201
|
Li L, Ng SR, Colón CI, Drapkin BJ, Hsu PP, Li Z, Nabel CS, Lewis CA, Romero R, Mercer KL, Bhutkar A, Phat S, Myers DT, Muzumdar MD, Westcott PMK, Beytagh MC, Farago AF, Vander Heiden MG, Dyson NJ, Jacks T. Identification of DHODH as a therapeutic target in small cell lung cancer. Sci Transl Med 2019; 11:eaaw7852. [PMID: 31694929 PMCID: PMC7401885 DOI: 10.1126/scitranslmed.aaw7852] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive lung cancer subtype with extremely poor prognosis. No targetable genetic driver events have been identified, and the treatment landscape for this disease has remained nearly unchanged for over 30 years. Here, we have taken a CRISPR-based screening approach to identify genetic vulnerabilities in SCLC that may serve as potential therapeutic targets. We used a single-guide RNA (sgRNA) library targeting ~5000 genes deemed to encode "druggable" proteins to perform loss-of-function genetic screens in a panel of cell lines derived from autochthonous genetically engineered mouse models (GEMMs) of SCLC, lung adenocarcinoma (LUAD), and pancreatic ductal adenocarcinoma (PDAC). Cross-cancer analyses allowed us to identify SCLC-selective vulnerabilities. In particular, we observed enhanced sensitivity of SCLC cells toward disruption of the pyrimidine biosynthesis pathway. Pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in this pathway, reduced the viability of SCLC cells in vitro and strongly suppressed SCLC tumor growth in human patient-derived xenograft (PDX) models and in an autochthonous mouse model. These results indicate that DHODH inhibition may be an approach to treat SCLC.
Collapse
Affiliation(s)
- Leanne Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sheng Rong Ng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caterina I Colón
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Peggy P Hsu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Zhaoqi Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher S Nabel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rodrigo Romero
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Mandar Deepak Muzumdar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Clare Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna F Farago
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Matthew G Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
202
|
Liu B, Großhans J. The role of dNTP metabolites in control of the embryonic cell cycle. Cell Cycle 2019; 18:2817-2827. [PMID: 31544596 PMCID: PMC6791698 DOI: 10.1080/15384101.2019.1665948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Deoxyribonucleotide metabolites (dNTPs) are the substrates for DNA synthesis. It has been proposed that their availability influences the progression of the cell cycle during development and pathological situations such as tumor growth. The mechanism has remained unclear for the link between cell cycle and dNTP levels beyond their role as substrates. Here, we review recent studies concerned with the dynamics of dNTP levels in early embryos and the role of DNA replication checkpoint as a sensor of dNTP levels.
Collapse
Affiliation(s)
- Boyang Liu
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
| | - Jörg Großhans
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
- Entwicklungsgenetik, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
203
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
204
|
Milanese C, Bombardieri CR, Sepe S, Barnhoorn S, Payán-Goméz C, Caruso D, Audano M, Pedretti S, Vermeij WP, Brandt RMC, Gyenis A, Wamelink MM, de Wit AS, Janssens RC, Leen R, van Kuilenburg ABP, Mitro N, Hoeijmakers JHJ, Mastroberardino PG. DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nat Commun 2019; 10:4887. [PMID: 31653834 PMCID: PMC6814737 DOI: 10.1038/s41467-019-12640-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 09/22/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses. ERCC1 is involved in a number of DNA repair pathways including nucleotide excision repair. Here the authors showed that reduced transcription in Ercc1-deficient mouse livers and cells increases ATP levels, suppressing glycolysis and rerouting glucose into the pentose phosphate shunt that generates reductive stress.
Collapse
Affiliation(s)
- Chiara Milanese
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cíntia R Bombardieri
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sara Sepe
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - César Payán-Goméz
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Akos Gyenis
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Mirjam M Wamelink
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands
| | - Annelieke S de Wit
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - René Leen
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Oncode Institute, Princess Máxima Center, Utrecht, Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands. .,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
205
|
CD98hc (SLC3A2) sustains amino acid and nucleotide availability for cell cycle progression. Sci Rep 2019; 9:14065. [PMID: 31575908 PMCID: PMC6773781 DOI: 10.1038/s41598-019-50547-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
CD98 heavy chain (CD98hc) forms heteromeric amino acid (AA) transporters by interacting with different light chains. Cancer cells overexpress CD98hc-transporters in order to meet their increased nutritional and antioxidant demands, since they provide branched-chain AA (BCAA) and aromatic AA (AAA) availability while protecting cells from oxidative stress. Here we show that BCAA and AAA shortage phenocopies the inhibition of mTORC1 signalling, protein synthesis and cell proliferation caused by CD98hc ablation. Furthermore, our data indicate that CD98hc sustains glucose uptake and glycolysis, and, as a consequence, the pentose phosphate pathway (PPP). Thus, loss of CD98hc triggers a dramatic reduction in the nucleotide pool, which leads to replicative stress in these cells, as evidenced by the enhanced DNA Damage Response (DDR), S-phase delay and diminished rate of mitosis, all recovered by nucleoside supplementation. In addition, proper BCAA and AAA availability sustains the expression of the enzyme ribonucleotide reductase. In this regard, BCAA and AAA shortage results in decreased content of deoxynucleotides that triggers replicative stress, also recovered by nucleoside supplementation. On the basis of our findings, we conclude that CD98hc plays a central role in AA and glucose cellular nutrition, redox homeostasis and nucleotide availability, all key for cell proliferation.
Collapse
|
206
|
Zika Virus Infection Induces DNA Damage Response in Human Neural Progenitors That Enhances Viral Replication. J Virol 2019; 93:JVI.00638-19. [PMID: 31375586 DOI: 10.1128/jvi.00638-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) infection attenuates the growth of human neural progenitor cells (hNPCs). As these hNPCs generate the cortical neurons during early brain development, the ZIKV-mediated growth retardation potentially contributes to the neurodevelopmental defects of the congenital Zika syndrome. Here, we investigate the mechanism by which ZIKV manipulates the cell cycle in hNPCs and the functional consequence of cell cycle perturbation on the replication of ZIKV and related flaviviruses. We demonstrate that ZIKV, but not dengue virus (DENV), induces DNA double-strand breaks (DSBs), triggering the DNA damage response through the ATM/Chk2 signaling pathway while suppressing the ATR/Chk1 signaling pathway. Furthermore, ZIKV infection impedes the progression of cells through S phase, thereby preventing the completion of host DNA replication. Recapitulation of the S-phase arrest state with inhibitors led to an increase in ZIKV replication, but not of West Nile virus or DENV. Our data identify ZIKV's ability to induce DSBs and suppress host DNA replication, which results in a cellular environment favorable for its replication.IMPORTANCE Clinically, Zika virus (ZIKV) infection can lead to developmental defects in the cortex of the fetal brain. How ZIKV triggers this event in developing neural cells is not well understood at a molecular level and likely requires many contributing factors. ZIKV efficiently infects human neural progenitor cells (hNPCs) and leads to growth arrest of these cells, which are critical for brain development. Here, we demonstrate that infection with ZIKV, but not dengue virus, disrupts the cell cycle of hNPCs by halting DNA replication during S phase and inducing DNA damage. We further show that ZIKV infection activates the ATM/Chk2 checkpoint but prevents the activation of another checkpoint, the ATR/Chk1 pathway. These results unravel an intriguing mechanism by which an RNA virus interrupts host DNA replication. Finally, by mimicking virus-induced S-phase arrest, we show that ZIKV manipulates the cell cycle to benefit viral replication.
Collapse
|
207
|
Shin G, Jeong D, Kim H, Im JS, Lee JK. RecQL4 tethering on the pre-replicative complex induces unscheduled origin activation and replication stress in human cells. J Biol Chem 2019; 294:16255-16265. [PMID: 31519754 DOI: 10.1074/jbc.ra119.009996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Sequential activation of DNA replication origins is precisely programmed and critical to maintaining genome stability. RecQL4, a member of the conserved RecQ family of helicases, plays an essential role in the initiation of DNA replication in mammalian cells. Here, we showed that RecQL4 protein tethered on the pre-replicative complex (pre-RC) induces early activation of late replicating origins during S phase. Tethering of RecQL4 or its N terminus on pre-RCs via fusion with Orc4 protein resulted in the recruitment of essential initiation factors, such as Mcm10, And-1, Cdc45, and GINS, increasing nascent DNA synthesis in late replicating origins during early S phase. In this origin activation process, tethered RecQL4 was able to recruit Cdc45 even in the absence of cyclin-dependent kinase (CDK) activity, whereas CDK phosphorylation of RecQL4 N terminus was required for interaction with and origin recruitment of And-1 and GINS. In addition, forced activation of replication origins by RecQL4 tethering resulted in increased replication stress and the accumulation of ssDNAs, which can be recovered by transcription inhibition. Collectively, these results suggest that recruitment of RecQL4 to replication origins is an important step for temporal activation of replication origins during S phase. Further, perturbation of replication timing control by unscheduled origin activation significantly induces replication stress, which is mostly caused by transcription-replication conflicts.
Collapse
Affiliation(s)
- Gwangsu Shin
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongsoo Jeong
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsup Kim
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Sub Im
- Department of Biology Education, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon-Kyu Lee
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea .,Department of Biology Education, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
208
|
Chen R, Hou R, Hong X, Yan S, Zha J. Organophosphate flame retardants (OPFRs) induce genotoxicity in vivo: A survey on apoptosis, DNA methylation, DNA oxidative damage, liver metabolites, and transcriptomics. ENVIRONMENT INTERNATIONAL 2019; 130:104914. [PMID: 31226563 DOI: 10.1016/j.envint.2019.104914] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND As potential substitutes for polybrominated diphenyl ethers (PBDEs), organophosphate flame retardants (OPFRs) have been frequently detected in the environment. However, the genotoxicity induced by these OPFRs has rarely been described, and the results reported in previous studies are conflicting and inconsistent. OBJECTIVES The present study aimed to determine how OPFRs induced genetic toxicity in vivo. METHODS Using Chinese rare minnow as a model, the toxicity of three OPFRs was screened with RNA-seq. To verify the OPFR-induced genotoxicity, alkaline comet assay, cell apoptosis analysis, HPLC-based DNA methylation assay, 8-OHdG assay, bioconcentration and biotransformation investigation were performed. RESULTS According to transcriptomic data, TDCIPP exposure substantially altered the pathways related to DNA damage, including the cell cycle, DNA replication, Fanconi anemia pathway, p53 signaling pathway, and various DNA repair pathways. Although TBOEP and TPHP did not affect DNA damage, TDCIPP induced DNA damage in a dose-dependent manner. TDCIPP also induced apoptosis, altered the activities of caspase-3 and -9, and increased the 8-OHdG levels, while a significant difference in the levels of DNA methylation induced by OPFRs was not observed. CONCLUSIONS Based on these results, TDCIPP induced DNA oxidative damage, eventually leading to genotoxicity in vivo.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Hou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
209
|
Morris ER, Taylor IA. The missing link: allostery and catalysis in the anti-viral protein SAMHD1. Biochem Soc Trans 2019; 47:1013-1027. [PMID: 31296733 PMCID: PMC7045340 DOI: 10.1042/bst20180348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Vertebrate protein SAMHD1 (sterile-α-motif and HD domain containing protein 1) regulates the cellular dNTP (2'-deoxynucleoside-5'-triphosphate) pool by catalysing the hydrolysis of dNTP into 2'-deoxynucleoside and triphosphate products. As an important regulator of cell proliferation and a key player in dNTP homeostasis, mutations to SAMHD1 are implicated in hypermutated cancers, and germline mutations are associated with Chronic Lymphocytic Leukaemia and the inflammatory disorder Aicardi-Goutières Syndrome. By limiting the supply of dNTPs for viral DNA synthesis, SAMHD1 also restricts the replication of several retroviruses, such as HIV-1, and some DNA viruses in dendritic and myeloid lineage cells and resting T-cells. SAMHD1 activity is regulated throughout the cell cycle, both at the level of protein expression and post-translationally, through phosphorylation. In addition, allosteric regulation further fine-tunes the catalytic activity of SAMHD1, with a nucleotide-activated homotetramer as the catalytically active form of the protein. In cells, GTP and dATP are the likely physiological activators of two adjacent allosteric sites, AL1 (GTP) and AL2 (dATP), that bridge monomer-monomer interfaces to stabilise the protein homotetramer. This review summarises the extensive X-ray crystallographic, biophysical and molecular dynamics experiments that have elucidated important features of allosteric regulation in SAMHD1. We present a comprehensive mechanism detailing the structural and protein dynamics components of the allosteric coupling between nucleotide-induced tetramerization and the catalysis of dNTP hydrolysis by SAMHD1.
Collapse
Affiliation(s)
- Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
210
|
Zhao J, Guo Z, Wang Q, Si T, Pei S, Qu H, Shang L, Yang Y, Wang L. HPV infection associated DNA damage correlated with cervical precancerous lesions and cancer in the highest area of cervical cancer mortality, Longnan, China. Cancer Manag Res 2019; 11:7197-7210. [PMID: 31534369 PMCID: PMC6681565 DOI: 10.2147/cmar.s201415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives This study was to assess whether human papillomavirus (HPV) resulting in genetic instability is one reason for the high incidence and mortality of cervical cancer in Longnan. Methods Between 2012 and 2016, a total of 346 samples from Longnan were collected and divided into four groups: cervicitis group (n=57), cervical intraepithelial neoplasia I group (CIN I, n=63), CIN II/III group (n=79) and invasive squamous cell carcinoma group (SCC, n=147). HPV E6/E7 mRNA was detected by Quantivirus® HPV E6/E7 RNA 3.0 assay (bDNA). The markers of DNA damage response (DDR) – ataxia telangiectasia mutated (ATM) pSer1981, H2AX pSer139 (γH2AX), Chk2 pThr68 and P53 – were analyzed by immunohistochemistry. Results The activation of ATM, γH2AX, Chk2 and P53 was increased with increasing severity of cervical lesion. A significant difference of ATM expression in simple infection was also shown accompanied by the cervical lesion. The expression of γH2AX between HPV16+ and HPV16- specimens, γH2AX and P53 between HPV58+ and HPV58- groups had statistical significance. The expression and copy number of HPV E6/7 mRNA increases with the cervical lesion severity. A significant difference was shown for P53 expression between HPV E6/7 mRNA+ and mRNA- specimens. A close correlation with CHK2 expression for HPV E6/7 mRNA+ and HPV16 E6/7 mRNA+ specimens and γH2AX and CHK2 expression for SCC specimens was shown between low and high viral load groups. Conclusions DDR, HPV genotypes and HPV E6/E7 oncogene expression correlated with the level of dysplasia of cervical lesions. HPV infection resulted in genetic instability may be one reason for the high incidence and mortality in Longnan.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Zhong Guo
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Qiang Wang
- Department of Pathology, No. 1 Hospital of Longnan City, Longnan 746000, People's Republic of China
| | - Tianbin Si
- Department of Gynecology and Oncology, Gansu Provincial Cancer Hospital, Lanzhou 730050, People's Republic of China
| | - Shuyan Pei
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Hongmei Qu
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Lina Shang
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Yuqing Yang
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Lili Wang
- Department of Medical Function, Medical College of Northwest Minzu University, Lanzhou 730030, People's Republic of China
| |
Collapse
|
211
|
Kokina A, Ozolina Z, Liepins J. Purine auxotrophy: Possible applications beyond genetic marker. Yeast 2019; 36:649-656. [PMID: 31334866 DOI: 10.1002/yea.3434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023] Open
Abstract
Exploring new drug candidates or drug targets against many illnesses is necessary as "traditional" treatments lose their effectivity. Cancer and sicknesses caused by protozoan parasites are among these diseases. Cell purine metabolism is an important drug target. Theoretically, inhibiting purine metabolism could stop the proliferation of unwanted cells. Purine metabolism is similar across all eukaryotes. However, some medically important organisms or cell lines rely on their host purine metabolism. Protozoans causing malaria, leishmaniasis, or toxoplasmosis are purine auxotrophs. Some cancer forms have also lost the ability to synthesize purines de novo. Budding yeast can serve as an effective model for eukaryotic purine metabolism, and thus, purine auxotrophic strains could be an important tool. In this review, we present the common principles of purine metabolism in eukaryotes, effects of purine starvation in eukaryotic cells, and purine-starved Saccharomyces cerevisiae as a model for purine depletion-elicited metabolic states with applications in evolution studies and pharmacology. Purine auxotrophic yeast strains behave differently when growing in media with sufficient supplementation with adenine or in media depleted of adenine (starvation). In the latter, they undergo cell cycle arrest at G1/G0 and become stress resistant. Importantly, similar effects have also been observed among parasitic protozoans or cancer cells. We consider that studies on metabolic changes caused by purine auxotrophy could reveal new options for parasite or cancer therapy. Further, knowledge on phenotypic changes will improve the use of auxotrophic strains in high-throughput screening for primary drug candidates.
Collapse
Affiliation(s)
- Agnese Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Zane Ozolina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Janis Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
212
|
Cohen R, Milo S, Sharma S, Savidor A, Covo S. Ribonucleotide reductase from Fusarium oxysporum does not Respond to DNA replication stress. DNA Repair (Amst) 2019; 83:102674. [PMID: 31375409 DOI: 10.1016/j.dnarep.2019.102674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in dNTP biosynthesis and is tightly regulated at the transcription and activity levels. One of the best characterized responses of yeast to DNA damage is up-regulation of RNR transcription and activity and consequently, elevation of the dNTP pools. Hydroxyurea is a universal inhibitor of RNR that causes S phase arrest. It is used in the clinic to treat certain types of cancers. Here we studied the response of the fungal plant pathogen Fusarium oxysporum to hydroxyurea in order to generate hypotheses that can be used in the future in development of a new class of pesticides. F. oxysporum causes severe damage to more than 100 agricultural crops and specifically threatens banana cultivation world-wide. Although the recovery of F. oxysporum from transient hydroxyurea exposure was similar to the one of Saccharomyces cerevisiae, colony formation was strongly inhibited in F. oxysporum in comparison with S. cerevisiae. As expected, genomic and phosphoproteomic analyses of F. oxysporum conidia (spores) exposed to hydroxyurea showed hallmarks of DNA replication perturbation and activation of recombination. Unexpectedly and strikingly, RNR was not induced by either hydroxyurea or the DNA-damaging agent methyl methanesulfonate as determined at the RNA and protein levels. Consequently, dNTP concentrations were significantly reduced, even in response to a low dose of hydroxyurea. Methyl methanesulfonate treatment did not induce dNTP pools in F. oxysporum, in contrast to the response of RNR and dNTP pools to DNA damage and hydroxyurea in several tested organisms. Our results are important because the lack of a feedback mechanism to increase RNR expression in F. oxysporum is expected to sensitize the pathogen to a fungal-specific ribonucleotide inhibitor. The potential impact of our observations on F. oxysporum genome stability and genome evolution is discussed.
Collapse
Affiliation(s)
- Rotem Cohen
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Shira Milo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Alon Savidor
- de Botton Institute for Protein Profiling, the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel.
| |
Collapse
|
213
|
Abstract
It is believed that the Bcl-2 family protein Bok has a redundant role similar to Bax and Bak in regulating apoptosis. We report that this protein interacts with the key enzyme involved in uridine biosynthesis, uridine monophosphate synthetase, and positively regulates uridine biosynthesis and chemoconversion of 5-fluorouracil (5-FU). Bok-deficient cell lines are resistant to 5-FU. Bok down-regulation is a key feature of cell lines and primary colorectal tumor tissues that are resistant to 5-FU. Our data also show that through its impact on nucleotide metabolism, Bok regulates p53 level and cellular proliferation. Our results have implications for developing Bok as a biomarker for 5-FU resistance and for the development of BOK mimetics for sensitizing 5-FU-resistant cancers. BCL-2 family proteins regulate the mitochondrial apoptotic pathway. BOK, a multidomain BCL-2 family protein, is generally believed to be an adaptor protein similar to BAK and BAX, regulating the mitochondrial permeability transition during apoptosis. Here we report that BOK is a positive regulator of a key enzyme involved in uridine biosynthesis; namely, uridine monophosphate synthetase (UMPS). Our data suggest that BOK expression enhances UMPS activity, cell proliferation, and chemosensitivity. Genetic deletion of Bok results in chemoresistance to 5-fluorouracil (5-FU) in different cell lines and in mice. Conversely, cancer cells and primary tissues that acquire resistance to 5-FU down-regulate BOK expression. Furthermore, we also provide evidence for a role for BOK in nucleotide metabolism and cell cycle regulation. Our results have implications in developing BOK as a biomarker for 5-FU resistance and have the potential for the development of BOK-mimetics for sensitizing 5-FU-resistant cancers.
Collapse
|
214
|
Abstract
Recent studies have shown that genomic instability in tumor cells leads to activation of inflammatory signaling through the cGAS/STING pathway. In this review, we describe multiple ways by which genomic instability leads to cGAS/STING-mediated inflammatory signaling, as well as the consequences for tumor development and the tumor microenvironment. Also, we elaborate on how tumor cells have apparently evolved to escape the immune surveillance mechanisms that are triggered by cGAS/STING signaling. Finally, we describe how cGAS/STING-mediated inflammatory signaling can be therapeutically targeted to improve therapy responses.
Collapse
Affiliation(s)
- Francien Talens
- a Department of Medical Oncology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Marcel A T M Van Vugt
- a Department of Medical Oncology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
215
|
Replication fork stalling elicits chromatin compaction for the stability of stalling replication forks. Proc Natl Acad Sci U S A 2019; 116:14563-14572. [PMID: 31262821 DOI: 10.1073/pnas.1821475116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA replication forks in eukaryotic cells stall at a variety of replication barriers. Stalling forks require strict cellular regulations to prevent fork collapse. However, the mechanism underlying these cellular regulations is poorly understood. In this study, a cellular mechanism was uncovered that regulates chromatin structures to stabilize stalling forks. When replication forks stall, H2BK33, a newly identified acetylation site, is deacetylated and H3K9 trimethylated in the nucleosomes surrounding stalling forks, which results in chromatin compaction around forks. Acetylation-mimic H2BK33Q and its deacetylase clr6-1 mutations compromise this fork stalling-induced chromatin compaction, cause physical separation of replicative helicase and DNA polymerases, and significantly increase the frequency of stalling fork collapse. Furthermore, this fork stalling-induced H2BK33 deacetylation is independent of checkpoint. In summary, these results suggest that eukaryotic cells have developed a cellular mechanism that stabilizes stalling forks by targeting nucleosomes and inducing chromatin compaction around stalling forks. This mechanism is named the "Chromsfork" control: Chromatin Compaction Stabilizes Stalling Replication Forks.
Collapse
|
216
|
Abstract
The cyclin-dependent kinase (CDK)-RB-E2F axis forms the core transcriptional machinery driving cell cycle progression, dictating the timing and fidelity of genome replication and ensuring genetic material is accurately passed through each cell division cycle. The ultimate effectors of this axis are members of a family of eight distinct E2F genes encoding transcriptional activators and repressors. E2F transcriptional activity is tightly regulated throughout the cell cycle via transcriptional and translational regulation, post-translational modifications, protein degradation, binding to cofactors and subcellular localization. Alterations in one or more key components of this axis (CDKs, cyclins, CDK inhibitors and the RB family of proteins) occur in virtually all cancers and result in heightened oncogenic E2F activity, leading to uncontrolled proliferation. In this Review, we discuss the activities of E2F proteins with an emphasis on the newest atypical E2F family members, the specific and redundant functions of E2F proteins, how misexpression of E2F transcriptional targets promotes cancer and both current and developing therapeutic strategies being used to target this oncogenic pathway.
Collapse
Affiliation(s)
- Lindsey N Kent
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
217
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
218
|
Delfarah A, Parrish S, Junge JA, Yang J, Seo F, Li S, Mac J, Wang P, Fraser SE, Graham NA. Inhibition of nucleotide synthesis promotes replicative senescence of human mammary epithelial cells. J Biol Chem 2019; 294:10564-10578. [PMID: 31138644 DOI: 10.1074/jbc.ra118.005806] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a mechanism by which cells permanently withdraw from the cell cycle in response to stresses including telomere shortening, DNA damage, or oncogenic signaling. Senescent cells contribute to both age-related degeneration and hyperplastic pathologies, including cancer. In culture, normal human epithelial cells enter senescence after a limited number of cell divisions, known as replicative senescence. Here, to investigate how metabolic pathways regulate replicative senescence, we used LC-MS-based metabolomics to analyze senescent primary human mammary epithelial cells (HMECs). We did not observe significant changes in glucose uptake or lactate secretion in senescent HMECs. However, analysis of intracellular metabolite pool sizes indicated that senescent cells exhibit depletion of metabolites from nucleotide synthesis pathways. Furthermore, stable isotope tracing with 13C-labeled glucose or glutamine revealed a dramatic blockage of flux of these two metabolites into nucleotide synthesis pathways in senescent HMECs. To test whether cellular immortalization would reverse these observations, we expressed telomerase in HMECs. In addition to preventing senescence, telomerase expression maintained metabolic flux from glucose into nucleotide synthesis pathways. Finally, we investigated whether inhibition of nucleotide synthesis in proliferating HMECs is sufficient to induce senescence. In proliferating HMECs, both pharmacological and genetic inhibition of ribonucleotide reductase regulatory subunit M2 (RRM2), a rate-limiting enzyme in dNTP synthesis, induced premature senescence with concomitantly decreased metabolic flux from glucose into nucleotide synthesis. Taken together, our results suggest that nucleotide synthesis inhibition plays a causative role in the establishment of replicative senescence in HMECs.
Collapse
Affiliation(s)
- Alireza Delfarah
- From the Mork Family Department of Chemical Engineering and Materials Science
| | - Sydney Parrish
- From the Mork Family Department of Chemical Engineering and Materials Science
| | - Jason A Junge
- the Translational Imaging Center, Molecular and Computational Biology, and
| | - Jesse Yang
- From the Mork Family Department of Chemical Engineering and Materials Science
| | - Frances Seo
- From the Mork Family Department of Chemical Engineering and Materials Science
| | - Si Li
- From the Mork Family Department of Chemical Engineering and Materials Science
| | - John Mac
- From the Mork Family Department of Chemical Engineering and Materials Science
| | - Pin Wang
- From the Mork Family Department of Chemical Engineering and Materials Science
| | - Scott E Fraser
- the Translational Imaging Center, Molecular and Computational Biology, and
| | - Nicholas A Graham
- From the Mork Family Department of Chemical Engineering and Materials Science, .,the Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
219
|
Itkonen HM, Poulose N, Walker S, Mills IG. CDK9 Inhibition Induces a Metabolic Switch that Renders Prostate Cancer Cells Dependent on Fatty Acid Oxidation. Neoplasia 2019; 21:713-720. [PMID: 31151054 PMCID: PMC6541904 DOI: 10.1016/j.neo.2019.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022] Open
Abstract
Cyclin-dependent kinase 9 (CDK9), a key regulator of RNA-polymerase II, is a candidate drug target for cancers driven by transcriptional deregulation. Here we report a multi-omics-profiling of prostate cancer cell responses to CDK9 inhibition to identify synthetic lethal interactions. These interactions were validated using live-cell imaging, mitochondrial flux-, viability- and cell death activation assays. We show that CDK9 inhibition induces acute metabolic stress in prostate cancer cells. This is manifested by a drastic down-regulation of mitochondrial oxidative phosphorylation, ATP depletion and induction of a rapid and sustained phosphorylation of AMP-activated protein kinase (AMPK), the key sensor of cellular energy homeostasis. We used metabolomics to demonstrate that inhibition of CDK9 leads to accumulation of acyl-carnitines, metabolic intermediates in fatty acid oxidation (FAO). Acyl-carnitines are produced by carnitine palmitoyltransferase enzymes 1 and 2 (CPT), and we used both genetic and pharmacological tools to show that inhibition of CPT-activity is synthetically lethal with CDK9 inhibition. To our knowledge this is the first report to show that CDK9 inhibition dramatically alters cancer cell metabolism.
Collapse
Affiliation(s)
- Harri M Itkonen
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, 0349, Norway; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Ninu Poulose
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, BT7 1NN, UK.
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, 0349, Norway; PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, BT7 1NN, UK; Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
220
|
Bloom JC, Loehr AR, Schimenti JC, Weiss RS. Germline genome protection: implications for gamete quality and germ cell tumorigenesis. Andrology 2019; 7:516-526. [PMID: 31119900 DOI: 10.1111/andr.12651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Germ cells have a unique and critical role as the conduit for hereditary information and therefore employ multiple strategies to protect genomic integrity and avoid mutations. Unlike somatic cells, which often respond to DNA damage by arresting the cell cycle and conducting DNA repair, germ cells as well as long-lived pluripotent stem cells typically avoid the use of error-prone repair mechanisms and favor apoptosis, reducing the risk of genetic alterations. Testicular germ cell tumors, the most common cancers of young men, arise from pre-natal germ cells. OBJECTIVES To summarize the current understanding of DNA damage response mechanisms in pre-meiotic germ cells and to discuss how they impact both the origins of testicular germ cell tumors and their remarkable responsiveness to genotoxic chemotherapy. MATERIALS AND METHODS We conducted a review of literature gathered from PubMed regarding the DNA damage response properties of testicular germ cell tumors and the germ cells from which they arise, as well as the influence of these mechanisms on therapeutic responses by testicular germ cell tumors. RESULTS AND DISCUSSION This review provides a comprehensive evaluation of how the developmental origins of male germ cells and their inherent germ cell-like DNA damage response directly impact the development and therapeutic sensitivity of testicular germ cell tumors. CONCLUSIONS The DNA damage response of germ cells directly impacts the development and therapeutic sensitivity of testicular germ cell tumors. Recent advances in the study of primordial germ cells, post-natal mitotically dividing germ cells, and pluripotent stem cells will allow for new investigations into the initiation, progression, and treatment of testicular germ cell tumors.
Collapse
Affiliation(s)
- J C Bloom
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - A R Loehr
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - J C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - R S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
221
|
Morrison C, Bandara K, Wang W, Zhang L, Figueroa B. Improvement of growth rates through nucleoside media supplementation of CHO clones. Cytotechnology 2019; 71:733-742. [PMID: 31115721 DOI: 10.1007/s10616-019-00319-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Chinese Hamster Ovary (CHO) cells are used for the production of therapeutic proteins. This work examines improving passaging growth rate of two CHO clones. Growth rates were significantly improved for both clones with supplementation of the nucleosides cytidine, hypoxanthine, uridine, and thymidine to the culturing media at the optimal concentration of 100 µM of each nucleoside. We investigated supplementing the same combination of nucleosides to seed bioreactors and production fed batch bioreactors. In the seed bioreactors, growth rate and harvest density were improved. However, in the production fed batch bioreactors, no improvements in growth rate or peak viable cell density were observed. Cell cycle analysis of the passaging cells provides evidence that nucleosides can affect the cell cycle. It is not clear from our work how the nucleosides impact the cell cycle regulatory pathways. Overall, nucleoside supplementation in cell culture media is an effective approach for improving growth rate in passaging and seed bioreactors of certain CHO cells.
Collapse
Affiliation(s)
- Carly Morrison
- Culture Process Development, Pfizer Inc., 1 Burtt Rd, Andover, MA, 01810, USA.
| | | | - Wenge Wang
- Culture Process Development, Pfizer Inc., 1 Burtt Rd, Andover, MA, 01810, USA
| | - Lin Zhang
- Cell Line Development, Pfizer Inc., Andover, USA
| | - Bruno Figueroa
- Culture Process Development, Pfizer Inc., 1 Burtt Rd, Andover, MA, 01810, USA
| |
Collapse
|
222
|
Li M, Lu Y, Li Y, Tong L, Gu XC, Meng J, Zhu Y, Wu L, Feng M, Tian N, Zhang P, Xu T, Lin SH, Tong X. Transketolase Deficiency Protects the Liver from DNA Damage by Increasing Levels of Ribose 5-Phosphate and Nucleotides. Cancer Res 2019; 79:3689-3701. [PMID: 31101762 DOI: 10.1158/0008-5472.can-18-3776] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/27/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022]
Abstract
De novo nucleotide biosynthesis is essential for maintaining cellular nucleotide pools, the suppression of which leads to genome instability. The metabolic enzyme transketolase (TKT) in the nonoxidative branch of the pentose phosphate pathway (PPP) regulates ribose 5-phosphate (R5P) levels and de novo nucleotide biosynthesis. TKT is required for maintaining cell proliferation in human liver cancer cell lines, yet the role of TKT in liver injury and cancer initiation remains to be elucidated. In this study, we generated a liver-specific TKT knockout mouse strain by crossing TKTflox/flox mice with albumin-Cre mice. Loss of TKT in hepatocytes protected the liver from diethylnitrosamine (DEN)-induced DNA damage without altering DEN metabolism. DEN treatment of TKT-null liver increased levels of R5P and promoted de novo nucleotide synthesis. More importantly, supplementation of dNTPs in primary hepatocytes alleviated DEN-induced DNA damage, cell death, inflammatory response, and cell proliferation. Furthermore, DEN and high-fat diet (HFD)-induced liver carcinogenesis was reduced in TKTflox/floxAlb-Cre mice compared with control littermates. Mechanistically, loss of TKT in the liver increased apoptosis, reduced cell proliferation, decreased TNFα, IL6, and STAT3 levels, and alleviated DEN/HFD-induced hepatic steatosis and fibrosis. Together, our data identify a key role for TKT in promoting genome instability during liver injury and tumor initiation. SIGNIFICANCE: These findings identify transketolase as a novel metabolic target to maintain genome stability and reduce liver carcinogenesis.
Collapse
Affiliation(s)
- Minle Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yakui Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Chuan Gu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jian Meng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Feng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Tian
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianle Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Hai Lin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
223
|
Degtyareva NP, Saini N, Sterling JF, Placentra VC, Klimczak LJ, Gordenin DA, Doetsch PW. Mutational signatures of redox stress in yeast single-strand DNA and of aging in human mitochondrial DNA share a common feature. PLoS Biol 2019; 17:e3000263. [PMID: 31067233 PMCID: PMC6527239 DOI: 10.1371/journal.pbio.3000263] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/20/2019] [Accepted: 04/25/2019] [Indexed: 11/18/2022] Open
Abstract
Redox stress is a major hallmark of cancer. Analysis of thousands of sequenced cancer exomes and whole genomes revealed distinct mutational signatures that can be attributed to specific sources of DNA lesions. Clustered mutations discovered in several cancer genomes were linked to single-strand DNA (ssDNA) intermediates in various processes of DNA metabolism. Previously, only one clustered mutational signature had been clearly associated with a subclass of ssDNA-specific apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases. Others remain to be elucidated. We report here deciphering of the mutational spectra and mutational signature of redox stress in ssDNA of budding yeast and the signature of aging in human mitochondrial DNA. We found that the predominance of C to T substitutions is a common feature of both signatures. Measurements of the frequencies of hydrogen peroxide-induced mutations in proofreading-defective yeast mutants supported the conclusion that hydrogen peroxide-induced mutagenesis is not the result of increased DNA polymerase misincorporation errors but rather is caused by direct damage to DNA. Proteins involved in modulation of chromatin status play a significant role in prevention of redox stress-induced mutagenesis, possibly by facilitating protection through modification of chromatin structure. These findings provide an opportunity for the search and identification of the mutational signature of redox stress in cancers and in other pathological conditions and could potentially be used for informing therapeutic decisions. In addition, the discovery of such signatures that may be present in related organisms should also advance our understanding of evolution.
Collapse
Affiliation(s)
- Natalya P. Degtyareva
- Mutagenesis and DNA Repair Regulation Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Natalie Saini
- Mechanisms of Genome Dynamics Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Joan F. Sterling
- Mechanisms of Genome Dynamics Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Victoria C. Placentra
- Mutagenesis and DNA Repair Regulation Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Mechanisms of Genome Dynamics Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Paul W. Doetsch
- Mutagenesis and DNA Repair Regulation Group, Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
224
|
Chen CHS, Kuo TC, Kuo HC, Tseng YJ, Kuo CH, Yuan TH, Chan CC. Metabolomics of Children and Adolescents Exposed to Industrial Carcinogenic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5454-5465. [PMID: 30971086 DOI: 10.1021/acs.est.9b00392] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Studies on metabolomes of carcinogenic pollutants among children and adolescents are limited. We aim to identify metabolic perturbations in 107 children and adolescents (aged 9-15) exposed to multiple carcinogens in a polluted area surrounding the largest petrochemical complex in Taiwan. We measured urinary concentrations of eight carcinogen exposure biomarkers (heavy metals and polycyclic aromatic hydrocarbons (PAHs) represented by 1-hydroxypyrene), and urinary oxidative stress biomarkers and serum acylcarnitines as biomarkers of early health effects. Serum metabolomics was analyzed using a liquid chromatography mass spectrometry-based method. Pathway analysis and "meet-in-the-middle" approach were applied to identify potential metabolites and biological mechanisms linking carcinogens exposure with early health effects. We found 10 potential metabolites possibly linking increased exposure to IARC group 1 carcinogens (As, Cd, Cr, Ni) and group 2 carcinogens (V, Hg, PAHs) with elevated oxidative stress and deregulated serum acylcarnitines, including inosine monophosphate and adenosine monophosphate (purine metabolism), malic acid and oxoglutaric acid (citrate cycle), carnitine (fatty acid metabolism), and pyroglutamic acid (glutathione metabolism). Purine metabolism was identified as the possible mechanism affected by children and adolescents' exposure to carcinogens. These findings contribute to understanding the health effects of childhood and adolescence exposure to multiple industrial carcinogens during critical periods of development.
Collapse
Affiliation(s)
- Chi-Hsin S Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health , National Taiwan University , No. 17, Xu-Zhou Road , Taipei 10055 , Taiwan
| | - Tien-Chueh Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Yufeng J Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science , National Taiwan University ., No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine , National Taiwan University , No. 33, Linsen S. Road , Taipei 10055 , Taiwan
| | - Tzu-Hsuen Yuan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health , National Taiwan University , No. 17, Xu-Zhou Road , Taipei 10055 , Taiwan
| | - Chang-Chuan Chan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health , National Taiwan University , No. 17, Xu-Zhou Road , Taipei 10055 , Taiwan
| |
Collapse
|
225
|
Petropoulos M, Champeris Tsaniras S, Taraviras S, Lygerou Z. Replication Licensing Aberrations, Replication Stress, and Genomic Instability. Trends Biochem Sci 2019; 44:752-764. [PMID: 31054805 DOI: 10.1016/j.tibs.2019.03.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023]
Abstract
Strict regulation of DNA replication is of fundamental significance for the maintenance of genome stability. Licensing of origins of DNA replication is a critical event for timely genome duplication. Errors in replication licensing control lead to genomic instability across evolution. Here, we present accumulating evidence that aberrant replication licensing is linked to oncogene-induced replication stress and poses a major threat to genome stability, promoting tumorigenesis. Oncogene activation can lead to defects in where along the genome and when during the cell cycle licensing takes place, resulting in replication stress. We also discuss the potential of replication licensing as a specific target for novel anticancer therapies.
Collapse
Affiliation(s)
- Michalis Petropoulos
- Department of Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece.
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras 26504, Greece.
| |
Collapse
|
226
|
Schlimpert M, Lagies S, Müller B, Budnyk V, Blanz KD, Walz G, Kammerer B. Metabolic perturbations caused by depletion of nephronophthisis factor Anks6 in mIMCD3 cells. Metabolomics 2019; 15:71. [PMID: 31041607 DOI: 10.1007/s11306-019-1535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Nephronophthisis (NPH) is an inherited form of cystic kidney disease with various extrarenal manifestations accounting for the largest amount of endstage renal disease in childhood. Patient mutations of Anks6 have also been found to cause NPH like phenotypes in animal models. However, little is known about functionality of Anks6. OBJECTIVES/METHODS We investigated the impact of Anks6 depletion on cellular metabolism of inner medullary collecting duct cells by GC-MS profiling and targeted LC-MS/MS analysis using two different shRNA cell lines for tetracycline-inducible Anks6 downregulation, namely mIMCD3 krab shANKS6 i52 and mIMCD3 krab shANKS6 i12. RESULTS In combination, we could successfully identify 158 metabolites of which 20 compounds showed similar alterations in both knockdown systems. Especially, large neutral amino acids, such as phenylalanine, where found to be significantly downregulated indicating disturbances in amino acid metabolism. Arginine, lysine and spermidine, which play an important role in cell survival and proliferation, were found to be downregulated. Accordingly, cell growth was diminished in tet treated mIMCD3 krab shANKS6 i52 knockdown cells. Deoxynucleosides were significantly downregulated in both knockdown systems. Hence, PARP1 levels were increased in tet treated mIMCD3 krab shANKS6 i52 cells, but not in tet treated mIMCD3 krab shANKS6 i12 cells. However, yH2AX was found to be increased in the latter. CONCLUSION In combination, we hypothesise that Anks6 affects DNA damage responses and proliferation and plays a crucial role in physiological amino acid and purine/pyrimidine metabolism.
Collapse
Affiliation(s)
- Manuel Schlimpert
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Simon Lagies
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Barbara Müller
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Vadym Budnyk
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Kelly Daryll Blanz
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
227
|
Lamm N, Rogers S, Cesare AJ. The mTOR pathway: Implications for DNA replication. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:17-25. [PMID: 30991055 DOI: 10.1016/j.pbiomolbio.2019.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
DNA replication plays a central role in genome health. Deleterious alteration of replication dynamics, or "replication stress", is a key driver of genome instability and oncogenesis. The replication stress response is regulated by the ATR kinase, which functions to mitigate replication abnormalities through coordinated efforts that arrest the cell cycle and repair damaged replication forks. mTOR kinase regulates signaling networks that control cell growth and metabolism in response to environmental cues and cell stress. In this review, we discuss interconnectivity between the ATR and mTOR pathways, and provide putative mechanisms for mTOR engagement in DNA replication and the replication stress response. Finally, we describe how connectivity between mTOR and replication stress may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Noa Lamm
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Samuel Rogers
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia.
| |
Collapse
|
228
|
Ubhi T, Brown GW. Exploiting DNA Replication Stress for Cancer Treatment. Cancer Res 2019; 79:1730-1739. [PMID: 30967400 DOI: 10.1158/0008-5472.can-18-3631] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Complete and accurate DNA replication is fundamental to cellular proliferation and genome stability. Obstacles that delay, prevent, or terminate DNA replication cause the phenomena termed DNA replication stress. Cancer cells exhibit chronic replication stress due to the loss of proteins that protect or repair stressed replication forks and due to the continuous proliferative signaling, providing an exploitable therapeutic vulnerability in tumors. Here, we outline current and pending therapeutic approaches leveraging tumor-specific replication stress as a target, in addition to the challenges associated with such therapies. We discuss how replication stress modulates the cell-intrinsic innate immune response and highlight the integration of replication stress with immunotherapies. Together, exploiting replication stress for cancer treatment seems to be a promising strategy as it provides a selective means of eliminating tumors, and with continuous advances in our knowledge of the replication stress response and lessons learned from current therapies in use, we are moving toward honing the potential of targeting replication stress in the clinic.
Collapse
Affiliation(s)
- Tajinder Ubhi
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
229
|
Tonzi P, Huang TT. Role of Y-family translesion DNA polymerases in replication stress: Implications for new cancer therapeutic targets. DNA Repair (Amst) 2019; 78:20-26. [PMID: 30954011 DOI: 10.1016/j.dnarep.2019.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
DNA replication stress, defined as the slowing or stalling of replication forks, is considered an emerging hallmark of cancer and a major contributor to genomic instability associated with tumorigenesis (Macheret and Halazonetis, 2015). Recent advances have been made in attempting to target DNA repair factors involved in alleviating replication stress to potentiate genotoxic treatments. Various inhibitors of ATR and Chk1, the two major kinases involved in the intra-S-phase checkpoint, are currently in Phase I and II clinical trials [2]. In addition, currently approved inhibitors of Poly-ADP Ribose Polymerase (PARP) show synthetic lethality in cells that lack double-strand break repair such as in BRCA1/2 deficient tumors [3]. These drugs have also been shown to exacerbate replication stress by creating a DNA-protein crosslink, termed PARP 'trapping', and this is now thought to contribute to the therapeutic efficacy. Translesion synthesis (TLS) is a mechanism whereby special repair DNA polymerases accommodate and tolerate various DNA lesions to allow for damage bypass and continuation of DNA replication (Yang and Gao, 2018). This class of proteins is best characterized by the Y-family, encompassing DNA polymerases (Pols) Kappa, Eta, Iota, and Rev1. While best studied for their ability to bypass physical lesions on the DNA, there is accumulating evidence for these proteins in coping with various natural replication fork barriers and alleviating replication stress. In this mini-review, we will highlight some of these recent advances, and discuss why targeting the TLS pathway may be a mechanism of enhancing cancer-associated replication stress. Exacerbation of replication stress can lead to increased genome instability, which can be toxic to cancer cells and represent a therapeutic vulnerability.
Collapse
Affiliation(s)
- Peter Tonzi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
230
|
Özer Ö, Hickson ID. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biol 2019; 8:rsob.180018. [PMID: 29695617 PMCID: PMC5936717 DOI: 10.1098/rsob.180018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Oncogene activation during tumour development leads to changes in the DNA replication programme that enhance DNA replication stress. Certain regions of the human genome, such as common fragile sites and telomeres, are particularly sensitive to DNA replication stress due to their inherently ‘difficult-to-replicate’ nature. Indeed, it appears that these regions sometimes fail to complete DNA replication within the period of interphase when cells are exposed to DNA replication stress. Under these conditions, cells use a salvage pathway, termed ‘mitotic DNA repair synthesis (MiDAS)’, to complete DNA synthesis in the early stages of mitosis. If MiDAS fails, the ensuing mitotic errors threaten genome integrity and cell viability. Recent studies have provided an insight into how MiDAS helps cells to counteract DNA replication stress. However, our understanding of the molecular mechanisms and regulation of MiDAS remain poorly defined. Here, we provide an overview of how DNA replication stress triggers MiDAS, with an emphasis on how common fragile sites and telomeres are maintained. Furthermore, we discuss how a better understanding of MiDAS might reveal novel strategies to target cancer cells that maintain viability in the face of chronic oncogene-induced DNA replication stress.
Collapse
Affiliation(s)
- Özgün Özer
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
231
|
Lysosome inhibition sensitizes pancreatic cancer to replication stress by aspartate depletion. Proc Natl Acad Sci U S A 2019; 116:6842-6847. [PMID: 30894490 DOI: 10.1073/pnas.1812410116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional lysosomes mediate autophagy and macropinocytosis for nutrient acquisition. Pancreatic ductal adenocarcinoma (PDAC) tumors exhibit high basal lysosomal activity, and inhibition of lysosome function suppresses PDAC cell proliferation and tumor growth. However, the codependencies induced by lysosomal inhibition in PDAC have not been systematically explored. We performed a comprehensive pharmacological inhibition screen of the protein kinome and found that replication stress response (RSR) inhibitors were synthetically lethal with chloroquine (CQ) in PDAC cells. CQ treatment reduced de novo nucleotide biosynthesis and induced replication stress. We found that CQ treatment caused mitochondrial dysfunction and depletion of aspartate, an essential precursor for de novo nucleotide synthesis, as an underlying mechanism. Supplementation with aspartate partially rescued the phenotypes induced by CQ. The synergy of CQ and the RSR inhibitor VE-822 was comprehensively validated in both 2D and 3D cultures of PDAC cell lines, a heterotypic spheroid culture with cancer-associated fibroblasts, and in vivo xenograft and syngeneic PDAC mouse models. These results indicate a codependency on functional lysosomes and RSR in PDAC and support the translational potential of the combination of CQ and RSR inhibitors.
Collapse
|
232
|
Majer C, Schüssler JM, König R. Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies. Med Microbiol Immunol 2019; 208:513-529. [PMID: 30879196 DOI: 10.1007/s00430-019-00593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023]
Abstract
SAMHD1 was initially described for its ability to efficiently restrict HIV-1 replication in myeloid cells and resting CD4+ T cells. However, a growing body of evidence suggests that SAMHD1-mediated restriction is by far not limited to lentiviruses, but seems to be a general concept that applies to most retroviruses and at least a number of DNA viruses. SAMHD1 anti-viral activity was long believed to be solely due to its ability to deplete cellular dNTPs by enzymatic degradation. However, since its discovery, several new functions have been attributed to SAMHD1. It has been demonstrated to bind nucleic acids, to modulate innate immunity, as well as to participate in the DNA damage response and resolution of stalled replication forks. Consequently, it is likely that SAMHD1-mediated anti-viral activity is not or not exclusively mediated through its dNTPase activity. Therefore, in this review, we summarize current knowledge on SAMHD1 cellular functions and systematically discuss how these functions could contribute to the restriction of a broad range of viruses besides retroviruses: herpesviruses, poxviruses and hepatitis B virus. Furthermore, we aim to highlight different ways how viruses counteract SAMHD1-mediated restriction to bypass the SAMHD1-mediated block to viral infection.
Collapse
Affiliation(s)
- Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany. .,Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany.
| |
Collapse
|
233
|
Abstract
Differentiated neurons can undergo cell cycle re-entry during pathological conditions, but it remains largely accepted that M-phase is prohibited in these cells. Here we show that primary neurons at post-synaptogenesis stages of development can enter M-phase. We induced cell cycle re-entry by overexpressing a truncated Cyclin E isoform fused to Cdk2. Cyclin E/Cdk2 expression elicits canonical cell cycle checkpoints, which arrest cell cycle progression and trigger apoptosis. As in mitotic cells, checkpoint abrogation enables cell cycle progression through S and G2-phases into M-phase. Although most neurons enter M-phase, only a small subset undergo cell division. Alternatively, neurons can exit M-phase without cell division and recover the axon initial segment, a structural determinant of neuronal viability. We conclude that neurons and mitotic cells share S, G2 and M-phase regulation.
Collapse
|
234
|
Tuna M, Amos CI, Mills GB. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 2019; 10:2095-2111. [PMID: 31007851 PMCID: PMC6459343 DOI: 10.18632/oncotarget.26777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Recurrent fusion transcripts, which are one of the characteristic hallmarks of cancer, arise either from chromosomal rearrangements or from transcriptional errors in splicing. DNA rearrangements include intrachromosomal or interchromosomal translocation, tandem duplication, deletion, inversion, or result from chromothripsis, which causes complex rearrangements. In addition, fusion proteins can be created through transcriptional read-through. Fusion genes can be transcribed to fusion transcripts and translated to chimeric proteins, with many having demonstrated transforming activities through multiple mechanisms in cells. Fusion proteins represent novel therapeutic targets and diagnostic biomarkers of diagnosis, disease status, or progression. This review focuses on the mechanisms underlying the formation of oncogenic fusion genes and transcripts and their impact on the pathobiology of epithelial tumors.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR, USA
- Precision Oncology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
235
|
Savini C, Yang R, Savelyeva L, Göckel-Krzikalla E, Hotz-Wagenblatt A, Westermann F, Rösl F. Folate Repletion after Deficiency Induces Irreversible Genomic and Transcriptional Changes in Human Papillomavirus Type 16 (HPV16)-Immortalized Human Keratinocytes. Int J Mol Sci 2019; 20:ijms20051100. [PMID: 30836646 PMCID: PMC6429418 DOI: 10.3390/ijms20051100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 01/01/2023] Open
Abstract
Supplementation of micronutrients like folate is a double-edged sword in terms of their ambivalent role in cell metabolism. Although several epidemiological studies support a protective role of folate in carcinogenesis, there are also data arguing for an opposite effect. To address this issue in the context of human papillomavirus (HPV)-induced transformation, the molecular events of different folate availability on human keratinocytes immortalized by HPV16 E6 and E7 oncoproteins were examined. Several sublines were established: Control (4.5 µM folate), folate deficient (0.002 µM folate), and repleted cells (4.5 µM folate). Cells were analyzed in terms of oncogene expression, DNA damage and repair, karyotype changes, whole-genome sequencing, and transcriptomics. Here we show that folate depletion irreversibly induces DNA damage, impairment of DNA repair fidelity, and unique chromosomal alterations. Repleted cells additionally underwent growth advantage and enhanced clonogenicity, while the above mentioned impaired molecular properties became even more pronounced. Overall, it appears that a period of folate deficiency followed by repletion can shape immortalized cells toward an anomalous phenotype, thereby potentially contributing to carcinogenesis. These observations should elicit questions and inquiries for broader additional studies regarding folate fortification programs, especially in developing countries with micronutrient deficiencies and high HPV prevalence.
Collapse
Affiliation(s)
- Claudia Savini
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Ruwen Yang
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Larisa Savelyeva
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Elke Göckel-Krzikalla
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Agnes Hotz-Wagenblatt
- Omics IT and Data Management, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Frank Westermann
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
236
|
Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat Commun 2019; 10:991. [PMID: 30824700 PMCID: PMC6397164 DOI: 10.1038/s41467-019-08921-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/08/2019] [Indexed: 11/12/2022] Open
Abstract
6-Phosphogluconate dehydrogenase (6PGD) is a key enzyme that converts 6-phosphogluconate into ribulose-5-phosphate with NADP+ as cofactor in the pentose phosphate pathway (PPP). 6PGD is commonly upregulated and plays important roles in many human cancers, while the mechanism underlying such roles of 6PGD remains elusive. Here we show that upon EGFR activation, 6PGD is phosphorylated at tyrosine (Y) 481 by Src family kinase Fyn. This phosphorylation enhances 6PGD activity by increasing its binding affinity to NADP+ and therefore activates the PPP for NADPH and ribose-5-phosphate, which consequently detoxifies intracellular reactive oxygen species (ROS) and accelerates DNA synthesis. Abrogating 6PGD Y481 phosphorylation (pY481) dramatically attenuates EGF-promoted glioma cell proliferation, tumor growth and resistance to ionizing radiation. In addition, 6PGD pY481 is associated with Fyn expression, the malignancy and prognosis of human glioblastoma. These findings establish a critical role of Fyn-dependent 6PGD phosphorylation in EGF-promoted tumor growth and radiation resistance. 6-phosphogluconate dehydrogenase is commonly upregulated in cancers. Here, the authors show that activation of EGFR induces phosphorylation of this enzyme at Y481 to activate the pentose phosphate pathway, which consequently reduces ROS and accelerates DNA synthesis to promote tumor growth and radioresistance.
Collapse
|
237
|
Cunningham CE, MacAuley MJ, Yadav G, Vizeacoumar FS, Freywald A, Vizeacoumar FJ. Targeting the CINful genome: Strategies to overcome tumor heterogeneity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:77-91. [PMID: 30817936 DOI: 10.1016/j.pbiomolbio.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 01/21/2023]
Abstract
Genomic instability, and more specifically chromosomal instability (CIN), arises from a number of processes that are defective in cancer, such as aberrant mitotic cell division, replication stress, defective DNA damage repair, and ineffective telomere maintenance. CIN is an emerging hallmark of cancer that contributes to tumor heterogeneity through increased rates of genetic alterations. As genetic heterogeneity within a single tumor and between tumors is a key challenge leading to treatment failures, this brings to question, whether therapeutic approaches should aim at the genetic diversity or a specific mutation present within these tumors. Answering this question will determine the future of personalized targeted therapies. Here we discuss, how the genetic diversity associated with CIN in tumor cells can be used as a therapeutic advantage and targeted by exploiting the genetic concepts of synthetic lethality and synthetic dosage lethality. Given that a number of CIN-related pathways work together to fix the DNA damage within our genome and ensure proper segregation of chromosomes, we specifically focus on the genetic interactions amongst these pathways and their potential therapeutic applicability in cancer. We also discuss, how tumor genetic heterogeneity can be targeted in emerging immunotherapeutic approaches.
Collapse
Affiliation(s)
- Chelsea E Cunningham
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Mackenzie J MacAuley
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Garima Yadav
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Frederick S Vizeacoumar
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Andrew Freywald
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada.
| | - Franco J Vizeacoumar
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada; Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, S7N 5E5, Canada.
| |
Collapse
|
238
|
Díaz-Talavera A, Calvo PA, González-Acosta D, Díaz M, Sastre-Moreno G, Blanco-Franco L, Guerra S, Martínez-Jiménez MI, Méndez J, Blanco L. A cancer-associated point mutation disables the steric gate of human PrimPol. Sci Rep 2019; 9:1121. [PMID: 30718533 PMCID: PMC6362072 DOI: 10.1038/s41598-018-37439-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022] Open
Abstract
PrimPol is a human primase/polymerase specialized in re-starting stalled forks by repriming beyond lesions such as pyrimidine dimers, and replication-perturbing structures including G-quadruplexes and R-loops. Unlike most conventional primases, PrimPol proficiently discriminates against ribonucleotides (NTPs), being able to start synthesis using deoxynucleotides (dNTPs), yet the structural basis and physiological implications for this discrimination are not understood. In silico analyses based on the three-dimensional structure of human PrimPol and related enzymes enabled us to predict a single residue, Tyr100, as the main effector of sugar discrimination in human PrimPol and a change of Tyr100 to histidine to boost the efficiency of NTP incorporation. We show here that the Y100H mutation profoundly stimulates NTP incorporation by human PrimPol, with an efficiency similar to that for dNTP incorporation during both primase and polymerase reactions in vitro. As expected from the higher cellular concentration of NTPs relative to dNTPs, Y100H expression in mouse embryonic fibroblasts and U2OS osteosarcoma cells caused enhanced resistance to hydroxyurea, which decreases the dNTP pool levels in S-phase. Remarkably, the Y100H PrimPol mutation has been identified in cancer, suggesting that this mutation could be selected to promote survival at early stages of tumorigenesis, which is characterized by depleted dNTP pools.
Collapse
Affiliation(s)
- Alberto Díaz-Talavera
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Patricia A Calvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Daniel González-Acosta
- Centro Nacional de Investigaciones Oncológicas (CNIO), c/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Marcos Díaz
- Centro Nacional de Investigaciones Oncológicas (CNIO), c/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Guillermo Sastre-Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Luis Blanco-Franco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Susana Guerra
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Maria I Martínez-Jiménez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Juan Méndez
- Centro Nacional de Investigaciones Oncológicas (CNIO), c/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Luis Blanco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
239
|
Nava-Rodríguez MP, Domínguez-Cruz MD, Aguilar-López LB, Borjas-Gutiérrez C, Magaña-Torres MT, González-García JR. Genomic instability in a chronic lymphocytic leukemia patient with mono-allelic deletion of the DLEU and RB1 genes. Mol Cytogenet 2019; 12:2. [PMID: 30733830 PMCID: PMC6357463 DOI: 10.1186/s13039-019-0417-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/22/2019] [Indexed: 01/10/2023] Open
Abstract
Background The most frequent cytogenetic abnormality detected in chronic lymphocytic leukemia (CLL) patients is the presence of a deletion within the chromosome band 13q14. Deletions can be heterogeneous in size, generally encompassing the DLEU1 and DLEU2 genes (minimal deleted region), but at times also including the RB1 gene. The latter, larger type of deletions are associated with worse prognosis. Genomic instability is a characteristic of most cancers and it has been observed in CLL patients mainly associated with telomere shortening. Case presentation Cytogenetic and fluorescence in situ hybridization studies of a CLL patient showed a chromosomal translocation t(12;13)(q15;q14), a mono-allelic 13q14 deletion encompassing both the DLEU and RB1 genes, and genomic instability manifested as chromosomal breaks, telomeric associations, binucleated cells, nucleoplasmic bridges, and micronucleated cells. In conclusion, our CLL patient showed genomic instability in conjunction with a 13q14 deletion of approximately 2.6 megabase pair involving the DLEU and RB1 genes, as well as other genes with potential for producing genomic instability due to haploinsufficiency.
Collapse
Affiliation(s)
- María Paulina Nava-Rodríguez
- 1Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara, Guadalajara, Jalisco Mexico.,2División de Genética, Centro de investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Guadalajara, Jalisco Mexico
| | | | | | - César Borjas-Gutiérrez
- 4UMAE H. Especialidades-CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco México
| | - María Teresa Magaña-Torres
- 2División de Genética, Centro de investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Guadalajara, Jalisco Mexico
| | - Juan Ramón González-García
- 2División de Genética, Centro de investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, CIBO-IMSS, Guadalajara, Jalisco Mexico
| |
Collapse
|
240
|
Down-regulation of Cdk1 activity in G1 coordinates the G1/S gene expression programme with genome replication. Curr Genet 2019; 65:685-690. [DOI: 10.1007/s00294-018-00926-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
241
|
Abstract
The inactivation of critical cell cycle checkpoints by the human papillomavirus (HPV) oncoprotein E7 results in replication stress (RS) that leads to genomic instability in premalignant lesions. Intriguingly, RS tolerance is achieved through several mechanisms, enabling HPV to exploit the cellular RS response for viral replication and to facilitate viral persistence in the presence of DNA damage. As such, inhibitors of the RS response pathway may provide a novel approach to target HPV-associated lesions and cancers.
Collapse
|
242
|
Linking the organization of DNA replication with genome maintenance. Curr Genet 2019; 65:677-683. [PMID: 30600398 DOI: 10.1007/s00294-018-0923-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
The spatial and temporal organization of genome duplication, also referred to as the replication program, is defined by the distribution and the activities of the sites of replication initiation across the genome. Alterations to the replication profile are associated with cell fate changes during development and in pathologies, but the importance of undergoing S phase with distinct and specific programs remains largely unexplored. We have recently addressed this question, focusing on the interplay between the replication program and genome maintenance. In particular, we demonstrated that when cells encounter challenges to DNA synthesis, the organization of DNA replication drives the response to replication stress that is mediated by the ATR/Rad3 checkpoint pathway, thus shaping the pattern of genome instability along the chromosomes. In this review, we present the major findings of our study and discuss how they may bring new perspectives to our understanding of the biological importance of the replication program.
Collapse
|
243
|
Abstract
The maintenance of genome stability in eukaryotic cells relies on accurate and efficient replication along each chromosome following every cell division. The terminal position, repetitive sequence, and structural complexities of the telomeric DNA make the telomere an inherently difficult region to replicate within the genome. Thus, despite functioning to protect genome stability mammalian telomeres are also a source of replication stress and have been recognized as common fragile sites within the genome. Telomere fragility is exacerbated at telomeres that rely on the Alternative Lengthening of Telomeres (ALT) pathway. Like common fragile sites, ALT telomeres are prone to chromosome breaks and are frequent sites of recombination suggesting that ALT telomeres are subjected to chronic replication stress. Here, we will review the features of telomeric DNA that challenge the replication machinery and also how the cell overcomes these challenges to maintain telomere stability and ensure the faithful duplication of the human genome.
Collapse
Affiliation(s)
- Emily Mason-Osann
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Himabindu Gali
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Rachel Litman Flynn
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
244
|
Schoonen PM, Guerrero Llobet S, van Vugt MATM. Replication stress: Driver and therapeutic target in genomically instable cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:157-201. [PMID: 30798931 DOI: 10.1016/bs.apcsb.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomically instable cancers are characterized by progressive loss and gain of chromosomal fragments, and the acquisition of complex genomic rearrangements. Such cancers, including triple-negative breast cancers and high-grade serous ovarian cancers, typically show aggressive behavior and lack actionable driver oncogenes. Increasingly, oncogene-induced replication stress or defective replication fork maintenance is considered an important driver of genomic instability. Paradoxically, while replication stress causes chromosomal instability and thereby promotes cancer development, it intrinsically poses a threat to cellular viability. Apparently, tumor cells harboring high levels of replication stress have evolved ways to cope with replication stress. As a consequence, therapeutic targeting of such compensatory mechanisms is likely to preferentially target cancers with high levels of replication stress and may prove useful in potentiating chemotherapeutic approaches that exert their effects by interfering with DNA replication. Here, we discuss how replication stress drives chromosomal instability, and the cell cycle-regulated mechanisms that cancer cells employ to deal with replication stress. Importantly, we discuss how mechanisms involving DNA structure-specific resolvases, cell cycle checkpoint kinases and mitotic processing of replication intermediates offer possibilities in developing treatments for difficult-to-treat genomically instable cancers.
Collapse
Affiliation(s)
- Pepijn M Schoonen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
245
|
Irony-Tur Sinai M, Kerem B. Genomic instability in fragile sites-still adding the pieces. Genes Chromosomes Cancer 2018; 58:295-304. [PMID: 30525255 DOI: 10.1002/gcc.22715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
Common fragile sites (CFSs) are specific genomic regions in normal chromosomes that exhibit genomic instability under DNA replication stress. As replication stress is an early feature of cancer development, CFSs are involved in the signature of genomic instability found in malignant tumors. The landscape of CFSs is tissue-specific and differs under different replication stress inducers. Nevertheless, the features underlying CFS sensitivity to replication stress are shared. Here, we review the events generating replication stress and discuss the unique characteristics of CFS regions and the cellular responses aimed to stabilizing these regions.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
246
|
Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun 2018; 9:5442. [PMID: 30575741 PMCID: PMC6303315 DOI: 10.1038/s41467-018-07868-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) catalyzes the committed step in de novo serine biosynthesis. Paradoxically, PHGDH and serine synthesis are required in the presence of abundant environmental serine even when serine uptake exceeds the requirements for nucleotide synthesis. Here, we establish a mechanism for how PHGDH maintains nucleotide metabolism. We show that inhibition of PHGDH induces alterations in nucleotide metabolism independent of serine utilization. These changes are not attributable to defects in serine-derived nucleotide synthesis and redox maintenance, another key aspect of serine metabolism, but result from disruption of mass balance within central carbon metabolism. Mechanistically, this leads to simultaneous alterations in both the pentose phosphate pathway and the tri-carboxylic acid cycle, as we demonstrate based on a quantitative model. These findings define a mechanism whereby disruption of one metabolic pathway induces toxicity by simultaneously affecting the activity of multiple related pathways. Serine synthesis from glucose is required even when serine is available from the environment. Here, the authors explain this paradox by showing that the enzyme PHGDH enables nucleotide synthesis by coordinating anabolic fluxes related to central carbon metabolism, independent of its role in serine production.
Collapse
|
247
|
Saldivar JC, Park D. Mechanisms shaping the mutational landscape of the FRA3B/FHIT-deficient cancer genome. Genes Chromosomes Cancer 2018; 58:317-323. [PMID: 30242938 DOI: 10.1002/gcc.22684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022] Open
Abstract
Genome instability is an enabling characteristic of cancer that facilitates the acquisition of oncogenic mutations that drive tumorigenesis. Underlying much of the instability in cancer is DNA replication stress, which causes both chromosome structural changes and single base-pair mutations. Common fragile sites are some of the earliest and most frequently altered loci in tumors. Notably, the fragile locus, FRA3B, lies within the fragile histidine triad (FHIT) gene, and consequently deletions within FHIT are common in cancer. We review the evidence in support of FHIT as a DNA caretaker and discuss the mechanism by which FHIT promotes genome stability. FHIT increases thymidine kinase 1 (TK1) translation to balance the deoxyribonucleotide triphosphates (dNTPs) for efficient DNA replication. Consequently, FHIT-loss causes replication stress, DNA breaks, aneuploidy, copy-number changes (CNCs), small insertions and deletions, and point mutations. Moreover, FHIT-loss-induced replication stress and DNA breaks cooperate with APOBEC3B overexpression to catalyze DNA hypermutation in cancer, as APOBEC family enzymes prefer single-stranded DNA (ssDNA) as substrates and ssDNA is enriched at sites of both replication stress and DNA breaks. Consistent with the frequent loss of FHIT across a broad spectrum of cancer types, FHIT-deficiency is highly associated with the ubiquitous, clock-like mutation signature 5 occurring in all cancer types thus far examined. The ongoing destabilization of the genome caused by FHIT loss underlies recurrent inactivation of tumor suppressors and activation of oncogenes. Considering that more than 50% of cancers are FHIT-deficient, we propose that FRA3B/FHIT fragility shapes the mutational landscape of cancer genomes.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| | - Dongju Park
- Department of Cancer Biology and Genetics, The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
248
|
Katayama M, Kiyono T, Ohmaki H, Eitsuka T, Endoh D, Inoue-Murayama M, Nakajima N, Onuma M, Fukuda T. Extended proliferation of chicken- and Okinawa rail-derived fibroblasts by expression of cell cycle regulators. J Cell Physiol 2018; 234:6709-6720. [PMID: 30417340 DOI: 10.1002/jcp.27417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/21/2018] [Indexed: 11/08/2022]
Abstract
Although immortalized cultured cells are useful for various functional assays or transcriptome analysis, highly efficient and reproducible immortalization methods have not been developed in avian-derived cells. We introduced the simian virus 40 T antigen (SV40T) and human papillomavirus (HPV)-E6E7 to chick and Okinawa rail (endangered species)derived fibroblast. As a result, neither the SV40T nor E6E7 genes could induce avian cell immortality. Accordingly, we attempted to use a recently developed immortalization method, which involved the coexpression of mutant cyclin-dependent kinase 4 (CDK4), Cyclin D, and TERT (K4DT method) in these avian cells. Although the K4DT method could not efficiently induce the efficient immortalization in mass cell population, cellular division until the senescence was significantly extended by K4DT, we succeeded to obtain the immortalized avian cells (chick K4DT: one clone, Okinawa rail K4DT: three clones, Okinawa rail K4DT + telomerase RNA component: one clone) with K4DT expression. We conclude that K4DT expression is used to extend the cell division and immortalization of avian-derived cells.
Collapse
Affiliation(s)
- Masafumi Katayama
- Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, Tsukuba, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitomi Ohmaki
- Laboratory of Radiation Biology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Takahiro Eitsuka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Daiji Endoh
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan.,Laboratory of Radiation Biology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Miho Inoue-Murayama
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan.,Wildlife Research Center of Kyoto University, Kyoto, Japan
| | - Nobuyoshi Nakajima
- Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, Tsukuba, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan
| | - Manabu Onuma
- Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, Tsukuba, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tomokazu Fukuda
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan.,Graduate School of Science and Engineering, Iwate University, Morioka, Japan.,Soft-Path Engineering Research Center (SPERC), Iwate University, Morioka, Japan
| |
Collapse
|
249
|
Courtot L, Hoffmann JS, Bergoglio V. The Protective Role of Dormant Origins in Response to Replicative Stress. Int J Mol Sci 2018; 19:ijms19113569. [PMID: 30424570 PMCID: PMC6274952 DOI: 10.3390/ijms19113569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Genome stability requires tight regulation of DNA replication to ensure that the entire genome of the cell is duplicated once and only once per cell cycle. In mammalian cells, origin activation is controlled in space and time by a cell-specific and robust program called replication timing. About 100,000 potential replication origins form on the chromatin in the gap 1 (G1) phase but only 20⁻30% of them are active during the DNA replication of a given cell in the synthesis (S) phase. When the progress of replication forks is slowed by exogenous or endogenous impediments, the cell must activate some of the inactive or "dormant" origins to complete replication on time. Thus, the many origins that may be activated are probably key to protect the genome against replication stress. This review aims to discuss the role of these dormant origins as safeguards of the human genome during replicative stress.
Collapse
Affiliation(s)
- Lilas Courtot
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| |
Collapse
|
250
|
Röthlisberger P, Levi-Acobas F, Sarac I, Ricoux R, Mahy JP, Herdewijn P, Marlière P, Hollenstein M. Incorporation of a minimal nucleotide into DNA. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|