Ito
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Daisuke Umeki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yoshinori Sahara
- Department of Physiology, Iwate Medical University School of Dentistry, Morioka, 020-8505, Japan
| | - Tohru Kozasa
- Center for Drug Development, Yokohama University of Pharmacy, Yokohama, 245-0066, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
218
|
Pack TF, Orlen MI, Ray C, Peterson SM, Caron MG. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation. J Biol Chem 2018; 293:6161-6171. [PMID: 29487132 DOI: 10.1074/jbc.ra117.001300] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/13/2018] [Indexed: 01/11/2023] Open
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling.
Collapse
Affiliation(s)
- Thomas F Pack
- From the Departments of Pharmacology and Cancer Biology.,Cell Biology
| | | | | | | | - Marc G Caron
- Cell Biology, .,Neurobiology, and.,Medicine, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
219
|
Cinque S, Zoratto F, Poleggi A, Leo D, Cerniglia L, Cimino S, Tambelli R, Alleva E, Gainetdinov RR, Laviola G, Adriani W. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia. Front Psychiatry 2018; 9:43. [PMID: 29520239 PMCID: PMC5826953 DOI: 10.3389/fpsyt.2018.00043] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/31/2018] [Indexed: 12/30/2022] Open
Abstract
Alterations in dopamine neurotransmission are generally associated with diseases such as attention-deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). Such diseases typically feature poor decision making and lack of control on executive functions and have been studied through the years using many animal models. Dopamine transporter (DAT) knockout (KO) and heterozygous (HET) mice, in particular, have been widely used to study ADHD. Recently, a strain of DAT KO rats has been developed (1). Here, we provide a phenotypic characterization of reward sensitivity and compulsive choice by adult rats born from DAT-HET dams bred with DAT-HET males, in order to further validate DAT KO rats as an animal model for preclinical research. We first tested DAT KO rats' sensitivity to rewarding stimuli, provided by highly appetitive food or sweet water; then, we tested their choice behavior with an Intolerance-to-Delay Task (IDT). During these tests, DAT KO rats appeared less sensitive to rewarding stimuli than wild-type (WT) and HET rats: they also showed a prominent hyperactive behavior with a rigid choice pattern and a wide number of compulsive stereotypies. Moreover, during the IDT, we tested the effects of amphetamine (AMPH) and RO-5203648, a trace amine-associated receptor 1 (TAAR1) partial agonist. AMPH accentuated impulsive behaviors in WT and HET rats, while it had no effect in DAT KO rats. Finally, we measured the levels of tyrosine hydroxylase, dopamine receptor 2 (D2), serotonin transporter, and TAAR1 mRNA transcripts in samples of ventral striatum, finding no significant differences between WT and KO genotypes. Throughout this study, DAT KO rats showed alterations in decision-making processes and in motivational states, as well as prominent motor and oral stereotypies: more studies are warranted to fully characterize and efficiently use them in preclinical research.
Collapse
Affiliation(s)
- Stefano Cinque
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Zoratto
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Damiana Leo
- Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Luca Cerniglia
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Silvia Cimino
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Renata Tambelli
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Enrico Alleva
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Raul R. Gainetdinov
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| |
Collapse
|
220
|
Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β Signaling in Cadmium-Induced DA-D2 Receptor-Mediated Motor Dysfunctions: Protective Role of Quercetin. Sci Rep 2018; 8:2528. [PMID: 29410441 PMCID: PMC5802731 DOI: 10.1038/s41598-018-20342-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/22/2017] [Indexed: 01/11/2023] Open
Abstract
Given increasing risk of cadmium-induced neurotoxicity, the study was conducted to delineate the molecular mechanisms associated with cadmium-induced motor dysfunctions and identify targets that govern dopaminergic signaling in the brain involving in vivo, in vitro, and in silico approaches. Selective decrease in dopamine (DA)-D2 receptors on cadmium exposure was evident which affected the post-synaptic PKA/DARPP-32/PP1α and β-arrestin/Akt/GSK-3β signaling concurrently in rat corpus striatum and PC12 cells. Pharmacological inhibition of PKA and Akt in vitro demonstrates that both pathways are independently modulated by DA-D2 receptors and associated with cadmium-induced motor deficits. Ultrastructural changes in the corpus striatum demonstrated neuronal degeneration and loss of synapse on cadmium exposure. Further, molecular docking provided interesting evidence that decrease in DA-D2 receptors may be due to direct binding of cadmium at the competitive site of dopamine on DA-D2 receptors. Treatment with quercetin resulted in the alleviation of cadmium-induced behavioral and neurochemical alterations. This is the first report demonstrating that cadmium-induced motor deficits are associated with alteration in postsynaptic dopaminergic signaling due to a decrease in DA-D2 receptors in the corpus striatum. The results further demonstrate that quercetin has the potential to alleviate cadmium-induced dopaminergic dysfunctions.
Collapse
|
221
|
Zai CC, Maes MS, Tiwari AK, Zai GC, Remington G, Kennedy JL. Genetics of tardive dyskinesia: Promising leads and ways forward. J Neurol Sci 2018; 389:28-34. [PMID: 29502799 DOI: 10.1016/j.jns.2018.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
Tardive dyskinesia (TD) is a potentially irreversible and often debilitating movement disorder secondary to chronic use of dopamine receptor blocking medications. Genetic factors have been implicated in the etiology of TD. We therefore have reviewed the most promising genes associated with TD, including DRD2, DRD3, VMAT2, HSPG2, HTR2A, HTR2C, and SOD2. In addition, we present evidence supporting a role for these genes from preclinical models of TD. The current understanding of the etiogenesis of TD is discussed in the light of the recent approvals of valbenazine and deutetrabenazine, VMAT2 inhibitors, for treating TD.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| | - Miriam S Maes
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada
| | - Arun K Tiwari
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Gwyneth C Zai
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Gary Remington
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| | - James L Kennedy
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
222
|
The Altered Supramolecular Structure of Dopamine D2 Receptors in Disc1-deficient Mice. Sci Rep 2018; 8:1692. [PMID: 29374282 PMCID: PMC5785963 DOI: 10.1038/s41598-018-20090-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/12/2018] [Indexed: 12/04/2022] Open
Abstract
Disc1 is a susceptibility gene for psychiatric disorders including schizophrenia. It has been suggested that excess transmission through dopamine type 2 receptors (D2Rs) in the striatum is an underlying mechanism of pathogenesis. In this study, we used super-resolution microscopy to study the distribution of D2Rs at the nanoscale in mice lacking exons 2 and 3 of Disc1 (Disc1-deficient mice). We found that D2Rs in the nucleus accumbens (NAc) of wild-type mice form nanoclusters (~ 20,000 nm2), and that Disc1-deficient mice have larger and more D2R nanoclusters than wild-type mice. Interestingly, administration of clozapine reduced the size and spatial distribution of the nanoclusters only in Disc1-deficient mice. Moreover, we observed that medium spiny neurons in the NAc of Disc1-deficient mice had reduced spine density on their dendrites than did wild-type mice, and this was also reversed by clozapine administration. The altered D2R nanoclusters might be morphological representations of the altered dopaminergic transmission in disease states such as schizophrenia.
Collapse
|
223
|
Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J Neurosci 2018; 38:1959-1972. [PMID: 29348190 DOI: 10.1523/jneurosci.1931-17.2018] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/07/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Dopamine (DA) controls many vital physiological functions and is critically involved in several neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder. The major function of the plasma membrane dopamine transporter (DAT) is the rapid uptake of released DA into presynaptic nerve terminals leading to control of both the extracellular levels of DA and the intracellular stores of DA. Here, we present a newly developed strain of rats in which the gene encoding DAT knockout Rats (DAT-KO) has been disrupted by using zinc finger nuclease technology. Male and female DAT-KO rats develop normally but weigh less than heterozygote and wild-type rats and demonstrate pronounced spontaneous locomotor hyperactivity. While striatal extracellular DA lifetime and concentrations are significantly increased, the total tissue content of DA is markedly decreased demonstrating the key role of DAT in the control of DA neurotransmission. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, the partial Trace Amine-Associated Receptor 1 (TAAR1) agonist RO5203648 ((S)-4-(3,4-Dichloro-phenyl)-4,5-dihydro-oxazol-2-ylamine) and haloperidol. DAT-KO rats also demonstrate a deficit in working memory and sensorimotor gating tests, less propensity to develop obsessive behaviors and show strong dysregulation in frontostriatal BDNF function. DAT-KO rats could provide a novel translational model for human diseases involving aberrant DA function and/or mutations affecting DAT or related regulatory mechanisms.SIGNIFICANCE STATEMENT Here, we present a newly developed strain of rats in which the gene encoding the dopamine transporter (DAT) has been disrupted (Dopamine Transporter Knockout rats [DAT-KO rats]). DAT-KO rats display functional hyperdopaminergia accompanied by pronounced spontaneous locomotor hyperactivity. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, and a few other compounds exerting inhibitory action on dopamine-dependent hyperactivity. DAT-KO rats also demonstrate cognitive deficits in working memory and sensorimotor gating tests, less propensity to develop compulsive behaviors, and strong dysregulation in frontostriatal BDNF function. These observations highlight the key role of DAT in the control of brain dopaminergic transmission. DAT-KO rats could provide a novel translational model for human diseases involving aberrant dopamine functions.
Collapse
|
224
|
Rutigliano G, Accorroni A, Zucchi R. The Case for TAAR1 as a Modulator of Central Nervous System Function. Front Pharmacol 2018; 8:987. [PMID: 29375386 PMCID: PMC5767590 DOI: 10.3389/fphar.2017.00987] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023] Open
Abstract
TAAR1 is widely expressed across the mammalian brain, particularly in limbic and monoaminergic areas, allegedly involved in mood, attention, memory, fear, and addiction. However, the subcellular distribution of TAAR1 is still unclear, since TAAR1 signal is largely intracellular. In vitro, TAAR1 is activated with nanomolar to micromolar affinity by some endogenous amines, particularly p-tyramine, beta-phenylethylamine, and 3-iodothyronamine (T1AM), the latter representing a novel branch of thyroid hormone signaling. In addition, TAAR1 responds to a number of psychoactive drugs, i.e., amphetamines, ergoline derivatives, bromocriptine and lisuride. Trace amines have been identified as neurotransmitters in invertebrates, and they are considered as potential neuromodulators. In particular, beta-phenylethylamine and p-tyramine have been reported to modify the release and/or the response to dopamine, norepinephrine, acetylcholine and GABA, while evidence of cross-talk between TAAR1 and other aminergic receptors has been provided. Systemic or intracerebroventricular injection of exogenous T1AM produced prolearning and antiamnestic effects, reduced pain threshold, decreased non-REM sleep, and modulated the firing rate of adrenergic neurons in locus coeruleus. However each of these substances may have additional molecular targets, and it is unclear whether their endogenous levels are sufficient to produce significant TAAR1 activation in vivo. TAAR1 knock out mice show a worse performance in anxiety and working memory tests, and they are more prone to develop ethanol addiction. They also show increased locomotor response to amphetamine, and decreased stereotypical responses induced by apomorphine. Notably, human genes for TAARs cluster on chromosome 6 at q23, within a region whose mutations have been reported to confer susceptibility to schizophrenia and bipolar disorder. For human TAAR1, around 200 non-synonymous and 400 synonymous single nucleotide polymorphisms have been identified, but their functional consequences have not been extensively investigated yet. In conclusion, the bulk of evidence points to a significant physiological role of TAAR1 in the modulation of central nervous system function and a potential pharmacological role of TAAR1 agonists in neurology and/or psychiatry. However, the specific effects of TAAR1 stimulation are still controversial, and many crucial issues require further investigation.
Collapse
Affiliation(s)
- Grazia Rutigliano
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alice Accorroni
- Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | | |
Collapse
|
225
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
226
|
Park SY, Piao Y, Thomas C, Fuller GN, de Groot JF. Cdc2-like kinase 2 is a key regulator of the cell cycle via FOXO3a/p27 in glioblastoma. Oncotarget 2018; 7:26793-805. [PMID: 27050366 PMCID: PMC5042015 DOI: 10.18632/oncotarget.8471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/10/2016] [Indexed: 01/09/2023] Open
Abstract
Cdc2-like kinase 2 (CLK2) is known as a regulator of RNA splicing that ultimately controls multiple physiological processes. However, the function of CLK2 in glioblastoma progression has not been described. Reverse-phase protein array (RPPA) was performed to identify proteins differentially expressed in CLK2 knockdown cells compared to controls. The RPPA results indicated that CLK2 knockdown influenced the expression of survival-, proliferation-, and cell cycle-related proteins in GSCs. Thus, knockdown of CLK2 expression arrested the cell cycle at the G1 and S checkpoints in multiple GSC lines. Depletion of CLK2 regulated the dephosphorylation of AKT and decreased phosphorylation of Forkhead box O3a (FOXO3a), which not only translocated to the nucleus but also increased p27 expression. In two glioblastoma xenograft models, the survival duration of mice with CLK2-knockdown GSCs was significantly longer than mice with control tumors. Additionally, tumor volumes were significantly smaller in CLK2-knockdown mice than in controls. Knockdown of CLK2 expression reduced the phosphorylation of FOXO3a and decreased Ki-67 in vivo. Finally, high expression of CLK2 protien was significantly associated with worse patient survival. These findings suggest that CLK2 plays a critical role in controlling the cell cycle and survival of glioblastoma via FOXO3a/p27.
Collapse
Affiliation(s)
- Soon Young Park
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuji Piao
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Craig Thomas
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
227
|
Tréfier A, Musnier A, Landomiel F, Bourquard T, Boulo T, Ayoub MA, León K, Bruneau G, Chevalier M, Durand G, Blache MC, Inoue A, Fontaine J, Gauthier C, Tesseraud S, Reiter E, Poupon A, Crépieux P. G protein-dependent signaling triggers a β-arrestin-scaffolded p70S6K/ rpS6 module that controls 5'TOP mRNA translation. FASEB J 2018; 32:1154-1169. [PMID: 29084767 DOI: 10.1096/fj.201700763r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many interaction partners of β-arrestins intervene in the control of mRNA translation. However, how β-arrestins regulate this cellular process has been poorly explored. In this study, we show that β-arrestins constitutively assemble a p70S6K/ribosomal protein S6 (rpS6) complex in HEK293 cells and in primary Sertoli cells of the testis. We demonstrate that this interaction is direct, and experimentally validate the interaction interface between β-arrestin 1 and p70S6K predicted by our docking algorithm. Like most GPCRs, the biological function of follicle-stimulating hormone receptor (FSHR) is transduced by G proteins and β-arrestins. Upon follicle-stimulating hormone (FSH) stimulation, activation of G protein-dependent signaling enhances p70S6K activity within the β-arrestin/p70S6K/rpS6 preassembled complex, which is not recruited to the FSHR. In agreement, FSH-induced rpS6 phosphorylation within the β-arrestin scaffold was decreased in cells depleted of Gαs. Integration of the cooperative action of β-arrestin and G proteins led to the translation of 5' oligopyrimidine track mRNA with high efficacy within minutes of FSH input. Hence, this work highlights new relationships between G proteins and β-arrestins when acting cooperatively on a common signaling pathway, contrasting with their previously shown parallel action on the ERK MAP kinase pathway. In addition, this study provides insights into how GPCR can exert trophic effects in the cell.-Tréfier, A., Musnier, A., Landomiel, F., Bourquard, T., Boulo, T., Ayoub, M. A., León, K., Bruneau, G., Chevalier, M., Durand, G., Blache, M.-C., Inoue, A., Fontaine, J., Gauthier, C., Tesseraud, S., Reiter, E., Poupon, A., Crépieux, P. G protein-dependent signaling triggers a β-arrestin-scaffolded p70S6K/ rpS6 module that controls 5'TOP mRNA translation.
Collapse
Affiliation(s)
- Aurélie Tréfier
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Astrid Musnier
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Flavie Landomiel
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Thomas Bourquard
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Thomas Boulo
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Mohammed Akli Ayoub
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France.,Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kelly León
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Gilles Bruneau
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Manon Chevalier
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Guillaume Durand
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Marie-Claire Blache
- Plateau d'Imagerie Cellulaire (PIC), Unité Mixte de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; and
| | - Joël Fontaine
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Christophe Gauthier
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Sophie Tesseraud
- Metabolism of Birds, Quality and Adaptation (MOQA) Group, Unité de Recherches 83, Unité de Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), Nouzilly, France
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Anne Poupon
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems (BIOS) Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), Nouzilly, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7247, Nouzilly, France.,Université François Rabelais, Tours, France.,Institut Français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| |
Collapse
|
228
|
Rampino A, Marakhovskaia A, Soares-Silva T, Torretta S, Veneziani F, Beaulieu JM. Antipsychotic Drug Responsiveness and Dopamine Receptor Signaling; Old Players and New Prospects. Front Psychiatry 2018; 9:702. [PMID: 30687136 PMCID: PMC6338030 DOI: 10.3389/fpsyt.2018.00702] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022] Open
Abstract
Antipsychotic drugs targeting dopamine neurotransmission are still the principal mean of therapeutic intervention for schizophrenia. However, about one third of people do not respond to dopaminergic antipsychotics. Genome wide association studies (GWAS), have shown that multiple genetic factors play a role in schizophrenia pathophysiology. Most of these schizophrenia risk variants are not related to dopamine or antipsychotic drugs mechanism of action. Genetic factors have also been implicated in defining response to antipsychotic medication. In contrast to disease risk, variation of genes coding for molecular targets of antipsychotics have been associated with treatment response. Among genes implicated, those involved in dopamine signaling mediated by D2-class dopamine receptor, including DRD2 itself and its molecular effectors, have been implicated as key genetic predictors of response to treatments. Studies have also reported that genetic variation in genes coding for proteins that cross-talk with DRD2 at the molecular level, such as AKT1, GSK3B, Beta-catenin, and PPP2R2B are associated with response to antipsychotics. In this review we discuss the relative contribution to antipsychotic drug responsiveness of candidate genes and GWAS identified genes encoding proteins involved in dopamine responses. We also suggest that in addition of these older players, a deeper investigation of new GWAS identified schizophrenia risk genes such as FXR1 can provide new prospects that are not clearly engaged in dopamine function while being targeted by dopamine-associated signaling molecules. Overall, further examination of genes proximally or distally related to signaling mechanisms engaged by medications and associated with disease risk and/or treatment responsiveness may uncover an interface between genes involved in disease causation with those affecting disease remediation. Such a nexus would provide realistic targets for therapy and further the development of genetically personalized approaches for schizophrenia.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | - Tiago Soares-Silva
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Silvia Torretta
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Federica Veneziani
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
229
|
Niu S, Li H, Chen W, Zhao J, Gao L, Bo T. Beta-Arrestin 1 Mediates Liver Thyrotropin Regulation of Cholesterol Conversion Metabolism via the Akt-Dependent Pathway. Int J Endocrinol 2018; 2018:4371396. [PMID: 29853881 PMCID: PMC5954953 DOI: 10.1155/2018/4371396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/18/2018] [Accepted: 03/31/2018] [Indexed: 11/18/2022] Open
Abstract
After activation, G protein-coupled receptors (GPCRs) are desensitized by β-arrestins (ARRBs). Moreover, ARRBs can initiate a second wave of signaling independent of G proteins. Thyroid-stimulating hormone receptor (TSHR) is one of the GPCR members. In our previous study, TSHR was identified in the liver; the major role of TSHR in cholesterol metabolism was illustrated, as TSH could regulate hepatic cholesterol metabolism via cAMP/PKA/CREB/HMGCR and SREBP2/HNF4α/CYP7A1 pathways. It has been reported that ARRB2 predominates over ARRB1 in TSHR internalization. However, the significance of ARRBs in TSH-initiated cholesterol metabolism has not been illustrated. In our study, the effects of ARRBs on TSH-regulated cholesterol metabolism are investigated. ARRB1/2 was genetically inactivated in C57BL/6 mice and HepG2 cell line, respectively. Cholesterol levels in arrestin-knockout mice and arrestin-knockdown cells were measured. Molecules participating in cholesterol metabolism were analyzed. It turned out that deficiencies in ARRB1 led to decreased cholesterol levels and decreased TSH-stimulated AKT phosphorylation. Subsequently, the inhibitory effect on CYP7A1 by SREBP2 was reduced due to lowered mature SREBP2 level. Other than the failures of TSH in ARRB-knockdown cells, the AKT activator SC79 could enhance AKT phosphorylation and mature SREBP2 level. Our results demonstrate that ARRBs, especially ARRB1, are involved in TSH-regulated cholesterol metabolism through the AKT pathway.
Collapse
Affiliation(s)
- Shaona Niu
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Department of Endocrinology, Lin Yi People's Hospital Affiliated to Shandong University, Linyi, Shandong 276003, China
| | - Hui Li
- Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Wenbin Chen
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jiajun Zhao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Ling Gao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Tao Bo
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
230
|
Efimova EV, Gainetdinov RR, Budygin EA, Sotnikova TD. Dopamine transporter mutant animals: a translational perspective. J Neurogenet 2017; 30:5-15. [PMID: 27276191 DOI: 10.3109/01677063.2016.1144751] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dopamine transporter (DAT) plays an important homeostatic role in the control of both the extracellular and intraneuronal concentrations of dopamine, thereby providing effective control over activity of dopaminergic transmission. Since brain dopamine is known to be involved in numerous neuropsychiatric disorders, investigations using mice with genetically altered DAT function and thus intensity of dopamine-mediated signaling have provided numerous insights into the pathology of these disorders and novel pathological mechanisms that could be targeted to provide new therapeutic approaches for these disorders. In this brief overview, we discuss recent investigations involving animals with genetically altered DAT function, particularly focusing on translational studies providing new insights into pathology and pharmacology of dopamine-related disorders. Perspective applications of these and newly developed models of DAT dysfunction are also discussed.
Collapse
Affiliation(s)
- Evgeniya V Efimova
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,b Skolkovo Institute of Science and Technology , Skolkovo , Moscow Region , Russia
| | - Raul R Gainetdinov
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,b Skolkovo Institute of Science and Technology , Skolkovo , Moscow Region , Russia
| | - Evgeny A Budygin
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,c Department of Neurobiology and Anatomy , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Tatyana D Sotnikova
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia
| |
Collapse
|
231
|
Yapo C, Nair AG, Clement L, Castro LR, Hellgren Kotaleski J, Vincent P. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J Physiol 2017; 595:7451-7475. [PMID: 28782235 PMCID: PMC5730852 DOI: 10.1113/jp274475] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. ABSTRACT The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D1 or D2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D2 than on D1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine. Overall, our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought.
Collapse
Affiliation(s)
- Cedric Yapo
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangalore560065KarnatakaIndia
- Manipal UniversityManipal576104KarnatakaIndia
| | - Lorna Clement
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
| | - Liliana R. Castro
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- Department of NeuroscienceKarolinska Institutet17177SolnaSweden
| | - Pierre Vincent
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| |
Collapse
|
232
|
Choi H, Koh SH. Understanding the role of glycogen synthase kinase-3 in L-DOPA-induced dyskinesia in Parkinson’s disease. Expert Opin Drug Metab Toxicol 2017; 14:83-90. [DOI: 10.1080/17425255.2018.1417387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| |
Collapse
|
233
|
Sanni SJ, Lyngsø C, Gammeltoft S, Hansen JL. [Sar1, Ile4, Ile8]-angiotensin II Potentiates Insulin Receptor Signalling and Glycogen Synthesis in Hepatocytes. Basic Clin Pharmacol Toxicol 2017; 122:460-469. [DOI: 10.1111/bcpt.12937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Samra Joke Sanni
- Obesity Biology; Novo Nordisk A/S; Maalov Denmark
- Department of Clinical Biochemistry; Glostrup Research Institute; Glostrup Hospital; Glostrup Denmark
| | - Christina Lyngsø
- Department of Clinical Biochemistry; Glostrup Research Institute; Glostrup Hospital; Glostrup Denmark
| | - Steen Gammeltoft
- Department of Clinical Biochemistry; Glostrup Research Institute; Glostrup Hospital; Glostrup Denmark
| | | |
Collapse
|
234
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
235
|
Antidyskinetic Treatment with MTEP Affects Multiple Molecular Pathways in the Parkinsonian Striatum. PARKINSONS DISEASE 2017; 2017:5798734. [PMID: 29209553 PMCID: PMC5682907 DOI: 10.1155/2017/5798734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/08/2017] [Accepted: 09/17/2017] [Indexed: 01/02/2023]
Abstract
Parkinson's disease is characterized by dopaminergic neuron loss and dopamine (DA) depletion in the striatum. Standard treatment is still focused on the restoration of dopamine with exogenous L-Dopa, which however causes L-Dopa-induced dyskinesia (LID). Several studies have shown that antagonism of the metabotropic glutamate receptor 5 alleviates LID, but the underlying mechanisms have remained unclear. We set out to determine where this alleviation may depend on restoring the equilibrium between the two main striatofugal pathways. For this purpose, we examined molecular markers of direct and indirect pathway involvement (prodynorphin and proenkephalin, resp.) in a rat model of LID treated with the mGluR5 antagonist MTEP. Our results show that MTEP cotreatment significantly attenuates the upregulation of prodynorphin mRNA induced by L-Dopa while also decreasing the expression levels of proenkephalin mRNA. We also examined markers of the mGluR5-related PKC/MEK/ERK1/2 signaling pathway, finding that both the expression of PKC epsilon and the phosphorylation of MEK and ERK1/2 had decreased significantly in the MTEP-treated group. Taken together, our results show that pharmacological antagonism of mGluR5 normalizes several abnormal molecular responses in the striatum in this experimental model of LID.
Collapse
|
236
|
Chen M, Liu C, Wang M, Wang H, Zhang K, Zheng Y, Yu Z, Li X, Guo W, Li N, Meng Q. Clenbuterol Induces Cell Cycle Arrest in C2C12 Myoblasts by Delaying p27 Degradation through β-arrestin 2 Signaling. Int J Biol Sci 2017; 13:1341-1350. [PMID: 29104500 PMCID: PMC5666532 DOI: 10.7150/ijbs.17948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/16/2017] [Indexed: 02/04/2023] Open
Abstract
β2-Adrenoceptor (β2-AR) agonists promote muscle growth. The aim of this study was to elucidate some effects of the selective β2-adrenoceptor agonist clenbuterol (CLB) on myoblast proliferation. We found that CLB induces cell cycle arrest in C2C12 myoblasts. This effect is partly due to the enhanced stability of p27, rather than the increased gene transcription via cAMP response element-binding protein (CREB). Specifically, CLB treatment enhanced the accumulation of p27 in the nucleus while depleting it from the cytosol via a mechanism that requires β2-AR. Surprisingly, p27 accumulation was not reversed by the protein kinase A (PKA) inhibitor H-89, but interestingly, was alleviated by the knockdown of β-arrestin 2. Thus, our work provides a basis for β2-AR agonists inhibit myoblasts proliferation through signaling via β2-AR, β-arrestin 2, and p27.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China.,Guangxi Province Center for Disease Control and Prevention, Nanning 530028, China
| | - Chuncheng Liu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Meng Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Kuo Zhang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yu Zheng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Zhengquan Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangdong Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Wei Guo
- Animal Science/Molecular Biology Bldg, University of Wyoming, Laramie WY82071, USA
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University
| |
Collapse
|
237
|
Ryu YK, Park HY, Go J, Choi DH, Kim YH, Hwang JH, Noh JR, Lee TG, Lee CH, Kim KS. Metformin Inhibits the Development of l-DOPA-Induced Dyskinesia in a Murine Model of Parkinson’s Disease. Mol Neurobiol 2017; 55:5715-5726. [DOI: 10.1007/s12035-017-0752-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
|
238
|
Shioda N. Dopamine D 2L receptor-interacting proteins regulate dopaminergic signaling. J Pharmacol Sci 2017; 135:S1347-8613(17)30171-8. [PMID: 29107444 DOI: 10.1016/j.jphs.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Dopamine receptor family proteins include seven transmembrane and trimeric GTP-binding protein-coupled receptors (GPCRs). Among them, the dopamine D2 receptor (D2R) is most extensively studied. All clinically used antipsychotic drugs serve as D2R antagonists in the mesolimbic dopamine system, and their ability to block D2R signaling is positively correlated with antipsychotic efficiency. Human genetic studies also show a significant association of DRD2 polymorphisms with disorders including schizophrenia and Parkinson's disease. D2R exists as two alternatively spliced isoforms, the long isoform (D2LR) and the short isoform (D2SR), which differ in a 29-amino acid (AA) insert in the third cytoplasmic loop. Importantly, previous reports demonstrate functional diversity between the two isoforms in humans. In this review, we focus on binding proteins that specifically interact with the D2LR 29AA insert. We discuss how D2R activities are mediated not only by heterotrimeric G proteins but by D2LR-interacting proteins, which in part regulate diverse D2R activities.
Collapse
Affiliation(s)
- Norifumi Shioda
- Department of Biofunctional Analysis, Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|
239
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
240
|
Toth K, Slosky LM, Pack TF, Urs NM, Boone P, Mao L, Abraham D, Caron MG, Barak LS. Ghrelin receptor antagonism of hyperlocomotion in cocaine-sensitized mice requires βarrestin-2. Synapse 2017; 72. [PMID: 28941296 DOI: 10.1002/syn.22012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
The "brain-gut" peptide ghrelin, which mediates food-seeking behaviors, is recognized as a very strong endogenous modulator of dopamine (DA) signaling. Ghrelin binds the G protein-coupled receptor GHSR1a, and administration of ghrelin increases the rewarding properties of psychostimulants while ghrelin receptor antagonists decrease them. In addition, the GHSR1a signals through βarrestin-2 to regulate actin/stress fiber rearrangement, suggesting βarrestin-2 participation in the regulation of actin-mediated synaptic plasticity for addictive substances like cocaine. The effects of ghrelin receptor ligands on reward strongly suggest that modulation of ghrelin signaling could provide an effective strategy to ameliorate undesirable behaviors arising from addiction. To investigate this possibility, we tested the effects of ghrelin receptor antagonism in a cocaine behavioral sensitization paradigm using DA neuron-specific βarrestin-2 KO mice. Our results show that these mice sensitize to cocaine as well as wild-type littermates. The βarrestin-2 KO mice, however, no longer respond to the locomotor attenuating effects of the GHSR1a antagonist YIL781. The data presented here suggest that the separate stages of addictive behavior differ in their requirements for βarrestin-2 and show that pharmacological inhibition of βarrestin-2 function through GHSR1a antagonism is not equivalent to the loss of βarrestin-2 function achieved by genetic ablation. These data support targeting GHSR1a signaling in addiction therapy but indicate that using signaling biased compounds that modulate βarrestin-2 activity differentially from G protein activity may be required.
Collapse
Affiliation(s)
- Krisztian Toth
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lauren M Slosky
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Thomas F Pack
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Nikhil M Urs
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Peter Boone
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lan Mao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Dennis Abraham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710.,Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lawrence S Barak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
241
|
Nash AI. Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs. J Chem Neuroanat 2017; 83-84:59-68. [DOI: 10.1016/j.jchemneu.2016.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
|
242
|
Aloperine Protects Mice against DSS-Induced Colitis by PP2A-Mediated PI3K/Akt/mTOR Signaling Suppression. Mediators Inflamm 2017; 2017:5706152. [PMID: 29056830 PMCID: PMC5625759 DOI: 10.1155/2017/5706152] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/27/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
Colitis is a major form of inflammatory bowel disease which involved mucosal immune dysfunction. Aloperine is an alkaloid isolated from the shrub Sophora alopecuroides L. and has been recognized as an effective treatment for inflammatory and allergic diseases. The present study aimed to examine the molecular mechanisms underlying aloperine-mediated colitis protection. We found that aloperine treatment improved colitis induced by dextran sodium sulfate (DSS) based on body weight, disease activity index, colonic length, and spleen index. Aloperine also effectively attenuated DSS-induced intestinal inflammation based on the pathological score and myeloperoxidase expression and activity in colon tissues. In addition, aloperine regulated T-cell proportions and promoted Foxp3 expression in the spleens and mesenteric lymph nodes of DSS-induced colitis mice and in the spleens of the Foxp3GFP mice. Aloperine inhibited Jurkat and mouse naïve T-cell apoptosis. Furthermore, aloperine inhibited PI3K/Akt/mTOR signaling and upregulated PP2A expression in the DSS-induced colitis mice and in Jurkat cells, but LB-100 (PP2A inhibitor) resulted in an elevated Akt activity in Jurkat cells, activated T-cells, and human splenic mononuclear cells. Aloperine inhibited T-cell and lymphocyte proliferation, but LB-100 reverse these effects. In conclusion, aloperine regulates inflammatory responses in colitis by inhibiting the PI3K/Akt/mTOR signaling in a PP2A-dependent manner.
Collapse
|
243
|
Dopamine D2 Receptors Modulate Pyramidal Neurons in Mouse Medial Prefrontal Cortex through a Stimulatory G-Protein Pathway. J Neurosci 2017; 37:10063-10073. [PMID: 28912160 DOI: 10.1523/jneurosci.1893-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/04/2017] [Indexed: 02/08/2023] Open
Abstract
Dopaminergic modulation of prefrontal cortex (PFC) is thought to play key roles in many cognitive functions and to be disrupted in pathological conditions, such as schizophrenia. We have previously described a phenomenon whereby dopamine D2 receptor (D2R) activation elicits afterdepolarizations (ADPs) in subcortically projecting (SC) pyramidal neurons within L5 of the PFC. These D2R-induced ADPs only occur following synaptic input, which activates NMDARs, even when the delay between the synaptic input and ADPs is relatively long (e.g., several hundred milliseconds). Here, we use a combination of electrophysiological, optogenetic, pharmacological, transgenic, and chemogenetic approaches to elucidate cellular mechanisms underlying this phenomenon in male and female mice. We find that knocking out D2Rs eliminates the ADP in a cell-autonomous fashion, confirming that this ADP depends on D2Rs. Hyperpolarizing current injection, but not AMPA receptor blockade, prevents synaptic stimulation from facilitating D2R-induced ADPs, suggesting that this phenomenon depends on the recruitment of voltage-dependent currents (e.g., NMDAR-mediated Ca2+ influx) by synaptic input. Finally, the D2R-induced ADP is blocked by inhibitors of cAMP/PKA signaling, insensitive to pertussis toxin or β-arrestin knock-out, and mimicked by Gs-DREADD stimulation, suggesting that D2R activation elicits the ADP by stimulating cAMP/PKA signaling. These results show that this unusual physiological phenomenon, in which D2Rs enhance cellular excitability in a manner that depends on synaptic input, is mediated at the cellular level through the recruitment of signaling pathways associated with Gs, rather than the Gi/o-associated mechanisms that have classically been ascribed to D2Rs.SIGNIFICANCE STATEMENT Dopamine D2 receptors (D2Rs) in the prefrontal cortex (PFC) are thought to play important roles in behaviors, including working memory and cognitive flexibility. Variation in D2Rs has also been implicated in schizophrenia, Tourette syndrome, and bipolar disorder. Recently, we described a new mechanism through which D2R activation can enhance the excitability of pyramidal neurons in the PFC. Here, we explore the underlying cellular mechanisms. Surprisingly, although D2Rs are classically assumed to signal through Gi/o-coupled G-proteins and/or scaffolding proteins, such as β-arrestin, we find that the effects of D2Rs on prefrontal pyramidal neurons are actually mediated by pathways associated with Gs-mediated signaling. Furthermore, we show how, via this D2R-dependent phenomenon, synaptic input can enhance the excitability of prefrontal neurons over timescales on the order of seconds. These results elucidate cellular mechanisms underlying a novel signaling pathway downstream of D2Rs that may contribute to prefrontal function under normal and pathological conditions.
Collapse
|
244
|
Morphine activation of mu opioid receptors causes disinhibition of neurons in the ventral tegmental area mediated by β-arrestin2 and c-Src. Sci Rep 2017; 7:9969. [PMID: 28855588 PMCID: PMC5577270 DOI: 10.1038/s41598-017-10360-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
The tyrosine kinase, c-Src, participates in mu opioid receptor (MOP) mediated inhibition in sensory neurons in which β-arrestin2 (β-arr2) is implicated in its recruitment. Mice lacking β-arr2 exhibit increased sensitivity to morphine reinforcement; however, whether β-arr2 and/or c-Src participate in the actions of opioids in neurons within the reward pathway is unknown. It is also unclear whether morphine acts exclusively through MOPs, or involves delta opioid receptors (DOPs). We examined the involvement of MOPs, DOPs, β-arr2 and c-Src in the inhibition by morphine of GABAergic inhibitory postsynaptic currents (IPSCs) recorded from neurons in the mouse ventral tegmental area. Morphine inhibited spontaneous IPSC frequency, mainly through MOPs, with only a negligible effect remaining in MOP−/− neurons. However, a reduction in the inhibition by morphine for DOP−/− c.f. WT neurons and a DPDPE-induced decrease of IPSC frequency revealed a role for DOPs. The application of the c-Src inhibitor, PP2, to WT neurons also reduced inhibition by morphine, while the inactive PP3, and the MEK inhibitor, SL327, had no effect. Inhibition of IPSC frequency by morphine was also reduced in β-arr2−/− neurons in which PP2 caused no further reduction. These data suggest that inhibition of IPSCs by morphine involves a β-arr2/c-Src mediated mechanism.
Collapse
|
245
|
Aguilar LE, Tumurbaatar B, Ghavaminejad A, Park CH, Kim CS. Functionalized Non-vascular Nitinol Stent via Electropolymerized Polydopamine Thin Film Coating Loaded with Bortezomib Adjunct to Hyperthermia Therapy. Sci Rep 2017; 7:9432. [PMID: 28842557 PMCID: PMC5573377 DOI: 10.1038/s41598-017-08833-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/19/2017] [Indexed: 01/21/2023] Open
Abstract
Gastrointestinal malignancies have been a tremendous problem in the medical field and cover a wide variety of parts of the system, (i.e. esophagus, duodenum, intestines, and rectum). Usually, these malignancies are treated with palliation with the use of non-vascular nitinol stents. However, stenting is not a perfect solution for these problems. While it can enhance the quality of life of the patient, in time the device will encounter problems such as re-occlusion due to the rapid growth of the tumor. In this study, we propose a functionalization technique using electropolymerization of polydopamine directly onto the nitinol stent struts for the combined application of hyperthermia and chemotherapy. The coating was characterized using FESEM, XPS, and FT-IR. Drug release studies show that facile release of the anticancer drug BTZ from the surface of the polydopamine-coated stent could be achieved by the dissociation between catechol groups of polydopamine and the boronic acid functionality of BTZ in a pH-dependent manner. The anti-cancer property was also evaluated, and cytotoxicity on ESO26 and SNU-5 cancer cell lines were observed. Our results suggest that the introduced approach can be considered as a potential method for therapeutic stent application.
Collapse
Affiliation(s)
- Ludwig Erik Aguilar
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Batgerel Tumurbaatar
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Power Engineering School, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
| | - Amin Ghavaminejad
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju City, Republic of Korea.
- Department of Mechanical Design Engineering, Chonbuk National University, Jeonju City, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju City, Republic of Korea.
- Department of Mechanical Design Engineering, Chonbuk National University, Jeonju City, Republic of Korea.
- Eco-friendly Machine Parts Design Research Center, Chonbuk National University, Jeonju City, Republic of Korea.
| |
Collapse
|
246
|
O'Tuathaigh CMP, Moran PM, Zhen XC, Waddington JL. Translating advances in the molecular basis of schizophrenia into novel cognitive treatment strategies. Br J Pharmacol 2017; 174:3173-3190. [PMID: 28667666 DOI: 10.1111/bph.13938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023] Open
Abstract
The presence and severity of cognitive symptoms, including working memory, executive dysfunction and attentional impairment, contributes materially to functional impairment in schizophrenia. Cognitive symptoms have proved to be resistant to both first- and second-generation antipsychotic drugs. Efforts to develop a consensus set of cognitive domains that are both disrupted in schizophrenia and are amenable to cross-species validation (e.g. the National Institute of Mental Health Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia and Research Domain Criteria initiatives) are an important step towards standardization of outcome measures that can be used in preclinical testing of new drugs. While causative genetic mutations have not been identified, new technologies have identified novel genes as well as hitherto candidate genes previously implicated in the pathophysiology of schizophrenia and/or mechanisms of antipsychotic efficacy. This review comprises a selective summary of these developments, particularly phenotypic data arising from preclinical genetic models for cognitive dysfunction in schizophrenia, with the aim of indicating potential new directions for pro-cognitive therapeutics. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Medicine, University College Cork, Brookfield Health Sciences Complex, Cork, Ireland
| | - Paula M Moran
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Xuechu C Zhen
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - John L Waddington
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
247
|
Rapanelli M, Frick LR, Xu M, Groman SM, Jindachomthong K, Tamamaki N, Tanahira C, Taylor JR, Pittenger C. Targeted Interneuron Depletion in the Dorsal Striatum Produces Autism-like Behavioral Abnormalities in Male but Not Female Mice. Biol Psychiatry 2017; 82:194-203. [PMID: 28347488 PMCID: PMC5374721 DOI: 10.1016/j.biopsych.2017.01.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/27/2016] [Accepted: 01/02/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Interneuronal pathology is implicated in many neuropsychiatric disorders, including autism spectrum disorder (ASD) and Tourette syndrome (TS). Interneurons of the striatum, including the parvalbumin-expressing fast-spiking interneurons (FSIs) and the large cholinergic interneurons (CINs), are affected in patients with TS and in preclinical models of both ASD and TS. METHODS To test the causal importance of these neuronal abnormalities, we recapitulated them in vivo in developmentally normal mice using a combination transgenic-viral strategy for targeted toxin-mediated ablation. RESULTS We found that conjoint ~50% depletion of FSIs and CINs in the dorsal striatum of male mice produces spontaneous stereotypy and marked deficits in social interaction. Strikingly, these behavioral effects are not seen in female mice; because ASD and TS have a marked male predominance, this observation reinforces the potential relevance of the finding to human disease. Neither of these effects is seen when only one or the other interneuronal population is depleted; ablation of both is required. Depletion of FSIs, but not of CINs, also produces anxiety-like behavior, as has been described previously. Behavioral pathology in male mice after conjoint FSI and CIN depletion is accompanied by increases in activity-dependent signaling in the dorsal striatum; these alterations were not observed after disruption of only one interneuron type or in doubly depleted female mice. CONCLUSIONS These data indicate that disruption of CIN and FSI interneurons in the dorsal striatum is sufficient to produce network and behavioral changes of potential relevance to ASD, in a sexually dimorphic manner.
Collapse
Affiliation(s)
| | | | - Meiyu Xu
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | | | | | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Medicine, Kumamoto University, Honjo, Kumamoto, Japan
| | - Chiyoko Tanahira
- Department of Morphological Neural Science, Graduate School of Medicine, Kumamoto University, Honjo, Kumamoto, Japan
| | - Jane Rebecca Taylor
- Department of Psychiatry, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| | - Christopher Pittenger
- Department of Psychiatry, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut; Child Study Center, Yale University, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut.
| |
Collapse
|
248
|
Shioda N, Yabuki Y, Wang Y, Uchigashima M, Hikida T, Sasaoka T, Mori H, Watanabe M, Sasahara M, Fukunaga K. Endocytosis following dopamine D 2 receptor activation is critical for neuronal activity and dendritic spine formation via Rabex-5/PDGFRβ signaling in striatopallidal medium spiny neurons. Mol Psychiatry 2017; 22:1205-1222. [PMID: 27922607 DOI: 10.1038/mp.2016.200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Aberrant dopamine D2 receptor (D2R) activity is associated with neuropsychiatric disorders, making those receptors targets for antipsychotic drugs. Here, we report that novel signaling through the intracellularly localized D2R long isoform (D2LR) elicits extracellular signal-regulated kinase (ERK) activation and dendritic spine formation through Rabex-5/platelet-derived growth factor receptor-β (PDGFRβ)-mediated endocytosis in mouse striatum. We found that D2LR directly binds to and activates Rabex-5, promoting early-endosome formation. Endosomes containing D2LR and PDGFRβ are then transported to the Golgi apparatus, where those complexes trigger Gαi3-mediated ERK signaling. Loss of intracellular D2LR-mediated ERK activation decreased neuronal activity and dendritic spine density in striatopallidal medium spiny neurons (MSNs). In addition, dendritic spine density in striatopallidal MSNs significantly increased following treatment of striatal slices from wild-type mice with quinpirole, a D2R agonist, but those changes were lacking in D2LR knockout mice. Moreover, intracellular D2LR signaling mediated effects of a typical antipsychotic drug, haloperidol, in inducing catalepsy behavior. Taken together, intracellular D2LR signaling through Rabex-5/PDGFRβ is critical for ERK activation, dendritic spine formation and neuronal activity in striatopallidal MSNs of mice.
Collapse
Affiliation(s)
- N Shioda
- Department of Biofunctional Analysis Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | - Y Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Y Wang
- Department of Pharmacology, Beckman Institute, University of Illinois, Urbana, IL, USA
| | - M Uchigashima
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Hikida
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - T Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
| | - H Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - M Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| | - K Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
249
|
Freyberg Z, Aslanoglou D, Shah R, Ballon JS. Intrinsic and Antipsychotic Drug-Induced Metabolic Dysfunction in Schizophrenia. Front Neurosci 2017; 11:432. [PMID: 28804444 PMCID: PMC5532378 DOI: 10.3389/fnins.2017.00432] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
For decades, there have been observations demonstrating significant metabolic disturbances in people with schizophrenia including clinically relevant weight gain, hypertension, and disturbances in glucose and lipid homeostasis. Many of these findings pre-date the use of antipsychotic drugs (APDs) which on their own are also strongly associated with metabolic side effects. The combination of APD-induced metabolic changes and common adverse environmental factors associated with schizophrenia have made it difficult to determine the specific contributions of each to the overall metabolic picture. Data from drug-naïve patients, both from the pre-APD era and more recently, suggest that there may be an intrinsic metabolic risk associated with schizophrenia. Nevertheless, these findings remain controversial due to significant clinical variability in both psychiatric and metabolic symptoms throughout patients' disease courses. Here, we provide an extensive review of classic and more recent literature describing the metabolic phenotype associated with schizophrenia. We also suggest potential mechanistic links between signaling pathways associated with schizophrenia and metabolic dysfunction. We propose that, beyond its symptomatology in the central nervous system, schizophrenia is also characterized by pathophysiology in other organ systems directly related to metabolic control.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of PittsburghPittsburgh, PA, United States
- Department of Cell Biology, University of PittsburghPittsburgh, PA, United States
| | - Despoina Aslanoglou
- Department of Psychiatry, University of PittsburghPittsburgh, PA, United States
| | - Ripal Shah
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanford, CA, United States
| | - Jacob S. Ballon
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanford, CA, United States
| |
Collapse
|
250
|
Zurkovsky L, Sedaghat K, Ahmed MR, Gurevich VV, Gurevich EV. Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine. Neuropharmacology 2017; 121:20-29. [PMID: 28419873 PMCID: PMC5859313 DOI: 10.1016/j.neuropharm.2017.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/17/2017] [Accepted: 04/13/2017] [Indexed: 02/09/2023]
Abstract
Arrestins play a prominent role in shutting down signaling via G protein-coupled receptors. In recent years, a signaling role for arrestins independent of their function in receptor desensitization has been discovered. Two ubiquitously expressed arrestin isoforms, arrestin-2 and arrestin-3, perform similarly in the desensitization process and share many signaling functions, enabling them to substitute for one another. However, signaling roles specific to each isoform have also been described. Mice lacking arrestin-3 (ARR3KO) were reported to show blunted acute responsiveness to the locomotor stimulatory effect of amphetamine (AMPH). It has been suggested that mice with deletion of arrestin-2 display a similar phenotype. Here we demonstrate that the AMPH-induced locomotion of male ARR3KO mice is reduced over the 7-day treatment period and during AMPH challenge after a 7-day withdrawal. The data are consistent with impaired locomotor sensitization to AMPH and suggest a role for arrestin-3-mediated signaling in the sensitization process. In contrast, male ARR2KO mice showed enhanced early responsiveness to AMPH and the lack of further sensitization, suggesting a role for impaired receptor desensitization. The comparison of mice possessing one allele of arrestin-3 and no arrestin-2 with ARR2KO littermates revealed reduced activity of the former line, consistent with a contribution of arrestin-3-mediated signaling to AMPH responses. Surprisingly, ARR3KO mice with one arrestin-2 allele showed significantly reduced locomotor responses to AMPH combined with lower novelty-induced locomotion, as compared to the ARR3KO line. These data suggest that one allele of arrestin-2 is unable to support normal locomotor behavior due to signaling and/or developmental defects.
Collapse
Affiliation(s)
- Lilia Zurkovsky
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katayoun Sedaghat
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Research Center and Department of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - M Rafiuddin Ahmed
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|