201
|
Heading for Personalized rTMS in Tinnitus: Reliability of Individualized Stimulation Protocols in Behavioral and Electrophysiological Responses. J Pers Med 2021; 11:jpm11060536. [PMID: 34207847 PMCID: PMC8226921 DOI: 10.3390/jpm11060536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool potentially modulating pathological brain activity. Its clinical effectiveness is hampered by varying results and characterized by inter-individual variability in treatment responses. RTMS individualization might constitute a useful strategy to overcome this variability. A precondition for this approach would be that repeatedly applied protocols result in reliable effects. The condition tinnitus provides the advantage of immediate behavioral consequences (tinnitus loudness changes) after interventions and thus offers an excellent model to exemplify TMS personalization. Objective: The aim was to investigate the test–retest reliability of short rTMS stimulations in modifying tinnitus loudness and oscillatory brain activity as well as to examine the feasibility of rTMS individualization in tinnitus. Methods: Three short verum (1, 10, 20 Hz; 200 pulses) and one sham (0.1 Hz; 20 pulses) rTMS protocol were administered on two different days in 22 tinnitus patients. Before and after each protocol, oscillatory brain activity was recorded with electroencephalography (EEG), together with behavioral tinnitus loudness ratings. RTMS individualization was executed on the basis of behavioral and electrophysiological responses. Stimulation responders were identified via consistent sham-superior increases in tinnitus loudness (behavioral responders) and alpha power increases or gamma power decreases (alpha responders/gamma responders) in accordance with the prevalent neurophysiological models for tinnitus. Results: It was feasible to identify individualized rTMS protocols featuring reliable tinnitus loudness changes (55% behavioral responder), alpha increases (91% alpha responder) and gamma decreases (100% gamma responder), respectively. Alpha responses primary occurred over parieto-occipital areas, whereas gamma responses mainly appeared over frontal regions. On the contrary, test–retest correlation analyses per protocol at a group level were not significant neither for behavioral nor for electrophysiological effects. No associations between behavioral and EEG responses were found. Conclusion: RTMS individualization via behavioral and electrophysiological data in tinnitus can be considered as a feasible approach to overcome low reliability at the group level. The present results open the discussion favoring personalization utilizing neurophysiological markers rather than behavioral responses. These insights are not only useful for the rTMS treatment of tinnitus but also for neuromodulation interventions in other pathologies, as our results suggest that the individualization of stimulation protocols is feasible despite absent group-level reliability.
Collapse
|
202
|
Qian K, Cao S, Liu X. Appeared inexplicable disorders of consciousness after general anesthesia tracheal tube drawing in endoscopic tympanoplasty. IBRAIN 2021; 7:113-118. [PMID: 37786906 PMCID: PMC10528784 DOI: 10.1002/j.2769-2795.2021.tb00073.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 10/04/2023]
Abstract
Background Disorders of consciousness (DOC) are neurocognitive disorders related to sharp fluctuations of attention and consciousness, while DOC is characterized by significant interindividual differences, rapid development, and a higher lethal rate. Case information A 53-year-old female patient underwent general anesthesia with tracheal intubation in otoendoscopic tympanoplasty. The patient suddenly appeared moderate DOC after tracheal tube removal with K+ 3.6 (3.5-5.3 mmol/L). Based on the ancillary testing and routine laboratory workup, the possible causes of DOC, such as general anesthesia drugs and cardio cerebral events, were temporarily excluded. DOC was reversed by intravenous administration of KCl 1 g, with K+ 3.78 mmol/L. On one day after surgery, the patient occurred suddenly DOC again after intravenous guttae of 5% glucose 1000 ml, K+ 3.87 mmol/L, possibly because of her recurrent hypokalemic paralysis (HP) of past medical history. The patient's consciousness gradually improved after effective KCl supplementation therapy. Conclusion DOC caused by periodic paralysis (PP) has not been reported, we speculate that hypoactive DOC is closely correlated with normokalemic periodic paralysis (NormoPP) in this case.
Collapse
Affiliation(s)
- Kun Qian
- Department of AnesthesiologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Song Cao
- Department of PainThe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xing‐Kui Liu
- College of Anesthesiology, Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
203
|
Poorganji M, Zomorrodi R, Hawco C, Hill AT, Hadas I, Rajji TK, Chen R, Voineskos D, Daskalakis AA, Blumberger DM, Daskalakis ZJ. Differentiating transcranial magnetic stimulation cortical and auditory responses via single pulse and paired pulse protocols: A TMS-EEG study. Clin Neurophysiol 2021; 132:1850-1858. [PMID: 34147010 DOI: 10.1016/j.clinph.2021.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We measured the neurophysiological responses of both active and sham transcranial magnetic stimulation (TMS) for both single pulse (SP) and paired pulse (PP; long interval cortical inhibition (LICI)) paradigms using TMS-EEG (electroencephalography). METHODS Nineteen healthy subjects received active and sham (coil 90° tilted and touching the scalp) SP and PP TMS over the left dorsolateral prefrontal cortex (DLPFC). We measured excitability through SP TMS and inhibition (i.e., cortical inhibition (CI)) through PP TMS. RESULTS Cortical excitability indexed by area under the curve (AUC(25-275ms)) was significantly higher in the active compared to sham stimulation (F(1,18) = 43.737, p < 0.001, η2 = 0.708). Moreover, the amplitude of N100-P200 complex was significantly larger (F(1,18) = 9.118, p < 0.01, η2 = 0.336) with active stimulation (10.38 ± 9.576 µV) compared to sham (4.295 ± 2.323 µV). Significant interaction effects were also observed between active and sham stimulation for both the SP and PP (i.e., LICI) cortical responses. Finally, only active stimulation (CI = 0.64 ± 0.23, p < 0.001) resulted in significant cortical inhibition. CONCLUSION The significant differences between active and sham stimulation in both excitatory and inhibitory neurophysiological responses showed that active stimulation elicits responses from the cortex that are different from the non-specific effects of sham stimulation. SIGNIFICANCE Our study reaffirms that TMS-EEG represents an effective tool to evaluate cortical neurophysiology with high fidelity.
Collapse
Affiliation(s)
- Mohsen Poorganji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Colin Hawco
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Itay Hadas
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, USA
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Anastasios A Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
204
|
Shukla S, Thirugnanasambandam N. Tapping the Potential of Multimodal Non-invasive Brain Stimulation to Elucidate the Pathophysiology of Movement Disorders. Front Hum Neurosci 2021; 15:661396. [PMID: 34054449 PMCID: PMC8149895 DOI: 10.3389/fnhum.2021.661396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
This mini-review provides a detailed outline of studies that have used multimodal approaches in non-invasive brain stimulation to investigate the pathophysiology of the three common movement disorders, namely, essential tremor, Parkinson’s disease, and dystonia. Using specific search terms and filters in the PubMed® database, we finally shortlisted 27 studies in total that were relevant to this review. While two-thirds (Brittain et al., 2013) of these studies were performed on Parkinson’s disease patients, we could find only three studies that were conducted in patients with essential tremor. We clearly show that although multimodal non-invasive brain stimulation holds immense potential in unraveling the physiological mechanisms that are disrupted in movement disorders, the technical challenges and pitfalls of combining these methods may hinder their widespread application by movement disorder specialists. A multidisciplinary team with clinical and technical expertise may be crucial in reaping the fullest benefits from such novel multimodal approaches.
Collapse
Affiliation(s)
- Sakshi Shukla
- National Brain Research Centre (NBRC), Manesar, India
| | | |
Collapse
|
205
|
Ferrarelli F, Phillips M. Examining and Modulating Neural Circuits in Psychiatric Disorders With Transcranial Magnetic Stimulation and Electroencephalography: Present Practices and Future Developments. Am J Psychiatry 2021; 178:400-413. [PMID: 33653120 PMCID: PMC8119323 DOI: 10.1176/appi.ajp.2020.20071050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique uniquely equipped to both examine and modulate neural systems and related cognitive and behavioral functions in humans. As an examination tool, TMS can be used in combination with EEG (TMS-EEG) to elucidate directly, objectively, and noninvasively the intrinsic properties of a specific cortical region, including excitation, inhibition, reactivity, and oscillatory activity, irrespective of the individual's conscious effort. Additionally, when applied in repetitive patterns, TMS has been shown to modulate brain networks in healthy individuals, as well as ameliorate symptoms in individuals with psychiatric disorders. The key role of TMS in assessing and modulating neural dysfunctions and associated clinical and cognitive deficits in psychiatric populations is therefore becoming increasingly evident. In this article, the authors review TMS-EEG studies in schizophrenia and mood disorders, as most TMS-EEG studies to date have focused on individuals with these disorders. The authors present the evidence on the efficacy of repetitive TMS (rTMS) and theta burst stimulation (TBS), when targeting specific cortical areas, in modulating neural circuits and ameliorating symptoms and abnormal behaviors in individuals with psychiatric disorders, especially when informed by resting-state and task-related neuroimaging measures. Examples of how the combination of TMS-EEG assessments and rTMS and TBS paradigms can be utilized to both characterize and modulate neural circuit alterations in individuals with psychiatric disorders are also provided. This approach, along with the evaluation of the behavioral effects of TMS-related neuromodulation, has the potential to lead to the development of more effective and personalized interventions for individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Mary Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
206
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
207
|
TMS-EEG signatures of glutamatergic neurotransmission in human cortex. Sci Rep 2021; 11:8159. [PMID: 33854132 PMCID: PMC8047018 DOI: 10.1038/s41598-021-87533-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal activity in the brain reflects an excitation-inhibition balance that is regulated predominantly by glutamatergic and GABAergic neurotransmission, and often disturbed in neuropsychiatric disorders. Here, we tested the effects of a single oral dose of two anti-glutamatergic drugs (dextromethorphan, an NMDA receptor antagonist; perampanel, an AMPA receptor antagonist) and an L-type voltage-gated calcium channel blocker (nimodipine) on transcranial magnetic stimulation (TMS)-evoked electroencephalographic (EEG) potentials (TEPs) and TMS-induced oscillations (TIOs) in 16 healthy adults in a pseudorandomized, double-blinded, placebo-controlled crossover design. Single-pulse TMS was delivered to the hand area of left primary motor cortex. Dextromethorphan increased the amplitude of the N45 TEP, while it had no effect on TIOs. Perampanel reduced the amplitude of the P60 TEP in the non-stimulated hemisphere, and increased TIOs in the beta-frequency band in the stimulated sensorimotor cortex, and in the alpha-frequency band in midline parietal channels. Nimodipine and placebo had no effect on TEPs and TIOs. The TEP results extend previous pharmaco-TMS-EEG studies by demonstrating that the N45 is regulated by a balance of GABAAergic inhibition and NMDA receptor-mediated glutamatergic excitation. In contrast, AMPA receptor-mediated glutamatergic neurotransmission contributes to propagated activity reflected in the P60 potential and midline parietal induced oscillations. This pharmacological characterization of TMS-EEG responses will be informative for interpreting TMS-EEG abnormalities in neuropsychiatric disorders with pathological excitation-inhibition balance.
Collapse
|
208
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
209
|
Jarczok TA, Roebruck F, Pokorny L, Biermann L, Roessner V, Klein C, Bender S. Single-Pulse TMS to the Temporo-Occipital and Dorsolateral Prefrontal Cortex Evokes Lateralized Long Latency EEG Responses at the Stimulation Site. Front Neurosci 2021; 15:616667. [PMID: 33790732 PMCID: PMC8006291 DOI: 10.3389/fnins.2021.616667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS)–evoked potentials (TEPs) allow for probing cortical functions in health and pathology. However, there is uncertainty whether long-latency TMS-evoked potentials reflect functioning of the targeted cortical area. It has been suggested that components such as the TMS-evoked N100 are stereotypical and related to nonspecific sensory processes rather than transcranial effects of the changing magnetic field. In contrast, TEPs that vary according to the targeted brain region and are systematically lateralized toward the stimulated hemisphere can be considered to reflect activity in the stimulated brain region resulting from transcranial electromagnetic induction. Methods TMS with concurrent 64-channel electroencephalography (EEG) was sequentially performed in homologous areas of both hemispheres. One sample of healthy adults received TMS to the dorsolateral prefrontal cortex; another sample received TMS to the temporo-occipital cortex. We analyzed late negative TEP deflections corresponding to the N100 component in motor cortex stimulation. Results TEP topography varied according to the stimulation target site. Long-latency negative TEP deflections were systematically lateralized (higher in ipsilateral compared to contralateral electrodes) in electrodes over the stimulated brain region. A calculation that removes evoked components that are not systematically lateralized relative to the stimulated hemisphere revealed negative maxima located around the respective target sites. Conclusion TEPs contain long-latency negative components that are lateralized toward the stimulated hemisphere and have their topographic maxima at the respective stimulation sites. They can be differentiated from co-occurring components that are invariable across different stimulation sites (probably reflecting coactivation of peripheral sensory afferences) according to their spatiotemporal patterns. Lateralized long-latency TEP components located at the stimulation site likely reflect activity evoked in the targeted cortex region by direct transcranial effects and are therefore suitable for assessing cortical functions.
Collapse
Affiliation(s)
- Tomasz A Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Friederike Roebruck
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lena Pokorny
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lea Biermann
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christoph Klein
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Clinic for Child and Adolescent Psychiatry, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
210
|
Rawji V, Kaczmarczyk I, Rocchi L, Fong PY, Rothwell JC, Sharma N. Preconditioning Stimulus Intensity Alters Paired-Pulse TMS Evoked Potentials. Brain Sci 2021; 11:326. [PMID: 33806701 PMCID: PMC7998341 DOI: 10.3390/brainsci11030326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Motor cortex (M1) paired-pulse TMS (ppTMS) probes excitatory and inhibitory intracortical dynamics by measurement of motor-evoked potentials (MEPs). However, MEPs reflect cortical and spinal excitabilities and therefore cannot isolate cortical function. Concurrent TMS-EEG has the ability to measure cortical function, while limiting peripheral confounds; TMS stimulates M1, whilst EEG acts as the readout: the TMS-evoked potential (TEP). Whilst varying preconditioning stimulus intensity influences intracortical inhibition measured by MEPs, the effects on TEPs is undefined. TMS was delivered to the left M1 using single-pulse and three, ppTMS paradigms, each using a different preconditioning stimulus: 70%, 80% or 90% of resting motor threshold. Corticospinal inhibition was present in all three ppTMS conditions. ppTMS TEP peaks were reduced predominantly under the ppTMS 70 protocol but less so for ppTMS 80 and not at all for ppTMS 90. There was a significant negative correlation between MEPs and N45 TEP peak for ppTMS 70 reaching statistical trends for ppTMS 80 and 90. Whilst ppTMS MEPs show inhibition across a range of preconditioning stimulus intensities, ppTMS TEPs do not. TEPs after M1 ppTMS vary as a function of preconditioning stimulus intensity: smaller preconditioning stimulus intensities result in better discriminability between conditioned and unconditioned TEPs. We recommend that preconditioning stimulus intensity should be minimized when using ppTMS to probe intracortical inhibition.
Collapse
Affiliation(s)
- Vishal Rawji
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Isabella Kaczmarczyk
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Po-Yu Fong
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Nikhil Sharma
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| |
Collapse
|
211
|
Aloizou AM, Pateraki G, Anargyros K, Siokas V, Bakirtzis C, Liampas I, Nousia A, Nasios G, Sgantzos M, Peristeri E, Dardiotis E. Transcranial magnetic stimulation (TMS) and repetitive TMS in multiple sclerosis. Rev Neurosci 2021; 32:723-736. [PMID: 33641274 DOI: 10.1515/revneuro-2020-0140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is the most well-known autoimmune disorder of the central nervous system, and constitutes a major cause of disability, especially in young individuals. A wide array of pharmacological treatments is available, but they have often been proven to be ineffective in ameliorating disease symptomatology or slowing disease progress. As such, non-invasive and non-pharmacological techniques have been gaining more ground. Transcranial magnetic stimulation (TMS) utilizes the electric field generated by a magnetic coil to stimulate neurons and has been applied, usually paired with electroencephalography, to study the underlying pathophysiology of MS, and in repetitive trains, in the form of repetitive transcranial magnetic stimulation (rTMS), to induce long-lasting changes in neuronal circuits. In this review, we present the available literature on the application of TMS and rTMS in the context of MS, with an emphasis on its therapeutic potential on various clinical aspects, while also naming the ongoing trials, whose results are anticipated in the future.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Georgia Pateraki
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Konstantinos Anargyros
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Anastasia Nousia
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Markos Sgantzos
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| |
Collapse
|
212
|
Zhang JJ, Fong KNK. The Effects of Priming Intermittent Theta Burst Stimulation on Movement-Related and Mirror Visual Feedback-Induced Sensorimotor Desynchronization. Front Hum Neurosci 2021; 15:626887. [PMID: 33584232 PMCID: PMC7878678 DOI: 10.3389/fnhum.2021.626887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
The potential benefits of priming intermittent theta burst stimulation (iTBS) with continuous theta burst stimulation (cTBS) have not been examined in regard to sensorimotor oscillatory activities recorded in electroencephalography (EEG). The objective of this study was to investigate the modulatory effect of priming iTBS (cTBS followed by iTBS) delivered to the motor cortex on movement-related and mirror visual feedback (MVF)-induced sensorimotor event-related desynchronization (ERD), compared with iTBS alone, on healthy adults. Twenty participants were randomly allocated into Group 1: priming iTBS—cTBS followed by iTBS, and Group 2: non-priming iTBS—sham cTBS followed by iTBS. The stimulation was delivered to the right primary motor cortex daily for 4 consecutive days. EEG was measured before and after 4 sessions of stimulation. Movement-related ERD was evaluated during left-index finger tapping and MVF-induced sensorimotor ERD was evaluated by comparing the difference between right-index finger tapping with and without MVF. After stimulation, both protocols increased movement-related ERD and MVF-induced sensorimotor ERD in high mu and low beta bands, indicated by significant time effects. A significant interaction effect favoring Group 1 in enhancing movement-related ERD was observed in the high mu band [F(1,18) = 4.47, p = 0.049], compared with Group 2. Our experiment suggests that among healthy adults priming iTBS with cTBS delivered to the motor cortex yields similar effects with iTBS alone on enhancing ERD induced by MVF-based observation, while movement-related ERD was more enhanced in the priming iTBS condition, specifically in the high mu band.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
213
|
Ahn S, Fröhlich F. Pinging the brain with transcranial magnetic stimulation reveals cortical reactivity in time and space. Brain Stimul 2021; 14:304-315. [PMID: 33516859 DOI: 10.1016/j.brs.2021.01.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Single-pulse transcranial magnetic stimulation (TMS) elicits an evoked electroencephalography (EEG) potential (TMS-evoked potential, TEP), which is interpreted as direct evidence of cortical reactivity to TMS. Thus, combining TMS with EEG can be used to investigate the mechanism underlying brain network engagement in TMS treatment paradigms. However, controversy remains regarding whether TEP is a genuine marker of TMS-induced cortical reactivity or if it is confounded by responses to peripheral somatosensory and auditory inputs. Resolving this controversy is of great significance for the field and will validate TMS as a tool to probe networks of interest in cognitive and clinical neuroscience. OBJECTIVE Here, we delineated the cortical origin of TEP by spatially and temporally localizing successive TEP components, and modulating them with transcranial direct current stimulation (tDCS) to investigate cortical reactivity elicited by single-pulse TMS and its causal relationship with cortical excitability. METHODS We recruited 18 healthy participants in a double-blind, cross-over, sham-controlled design. We collected motor-evoked potentials (MEPs) and TEPs elicited by suprathreshold single-pulse TMS targeting the left primary motor cortex (M1). To causally test cortical and corticospinal excitability, we applied tDCS to the left M1. RESULTS We found that the earliest TEP component (P25) was localized to the left M1. The following TEP components (N45 and P60) were largely localized to the primary somatosensory cortex, which may reflect afferent input by hand-muscle twitches. The later TEP components (N100, P180, and N280) were largely localized to the auditory cortex. As hypothesized, tDCS selectively modulated cortical and corticospinal excitability by modulating the pre-stimulus mu-rhythm oscillatory power. CONCLUSION Together, our findings provide causal evidence that the early TEP components reflect cortical reactivity to TMS.
Collapse
Affiliation(s)
- Sangtae Ahn
- School of Electronics Engineering, Kyungpook National University, Daegu, 41566, South Korea; School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, South Korea; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Flavio Fröhlich
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
214
|
Transcranial Evoked Potentials Can Be Reliably Recorded with Active Electrodes. Brain Sci 2021; 11:brainsci11020145. [PMID: 33499330 PMCID: PMC7912161 DOI: 10.3390/brainsci11020145] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
Electroencephalographic (EEG) signals evoked by transcranial magnetic stimulation (TMS) are usually recorded with passive electrodes (PE). Active electrode (AE) systems have recently become widely available; compared to PE, they allow for easier electrode preparation and a higher-quality signal, due to the preamplification at the electrode stage, which reduces electrical line noise. The performance between the AE and PE can differ, especially with fast EEG voltage changes, which can easily occur with TMS-EEG; however, a systematic comparison in the TMS-EEG setting has not been made. Therefore, we recorded TMS-evoked EEG potentials (TEPs) in a group of healthy subjects in two sessions, one using PE and the other using AE. We stimulated the left primary motor cortex and right medial prefrontal cortex and used two different approaches to remove early TMS artefacts, Independent Component Analysis and Signal Space Projection—Source Informed Recovery. We assessed statistical differences in amplitude and topography of TEPs, and their similarity, by means of the concordance correlation coefficient (CCC). We also tested the capability of each system to approximate the final TEP waveform with a reduced number of trials. The results showed that TEPs recorded with AE and PE do not differ in amplitude and topography, and only few electrodes showed a lower-than-expected CCC between the two methods of amplification. We conclude that AE are a viable solution for TMS-EEG recording.
Collapse
|
215
|
Varone G, Hussain Z, Sheikh Z, Howard A, Boulila W, Mahmud M, Howard N, Morabito FC, Hussain A. Real-Time Artifacts Reduction during TMS-EEG Co-Registration: A Comprehensive Review on Technologies and Procedures. SENSORS 2021; 21:s21020637. [PMID: 33477526 PMCID: PMC7831109 DOI: 10.3390/s21020637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/24/2023]
Abstract
Transcranial magnetic stimulation (TMS) excites neurons in the cortex, and neural activity can be simultaneously recorded using electroencephalography (EEG). However, TMS-evoked EEG potentials (TEPs) do not only reflect transcranial neural stimulation as they can be contaminated by artifacts. Over the last two decades, significant developments in EEG amplifiers, TMS-compatible technology, customized hardware and open source software have enabled researchers to develop approaches which can substantially reduce TMS-induced artifacts. In TMS-EEG experiments, various physiological and external occurrences have been identified and attempts have been made to minimize or remove them using online techniques. Despite these advances, technological issues and methodological constraints prevent straightforward recordings of early TEPs components. To the best of our knowledge, there is no review on both TMS-EEG artifacts and EEG technologies in the literature to-date. Our survey aims to provide an overview of research studies in this field over the last 40 years. We review TMS-EEG artifacts, their sources and their waveforms and present the state-of-the-art in EEG technologies and front-end characteristics. We also propose a synchronization toolbox for TMS-EEG laboratories. We then review subject preparation frameworks and online artifacts reduction maneuvers for improving data acquisition and conclude by outlining open challenges and future research directions in the field.
Collapse
Affiliation(s)
- Giuseppe Varone
- Department of Medical and Surgical Sciences, Magna Greacia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Zain Hussain
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4TJ, UK; (Z.H.); (Z.S.)
- Howard Brain Sciences Foundation, Providence, RI 02906, USA;
| | - Zakariya Sheikh
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4TJ, UK; (Z.H.); (Z.S.)
| | - Adam Howard
- Howard Brain Sciences Foundation, Providence, RI 02906, USA;
| | - Wadii Boulila
- RIADI Laboratory, National School of Computer Sciences, University of Manouba, Manouba 2010, Tunisia;
- IS Department, College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
| | - Mufti Mahmud
- Department of Computer Science and Medical Technology Innovation Facility, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK;
| | - Newton Howard
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK;
| | | | - Amir Hussain
- School of Computing, Edinburgh Napier University, Edinburgh EH11 4BN, UK;
| |
Collapse
|
216
|
Daskalakis ZJ, Poorganji M. Getting things right - Proper training in non-invasive brain stimulation. Clin Neurophysiol 2021; 132:810-811. [PMID: 33551340 DOI: 10.1016/j.clinph.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, USA.
| | - Mohsen Poorganji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
217
|
Song P, Tong H, Zhang L, Lin H, Hu N, Zhao X, Hao W, Xu P, Wang Y. Repetitive Transcranial Magnetic Stimulation Modulates Frontal and Temporal Time-Varying EEG Network in Generalized Anxiety Disorder: A Pilot Study. Front Psychiatry 2021; 12:779201. [PMID: 35095597 PMCID: PMC8795864 DOI: 10.3389/fpsyt.2021.779201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Generalized Anxiety Disorder (GAD) is a highly prevalent yet poorly understood chronic mental disorder. Previous studies have associated GAD with excessive activation of the right dorsolateral prefrontal cortex (DLPFC). This study aimed to investigate the effect of low-frequency repetitive transcranial magnetic stimulation (repetitive TMS, rTMS) targeting the right DLPFC on clinical symptoms and TMS-evoked time-varying brain network connectivity in patients with GAD. Eleven patients with GAD received 1 Hz rTMS treatment targeting the right DLPFC for 10 days. The severity of the clinical symptoms was evaluated using the Hamilton Anxiety Scale (HAMA) and the Hamilton Depression Scale (HAMD) at baseline, right after treatment, and at the one-month follow-up. Co-registration of single-pulse TMS (targeting the right DLPFC) and electroencephalography (TMS-EEG) was performed pre- and post-treatment in these patients and 11 healthy controls. Time-varying brain network connectivity was analyzed using the adaptive directed transfer function. The scores of HAMA and HAMD significantly decreased after low-frequency rTMS treatment, and these improvements in ratings remained at the one-month follow-up. Analyses of the time-varying EEG network in the healthy controls showed a continuous weakened connection information outflow in the left frontal and mid-temporal regions. Compared with the healthy controls, the patients with GAD showed weakened connection information outflow in the left frontal pole and the posterior temporal pole at baseline. After 10-day rTMS treatment, the network patterns showed weakened connection information outflow in the left frontal and temporal regions. The time-varying EEG network changes induced by TMS perturbation targeting right DLPFC in patients with GAD were characterized by insufficient information outflow in the left frontal and temporal regions. Low-frequency rTMS targeting the right DLPFC reversed these abnormalities and improved the clinical symptoms of GAD.
Collapse
Affiliation(s)
- Penghui Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Han Tong
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Luyan Zhang
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ningning Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wensi Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng Xu
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Beijing Institute for Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
218
|
Yeager B, Dougher C, Cook R, Medaglia J. The role of transcranial magnetic stimulation in understanding attention-related networks in single subjects. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100017. [PMID: 36246510 PMCID: PMC9559099 DOI: 10.1016/j.crneur.2021.100017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Attention is a cognitive mechanism that has been studied through several methodological viewpoints, including animal models, MRI in stroke patients, and fMRI in healthy subjects. Activation-based fMRI research has also pointed to specific networks that activate during attention tasks. Most recently, network neuroscience has been used to study the functional connectivity of large-scale networks for attention to reveal how strongly correlated networks are to each other when engaged in specific behaviors. While neuroimaging has revealed important information about the neural correlates of attention, it is crucial to better understand how these processes are organized and executed in the brain in single subjects to guide theories and treatments for attention. Noninvasive brain stimulation is an effective tool to causally manipulate neural activity to detect the causal roles of circuits in behavior. We describe how combining transcranial magnetic stimulation (TMS) with modern precision network analysis in single-subject neuroimaging could test the roles of regions, circuits, and networks in regulating attention as a pathway to improve treatment effect magnitudes and specificity. Though studied for over 100 years, the brain basis of attention is still queried. Complexity in frameworks for attention makes brain mapping difficult. Relevant brain networks vary significantly across subjects, challenging progress. Single-subject neuroimaging with TMS can improve our understanding of attention.
Collapse
Affiliation(s)
- B.E. Yeager
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
- Corresponding author.
| | - C.C. Dougher
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
| | - R.H. Cook
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
| | - J.D. Medaglia
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
- Department of Neurology, Drexel University College of Medicine, 245 N. 15th Street, Mail Stop 423, New College Building, Suite 7102, Philadelphia, PA, 19102, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
219
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 565] [Impact Index Per Article: 188.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
220
|
Lenze EJ, Nicol GE, Barbour DL, Kannampallil T, Wong AWK, Piccirillo J, Drysdale AT, Sylvester CM, Haddad R, Miller JP, Low CA, Lenze SN, Freedland KE, Rodebaugh TL. Precision clinical trials: a framework for getting to precision medicine for neurobehavioural disorders. J Psychiatry Neurosci 2021; 46:E97-E110. [PMID: 33206039 PMCID: PMC7955843 DOI: 10.1503/jpn.200042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The goal of precision medicine (individually tailored treatments) is not being achieved for neurobehavioural conditions such as psychiatric disorders. Traditional randomized clinical trial methods are insufficient for advancing precision medicine because of the dynamic complexity of these conditions. We present a pragmatic solution: the precision clinical trial framework, encompassing methods for individually tailored treatments. This framework includes the following: (1) treatment-targeted enrichment, which involves measuring patients' response after a brief bout of an intervention, and then randomizing patients to a full course of treatment, using the acute response to predict long-term outcomes; (2) adaptive treatments, which involve adjusting treatment parameters during the trial to individually optimize the treatment; and (3) precise measurement, which involves measuring predictor and outcome variables with high accuracy and reliability using techniques such as ecological momentary assessment. This review summarizes precision clinical trials and provides a research agenda, including new biomarkers such as precision neuroimaging, transcranial magnetic stimulation-electroencephalogram digital phenotyping and advances in statistical and machine-learning models. Validation of these approaches - and then widespread incorporation of the precision clinical trial framework - could help achieve the vision of precision medicine for neurobehavioural conditions.
Collapse
Affiliation(s)
- Eric J Lenze
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Ginger E Nicol
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Dennis L Barbour
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Thomas Kannampallil
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Alex W K Wong
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Jay Piccirillo
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Andrew T Drysdale
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Chad M Sylvester
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Rita Haddad
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - J Philip Miller
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Carissa A Low
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Shannon N Lenze
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Kenneth E Freedland
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| | - Thomas L Rodebaugh
- From the Washington University School of Medicine, St. Louis, Missouri (Lenze, Nicol, Kannampallil Wong, Piccirillo, Drysdale, Sylvester, Haddad, Miller, Lenze, Freedland); the Washington University McKelvey School of Engineering, St. Louis, MO (Barbour); the University of Pittsburgh, Pittsburgh, PA (Low); and the Washington University School of Arts & Sciences, St. Louis, MO (Rodebaugh)
| |
Collapse
|
221
|
Lacroix C, Soeiro T, Le Marois M, Guilhaumou R, Cassé-Perrot C, Jouve E, Röhl C, Belzeaux R, Micallef J, Blin O. Innovative approaches in CNS clinical drug development: Quantitative systems pharmacology. Therapie 2020; 76:111-119. [PMID: 33358366 DOI: 10.1016/j.therap.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/19/2020] [Indexed: 11/26/2022]
Abstract
Clinical trials involving brain disorders are notoriously difficult to set up and run. Innovative ways to develop effective prevention and treatment strategies for central nervous system (CNS) diseases are urgently needed. New approaches that are likely to renew or at least modify the paradigms used so far have been recently proposed. Quantitative systems pharmacology (QSP) uses mathematical computerized models to characterize biological systems, disease processes and CNS drug pharmacology. Integrated experimental medicine should increase the probability and predictability of success while controlling clinical trials costs. Finally, the societal perspective and patient empowerment also offer additional approaches to demonstrate the benefit of a new drug in the CNS field.
Collapse
Affiliation(s)
- Clémence Lacroix
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, UMR 1106, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, 13005 Marseille, France
| | - Thomas Soeiro
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, UMR 1106, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, 13005 Marseille, France
| | - Marguerite Le Marois
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, UMR 1106, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, 13005 Marseille, France
| | - Romain Guilhaumou
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, UMR 1106, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, 13005 Marseille, France
| | - Catherine Cassé-Perrot
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, UMR 1106, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, 13005 Marseille, France
| | - Elisabeth Jouve
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, UMR 1106, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, 13005 Marseille, France
| | - Claas Röhl
- Obmann NF Kinder/Obmann NF Patients United/Obmann EUPATI Austria, 1230 Wien, Austria
| | - Raoul Belzeaux
- Aix Marseille Univ, APHM, CNRS, Inst Neurosci Timone, University Hospital Federation DHUNE, Service de Psychiatrie, 13005 Marseille, France
| | - Joëlle Micallef
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, UMR 1106, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, 13005 Marseille, France
| | - Olivier Blin
- Aix Marseille Univ, APHM, INSERM, Inst Neurosci Syst, UMR 1106, University Hospital Federation DHUNE, Service de Pharmacologie Clinique et Pharmacovigilance, 13005 Marseille, France.
| |
Collapse
|
222
|
Levy-Lamdan O, Zifman N, Sasson E, Efrati S, Hack DC, Tanne D, Dolev I, Fogel H. Evaluation of White Matter Integrity Utilizing the DELPHI (TMS-EEG) System. Front Neurosci 2020; 14:589107. [PMID: 33408607 PMCID: PMC7779791 DOI: 10.3389/fnins.2020.589107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Objective The aim of this study was to evaluate brain white matter (WM) fibers connectivity damage in stroke and traumatic brain injury (TBI) subjects by direct electrophysiological imaging (DELPHI) that analyzes transcranial magnetic stimulation (TMS)-evoked potentials (TEPs). Methods The study included 123 participants, out of which 53 subjects with WM-related pathologies (39 stroke, 14 TBI) and 70 healthy age-related controls. All subjects underwent DELPHI brain network evaluations of TMS-electroencephalogram (EEG)-evoked potentials and diffusion tensor imaging (DTI) scans for quantification of WM microstructure fractional anisotropy (FA). Results DELPHI output measures show a significant difference between the healthy and stroke/TBI groups. A multidimensional approach was able to classify healthy from unhealthy with a balanced accuracy of 0.81 ± 0.02 and area under the curve (AUC) of 0.88 ± 0.01. Moreover, a multivariant regression model of DELPHI output measures achieved prediction of WM microstructure changes measured by FA with the highest correlations observed for fibers proximal to the stimulation area, such as frontal corpus callosum (r = 0.7 ± 0.02), anterior internal capsule (r = 0.7 ± 0.02), and fronto-occipital fasciculus (r = 0.65 ± 0.03). Conclusion These results indicate that features of TMS-evoked response are correlated to WM microstructure changes observed in pathological conditions, such as stroke and TBI, and that a multidimensional approach combining these features in supervised learning methods serves as a strong indicator for abnormalities and changes in WM integrity.
Collapse
Affiliation(s)
| | - Noa Zifman
- QuantalX Neuroscience, Beer-Yaacov, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dallas C Hack
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - David Tanne
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Stroke and Cognition Institute, Rambam Healthcare Campus, Haifa, Israel
| | | | | |
Collapse
|
223
|
Romanella SM, Sprugnoli G, Ruffini G, Seyedmadani K, Rossi S, Santarnecchi E. Noninvasive Brain Stimulation & Space Exploration: Opportunities and Challenges. Neurosci Biobehav Rev 2020; 119:294-319. [PMID: 32937115 PMCID: PMC8361862 DOI: 10.1016/j.neubiorev.2020.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/22/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
As NASA prepares for longer space missions aiming for the Moon and Mars, astronauts' health and performance are becoming a central concern due to the threats associated with galactic cosmic radiation, unnatural gravity fields, and life in extreme environments. In space, the human brain undergoes functional and structural changes related to fluid shift and changes in intracranial pressure. Behavioral abnormalities, such as cognitive deficits, sleep disruption, and visuomotor difficulties, as well as psychological effects, are also an issue. We discuss opportunities and challenges of noninvasive brain stimulation (NiBS) methods - including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) - to support space exploration in several ways. NiBS includes safe and portable techniques already applied in a wide range of cognitive and motor domains, as well as therapeutically. NiBS could be used to enhance in-flight performance, supporting astronauts during pre-flight Earth-based training, as well as to identify biomarkers of post-flight brain changes for optimization of rehabilitation/compensatory strategies. We review these NiBS techniques and their effects on brain physiology, psychology, and cognition.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - G Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - G Ruffini
- Neuroelectrics Corporation, Cambridge, MA, USA
| | - K Seyedmadani
- University Space Research Association NASA Johnson Space Center, Houston, TX, USA; Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA
| | - S Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
224
|
Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation-a Systematic Review of Combined TMS and EEG Studies. THE CEREBELLUM 2020; 19:309-335. [PMID: 31907864 DOI: 10.1007/s12311-019-01093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cerebellum sends dense projections to both motor and non-motor regions of the cerebral cortex via the cerebellarthalamocortical tract. The integrity of this tract is crucial for healthy motor and cognitive function. This systematic review examines research using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to the cerebellum with combined cortical electroencephalography (EEG) to explore the temporal features of cerebellar-cortical connectivity. A detailed discussion of the outcomes and limitations of the studies meeting review criteria is presented. Databases were searched between 1 December 2017 and 6 December 2017, with Scopus alerts current as of 23 July 2019. Of the 407 studies initially identified, 10 met review criteria. Findings suggested that cerebellar-cortical assessment is suited to combined TMS and EEG, although work is required to ensure experimental procedures are optimal for eliciting a reliable cerebellar response from stimulation. A distinct variation in methodologies and outcome measures employed across studies, and small sample sizes limited the conclusions that could be drawn regarding the electrophysiological signatures of cerebellar-cortical communication. This review highlights the need for stringent protocols and methodologies for cerebellar-cortical assessments via combined TMS and EEG. With these in place, combined TMS and EEG will provide a valuable means for exploring cerebellar connectivity with a wide range of cortical sites. Assessments have the potential to aid in the understanding of motor and cognitive function in both healthy and clinical groups, and provide insights into long-range neural communication generally.
Collapse
|
225
|
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol 2020; 11:584664. [PMID: 33224098 PMCID: PMC7669623 DOI: 10.3389/fneur.2020.584664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
226
|
Rocchi L, Di Santo A, Brown K, Ibáñez J, Casula E, Rawji V, Di Lazzaro V, Koch G, Rothwell J. Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain Stimul 2020; 14:4-18. [PMID: 33127580 DOI: 10.1016/j.brs.2020.10.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 08/18/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND the use of combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) for the functional evaluation of the cerebral cortex in health and disease is becoming increasingly common. However, there is still some ambiguity regarding the extent to which brain responses to auditory and somatosensory stimulation contribute to the TMS-evoked potential (TEP). OBJECTIVE/HYPOTHESIS to measure separately the contribution of auditory and somatosensory stimulation caused by TMS, and to assess their contribution to the TEP waveform, when stimulating the motor cortex (M1). METHODS 19 healthy volunteers underwent 7 blocks of EEG recording. To assess the impact of auditory stimulation on the TEP waveform, we used a standard figure of eight coil, with or without masking with a continuous noise reproducing the specific time-varying frequencies of the TMS click, stimulating at 90% of resting motor threshold. To further characterise auditory responses due to the TMS click, we used either a standard or a sham figure of eight coil placed on a pasteboard cylinder that rested on the scalp, with or without masking. Lastly, we used electrical stimulation of the scalp to investigate the possible contribution of somatosensory activation. RESULTS auditory stimulation induced a known pattern of responses in electrodes located around the vertex, which could be suppressed by appropriate noise masking. Electrical stimulation of the scalp alone only induced similar, non-specific scalp responses in the in the central electrodes. TMS, coupled with appropriate masking of sensory input, resulted in specific, lateralized responses at the stimulation site, lasting around 300 ms. CONCLUSIONS if careful control of confounding sources is applied, TMS over M1 can generate genuine, lateralized EEG activity. By contrast, sensory evoked responses, if present, are represented by non-specific, late (100-200 ms) components, located at the vertex, possibly due to saliency of the stimuli. Notably, the latter can confound the TEP if masking procedures are not properly used.
Collapse
Affiliation(s)
- Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, United Kingdom.
| | - Alessandro Di Santo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, United Kingdom; Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Katlyn Brown
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, United Kingdom
| | - Jaime Ibáñez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, United Kingdom; Department of Bioengineering, Faculty of Engineering, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Elias Casula
- Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy
| | - Vishal Rawji
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, United Kingdom
| |
Collapse
|
227
|
Song P, Li S, Wang S, Wei H, Lin H, Wang Y. Repetitive transcranial magnetic stimulation of the cerebellum improves ataxia and cerebello-fronto plasticity in multiple system atrophy: a randomized, double-blind, sham-controlled and TMS-EEG study. Aging (Albany NY) 2020; 12:20611-20622. [PMID: 33085647 PMCID: PMC7655163 DOI: 10.18632/aging.103946] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
Abstract
Cerebellar ataxia is the predominant motor feature of multiple system atrophy cerebellar subtype (MSA-C). Although repetitive transcranial magnetic stimulation (TMS) of the cerebellum is growingly applied in MSA, the mechanism is unknown. We examined dynamic connectivity changes of 20 patients with MSA and 25 healthy controls using TMS combined with electroencephalography. Observations that significantly decreased dynamic cerebello-frontal connectivity in patients have inspired attempts to modulate cerebellar connectivity in order to benefit MSA. We further explore the therapeutic potential of a 10-day treatment of cerebellar intermittent theta burst stimulation (iTBS) in MSA by a randomized, double-blind, sham-controlled trial. The functional reorganization of cerebellar networks was investigated after the end of treatment in active and sham groups. The severity of the symptoms was evaluated using the Scale for Assessment and Rating of Ataxia scores. Patients treated with active stimulation showed an improvement of cerebello-frontal connectivity and balance functions, as revealed by a significant decrease in the ataxia scores (P < 0.01). Importantly, the neural activity of frontal connectivity from 80 to 100 ms after a single TMS was significantly related to the severity of the disease. Our study provides new proof that cerebellar iTBS improves motor imbalance in MSA by acting on cerebello-cortical plasticity.
Collapse
Affiliation(s)
- Penghui Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Siran Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Suobin Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hua Wei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| |
Collapse
|
228
|
Tervo AE, Metsomaa J, Nieminen JO, Sarvas J, Ilmoniemi RJ. Automated search of stimulation targets with closed-loop transcranial magnetic stimulation. Neuroimage 2020; 220:117082. [PMID: 32593801 DOI: 10.1016/j.neuroimage.2020.117082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) protocols often include a manual search of an optimal location and orientation of the coil or peak stimulating electric field to elicit motor responses in a target muscle. This target search is laborious, and the result is user-dependent. Here, we present a closed-loop search method that utilizes automatic electronic adjustment of the stimulation based on the previous responses. The electronic adjustment is achieved by multi-locus TMS, and the adaptive guiding of the stimulation is based on the principles of Bayesian optimization to minimize the number of stimuli (and time) needed in the search. We compared our target-search method with other methods, such as systematic sampling in a predefined cortical grid. Validation experiments on five healthy volunteers and further offline simulations showed that our adaptively guided search method needs only a relatively small number of stimuli to provide outcomes with good accuracy and precision. The automated method enables fast and user-independent optimization of stimulation parameters in research and clinical applications of TMS.
Collapse
Affiliation(s)
- Aino E Tervo
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Neurology & Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jaakko O Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Jukka Sarvas
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
229
|
Mutanen TP, Biabani M, Sarvas J, Ilmoniemi RJ, Rogasch NC. Source-based artifact-rejection techniques available in TESA, an open-source TMS–EEG toolbox. Brain Stimul 2020; 13:1349-1351. [DOI: 10.1016/j.brs.2020.06.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
|
230
|
Reijonen J, Pitkänen M, Kallioniemi E, Mohammadi A, Ilmoniemi RJ, Julkunen P. Spatial extent of cortical motor hotspot in navigated transcranial magnetic stimulation. J Neurosci Methods 2020; 346:108893. [PMID: 32791087 DOI: 10.1016/j.jneumeth.2020.108893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/05/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Motor mapping with navigated transcranial magnetic stimulation (nTMS) requires defining a "hotspot", a stimulation site consistently producing the highest-amplitude motor-evoked potentials (MEPs). The exact location of the hotspot is difficult to determine, and the spatial extent of high-amplitude MEPs usually remains undefined due to MEP variability and the spread of the TMS-induced electric field (E-field). Therefore, here we aim to define the hotspot as a sub-region of a motor map. NEW METHOD We analyzed MEP amplitude distributions in motor mappings of 30 healthy subjects in two orthogonal directions on the motor cortex. Based on the widths of these distributions, the hotspot extent was estimated as an elliptic area. In addition, E-field distributions induced by motor map edge stimulations were simulated for ten subjects, and the E-field attenuation was analyzed to obtain another estimate for hotspot extent. RESULTS The median MEP-based hotspot area was 13 mm2 (95% confidence interval (CI) = [10, 18] mm2). The mean E-field-based hotspot area was 26 mm2 (95% CI = [13, 38] mm2). COMPARISON WITH EXISTING METHODS In contrast to the conventional hotspot, the new definition considers its spatial extent, indicating the most easily excited area where subsequent nTMS stimuli should be targeted for maximal response. The E-field-based hotspot provides an estimate for the extent of cortical structures where the E-field is close to its maximum. CONCLUSIONS The nTMS hotspot should be considered as an area rather than a single qualitatively defined spot due to MEP variability and E-field spread.
Collapse
Affiliation(s)
- Jusa Reijonen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Minna Pitkänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Elisa Kallioniemi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
231
|
Koch G. Cortico-cortical connectivity: the road from basic neurophysiological interactions to therapeutic applications. Exp Brain Res 2020; 238:1677-1684. [DOI: 10.1007/s00221-020-05844-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
|
232
|
Lenze EJ, Rodebaugh TL, Nicol GE. A Framework for Advancing Precision Medicine in Clinical Trials for Mental Disorders. JAMA Psychiatry 2020; 77:663-664. [PMID: 32211837 DOI: 10.1001/jamapsychiatry.2020.0114] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eric J Lenze
- Washington University School of Medicine in St Louis, St Louis, Missouri
| | | | - Ginger E Nicol
- Washington University School of Medicine in St Louis, St Louis, Missouri
| |
Collapse
|
233
|
Leodori G, Belvisi D, De Bartolo MI, Fabbrini A, Costanzo M, Vial F, Conte A, Hallett M, Berardelli A. Re-emergent Tremor in Parkinson's Disease: The Role of the Motor Cortex. Mov Disord 2020; 35:1002-1011. [PMID: 32175656 PMCID: PMC8448579 DOI: 10.1002/mds.28022] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Parkinson's disease patients may show a tremor that appears after a variable delay while the arms are kept outstretched (re-emergent tremor). The objectives of this study were to investigate re-emergent tremor pathophysiology by studying the role of the primary motor cortex in this tremor and making a comparison with rest tremor. METHODS We enrolled 10 Parkinson's disease patients with both re-emergent and rest tremor. Tremor was assessed by spectral analysis, corticomuscular coherence and tremor-resetting produced by transcranial magnetic stimulation over the primary motor cortex. We also recorded transcranial magnetic stimulation-evoked potentials generated by motor cortex stimulation during rest tremor, tremor suppression during wrist extension, and re-emergent tremor. Spectral analysis, corticomuscular coherence, and tremor resetting were compared between re-emergent tremor and rest tremor. RESULTS Re-emergent tremor showed significant corticomuscular coherence, causal relation between motor cortex activity and tremor muscle and tremor resetting. The P60 component of transcranial magnetic stimulation-evoked potentials reduced in amplitude during tremor suppression, recovered before re-emergent tremor, was facilitated at re-emergent tremor onset, and returned to values similar to those of rest tremor during re-emergent tremor. Compared with rest tremor, re-emergent tremor showed similar corticomuscular coherence and tremor resetting, but slightly higher frequency. CONCLUSIONS Re-emergent tremor is causally related with the activity of the primary motor cortex, which is likely a convergence node in the network that generates re-emergent tremor. Re-emergent tremor and rest tremor share common pathophysiological mechanisms in which the motor cortex plays a crucial role. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | | | | | - Matteo Costanzo
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Felipe Vial
- Human Motor Control Section, NINDS, NIH, Bethesda, Maryland, USA
- Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Bío Bío, Chile
| | - Antonella Conte
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Bethesda, Maryland, USA
| | - Alfredo Berardelli
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
234
|
Tscherpel C, Dern S, Hensel L, Ziemann U, Fink GR, Grefkes C. Brain responsivity provides an individual readout for motor recovery after stroke. Brain 2020; 143:1873-1888. [PMID: 32375172 PMCID: PMC7296846 DOI: 10.1093/brain/awaa127] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/30/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
Promoting the recovery of motor function and optimizing rehabilitation strategies for stroke patients is closely associated with the challenge of individual prediction. To date, stroke research has identified critical pathophysiological neural underpinnings at the cellular level as well as with regard to network reorganization. However, in order to generate reliable readouts at the level of individual patients and thereby realize translation from bench to bedside, we are still in a need for innovative methods. The combined use of transcranial magnetic stimulation (TMS) and EEG has proven powerful to record both local and network responses at an individual's level. To elucidate the potential of TMS-EEG to assess motor recovery after stroke, we used neuronavigated TMS-EEG over ipsilesional primary motor cortex (M1) in 28 stroke patients in the first days after stroke. Twenty-five of these patients were reassessed after >3 months post-stroke. In the early post-stroke phase (6.7 ± 2.5 days), the TMS-evoked EEG responses featured two markedly different response morphologies upon TMS to ipsilesional M1. In the first group of patients, TMS elicited a differentiated and sustained EEG response with a series of deflections sequentially involving both hemispheres. This response type resembled the patterns of bilateral activation as observed in the healthy comparison group. By contrast, in a subgroup of severely affected patients, TMS evoked a slow and simplified local response. Quantifying the TMS-EEG responses in the time and time-frequency domain revealed that stroke patients exhibited slower and simple responses with higher amplitudes compared to healthy controls. Importantly, these patterns of activity changes after stroke were not only linked to the initial motor deficit, but also to motor recovery after >3 months post-stroke. Thus, the data revealed a substantial impairment of local effects as well as causal interactions within the motor network early after stroke. Additionally, for severely affected patients with absent motor evoked potentials and identical clinical phenotype, TMS-EEG provided differential response patterns indicative of the individual potential for recovery of function. Thereby, TMS-EEG extends the methodological repertoire in stroke research by allowing the assessment of individual response profiles.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Sebastian Dern
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lukas Hensel
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Gereon R Fink
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
235
|
Vittala A, Murphy N, Maheshwari A, Krishnan V. Understanding Cortical Dysfunction in Schizophrenia With TMS/EEG. Front Neurosci 2020; 14:554. [PMID: 32547362 PMCID: PMC7270174 DOI: 10.3389/fnins.2020.00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
In schizophrenia and related disorders, a deeper mechanistic understanding of neocortical dysfunction will be essential to developing new diagnostic and therapeutic techniques. To this end, combined transcranial magnetic stimulation and electroencephalography (TMS/EEG) provides a non-invasive tool to simultaneously perturb and measure neurophysiological correlates of cortical function, including oscillatory activity, cortical inhibition, connectivity, and synchronization. In this review, we summarize the findings from a variety of studies that apply TMS/EEG to understand the fundamental features of cortical dysfunction in schizophrenia. These results lend to future applications of TMS/EEG in understanding the pathophysiological mechanisms underlying cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Aadith Vittala
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Nicholas Murphy
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
236
|
Hui J, Zomorrodi R, Lioumis P, Salavati B, Rajji TK, Chen R, Blumberger DM, Daskalakis ZJ. Pharmacological mechanisms of interhemispheric signal propagation: a TMS-EEG study. Neuropsychopharmacology 2020; 45:932-939. [PMID: 31357206 PMCID: PMC7162860 DOI: 10.1038/s41386-019-0468-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023]
Abstract
Interhemispheric connections across the corpus callosum have a predominantly inhibitory effect. Previous electrophysiology studies imply that local inhibitory circuits are responsible for inducing transcallosal inhibition, likely through inhibitory GABAB-mediated neurotransmission. We investigated the neurochemical mechanisms involved in interhemispheric connectivity by measuring transcranial magnetic stimulation (TMS)-induced interhemispheric signal propagation (ISP) in the motor cortex and dorsolateral prefrontal cortex (DLPFC) with electroencephalography (EEG) recordings under the pharmacological effects of baclofen, L-DOPA, dextromethorphan, and rivastigmine. We hypothesized that for both stimulated regions, GABAB receptor agonist baclofen would decrease ISP when compared against baseline while drugs that target other neurotransmitter systems (dopaminergic, acetylcholinergic, and glutamatergic systems) would have no effect on ISP. Twelve right-handed healthy volunteers completed this study and underwent TMS across five sessions in a randomized order. In the motor cortex, participants showed a significant decrease in ISP under baclofen, but not in the other drug conditions. There were no drug-induced changes in ISP in the DLPFC and baseline ISP did not differ across experimental sessions for both brain regions. Together, our results suggest that the inhibitory effects observed with interhemispheric signal transmission are mediated by a population of interneurons involving GABAB receptor neurotransmission. Inhibitory mechanisms of ISP may be more salient for motor-related functions in the motor cortex than for cognitive control in the DLPFC. These findings are a fundamental step in advancing our understanding of interhemispheric connectivity and may be used to identify treatments for disorders in which transcallosal transmission is dysfunctional.
Collapse
Affiliation(s)
- Jeanette Hui
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Reza Zomorrodi
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Pantelis Lioumis
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000000108389418grid.5373.2Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Bahar Salavati
- 0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Tarek K. Rajji
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Robert Chen
- 0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada ,0000 0004 0474 0428grid.231844.8Krembil Brain Institute, University Health Network and Division of Neurology, Toronto, ON Canada
| | - Daniel M. Blumberger
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Zafiris J. Daskalakis
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| |
Collapse
|
237
|
Shou Z, Li Z, Wang X, Chen M, Bai Y, Di H. Non-invasive brain intervention techniques used in patients with disorders of consciousness. Int J Neurosci 2020; 131:390-404. [PMID: 32238043 DOI: 10.1080/00207454.2020.1744598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aim of the study: With the development of emergency medicine and intensive care technology, the number of people who survive with disorders of consciousness (DOC) has dramatically increased. The diagnosis and treatment of such patients have attracted much attention from the medical community. From the latest evidence-based guidelines, non-invasive brain intervention (NIBI) techniques may be valuable and promising in the diagnosis and conscious rehabilitation of DOC patients.Methods: This work reviews the studies on NIBI techniques for the assessment and intervention of DOC patients.Results: A large number of studies have explored the application of NIBI techniques in DOC patients. The NIBI techniques include transcranial magnetic stimulation, transcranial electric stimulation, music stimulation, near-infrared laser stimulation, focused shock wave therapy, low-intensity focused ultrasound pulsation and transcutaneous auricular vagus nerve stimulation.Conclusions: NIBI techniques present numerous advantages such as being painless, safe and inexpensive; having adjustable parameters and targets; and having broad development prospects in treating DOC patients.
Collapse
Affiliation(s)
- Zeyu Shou
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhilong Li
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xueying Wang
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Miaoyang Chen
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yang Bai
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Haibo Di
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
238
|
Morris TP, Fried PJ, Macone J, Stillman A, Gomes-Osman J, Costa-Miserachs D, Muñoz JMT, Santarnecchi E, Pascual-Leone A. Light aerobic exercise modulates executive function and cortical excitability. Eur J Neurosci 2020; 51:1723-1734. [PMID: 31605625 PMCID: PMC7150631 DOI: 10.1111/ejn.14593] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/04/2019] [Indexed: 02/04/2023]
Abstract
Single bouts of aerobic exercise can modulate cortical excitability and executive cognitive function, but less is known about the effect of light-intensity exercise, an intensity of exercise more achievable for certain clinical populations. Fourteen healthy adults (aged 22 to 30) completed the following study procedures twice (≥7 days apart) before and after 30 min of either light aerobic exercise (cycling) or seated rest: neurocognitive battery (multitasking performance, inhibitory control and spatial working memory), paired-pulse TMS measures of cortical excitability. Significant improvements in response times during multitasking performance and increases in intracortical facilitation (ICF) were seen following light aerobic exercise. Light aerobic exercise can modulate cortical excitability and some executive function tasks. Populations with deficits in multitasking ability may benefit from this intervention.
Collapse
Affiliation(s)
- Timothy P Morris
- Berenson-Allen Center for Non-Invasive Brain Stimulation and the Division of Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Peter J Fried
- Berenson-Allen Center for Non-Invasive Brain Stimulation and the Division of Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Joanna Macone
- Berenson-Allen Center for Non-Invasive Brain Stimulation and the Division of Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Alexandra Stillman
- Berenson-Allen Center for Non-Invasive Brain Stimulation and the Division of Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Joyce Gomes-Osman
- Berenson-Allen Center for Non-Invasive Brain Stimulation and the Division of Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
- Miami Miller School of Medicine, Miami, USA
| | - David Costa-Miserachs
- Departament de Psicobiologia i Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose Maria Tormos Muñoz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autonoma de Barcelona, Badalona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation and the Division of Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation and the Division of Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
239
|
Zhang JJ, Fong KNK. Effects of priming intermittent theta burst stimulation on upper limb motor recovery after stroke: study protocol for a proof-of-concept randomised controlled trial. BMJ Open 2020; 10:e035348. [PMID: 32152174 PMCID: PMC7064082 DOI: 10.1136/bmjopen-2019-035348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Intermittent theta burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation (rTMS), delivered to the ipsilesional primary motor cortex (M1), appears to enhance the brain's response to rehabilitative training in patients with stroke. However, its clinical utility is highly subject to variability in different protocols. New evidence has reported that preceding iTBS, with continuous theta burst stimulation (cTBS) may stabilise and even boost the facilitatory effect of iTBS on the stimulated M1, via metaplasticity. The aim of this study is to investigate the effects of iTBS primed with cTBS (ie, priming iTBS), in addition to robot-assisted training (RAT), on the improvement of the hemiparetic upper limb functions of stroke patients and to explore potential sensorimotor neuroplasticity using electroencephalography (EEG). METHODS AND ANALYSIS A three-arm, subjects and assessors-blinded, randomised controlled trial will be performed with patients with chronic stroke. An estimated sample of 36 patients will be needed based on the prior sample size calculation. All participants will be randomly allocated to receive 10 sessions of rTMS with different TBS protocols (cTBS+iTBS, sham cTBS+iTBS and sham cTBS+sham iTBS), three to five sessions per week, for 2-3 weeks. All participants will receive 60 min of RAT after each stimulation session. Primary outcomes will be assessed using Fugl-Meyer Assessment-Upper Extremity scores and Action Research Arm Test. Secondary outcomes will be assessed using kinematic outcomes generated during RAT and EEG. ETHICS AND DISSEMINATION Ethical approval has been obtained from The Human Subjects Ethics Sub-committee, University Research Committee of The Hong Kong Polytechnic University (reference number: HSEARS20190718003). The results yielded from this study will be presented at international conferences and sent to a peer-review journal to be considered for publication. TRIAL REGISTRATION NUMBER NCT04034069.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
240
|
Noda Y. Toward the establishment of neurophysiological indicators for neuropsychiatric disorders using transcranial magnetic stimulation-evoked potentials: A systematic review. Psychiatry Clin Neurosci 2020; 74:12-34. [PMID: 31587446 DOI: 10.1111/pcn.12936] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/14/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
Transcranial magnetic stimulation (TMS) can depolarize the neurons directly under the coil when applied to the cerebral cortex, and modulate the neural circuit associated with the stimulation site, which makes it possible to measure the neurophysiological index to evaluate excitability and inhibitory functions. Concurrent TMS and electroencephalography (TMS-EEG) has been developed to assess the neurophysiological characteristics of cortical regions other than the motor cortical region noninvasively. The aim of this review is to comprehensively discuss TMS-EEG research in the healthy brain focused on excitability, inhibition, and plasticity following neuromodulatory TMS paradigms from a neurophysiological perspective. A search was conducted in PubMed to identify articles that examined humans and that were written in English and published by September 2018. The search terms were as follows: (TMS OR 'transcranial magnetic stimulation') AND (EEG OR electroencephalog*) NOT (rTMS OR 'repetitive transcranial magnetic stimulation' OR TBS OR 'theta burst stimulation') AND (healthy). The study presents an overview of TMS-EEG methodology and neurophysiological indices and reviews previous findings from TMS-EEG in healthy individuals. Furthermore, this review discusses the potential application of TMS-EEG neurophysiology in the clinical setting to study healthy and diseased brain conditions in the future. Combined TMS-EEG is a powerful tool to probe and map neural circuits in the human brain noninvasively and represents a promising approach for determining the underlying pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Multidisciplinary Translational Research Lab, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
241
|
Bao SC, Khan A, Song R, Kai-yu Tong R. Rewiring the Lesioned Brain: Electrical Stimulation for Post-Stroke Motor Restoration. J Stroke 2020; 22:47-63. [PMID: 32027791 PMCID: PMC7005350 DOI: 10.5853/jos.2019.03027] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation has been extensively applied in post-stroke motor restoration, but its treatment mechanisms are not fully understood. Stimulation of neuromotor control system at multiple levels manipulates the corresponding neuronal circuits and results in neuroplasticity changes of stroke survivors. This rewires the lesioned brain and advances functional improvement. This review addresses the therapeutic mechanisms of different stimulation modalities, such as noninvasive brain stimulation, peripheral electrical stimulation, and other emerging techniques. The existing applications, the latest progress, and future directions are discussed. The use of electrical stimulation to facilitate post-stroke motor recovery presents great opportunities in terms of targeted intervention and easy applicability. Further technical improvements and clinical studies are required to reveal the neuromodulatory mechanisms and to enhance rehabilitation therapy efficiency in stroke survivors and people with other movement disorders.
Collapse
Affiliation(s)
- Shi-chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ahsan Khan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong Song
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Raymond Kai-yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
242
|
Rogić Vidaković M, Šoda J, Jerković A, Benzon B, Bakrač K, Dužević S, Vujović I, Mihalj M, Pecotić R, Valić M, Mastelić A, Hagelien MV, Zmajević Schőnwald M, Đogaš Z. Obstructive Sleep Apnea Syndrome: A Preliminary Navigated Transcranial Magnetic Stimulation Study. Nat Sci Sleep 2020; 12:563-574. [PMID: 32821185 PMCID: PMC7418161 DOI: 10.2147/nss.s253281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/25/2020] [Indexed: 01/14/2023] Open
Abstract
PURPOSE An increase in resting motor threshold (RMT), prolonged cortical silent period duration (CSP), and reduced short-latency afferent inhibition (SAI), confirmed with previous transcranial magnetic stimulation (TMS), suggest decreased cortical excitability in obstructive sleep apnea syndrome (OSAS). The present study included MRI of OSAS patients for navigated TMS assessment of the RMT, as an index of the threshold for corticospinal activation at rest, and SAI as an index of cholinergic neurotransmission. We hypothesize to confirm findings on SAI and RMT with adding precision in the targeting of motor cortex in OSAS. SUBJECTS AND METHODS After acquiring head MRIs for 17 severe right-handed OSAS and 12 healthy subjects, the motor cortex was mapped with nTMS to assess the RMT and SAI, with motor evoked potentials (MEPs) recorded from the abductor-pollicis brevis (APB) muscle. The 120%RMT intensity was used for the SAI by a paired-pulse paradigm in which the electrical stimulation to the median nerve is followed by magnetic stimulation of the motor cortex at inter-stimulus intervals (ISIs) of 18-28 ms (ISIs18-28). The SAI control condition included a recording of MEPs without peripheral stimulation. Latency and amplitude of MEP at RMT at 120%RMT for eleven different at ISIs18-28 were analyzed. RESULTS The study showed a significantly lower percentage deviation of MEP amplitude at ISIs(18-28ms) from the control condition between OSAS and healthy subjects (U=44.0, p=0.01). The intensity of stimulation at RMT was significantly higher in OSAS subjects (U=55.0, p=0.04*). Correlation analysis showed that BMI significantly negatively correlated (ρ=-0.47) with MEP amplitude percentage deviation in OSAS patients. CONCLUSION The nTMS study results in increased RMT, and reduced cortical afferent inhibition in OSAS patients for SAI at ISIs18-28, confirming previous findings of impaired cortical afferent inhibition in OSAS. Future nTMS studies are desirable to elucidate the role of RMT and SAI in diagnostics and treatment of OSAS, and to elucidate the usefulness of nTMS in OSAS research.
Collapse
Affiliation(s)
- Maja Rogić Vidaković
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Joško Šoda
- University of Split, Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Split, Croatia
| | - Ana Jerković
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Benjamin Benzon
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Karla Bakrač
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Silvia Dužević
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Igor Vujović
- University of Split, Faculty of Maritime Studies, Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Split, Croatia
| | - Mario Mihalj
- University Hospital Split, Department of Neurology, Laboratory of Electromyoneurography, Split, Croatia
| | - Renata Pecotić
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia.,University of Split, Split Sleep Medical Center, Split 21000, Croatia
| | - Maja Valić
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia.,University of Split, Split Sleep Medical Center, Split 21000, Croatia
| | - Angela Mastelić
- University of Split, School of Medicine, Department of Medical Chemistry and Biochemistry, Split, Croatia
| | - Maximilian Vincent Hagelien
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia
| | - Marina Zmajević Schőnwald
- Clinical Medical Centre "Sisters Of Mercy", Department of Neurosurgery, Clinical Unit for Intraoperative Neurophysiologic Monitoring, Zagreb, Croatia
| | - Zoran Đogaš
- University of Split, School of Medicine, Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), Split, Croatia.,University of Split, Split Sleep Medical Center, Split 21000, Croatia
| |
Collapse
|
243
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1007] [Impact Index Per Article: 251.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
244
|
Older Adults Differentially Modulate Transcranial Magnetic Stimulation-Electroencephalography Measures of Cortical Inhibition during Maximal Single-joint Exercise. Neuroscience 2019; 425:181-193. [PMID: 31809730 DOI: 10.1016/j.neuroscience.2019.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
The effects of muscle fatigue are known to be altered in older adults, and age-related changes in the brain are likely to be a contributing factor. However, the neural mechanisms underlying these changes are not known. The aim of the current study was to use transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) to investigate age-related changes in cortical excitability with muscle fatigue. In 23 young (mean age ± SD: 22 ± 2 years) and 17 older (mean age ± SD: 68.3 ± 5.6 years) adults, single-pulse TMS-EEG was applied before, during and after the performance of fatiguing, intermittent isometric abduction of the index finger. Motor-evoked potential (MEP) measures of cortical excitability were increased during (estimated mean difference, 123.3%; P < 0.0001) and after (estimated mean difference, 117.5%; P = 0.001) fatigue and this was not different between groups (P > 0.5). For TMS-EEG, the amplitude of the P30 and P180 potentials were unaffected by fatigue in older participants (P > 0.05). In contrast, the amplitude of the N45 potential in older adults was significantly reduced both during (positive cluster: mean voltage difference = 0.7 µV, P < 0.005; negative cluster: mean voltage difference = 0.9 µV, P < 0.0005) and after (mean voltage difference = 0.5 µV, P < 0.005) fatiguing exercise, whereas this response was absent in young participants. These results suggest that performance of maximal intermittent isometric exercise in old but not young adults is associated with modulation of cortical inhibition likely mediated by activation of gamma-aminobutyric acid type A receptors.
Collapse
|
245
|
Tensor decomposition of TMS-induced EEG oscillations reveals data-driven profiles of antiepileptic drug effects. Sci Rep 2019; 9:17057. [PMID: 31745223 PMCID: PMC6864053 DOI: 10.1038/s41598-019-53565-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Abstract
Transcranial magnetic stimulation combined with electroencephalography is a powerful tool to probe human cortical excitability. The EEG response to TMS stimulation is altered by drugs active in the brain, with characteristic “fingerprints” obtained for drugs of known mechanisms of action. However, the extraction of specific features related to drug effects is not always straightforward as the complex TMS-EEG induced response profile is multi-dimensional. Analytical approaches can rely on a-priori assumptions within each dimension or on the implementation of cluster-based permutations which do not require preselection of specific limits but may be problematic when several experimental conditions are tested. We here propose an alternative data-driven approach based on PARAFAC tensor decomposition, which provides a parsimonious description of the main profiles underlying the multidimensional data. We validated reliability of PARAFAC on TMS-induced oscillations before extracting the features of two common anti-epileptic drugs (levetiracetam and lamotrigine) in an integrated manner. PARAFAC revealed an effect of both drugs, significantly suppressing oscillations in the alpha range in the occipital region. Further, this effect was stronger under the intake of levetiracetam. This study demonstrates, for the first time, that PARAFAC can easily disentangle the effects of subject, drug condition, frequency, time and space in TMS-induced oscillations.
Collapse
|
246
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
247
|
Transcranial Magnetic Stimulation-Electroencephalography Measures of Cortical Neuroplasticity Are Altered after Mild Traumatic Brain Injury. J Neurotrauma 2019; 36:2774-2784. [DOI: 10.1089/neu.2018.6353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
248
|
Premoli I, Rossini PG, Goldberg PY, Posadas K, Green L, Yogo N, Pimstone S, Abela E, Beatch GN, Richardson MP. TMS as a pharmacodynamic indicator of cortical activity of a novel anti-epileptic drug, XEN1101. Ann Clin Transl Neurol 2019; 6:2164-2174. [PMID: 31568714 PMCID: PMC6856596 DOI: 10.1002/acn3.50896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/10/2019] [Accepted: 08/24/2019] [Indexed: 12/24/2022] Open
Abstract
Objective Transcranial magnetic stimulation (TMS) produces characteristic deflections in the EEG signal named TMS‐evoked EEG potentials (TEPs), which can be used to assess drug effects on cortical excitability. TMS can also be used to determine the resting motor threshold (RMT) for eliciting a minimal muscle response, as a biomarker of corticospinal excitability. XEN1101 is a novel potassium channel opener undergoing clinical development for treatment of epilepsy. We used TEPs and RMT to measure the effects of XEN1101 in the human brain, to provide evidence that XEN1101 alters cortical excitability at doses that might be used in future clinical trials. Methods TMS measurements were incorporated in this Phase I clinical trial to evaluate the extent to which XEN1101 modulates TMS parameters of cortical and corticospinal excitability. TEPs and RMT were collected before and at 2‐, 4‐, and 6‐hours post drug intake in a double‐blind, placebo‐controlled, randomized, two‐period crossover study of 20 healthy male volunteers. Results Consistent with previous TMS investigations of antiepileptic drugs (AEDs) targeting ion channels, the amplitude of TEPs occurring at early (15–55 msec after TMS) and at late (150–250 msec after TMS) latencies were significantly suppressed from baseline by 20 mg of XEN1101. Furthermore, the RMT showed a significant time‐dependent increase that correlated with the XEN1101 plasma concentration. Interpretation Changes from baseline in TMS measures provided evidence that 20 mg of XEN1101 suppressed cortical and corticospinal excitability, consistent with the effects of other AEDs. These results support the implementation of TMS as a tool to inform early‐stage clinical trials.
Collapse
Affiliation(s)
- Isabella Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Pierre G Rossini
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | | | - Louise Green
- Clinical Research Facility, King's College Hospital, London, UK
| | - Noah Yogo
- Clinical Research Facility, King's College Hospital, London, UK
| | - Simon Pimstone
- Xenon Pharmaceuticals Inc., Burnaby, Canada.,Department of General Internal Medicine, University of British Columbia, Vancouver, Canada
| | - Eugenio Abela
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
249
|
Daskalakis ZJ, Tyndale RF. A Physiological Marriage Made in Heaven: Treating and Measuring the Brain Through Stimulation. Clin Pharmacol Ther 2019; 106:691-695. [PMID: 31509631 DOI: 10.1002/cpt.1576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
250
|
Zifman N, Levy-Lamdan O, Suzin G, Efrati S, Tanne D, Fogel H, Dolev I. Introducing a Novel Approach for Evaluation and Monitoring of Brain Health Across Life Span Using Direct Non-invasive Brain Network Electrophysiology. Front Aging Neurosci 2019; 11:248. [PMID: 31551761 PMCID: PMC6745309 DOI: 10.3389/fnagi.2019.00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Evaluation and monitoring of brain health throughout aging by direct electrophysiological imaging (DELPHI) which analyzes TMS (transcranial magnetic stimulation) evoked potentials. Methods Transcranial magnetic stimulation evoked potentials formation, coherence and history dependency, measured using electroencephalogram (EEG), was extracted from 80 healthy subjects in different age groups, 25–85 years old, and 20 subjects diagnosed with mild dementia (MD), over 70 years old. Subjects brain health was evaluated using MRI scans, neurocognitive evaluation, and computerized testing and compared to DELPHI analysis of brain network functionality. Results A significant decrease in signal coherence is observed with age in connectivity maps, mostly in inter-hemispheric temporal, and parietal areas. MD patients display a pronounced decrease in global and inter-hemispheric frontal connectivity compared to healthy controls. Early and late signal slope ratio also display a significant, age dependent, change with pronounced early slope, phase shift, between normal healthy aging, and MD. History dependent analysis demonstrates a binary step function classification of healthy brain vs. abnormal aging subjects mostly for late slope. DELPHI measures demonstrate high reproducibility with reliability coefficients of around 0.9. Conclusion These results indicate that features of evoked response, as charge transfer, slopes of response, and plasticity are altered during abnormal aging and that these fundamental properties of network functionality can be directly evaluated and monitored using DELPHI.
Collapse
Affiliation(s)
- Noa Zifman
- QuantalX Neuroscience, Tel Aviv-Yafo, Israel
| | | | - Gil Suzin
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Ramle, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Ramle, Israel.,Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - David Tanne
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Stroke and Cognition Institute, Rambam Healthcare Campus, Haifa, Israel
| | - Hilla Fogel
- QuantalX Neuroscience, Tel Aviv-Yafo, Israel
| | | |
Collapse
|