201
|
Fu R, Han CF, Ni T, Di L, Liu LJ, Lv WC, Bi YR, Jiang N, He Y, Li HM, Wang S, Xie H, Chen BA, Wang XS, Weiss SJ, Lu T, Guo QL, Wu ZQ. A ZEB1/p53 signaling axis in stromal fibroblasts promotes mammary epithelial tumours. Nat Commun 2019; 10:3210. [PMID: 31324807 PMCID: PMC6642263 DOI: 10.1038/s41467-019-11278-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/04/2019] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence indicates that the zinc-finger transcription factor ZEB1 is predominantly expressed in the stroma of several tumours. However, the role of stromal ZEB1 in tumour progression remains unexplored. In this study, while interrogating human databases, we uncover a remarkable decrease in relapse-free survival of breast cancer patients expressing high ZEB1 levels in the stroma. Using a mouse model of breast cancer, we show that ZEB1 inactivation in stromal fibroblasts suppresses tumour initiation, progression and metastasis. We associate this with reduced extracellular matrix remodeling, immune cell infiltration and decreased angiogenesis. ZEB1 deletion in stromal fibroblasts increases acetylation, expression and recruitment of p53 to FGF2/7, VEGF and IL6 promoters, thereby reducing their production and secretion into the surrounding stroma. Importantly, p53 ablation in ZEB1 stroma-deleted mammary tumours sufficiently recovers the impaired cancer growth and progression. Our findings identify the ZEB1/p53 axis as a stroma-specific signaling pathway that promotes mammary epithelial tumours.
Collapse
MESH Headings
- Animals
- Breast/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- Extracellular Matrix/metabolism
- Female
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 7/metabolism
- Fibroblasts/metabolism
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease/genetics
- Humans
- Interleukin-6
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Knockout
- Neoplasm Recurrence, Local/metabolism
- Neoplasms, Experimental
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Signal Transduction
- Tumor Microenvironment
- Tumor Suppressor Protein p53/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Zinc Finger E-box-Binding Homeobox 1/metabolism
Collapse
Affiliation(s)
- Rong Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen-Feng Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ting Ni
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lei Di
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Juan Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wen-Cong Lv
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan-Ran Bi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Nan Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yin He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hong-Mei Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Shui Wang
- Division of Breast Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210036, China
| | - Hui Xie
- Division of Breast Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210036, China
| | - Bao-An Chen
- Division of Hematology and Oncology, The Affiliated Zhong-Da Hospital, Southeast University, Nanjing, 210009, China
| | - Xiao-Sheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Stephen J Weiss
- The Life Sciences Institute, Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
202
|
Wang W, Li J, Ding Z, Li Y, Wang J, Chen S, Miao J. Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway. J Cell Mol Med 2019; 23:6454-6465. [PMID: 31293090 PMCID: PMC6714145 DOI: 10.1111/jcmm.14539] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/26/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023] Open
Abstract
Tanshinone I (Tan I) is a widely used diterpene compound derived from the traditional Chinese herb Danshen. Increasing evidence suggests that it exhibits anti-cancer activity in various human cancers. However, the in vitro and in vivo effects of Tan I on osteosarcoma (OS) remain inadequately elucidated, especially those against tumour metastasis. Our results showed that Tan I significantly inhibited OS cancer cell proliferation, migration and invasion and induced cell apoptosis in vitro. Moreover, treatment with 10 and 20 mg/kg Tan I effectively suppressed tumour growth in subcutaneous xenografts and orthotopic xenograft mouse models. In addition, Tan I significantly inhibited tumour metastasis in intracardiac inoculation xenograft models. The results also showed that Tan I-induced increased expression of the proapoptotic gene Bax and decreased expression of the anti-apoptotic gene Bcl-2 is the possible mechanism of its anti-cancer effects. Tan I was also found to abolish the IL-6-mediated activation of the JAK/STAT3 signalling pathway. Conclusively, this study is the first to show that Tan I suppresses OS growth and metastasis in vitro and in vivo, suggesting it may be a potential novel and efficient drug candidate for the treatment of OS progression.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuezhan Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianlong Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinglei Miao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
203
|
Tan BL, Norhaizan ME. Curcumin Combination Chemotherapy: The Implication and Efficacy in Cancer. Molecules 2019; 24:E2527. [PMID: 31295906 PMCID: PMC6680685 DOI: 10.3390/molecules24142527] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Many chemotherapeutic drugs have been used for the treatment of cancer, for instance, doxorubicin, irinotecan, 5-fluorouracil, cisplatin, and paclitaxel. However, the effectiveness of chemotherapy is limited in cancer therapy due to drug resistance, therapeutic selectivity, and undesirable side effects. The combination of therapies with natural compounds is likely to increase the effectiveness of drug treatment as well as reduce the adverse outcomes. Curcumin, a polyphenolic isolated from Curcuma longa, belongs to the rhizome of Zingiberaceae plants. Studies from in vitro and in vivo revealed that curcumin exerts many pharmacological activities with less toxic effects. The biological mechanisms underlying the anticancer activity of co-treatment curcumin and chemotherapy are complex and worth to discuss further. Therefore, this review aimed to address the molecular mechanisms of combined curcumin and chemotherapy in the treatment of cancer. The anticancer activity of combined nanoformulation of curcumin and chemotherapy was also discussed in this study. Taken together, a better understanding of the implication and underlying mechanisms of action of combined curcumin and chemotherapy may provide a useful approach to combat cancer diseases.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
204
|
Evaluation of Vascular Endothelial Growth Factor A and Selected Parameters of Coagulation and Fibrinolysis in a Group of Patients with Subarachnoid Haemorrhage. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8759231. [PMID: 31360727 PMCID: PMC6644279 DOI: 10.1155/2019/8759231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/21/2022]
Abstract
Introduction. Subarachnoid hemorrhage (SAH) is currently one of the most serious diseases of the central nervous system. To reduce the negative consequences of SAH and help clinicians to assess the patient's condition, there are attempts to search for new diagnostic markers, which quickly and accurately allow for the proper diagnosis. The aim of this research was the concentration and activity of Vascular Endothelial Growth Factor A (VEGF-A) and selected parameters of coagulation and fibrinolysis in the blood of patients with SAH. Serum levels of VEGF-A in patients diagnosed with SAH are measured to assess the correlation between VEGF-A and the clinical condition of patient. This may help with proper therapeutics and better prognosis. Methods. The study involved 85 patients with subarachnoid hemorrhage. The control group consisted of 45 healthy subjects, sex and age matched. The following parameters were determined: APTT (Activated Partial Thromboplastin Time), INR (International Normalized Ratio), D-dimers and fibrinogen concentration, and the concentration of VEGF-A by ELISA (R&D USA). Results. The average concentration of VEGF-A in the study group was significantly lower compared to the control group. The D-dimer concentration was higher in patients with SAH but the difference was not significant. Coagulation parameters such as INR, APTT, and fibrinogen did not show significant differences between investigated groups. Conclusions. VEGF-A cannot be an independent marker of SAH. Selected parameters of coagulation and fibrinolysis such as D-dimers, INR, APTT, and fibrinogen should not be used as markers of SAH.
Collapse
|
205
|
Wei X, Jiang Y, Zhang X, Feng S, Zhou B, Ye X, Xing H, Xu Y, Shi J, Guo W, Zhou D, Zhang H, Sun H, Huang C, Lu C, Zheng Y, Meng Y, Huang B, Cong W, Lau WY, Cheng S. Neoadjuvant Three-Dimensional Conformal Radiotherapy for Resectable Hepatocellular Carcinoma With Portal Vein Tumor Thrombus: A Randomized, Open-Label, Multicenter Controlled Study. J Clin Oncol 2019; 37:2141-2151. [PMID: 31283409 PMCID: PMC6698917 DOI: 10.1200/jco.18.02184] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To compare the survival outcomes of neoadjuvant three-dimensional conformal radiotherapy (RT) followed by hepatectomy with hepatectomy alone in patients with hepatocellular carcinoma (HCC) and portal vein tumor thrombus (PVTT). PATIENTS AND METHODS A randomized, multicenter controlled study was conducted from January 2016 to December 2017 in patients with resectable HCC and PVTT. Patients were randomly assigned to receive neoadjuvant RT followed by hepatectomy (n = 82) or hepatectomy alone (n = 82). The modified Response Evaluation Criteria in Solid Tumors (mRECIST) guidelines were used to evaluate the therapeutic effects of RT. The primary end point was overall survival. The expression of interleukin-6 (IL-6) in patients’ serum before RT and in surgical specimens was correlated with response to RT. RESULTS In the neoadjuvant RT group, 17 patients (20.7%) had partial remission. The overall survival rates for the neoadjuvant RT group at 6, 12, 18, and 24 months were 89.0%, 75.2%, 43.9%, and 27.4%, respectively, compared with 81.7%, 43.1%, 16.7%, and 9.4% in the surgery-alone group (P < .001). The corresponding disease-free survival rates were 56.9%, 33.0%, 20.3%, and 13.3% versus 42.1%, 14.9%, 5.0%, and 3.3% (P < .001). On multivariable Cox regression analyses, neoadjuvant RT significantly reduced HCC-related mortality and HCC recurrence rates compared with surgery alone (hazard ratios, 0.35 [95% CI, 0.23 to 0.54; P < .001] and 0.45 [95% CI, 0.31 to 0.64; P < .001]). Increased expressions of IL-6 in pre-RT serum and tumor tissues were significantly associated with resistance to RT. CONCLUSION For patients with resectable HCC and PVTT, neoadjuvant RT provided significantly better postoperative survival outcomes than surgery alone. IL-6 may predict response to RT in these patients.
Collapse
Affiliation(s)
- Xubiao Wei
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Yabo Jiang
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Xiuping Zhang
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Shuang Feng
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Bin Zhou
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Xiaofei Ye
- 2Department of Health Statistics, Navy Military Medical University, Shanghai, People's Republic of China
| | - Hui Xing
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Ying Xu
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Jie Shi
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Weixing Guo
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Dong Zhou
- 3Fujian Provincial Cancer Hospital, Fuzhou, People's Republic of China
| | - Hui Zhang
- 3Fujian Provincial Cancer Hospital, Fuzhou, People's Republic of China
| | - Huichuan Sun
- 4Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Cheng Huang
- 4Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Congde Lu
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Yaxin Zheng
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Yan Meng
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Bin Huang
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Wenming Cong
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| | - Wan Yee Lau
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China.,5The Chinese University of Hong Kong, Sha Tin, People's Republic of China
| | - Shuqun Cheng
- 1Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
206
|
Wu Y, Fan W, Xue M, Zhong B, Zhang S, Wang Y, Yao W, Zhao Y, Li J. Postintervention Interleukin-6 (IL-6) Level, Rather than the Pretreatment or Dynamic Changes of IL-6, as an Early Practical Marker of Tumor Response in Hepatocellular Carcinoma Treated with Transarterial Chemoembolization. Oncologist 2019; 24:e1489-e1495. [PMID: 31249138 DOI: 10.1634/theoncologist.2018-0669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the potential prognostic roles of the perioperative interleukin-6 (IL-6) level and its dynamic changes in patients with hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE). MATERIALS AND METHODS Sixty patients with hepatitis B virus-associated HCC receiving TACE were enrolled in the study. Serum IL-6 levels were determined at baseline and 1 day after TACE by immunoassay. Response to TACE was evaluated after a 4-6-week interval. Factors associated with tumor response were analyzed by univariate and multivariate analysis in a Cox regression model. Receiver operating characteristic (ROC) curve analysis was performed to assess the predictive performance of the included variables on tumor response in patients with HCC undergoing TACE. RESULTS The serum IL-6 level was significantly elevated 1 day after TACE. Patients in the low postintervention IL-6 level group had a high probability of achieving an objective response (OR) (66.7% vs. 18.8%, p = .021). Post-TACE IL-6 level (≤12.7 pg/mL) and post-/pre-TACE neutrophils ratio (>2.47) were independently correlated with OR after TACE. ROC curve analysis showed that a combined index based on those two factors exhibited optimal predictive power of tumor response among all the included variables (area under the curve = 0.740, 95% confidence interval: 0.601-0.879). Additionally, high post-TACE plasma IL-6 level was associated with maximum tumor size, vascular invasion, post-TACE aspartate aminotransferase, and Barcelona Clinic Liver Cancer stage. CONCLUSION Our study suggests that the post-treatment serum IL-6 level, rather than pretreatment or dynamic changes of IL-6, serves as a powerful predictor for tumor response. These findings provide evidence to help discriminate between patients who will particularly benefit from TACE and those who require more personalized therapeutic regimens and rigorous surveillance. IMPLICATIONS FOR PRACTICE Transarterial chemoembolization (TACE) is a major therapeutic regimen for advanced hepatocellular carcinoma. Thus, identification of early practical markers of tumor response to TACE is of high importance. This study indicated that the post-treatment serum interleukin-6 (IL-6) level, rather than the pretreatment or dynamic changes of IL-6, serves as a powerful predictor for tumor response. A combined index based on the post-TACE IL-6 level and post-/pre-TACE neutrophils ratio is optimal for predetermining an objective response after TACE, which may be helpful in guiding individualized treatments and surveillance.
Collapse
Affiliation(s)
- Yanqin Wu
- Department of Interventional Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenzhe Fan
- Department of Interventional Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Miao Xue
- Department of Interventional Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Bihui Zhong
- Department of Gastroenterology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shenghong Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yu Wang
- Department of Interventional Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wang Yao
- Department of Interventional Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yue Zhao
- Department of Interventional Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jiaping Li
- Department of Interventional Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
207
|
Leijs MM, Gan L, De Boever P, Esser A, Amann PM, Ziegler P, Fietkau K, Schettgen T, Kraus T, Merk HF, Baron JM. Altered Gene Expression in Dioxin-Like and Non-Dioxin-Like PCB Exposed Peripheral Blood Mononuclear Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122090. [PMID: 31200452 PMCID: PMC6617415 DOI: 10.3390/ijerph16122090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are well known carcinogenic persistent environmental pollutants and endocrine disruptors. Our aim was to identify the possible dysregulation of genes in PCB exposed peripheral blood mononuclear cells (PBMCs) in order to give more insight into the differential pathophysiological effects of PCB congeners and mixtures, with an emphasis on immunological effects and oxidative stress. The PBMCs of a healthy volunteer (male, 56 years old) were exposed to a mixture of dioxin-like (DL)-PCBs (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, and 189, 250 µg/L resp.) or non-dioxin-like (NDL)-PCBs (PCB 28, 52, 101, 138, 153, 180, 250 µg/L resp.) or single PCB congener (no.28, 138, 153, 180, 250 µg/L resp.). After an incubation period of 24 h, a microarray gene expression screening was performed, and the results were compared to gene expression in control samples (PBMCs treated with the vehicle iso-octane). Treatment of PBMCs with the DL-PCB mixture resulted in the largest number of differentially regulated genes (181 upregulated genes >2-fold, 173 downregulated >2-fold). Treatment with the NDL-PCB mix resulted in 32 upregulated genes >2-fold and 12 downregulated genes >2-fold. A gene set enrichment analysis (GSEA) on DL-PCB treated PBMCs resulted in an upregulation of 125 gene sets and a downregulation of 76 gene sets. Predominantly downregulated gene sets were involved in immunological pathways (such as response to virus, innate immune response, defense response). An upregulation of pathways related to oxidative stress could be observed for all PCB congeners except PCB-28; the latter congener dysregulated the least number of genes. Our experiment augments the information known about immunological and cellular stress responses following DL- as well as NDL-PCB exposure and provides new information on PCB 28. Further studies should be performed to evaluate how disruption of these pathways contributes to the development of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Marike M Leijs
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Lin Gan
- IZKF, RWTH Aachen University, 52074 Aachen, Germany.
| | - Patrick De Boever
- Flemish Institute for Technological Research (VITO), Health unit, 2400 Mol, Belgium.
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
| | - André Esser
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Philipp M Amann
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
- Department of Dermatology, SLK Hospital Heilbronn, 74078 Heilbronn, Germany.
| | - Patrick Ziegler
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Katharina Fietkau
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Hans F Merk
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Jens M Baron
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
208
|
Xie Q, Yang Z, Huang X, Zhang Z, Li J, Ju J, Zhang H, Ma J. Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J Hematol Oncol 2019; 12:60. [PMID: 31186039 PMCID: PMC6558915 DOI: 10.1186/s13045-019-0744-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor prognosis, and its treatment remains a challenge due to few targeted medicines and high risk of relapse, metastasis, and drug resistance. Thus, more effective drugs and new regimens for the therapy of TNBC are urgently needed. Ilamycins are a kind of cyclic peptides and produced by Streptomyces atratus and Streptomyces islandicus with effective anti-tuberculosis activity. Ilamycin C is a novel compound isolated from the deep South China Sea-derived Streptomyces atratus SCSIO ZH16 and exhibited a strong cytotoxic activity against several cancers including breast cancer cell line MCF7. However, the cytotoxic activity of Ilamycin C to TNBC cells and a detailed antitumor mechanism have not been reported. METHODS CCK-8 assays were used to examine cell viability and cytotoxic activity of Ilamycin C to TNBC, non-TNBC MCF7, and nonmalignant MCF10A cells. EdU assays and flow cytometry were performed to assess cell proliferation and cell apoptosis. Transwell migration and Matrigel invasion assays were utilized to assess the migratory and invading capacity of TNBC cells following the treatment of Ilamycin C. The expressions of proteins were detected by western blot. RESULTS In this study, we found that Ilamycin C has more preferential cytotoxicity in TNBC cells than non-TNBC MCF7 and nonmalignant MCF10A cells. Notably, our studies revealed the mechanism that Ilamycin C can induce Bax/Bcl-2-related caspase-dependent apoptosis and inhibit migration and invasion through MMP2/MMP9/vimentin/fascin in TNBC by suppressing IL-6-induced STAT3 phosphorylation. CONCLUSIONS This study provides the first evidence that Ilamycin C has significant implications for the potential as a novel IL-6/STAT3 inhibitor for TNBC treatment in the future.
Collapse
Affiliation(s)
- Qing Xie
- Department of Clinical Biochemistry, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xuanmei Huang
- Department of Clinical Biochemistry, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Zikang Zhang
- Department of Clinical Biochemistry, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Jiangbin Li
- Department of Clinical Biochemistry, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hua Zhang
- Department of Clinical Biochemistry, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
209
|
Nakamura Y. Biomarkers for Immune Checkpoint Inhibitor-Mediated Tumor Response and Adverse Events. Front Med (Lausanne) 2019; 6:119. [PMID: 31192215 PMCID: PMC6549005 DOI: 10.3389/fmed.2019.00119] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
In the last decade, inhibitors targeting immune checkpoint molecules such as cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death 1 (PD-1), and programmed cell death-ligand 1 (PD-L1) brought about a major paradigm shift in cancer treatment. These immune checkpoint inhibitors (ICIs) improved the overall survival of a variety of cancer such as malignant melanoma and non-small lung cancer. In addition, numerous clinical trials for additional indication of ICIs including adjuvant and neo-adjuvant therapies are also currently ongoing. Therefore, more and more patients will receive ICIs in the future. However, despite the improved outcome of the cancer treatment by ICIs, the efficacy remains still limited and tumor regression have not been obtained in many cancer patients. In addition, treatment with ICIs is also associated with substantial toxicities, described as immune-related adverse events (irAEs). Therefore, biomarkers to predict tumor response and occurrence of irAEs by the treatment with ICIs are required to avoid overtreatment of ICIs and minimize irAEs development. Whereas, numerous factors have been reported as potential biomarkers for tumor response to ICIs, factors for predicting irAE have been less reported. In this review, we show recent advances in the understanding of biomarkers for tumor response and occurrence of irAEs in cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Yoshiyuki Nakamura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
210
|
Jiang YN, Ni XY, Yan HQ, Shi L, Lu NN, Wang YN, Li Q, Gao FG. Interleukin 6-triggered ataxia-telangiectasia mutated kinase activation facilitates epithelial-to-mesenchymal transition in lung cancer by upregulating vimentin expression. Exp Cell Res 2019; 381:165-171. [PMID: 31100307 DOI: 10.1016/j.yexcr.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) and the epithelial-mesenchymal transition (EMT) contribute to metastasis. As shown in our previous studies, interleukin-6 (IL-6) induces ATM phosphorylation to increase MMP expression and metastasis in lung cancer. However, the exact roles of ATM activation in the IL-6-induced epithelial-mesenchymal transition and lung cancer metastasis are currently unclear. Here, ATM phosphorylation exerts its pro-metastatic effect via vimentin-mediated epithelial-mesenchymal transition, which was supported by the evidence described below. Firstly, IL-6 treatment increases vimentin expression via the ATM-NF-κB pathway. Second, ATM inactivation not only abolishes IL-6-induced increases in vimentin expression but also inhibits IL-6-induced nest formation in a xenograft lung metastasis model. Moreover, close positive correlations were observed between ATM phosphorylation and vimentin upregulation, IL-6 levels and metastasis in lung cancer specimens. Hence, ATM modulates vimentin expression to facilitate IL-6-induced epithelial-mesenchymal transition and metastasis in lung cancer, indicating that ATM and vimentin might be potential therapeutic targets for inflammation-associated lung cancer metastasis.
Collapse
Affiliation(s)
- Yi Na Jiang
- Department of Diagnostics, Shaanxi University of Chinese Medicine, Xian yang, 712046, Shaanxi Province, PR China; Basic Medicine Science, Medical College, Xiamen University, Xiamen, 361102, PR China
| | - Xiao Yan Ni
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, 361102, PR China
| | - Hong Qiong Yan
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, 361102, PR China
| | - Lei Shi
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, 361102, PR China
| | - Nan Nan Lu
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, 361102, PR China
| | - Yi Nan Wang
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, 361102, PR China
| | - Qing Li
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, 361102, PR China.
| | - Feng Guang Gao
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
211
|
Zhu L, Xue F, Cui Y, Liu S, Li G, Li J, Guan B, Zeng H, Bian W, Yang C, Zhao C. miR-155-5p and miR-760 mediate radiation therapy suppressed malignancy of non-small cell lung cancer cells. Biofactors 2019; 45:393-400. [PMID: 30901121 DOI: 10.1002/biof.1500] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) play important roles in tumorigenesis of various cancers. Recent study suggested that miRNAs are involved in the therapeutic functions of radiation during cancer treatment. We found that radiation can decrease the migration and invasion of non-small cell lung cancer (NSCLC) cells. Mechanistically, radiation can significantly increase the expression of miR-155-5p and miR-760 in NSCLC cells. Knockdown of miR-155-5p and miR-760 can attenuate radiation suppressed proliferation of NSCLC cells. Among the various targets of miR-155-5p, radiation can decrease the expression of HIF-1α. Similarly, radiation can also suppress the expression of IL-6 via a miR-760 dependent pathway. Gain and loss of function studies confirmed that both HIF-1α and IL-6 were involved in the radiation suppressed proliferation of NSCLC cells. Collectively, our data showed that radiation can regulate the expression of miR-155-5p and miR-760 to suppress the malignancy of NSCLC cells. © 2019 BioFactors, 45(3):393-400, 2019.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Feng Xue
- Department of Medical Oncology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Ying Cui
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shanshan Liu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Gen Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jian Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Bixi Guan
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hai Zeng
- Department of General surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Weixin Bian
- Department of Medical Oncology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Chuan Yang
- Department of Medical Oncology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Chunbo Zhao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
212
|
Wu JM, Yang HT, Ho TW, Shun SC, Lin MT. Association between Interleukin-6 Levels and Perioperative Fatigue in Gastric Adenocarcinoma Patients. J Clin Med 2019; 8:jcm8040543. [PMID: 31010015 PMCID: PMC6518263 DOI: 10.3390/jcm8040543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 01/27/2023] Open
Abstract
Background: Gastric adenocarcinoma (GA), one of the most common gastrointestinal cancers worldwide, is often accompanied by cancer cachexia in the advanced stage owing to malnutrition and cancer-related symptoms. Although resection is the most effective curative procedure for GA patients, it may cause perioperative fatigue, worsening the extent of cancer cachexia. Although the relationship between cytokines and cancer fatigue has been evaluated, it is unclear which cytokines are associated with fatigue in GA patients. Therefore, this study aimed to investigate whether the changes in cytokine levels were associated with the perioperative changes in fatigue amongst GA patients. Methods: We included GA patients undergoing gastric surgery in a single academic medical center between June 2017 and December 2018. Fatigue-related questionnaires, serum cytokine levels (interferon-gamma, interleukin (IL)-1, IL-2, IL-5, IL-6, IL-12 p70, tumor necrosis factor-alpha, and granulocyte-macrophage colony-stimulating factor), and biochemistry profiles (albumin, prealbumin, C-reactive protein, and white blood cell counts) were assessed at three time points (preoperative day 0 (POD 0), post-operative day 1 (POD 1), and postoperative day 7 (POD 7)). We used the Brief Fatigue Inventory-Taiwan Form to assess the extent of fatigue. The change in fatigue scores among the three time points, as an independent variable, was adjusted for clinicopathologic characteristics, malnutrition risk, and cancer stages. Results: A total of 34 patients were included for analysis, including 12 female and 22 male patients. The mean age was 68.9 years. The mean score for fatigue on POD 0, POD 1, and POD 7 was 1.7, 6.2, and 3.6, respectively, with significant differences among the three time points (P < 0.001). Among the cytokines, only IL-6 was significantly elevated from POD 0 to POD 1. In the regression model, the change in IL-6 levels between POD 0 and POD 1 (coefficients = 0.01 for every 1 pg/mL increment; 95% confidence interval: 0.01–0.02; P = 0.037) and high malnutrition risk (coefficients = 2.80; 95% confidence interval: 1.45–3.52; P = 0.041) were significantly associated with changes in fatigue scores. Conclusions: The perioperative changes in plasma IL-6 levels are positively associated with changes in the fatigue scores of GA patients undergoing gastric surgery. Targeting the IL-6 signaling cascade or new fatigue-targeting medications may attenuate perioperative fatigue, and further clinical studies should be designed to validate this hypothesis.
Collapse
Affiliation(s)
- Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, 7 Chung-Shan South Rd. Taipei 10002, Taiwan.
| | - Hui-Ting Yang
- School of Nursing, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - Te-Wei Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, 7 Chung-Shan South Rd. Taipei 10002, Taiwan.
| | - Shiow-Ching Shun
- School of Nursing, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, 7 Chung-Shan South Rd. Taipei 10002, Taiwan.
| |
Collapse
|
213
|
Li Q, Zong Y, Li K, Jie X, Hong J, Zhou X, Wu B, Li Z, Zhang S, Wu G, Meng R. Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells. Biol Res 2019; 52:22. [PMID: 30992075 PMCID: PMC6466699 DOI: 10.1186/s40659-019-0231-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/06/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tumor microenvironment (TME) plays a vital role in determining the outcomes of radiotherapy. As an important component of TME, vascular endothelial cells are involved in the perivascular resistance niche (PVRN), which is formed by inflammation or cytokine production induced by ionizing radiation (IR). Protein kinase CK2 is a constitutively active serine/threonine kinase which plays a vital role in cell proliferation and inflammation. In this study, we investigated the potential role of CK2 in PVRN after IR exposure. RESULT Specific CK2 inhibitors, Quinalizarin and CX-4945, were employed to effectively suppressed the kinase activity of CK2 in human umbilical vein endothelial cells (HUVECs) without affecting their viability. Results showing that conditioned medium from IR-exposed HUVECs increased cell viability of A549 and H460 cells, and the pretreatment of CK2 inhibitors slowed down such increment. The secretion of IL-8 and IL-6 in HUVECs was induced after exposure with IR, but significantly inhibited by the addition of CK2 inhibitors. Furthermore, IR exposure elevated the nuclear phosphorylated factor-κB (NF-κB) p65 expression in HUVECs, which was a master factor regulating cytokine production. But when pretreated with CK2 inhibitors, such elevation was significantly suppressed. CONCLUSION This study indicated that protein kinase CK2 is involved in the key process of the IR induced perivascular resistant niche, namely cytokine production, by endothelial cells, which finally led to radioresistance of non-small cell lung cancer cells. Thus, the inhibition of CK2 may be a promising way to improve the outcomes of radiation in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Li
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxin Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
214
|
Liang B, Li L, Miao R, Wang J, Chen Y, Li Z, Zou X, Zhou M. Expression of Interleukin-6 and Integrin ανβ6 in Colon Cancer: Association with Clinical Outcomes and Prognostic Implications. Cancer Invest 2019; 37:174-184. [PMID: 30982362 DOI: 10.1080/07357907.2019.1597103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As important factors in the tumor microenvironment, interleukin-6 (IL-6) and integrin ανβ6 play significant roles in accumulating mutations that drive the progression and metastatic capacities of cancer. The aim of this study was to investigate the expression of IL-6 and integrin ανβ6, their clinical significance, as well as their correlation in the colon cancer tissues of 145 cases using immunohistochemistry. Our results showed that IL-6 and integrin ανβ6 are indicators of cancer progression and poor prognosis in patients with colon cancer. Moreover, their relationship may provide clues for further studies on how the tumor microenvironment mediates the development of colon cancer, as well as strategies for the identification of novel therapeutic targets in the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Benjia Liang
- a Department of Gastrointestinal Surgery , Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Leping Li
- a Department of Gastrointestinal Surgery , Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Ruizheng Miao
- a Department of Gastrointestinal Surgery , Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Jinshen Wang
- a Department of Gastrointestinal Surgery , Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Yuezhi Chen
- a Department of Gastrointestinal Surgery , Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Zequn Li
- b Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Public Health , Jinan , China
| | - Xueqing Zou
- c Department of Hepatobiliary Surgery , Qilu Hospital Shandong University , Jinan , China
| | - Mingliang Zhou
- a Department of Gastrointestinal Surgery , Provincial Hospital Affiliated to Shandong University , Jinan , China
| |
Collapse
|
215
|
Courtier N, Gambling T, Barrett-Lee P, Oliver T, Mason MD. The volume of liver irradiated during modern free-breathing breast radiotherapy: Implications for theory and practice. Radiography (Lond) 2019; 25:103-107. [PMID: 30955681 DOI: 10.1016/j.radi.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Incidental liver irradiation during breast radiotherapy can increase the risk of second primary malignancy and induce adverse inflammatory states. This study establishes the volume of liver irradiated during free-breathing breast radiotherapy. Novel associations between liver dose-volume data and systemic interleukin-6 soluble receptor and blood counts are evaluated. METHODS The volume of liver within the 10%, 50% and 90% isodose was determined for 100 women with stage 0 to II breast carcinoma undergoing 40Gy in 15 fractions over three weeks tangential irradiation. Blood counts and interleukin 6 soluble receptor concentration were recorded before, during and four weeks after radiotherapy. Dose-volume data for right-sided treatments was associated with longitudinal measures at bivariate and multivariable levels. RESULTS A maximum of 226cm3 (19%), 92 cm3 (8%) and 62 cm3 (5%) of the liver was irradiated within the 10%, 50% and 90% isodose. Liver irradiation was almost exclusively a feature of the 52 right-sided treatments and was strongly correlated with breast volume (ρ = 0.7, p < 0.0001). Liver V10% was significantly associated with interleukin-6 soluble receptor concentration four weeks post-radiotherapy (beta = 0.38, p = 0.01) after controlling for theoretical confounding variables. CONCLUSION Up to 8% of the liver is irradiated within the primary beam during local right-sided breast radiotherapy. Select use of a deep inspiration breath hold technique would reduce this volume, and minimise the risk of radiation-induced malignancy and acute systemic elevation of inflammatory interleukin 6 soluble receptor.
Collapse
Affiliation(s)
- N Courtier
- Cardiff University School of Healthcare Sciences, Ty Dewi Sant, Heath Park, Cardiff, CF24 0AB, UK.
| | - T Gambling
- Cardiff University School of Healthcare Sciences, Ty Dewi Sant, Heath Park, Cardiff, CF24 0AB, UK.
| | - P Barrett-Lee
- Velindre Cancer Centre, Velindre Road, Cardiff, CF14 2TL, UK.
| | - T Oliver
- Rutherford Cancer Centres Celtic Springs, Spooner Close, Newport, NP10 8FZ, UK.
| | - M D Mason
- Velindre Cancer Centre, Velindre Road, Cardiff, CF14 2TL, UK; Cardiff University School of Medicine, UHW Main Building, Health Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
216
|
Modulation of the IL-6-Signaling Pathway in Liver Cells by miRNAs Targeting gp130, JAK1, and/or STAT3. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:419-433. [PMID: 31026677 PMCID: PMC6479786 DOI: 10.1016/j.omtn.2019.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/19/2022]
Abstract
Interleukin-6 (IL-6)-type cytokines share the common receptor glycoprotein 130 (gp130), which activates a signaling cascade involving Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) transcription factors. IL-6 and/or its signaling pathway is often deregulated in diseases, such as chronic liver diseases and cancer. Thus, the identification of compounds inhibiting this pathway is of interest for future targeted therapies. We established novel cellular screening systems based on a STAT-responsive reporter gene (Cypridina luciferase). Of a library containing 538 microRNA (miRNA) mimics, several miRNAs affected hyper-IL-6-induced luciferase activities. When focusing on candidate miRNAs specifically targeting 3′ UTRs of signaling molecules of this pathway, we identified, e.g., miR-3677-5p as a novel miRNA affecting protein expression of both STAT3 and JAK1, whereas miR-16-1-3p, miR-4473, and miR-520f-3p reduced gp130 surface expression. Interestingly, combination treatment with 2 or 3 miRNAs targeting gp130 or different signaling molecules of the pathway did not increase the inhibitory effects on phospho-STAT3 levels and STAT3 target gene expression compared to treatment with single mimics. Taken together, we identified a set of miRNAs of potential therapeutic value for cancer and inflammatory diseases, which directly target the expression of molecules within the IL-6-signaling pathway and can dampen inflammatory signal transduction.
Collapse
|
217
|
Combined bazedoxifene and paclitaxel treatments inhibit cell viability, cell migration, colony formation, and tumor growth and induce apoptosis in breast cancer. Cancer Lett 2019; 448:11-19. [DOI: 10.1016/j.canlet.2019.01.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/24/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
|
218
|
Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, Tung YC, Hsu HL. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer 2019; 18:42. [PMID: 30885232 PMCID: PMC6421700 DOI: 10.1186/s12943-019-0988-0] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a poor prognostic breast cancer with the highest mutations and limited therapeutic choices. Cytokine networking between cancer cells and the tumor microenvironment (TME) maintains the self-renewing subpopulation of breast cancer stem cells (BCSCs) that mediate tumor heterogeneity, resistance and recurrence. Immunotherapy of those factors combined with targeted therapy or chemoagents may advantage TNBC treatment. Results We found that the oncogene Multiple Copies in T-cell Malignancy 1 (MCT-1/MCTS1) expression is a new poor-prognosis marker in patients with aggressive breast cancers. Overexpressing MCT-1 perturbed the oncogenic breast epithelial acini morphogenesis and stimulated epithelial-mesenchymal transition and matrix metalloproteinase activation in invasive TNBC cells, which were repressed after MCT-1 gene silencing. As mammary tumor progression was promoted by oncogenic MCT-1 activation, tumor-promoting M2 macrophages were enriched in TME, whereas M2 macrophages were decreased and tumor-suppressive M1 macrophages were increased as the tumor was repressed via MCT-1 knockdown. MCT-1 stimulated interleukin-6 (IL-6) secretion that promoted monocytic THP-1 polarization into M2-like macrophages to increase TNBC cell invasiveness. In addition, MCT-1 elevated the soluble IL-6 receptor levels, and thus, IL-6R antibodies antagonized the effect of MCT-1 on promoting M2-like polarization and cancer cell invasion. Notably, MCT-1 increased the features of BCSCs, which were further advanced by IL-6 but prevented by tocilizumab, a humanized IL-6R antibody, thus MCT-1 knockdown and tocilizumab synergistically inhibited TNBC stemness. Tumor suppressor miR-34a was induced upon MCT-1 knockdown that inhibited IL-6R expression and activated M1 polarization. Conclusions The MCT-1 pathway is a novel and promising therapeutic target for TNBC. Electronic supplementary material The online version of this article (10.1186/s12943-019-0988-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueh-Shan Weng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Pei-Chun Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
219
|
Zhang P, Dai H, Peng L. AGEs induce epithelial to mesenchymal transformation of human peritoneal mesothelial cells via upregulation of STAT3. Glycoconj J 2019; 36:155-163. [DOI: 10.1007/s10719-019-09861-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022]
|
220
|
Abstract
Objective: Oral cancer presents as a devastating type of malignancy. It is predominant in populations with high use of alcohol and various forms of tobacco as well as poor diets with low intake of fruits and vegetables. The present study focused on the potential of Garcinone E to inhibit HSC-4 oral cancer cell proliferation, migration and invasion. Methods: MTT and colony forming assays were performed to study antiproliferative effects of Garcinone E. Hoechst staining was used to determine levels of apoptosis, with cell invasion and scratch assays conducted for migration and invasion characteristics. The levels of MMPs and cytokines were quantified in Garcinone E treated cells by ELISA. Results: Garcinone E inhibited the proliferation and colony forming potential of HSC-4 cells. It also suppressed migration and invasion with inhibition of MMP-2 and MMP-9 expression. Moreover, it elevated IL-2 and reduced IL-6 expression in HSC-4 cells. Conclusion: Our results demonstrate for the first time that Garcinone E might inhibit metastasis of an oral cancer cell line by blocking invasion, migration and MMP production.
Collapse
Affiliation(s)
- Sheeja K
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre, Medical College, Thiruvanananthapuram, Kerala, India.
| | | |
Collapse
|
221
|
Mumin NH, Drobnitzky N, Patel A, Lourenco LM, Cahill FF, Jiang Y, Kong A, Ryan AJ. Overcoming acquired resistance to HSP90 inhibition by targeting JAK-STAT signalling in triple-negative breast cancer. BMC Cancer 2019; 19:102. [PMID: 30678647 PMCID: PMC6345040 DOI: 10.1186/s12885-019-5295-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Due to the lack of effective therapies and poor prognosis in TNBC (triple-negative breast cancer) patients, there is a strong need to develop effective novel targeted therapies for this subtype of breast cancer. Inhibition of heat shock protein 90 (HSP90), a conserved molecular chaperone that is involved in the regulation of oncogenic client proteins, has shown to be a promising therapeutic approach for TNBC. However, both intrinsic and acquired resistance to HSP90 inhibitors (HSP90i) limits their effectiveness in cancer patients. Methods We developed models of acquired resistance to HSP90i by prolonged exposure of TNBC cells to HSP90i (ganetespib) in vitro. Whole transcriptome profiling and a 328-compound bioactive small molecule screen were performed on these cells to identify the molecular basis of acquired resistance to HSP90i and potential therapeutic approaches to overcome resistance. Results Among a panel of seven TNBC cell lines, the most sensitive cell line (Hs578T) to HSP90i was selected as an in vitro model to investigate acquired resistance to HSP90i. Two independent HSP90i-resistant clones were successfully isolated which both showed absence of client proteins degradation, apoptosis induction and G2/M cell cycle arrest after treatment with HSP90i. Gene expression profiling and pathway enrichment analysis demonstrate significant activation of the survival JAK-STAT signalling pathway in both HSP90i-resistant clones, possibly through IL6 autocrine signalling. A bioactive small molecule screen also demonstrated that the HSP90i-resistant clones showed selective sensitivity to JAK2 inhibition. Inhibition of JAK and HSP90 caused higher induction of apoptosis, despite prior acquired resistance to HSP90i. Conclusions Acquired resistance to HSP90i in TNBC cells is associated with an upregulated JAK-STAT signalling pathway. A combined inhibition of the JAK-STAT signalling pathway and HSP90 could overcome this resistance. The benefits of the combined therapy could be explored further for the development of effective targeted therapy in TNBC patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-5295-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Agata Patel
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Fiona F Cahill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Yanyan Jiang
- Department of Oncology, University of Oxford, Oxford, UK
| | - Anthony Kong
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
222
|
Cytokine Modulation in Breast Cancer Patients Undergoing Radiotherapy: A Revision of the Most Recent Studies. Int J Mol Sci 2019; 20:ijms20020382. [PMID: 30658426 PMCID: PMC6359111 DOI: 10.3390/ijms20020382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common tumor and the second cause for cancer-related death in women worldwide, although combined treatments are well-established interventions. Several effects seem to be responsible for poor outcomes in advanced or triple-negative BC patients. Focusing on the interaction of ionizing radiation with tumor and normal tissues, the role of cytokine modulation as a surrogate of immunomodulation must still be explored. In this work, we carried out an overview of studies published in the last five years involving the cytokine profile in BC patients undergoing radiotherapy. The goal of this review was to evaluate the profile and modulation of major cytokines and interleukins as potential biomarkers of survival, treatment response, and toxicity in BC patient undergoing radiotherapy. Out of 47 retrieved papers selected using PubMed search, 15 fulfilled the inclusion criteria. Different studies reported that the modulation of specific cytokines was time- and treatment-dependent. Radiotherapy (RT) induces the modulation of inflammatory cytokines up to 6 months for most of the analyzed cytokines, which in some cases can persist up to several years post-treatment. The role of specific cytokines as prognostic and predictive of radiotherapy outcome is critically discussed.
Collapse
|
223
|
Harmer D, Falank C, Reagan MR. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol (Lausanne) 2019; 9:788. [PMID: 30671025 PMCID: PMC6333051 DOI: 10.3389/fendo.2018.00788] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is strongly linked to the maintenance of healthy bone. Inflammatory cytokines, specifically, are crucial to skeletal homeostasis and any dysregulation can result in detrimental health complications. Interleukins, such as interleukin 6 (IL-6), act as osteoclast differentiation modulators and as such, must be carefully monitored and regulated. IL-6 encourages osteoclastogenesis when bound to progenitors and can cause excessive osteoclastic activity and osteolysis when overly abundant. Numerous bone diseases are tied to IL-6 overexpression, including rheumatoid arthritis, osteoporosis, and bone-metastatic cancers. In the latter, IL-6 can be released with growth factors into the bone marrow microenvironment (BMM) during osteolysis from bone matrix or from cancer cells and osteoblasts in an inflammatory response to cancer cells. Thus, IL-6 helps create an ideal microenvironment for oncogenesis and metastasis. Multiple myeloma (MM) is a blood cancer that homes to the BMM and is strongly tied to overexpression of IL-6 and bone loss. The roles of IL-6 in the progression of MM are discussed in this review, including roles in bone homing, cancer-associated bone loss, disease progression and drug resistance. MM disease progression often includes the development of drug-resistant clones, and patients commonly struggle with reoccurrence. As such, therapeutics that specifically target the microenvironment, rather than the cancer itself, are ideal and IL-6, and its myriad of downstream signaling partners, are model targets. Lastly, current and potential therapeutic interventions involving IL-6 and connected signaling molecules are discussed in this review.
Collapse
Affiliation(s)
- Danielle Harmer
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
224
|
Gu BB, Jiao FR, Wu W, Liu L, Jiao WH, Sun F, Wang SP, Yang F, Lin HW. Ochrasperfloroid, an ochratoxin–ergosteroid heterodimer with inhibition of IL-6 and NO production from Aspergillus flocculosus 16D-1. RSC Adv 2019; 9:7251-7256. [PMID: 35519937 PMCID: PMC9061062 DOI: 10.1039/c8ra10539a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/18/2019] [Indexed: 01/02/2023] Open
Abstract
A novel ochratoxin–ergosteroid heterodimer, ochrasperfloroid (1), together with a known mycotoxin, ochratoxin A (2), were isolated from the sponge-derived fungus Aspergillus flocculosus 16D-1. The structure of 1 was determined on the basis of 1D/2D NMR, HRESIMS/MS, and LC-UV/MS analysis of its alkaline hydrolyzates, quantum-chemical 13C NMR calculation, and comparison with literature data. Of note, the ergosteroid embedded in 1 is also a new structure. Ochrasperfloroid (1) showed potent inhibitory activity towards IL-6 production in lipopolysaccharide (LPS)-induced THP-1 cell line, with an IC50 value of 2.02 μM, and NO production in LPS-activated RAW264.7 macrophages, with an IC50 value of 1.11 μM. A novel ochratoxin–ergosteroid heterodimer, ochrasperfloroid (1), together with a known mycotoxin, ochratoxin A (2), were isolated from the sponge-derived fungus Aspergillus flocculosus 16D-1.![]()
Collapse
Affiliation(s)
- Bin-Bin Gu
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Fu-Rong Jiao
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Wei Wu
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Lei Liu
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Wei-Hua Jiao
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Fan Sun
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Shu-Ping Wang
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Fan Yang
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| | - Hou-Wen Lin
- Key Laboratory for Marine Drugs
- Department of Pharmacy
- State Key Laboratory of Oncogenes and Related Genes
- Renji Hospital School of Medicine
- Shanghai Jiao Tong University
| |
Collapse
|
225
|
Selvaraj G, Kaliamurthi S, Lin S, Gu K, Wei DQ. Prognostic Impact of Tissue Inhibitor of Metalloproteinase-1 in Non- Small Cell Lung Cancer: Systematic Review and Meta-Analysis. Curr Med Chem 2019; 26:7694-7713. [PMID: 30182835 DOI: 10.2174/0929867325666180904114455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/06/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) is a multifunctional natural matrixin inhibitor that is generally considered a negative regulator of cancer metastasis. Clinical studies reporting the prognostic value of TIMP-1 in Non-small Cell Lung Cancer (NSCLC) are inconsistent. Therefore, the present study aimed to determine the prognostic impact of TIMP-1 expression in NSCLC. METHODS Appropriate studies with full-text articles were identified in searches of the China National Knowledge Infrastructure (CNKI), Cochrane Library, PubMed, and Web of Science databases up to March 7, 2018. The pooled Hazard Ratio (HR) of overall survival with a 95% confidence interval (95% CI) was employed to assess the relationship between the expression of TIMP-1 and NSCLC patient survival. RESULTS The meta-analysis comprised 40 studies including 3,194 patients. Study outcomes indicated that high TIMP-1 expression is independently associated with poor overall survival (HR: 1.60; 95% CI: 1.50, 1.69; P < 0.00001) with 61% of heterogeneity. In addition, we analyzed subgroups, including ethnicities, histological types, percentage of TIMP-1 expression levels, specimens, and tumor stage. All results were statistically significant. The outcome of our meta-analysis indicates that high expression levels of TIMP-1 are correlated with poor prognosis in patients with NSCLC. CONCLUSION Expression levels of TIMP-1 represent a potential prognostic biomarker in NSCLC patients in addition to being a possible therapeutic target.
Collapse
Affiliation(s)
- Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Shuhuang Lin
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Keren Gu
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| |
Collapse
|
226
|
Peng H, Wang S, Pang L, Yang L, Chen Y, Cui XB. Comprehensive bioinformation analysis of methylated and differentially expressed genes in esophageal squamous cell carcinoma. Mol Omics 2019; 15:88-100. [DOI: 10.1039/c8mo00218e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Differentially methylated genes (DMGs) play a crucial role in the etiology and pathogenesis of esophageal squamous cell carcinoma (ESCC).
Collapse
Affiliation(s)
- Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| | - Shasha Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| | - Lijuan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| | - Yunzhao Chen
- The People's Hospital of Suzhou National Hi-Tech District
- Department of Pathology
- Suzhou High-tech Zone People's Hospital No. 95
- Huashan Road
- Suzhou High-tech Zone
| | - Xiao-bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| |
Collapse
|
227
|
Anticancer effects of alloxanthoxyletin and fatty acids esters - In vitro study on cancer HTB-140 and A549 cells. Biomed Pharmacother 2018; 110:618-630. [PMID: 30544062 DOI: 10.1016/j.biopha.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 12/02/2018] [Indexed: 01/16/2023] Open
Abstract
Alloxanthoxyletin, a natural occurring pyranocoumarin isolated from a number of plant sources, such as family of Rutaceae, and its synthetic derivatives show cytotoxic and antitumor activities. In the present study new eleven esters of alloxanthoxyletin and fatty acids were synthesized and evaluated for their anticancer toxicity. The structures of the compounds were confirmed by Proton Nuclear Magnetic Resonance (1H NMR), Carbon-13 Nuclear Magnetic Resonance (13C NMR) and High Resolution Mass Spectrometry (HRMS) analyses. For all compounds 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cytotoxic effect on human melanoma cells (HTB-140), human epithelial lung carcinoma cells (A549) and human keratinocyte line (HaCaT). For the most active compounds (8-11) lactate dehydrogenase (LDH) assay to assess the level of cell damage as well as migration inhibition assay were performed. To explain the basic mechanism of cell death induction, the effect of derivatives 8-11 on early and late apoptosis in Annexin V-FITC/7-AAD flow cytometry analysis was investigated. The results indicate that human melanoma cells (HTB-140) and human epithelial lung carcinoma cells (A549) were more sensitive to new alloxanthoxyletin derivatives exposure compared to human keratinocytes (HaCaT). Both, the cytotoxicity and the migration tests showed a concentration-dependent inhibition of cell growth, although with a different degree of efficacy. Tested compounds induced apoptosis in cancer cells, however, derivatives 8, 9, 10 and 11 were found to be much more potent inducers of early apoptosis in HTB-140 cells than in A549 and HaCaT cells. To establish the potent mechanism of action of alloxanthoxyletin derivatives 8, 9, 10 and 11 on HaCaT, A549 and HTB-140 cells, the level of IL-6 was measured. Our results indicate, that tested compounds significantly decrease the release of IL-6 for all cancer cell lines.
Collapse
|
228
|
Kaur RP, Vasudeva K, Singla H, Benipal RPS, Khetarpal P, Munshi A. Analysis of pro- and anti-inflammatory cytokine gene variants and serum cytokine levels as prognostic markers in breast cancer. J Cell Physiol 2018; 233:9716-9723. [PMID: 30078181 DOI: 10.1002/jcp.26901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
The aim of current study was to evaluate the genetic variation in all the genes encoding pro- and anti-inflammatory cytokines in association with breast cancer development in patients from Malwa region of Punjab. The importance of the levels of interleukin (IL)-17, tumor necrosis factor, interferon γ, IL-10, IL-6, IL-4, and IL-2 with respect to clinicopathological data, prognosis, and disease-free survival was also determined in these patients. Two hundred and fifty female breast cancer patients and 250 age-matched controls were screened for variations in cytokine-encoding genes using global screening array microchip. The level of cytokines was estimated in 150 patients and 60 age-matched controls using BD™ Cytometric Bead Array (CBA) Human Th1/Th2/Th17 cytokine kit by BD Accuri flow cytometer. The difference in cytokine levels was evaluated by Mann-Whitney test. No significant variation in the genes encoding various cytokines was found between patients and controls. Out of the seven cytokines evaluated, the levels of IL-6 and IL-17a were found to be significantly high in patients in comparison with controls ( p = 0.001 and 0.02, respectively). The elevated levels of these cytokines are also associated significantly with poor outcome. We did not find any specific variation in the genes encoding various cytokines between patients and controls. However, there was a significant difference in the serum levels of IL-6 and IL-17a between patients and controls, and the elevated levels of these two cytokines associated significantly with poor outcome in breast cancer patients and, therefore, can be used as prognostic markers.
Collapse
Affiliation(s)
- Raman Preet Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Kanika Vasudeva
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Heena Singla
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| |
Collapse
|
229
|
Zhu ZY, Xue JX, Yu LX, Bian WH, Zhang YF, Sohn KC, Shin IH, Yao C. Reducing postsurgical exudate in breast cancer patients by using San Huang decoction to ameliorate inflammatory status: a prospective clinical trial. ACTA ACUST UNITED AC 2018; 25:e507-e515. [PMID: 30607117 DOI: 10.3747/co.25.4108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Reducing inflammatory factors in wound exudate is a promising treatment approach for healing wounds in postsurgical breast cancer patients. Traditional Chinese Medicine (tcm) treatments have been shown to be beneficial and safe for optimal regulation of oxidative stress during the postoperative period. In the present clinical trial, we evaluated the effectiveness of a promising Chinese herbal formula, San Huang decoction [shd (Radix astragali, Radix et rhizoma rhei, and Rhizoma curcuma longa, 3:1:1; supplemental Table 1)], on wound inflammatory response after mastectomy. Methods The study randomized 30 patients with breast cancer who fulfilled the inclusion and exclusion criteria to either a treatment (n = 15) or a control group (n = 15). Patients in the treatment group received liquid shd, taken twice daily with or without food. Treatment was given for 1 day before surgery and for 7 days postoperatively. Participants in the control group received a placebo on the same schedule as the treatment group. Outcomes measured in every subject included clinical tcm and wound inflammation symptom scores, daily and total amounts of drainage fluid, and levels of inflammatory factors in the exudate [tumour necrosis factor α (tnf-α), interleukins 6 (il-6), 8 (il-8), and 2R (il-2R), human C-reactive protein (crp)] at 2 hours and on days 1, 3, and 7 postoperatively. Results The total amount of drainage fluid over 7 days was significantly lower in the treatment group (572.20 ± 93.95 mL) than in the control group (700.40 ± 107.38 mL). The tcm symptom score was also lower in treatment group (day 7: 1.87 ± 0.83 vs. 4.80 ± 3.61, p = 0.049), as was the inflammatory symptom score (day 7: 0.67 ± 0.72 vs. 3.67 ± 2.50, p = 0.001). Levels of tnf-α, il-6, il-8, il-2R, and crp in drainage fluid were significantly lower with shd treatment. Conclusions Perioperative treatment with shd effectively lessened postoperative exudate and ameliorated inflammatory symptoms in patients who underwent surgery for breast cancer.
Collapse
Affiliation(s)
- Z Y Zhu
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, P.R.C
| | - J X Xue
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, P.R.C
| | - L X Yu
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, P.R.C
| | - W H Bian
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, P.R.C
| | - Y F Zhang
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, P.R.C
| | - K C Sohn
- Hospital of Catholic University of Daegu, Daegu, Republic of Korea
| | - I H Shin
- Hospital of Catholic University of Daegu, Daegu, Republic of Korea
| | - C Yao
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, P.R.C
| |
Collapse
|
230
|
Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M, Jadidi-Niaragh F. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother 2018; 108:1415-1424. [DOI: 10.1016/j.biopha.2018.09.177] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/29/2018] [Indexed: 12/22/2022] Open
|
231
|
Muccioli M, Nandigam H, Loftus T, Singh M, Venkatesh A, Wright J, Pate M, McCall K, Benencia F. Modulation of double-stranded RNA pattern recognition receptor signaling in ovarian cancer cells promotes inflammatory queues. Oncotarget 2018; 9:36666-36683. [PMID: 30613350 PMCID: PMC6291178 DOI: 10.18632/oncotarget.26378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation and cancer are inter-related, and both pro- and anti-tumorigenic effects are possible in different contexts, highlighting the importance of characterizing specific inflammatory pathways in distinct tumor types. Malignant cells and non-cancerous cells such as fibroblasts, infiltrating leukocytes (i.e., dendritic cells [DC], macrophages, or lymphocytes) and endothelial cells, in combination with the extracellular matrix, constitute the tumor microenvironment (TME). In the last decades, the role of the TME in cancer progression has gained increased attention and efforts directed at abrogating its deleterious effects on anti-cancer therapies have been ongoing. In this context, we investigated the potential of mouse and human ovarian cancer cells to produce inflammatory factors in response to pathogen recognition receptor (PRR) signaling, which might help to shape the biology of the TME. We determined that mouse ovarian tumors generate chemokines that are able to interact with receptors harbored by tumor-associated DCs. We also found that dsRNA triggers significant pro-inflammatory cytokine up-regulation in both human and mouse ovarian tumor cell lines, and that several PRR can simultaneously contribute to the stimulated inflammatory response displayed by these cells. Thus, dsRNA-activated PRRs may not only constitute potentially relevant drug targets for therapies aiming to prevent inflammation associated with leukocyte recruitment, or as co-adjuvants of therapeutic treatments, but also might have a role in development of nascent tumors, for example via activation of cancer cells by microbial molecules associated to pathogens, or with those appearing in circulation due to dysbiosis.
Collapse
Affiliation(s)
- Maria Muccioli
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Harika Nandigam
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Tiffany Loftus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Manindra Singh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Amritha Venkatesh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Julia Wright
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Kelly McCall
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| | - Fabian Benencia
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
232
|
Liu J, Liu L, Yagüe E, Yang Q, Pan T, Zhao H, Hu Y, Zhang J. GGNBP2 suppresses triple-negative breast cancer aggressiveness through inhibition of IL-6/STAT3 signaling activation. Breast Cancer Res Treat 2018; 174:65-78. [PMID: 30450530 DOI: 10.1007/s10549-018-5052-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/13/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, lacking effective targeted therapies, and whose underlying mechanisms are still unclear. The gene coding for Gametogenetin-binding protein (GGNBP2), also known as Zinc Finger Protein 403 (ZNF403), is located on chromosome 17q12-q23, a region known as a breast cancer susceptibility locus. We have previously reported that GGNBP2 functions as a tumor suppressor in estrogen receptor-positive breast cancer. The aim of this study was to evaluate the role and mechanisms of GGNBP2 in TNBC. METHODS The effect of GGNBP2 on TNBC aggressiveness was investigated both in vitro and in vivo. The protein and mRNA expression levels were analyzed by western blotting and reverse transcription quantitative polymerase chain reaction, respectively. Fluorescence-activated cell sorting analysis was used to evaluate the cell cycle distribution and cell apoptosis. Immunohistochemistry was used to determine the expression of GGNBP2 in breast cancer tissues. RESULTS We find that GGNBP2 expression decreases in TNBC tissues and is associated with the outcome of breast cancer patients. Furthermore, experimental overexpression of GGNBP2 in MDA-MB-231 and Cal51 cells suppresses cell proliferation, migration and invasion, reduces the cancer stem cell subpopulation, and promotes cell apoptosis in vitro as well as inhibits tumor growth in vivo. In these cell models, overexpression of GGNBP2 decreases the activation of IL-6/STAT3 signaling. CONCLUSION Our data demonstrate that GGNBP2 suppresses cancer aggressiveness by inhibition of IL-6/STAT3 activation in TNBC.
Collapse
Affiliation(s)
- Jingjing Liu
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Lei Liu
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Ernesto Yagüe
- Division of Cancer, Faculty of Medicine, Cancer Research Center, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Qianxi Yang
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Teng Pan
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Hui Zhao
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Yunhui Hu
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China.
| | - Jin Zhang
- The 3rd Department of Breast Cancer, Treatment and Research Center, China Tianjin Breast Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
233
|
Piobbico D, Bartoli D, Pieroni S, De Luca A, Castelli M, Romani L, Servillo G, Della-Fazia MA. Role of IL-17RA in the proliferative priming of hepatocytes in liver regeneration. Cell Cycle 2018; 17:2423-2435. [PMID: 30395772 PMCID: PMC6342078 DOI: 10.1080/15384101.2018.1542893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
A tight link has been established between inflammation and cancer. Liver regeneration is a widely used model to study the correlation between inflammation and proliferation. IL-6 is essentially involved in liver regeneration and in cancer. Recently, IL-17A has been shown to regulate not only inflammation, but also cell proliferation. Here, we analyze the role played by IL-17A signaling in liver regeneration by comparing cell proliferation in Wild Type and IL-17RA-/- mice. Partial hepatectomy experiments performed in IL-17RA-/- mice showed a delay in expression of early-genes to prime the residual hepatocyte to proliferate, with subsequent delay in G1/S-phase transition. We demonstrated that IL-17RA regulates, by recruitment of non-parenchymal cell, the expression of IL-6, which in turn triggers the proliferation of residual hepatocytes. Our data indicate an important role played by IL-17RA in liver proliferation via IL-6.
Collapse
Affiliation(s)
- Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Daniela Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marilena Castelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
234
|
Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond. Arch Immunol Ther Exp (Warsz) 2018; 67:89-102. [PMID: 30386868 DOI: 10.1007/s00005-018-0531-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
Abstract
Metastasis is the direst face of cancer, and it is not a feature solely dependent on cancer cells; however, a complex interaction between cancer cells and host causes this process. Investigating the mechanisms of metastasis can lead to its control. Myeloid-derived suppressor cells (MDSCs) are key components of tumor microenvironment that favor cancer progression. These cells result from altered myelopoiesis in response to the presence of tumor. The most recognized function of MDSCs is suppressing anti-tumor immune responses. Strikingly, these cells are among important players in cancer dissemination and metastasis. They can exert their effect on metastatic process by affecting anti-cancer immunity, epithelial-mesenchymal transition, cancer stem cell formation, angiogenesis, establishing premetastatic niche, and supporting cancer cell survival and growth in metastatic sites. In this article, we review and discuss the mechanisms by which MDSCs contribute to cancer metastasis.
Collapse
|
235
|
Jia Y, Li X, Zhao C, Jiang T, Zhao S, Zhang L, Liu X, Shi J, Qiao M, Luo J, Liu S, Han R, Chen X, Zhou C. Impact of serum vascular endothelial growth factor and interleukin-6 on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small-cell lung cancer. Lung Cancer 2018; 125:22-28. [DOI: 10.1016/j.lungcan.2018.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
|
236
|
Saeg F, Anbalagan M. Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig 2018; 5:39. [PMID: 30498750 DOI: 10.21037/sci.2018.10.05] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Breast cancer is a heterogeneous disease that accounts for 30% of all cancers diagnosed in women and over half a million deaths per year. Cancer stem cells (CSCs) make up a small subpopulation of cells within a tumor, are capable of self-renewal and, are responsible for tumor initiation, formation, and recurrence. Breast CSCs (BCSCs) have been the subject of concentrated research as potential targets for breast cancer therapies. Cell surface markers CD44+/CD24- have been established as minimum biomarkers for BCSCs and the upregulation of CD44 expression has been linked to tumor formation in numerous cancers. Additionally, the deregulation of Notch, Wnt/Frizzled/β-catenin, Hippo, and Hedgehog signaling pathways is believed to be responsible for the formation of CSCs and lead to tumor formation. Tumor heterogeneity is a key feature of therapy resistance and a major challenge. CSCs are predominantly senescent and inherently immune to chemotherapy drugs which rely on an overactive cell cycle. Current therapeutic strategies include targeting CSC signaling pathways that play critical roles in self-renewal and defense. Anti-CD44 antibodies have been shown to induce terminal differentiation in CSCs resulting in a significant decrease in tumor metastasis. Additionally, targeting the tumor microenvironment has been shown to increase the effectiveness of chemotherapy drugs. In this review, we attempt to provide an overview of breast cancer, the stem of its cause, and novel therapies currently being explored.
Collapse
Affiliation(s)
- Fouad Saeg
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,DeBakey Scholars Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
237
|
Gu BB, Jiao FR, Wu W, Jiao WH, Li L, Sun F, Wang SP, Yang F, Lin HW. Preussins with Inhibition of IL-6 Expression from Aspergillus flocculosus 16D-1, a Fungus Isolated from the Marine Sponge Phakellia fusca. JOURNAL OF NATURAL PRODUCTS 2018; 81:2275-2281. [PMID: 30350993 DOI: 10.1021/acs.jnatprod.8b00662] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
New pyrrolidine alkaloids, preussins C-I (1-7) and (11 R)/(11 S)-preussins J and K (8 and 9), were isolated from the sponge-derived fungus Aspergillus flocculosus 16D-1. The structures and configurations of these preussins were elucidated by detailed spectroscopic analysis, modified Mosher's method, and comparisons with literature data. These compounds showed strong to moderate inhibitory activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with IC50 values ranging from 0.11 to 22 μM, but were inactive against normal tumor cell lines and fungi.
Collapse
Affiliation(s)
- Bin-Bin Gu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Fu-Rong Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Wei Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Lei Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Shu-Ping Wang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| |
Collapse
|
238
|
Myokines as Possible Therapeutic Targets in Cancer Cachexia. J Immunol Res 2018; 2018:8260742. [PMID: 30426026 PMCID: PMC6217752 DOI: 10.1155/2018/8260742] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/23/2018] [Indexed: 01/04/2023] Open
Abstract
Cachexia is an extremely serious syndrome which occurs in most patients with different cancers, and it is characterized by systemic inflammation, a negative protein and energy balance, and involuntary loss of body mass. This syndrome has a dramatic impact on the patient's quality of life, and it is also associated with a low response to chemotherapy leading to a decrease in survival. Despite this, cachexia is still underestimated and often untreated. New research is needed in this area to understand this complex phenomenon and ultimately find treatment methods and therapeutic targets. The skeletal muscle can act as an endocrine organ. Signaling between muscles and other systems is done through myokines, cytokines, and proteins produced and released by myocytes. In this review, we would like to draw attention to some of the most important myokines that could have potential as biomarkers and therapeutic targets: myostatin, irisin, myonectin, decorin, fibroblast growth factor 21, interleukin-6, interleukin-8, and interleukin-15.
Collapse
|
239
|
Yang X, Li X, Yuan M, Tian C, Yang Y, Wang X, Zhang X, Sun Y, He T, Han S, Chen G, Liu N, Gao Y, Hu D, Xing Y, Shang H. Anticancer Therapy-Induced Atrial Fibrillation: Electrophysiology and Related Mechanisms. Front Pharmacol 2018; 9:1058. [PMID: 30386232 PMCID: PMC6198283 DOI: 10.3389/fphar.2018.01058] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Some well-established immunotherapy, radiotherapy, postoperation, anticancer drugs such as anthracyclines, antimetabolites, human epidermal growth factor receptor 2 blockers, tyrosine kinase inhibitors, alkylating agents, checkpoint inhibitors, and angiogenesis inhibitors, are significantly linked to cardiotoxicity. Cardiotoxicity is a common complication of several cancer treatments. Some studies observed complications of cardiac arrhythmia associated with the treatment of cancer, including atrial fibrillation (AF), supraventricular arrhythmias, and cardiac repolarization abnormalities. AF increases the risk of cardiovascular morbidity and mortality; it is associated with an almost doubled risk of mortality and a nearly 5-fold increase in the risk of stroke. The occurrence of AF is also usually researched in patients with advanced cancer and those undergoing active cancer treatments. During cancer treatments, the incidence rate of AF affects the prognosis of tumor treatment and challenges the treatment strategy. The present article is mainly focused on the cardiotoxicity of cancer treatments. In our review, we discuss these anticancer therapies and how they induce AF and consequently provide information on the precaution of AF during cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Mengchen Yuan
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chao Tian
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tianmai He
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanwei Xing
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
240
|
Zhang S, Chang Y, Gong Y, Gao Y, Guo Q, Wang Y, Zhao Y, Wang Z. Comprehensive analysis of microRNA‐messenger RNA regulatory network in gemcitabine‐resistant bladder cancer cells. J Cell Biochem 2018; 120:6347-6360. [PMID: 30304549 DOI: 10.1002/jcb.27922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Su Zhang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yong‐Yan Chang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yu‐Wen Gong
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yan‐Jun Gao
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Qi Guo
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Yu‐Han Wang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - You‐Li Zhao
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| | - Zhi‐Ping Wang
- Institute of Gansu Nephro‐Urological Clinical Center, Department of Urology, Institute of Urology Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital Lanzhou China
| |
Collapse
|
241
|
Zheng X, Liu Q, Yi M, Qin S, Wu K. The regulation of cytokine signaling by retinal determination gene network pathway in cancer. Onco Targets Ther 2018; 11:6479-6487. [PMID: 30323623 PMCID: PMC6177397 DOI: 10.2147/ott.s176113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor environment plays a pivotal role in determining cancer biology characteristics. Cytokine factors, as a critical component in tumor milieu, execute distinct functions in the process of tumorigenesis and progression via the autocrine or paracrine manner. The retinal determination gene network (RDGN), which mainly comprised DACH, SIX, and EYA family members, is required for the organ development in mammalian species. While the aberrant expression of RDGN is involved in the proliferation, apoptosis, angiogenesis, and metastasis of tumors via interacting with different cytokine-related signals, such as CXCL8, IL-6, TGF-β, FGF, and VEGF, in a cell- or tissue-dependent manner. Thus, joint detection of this pathway might be used as a potential biomarker for the stratification of target therapy and for the precision prediction of the prognosis of cancer patients.
Collapse
Affiliation(s)
- Xinhua Zheng
- Department of Clinical Medicine, Medical School of Pingdingshan University, Pingdingshan, Henan 467000, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| |
Collapse
|
242
|
Bilgici B, Gun S, Avci B, Akar A, K. Engiz B. What is adverse effect of wireless local area network, using 2.45 GHz, on the reproductive system? Int J Radiat Biol 2018; 94:1054-1061. [DOI: 10.1080/09553002.2018.1503430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Birşen Bilgici
- Department of Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Seda Gun
- Department of Pathology, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avci
- Department of Biochemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Ayşegül Akar
- Department of Biophysics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Begüm K. Engiz
- Department of Electrical and Electronics Engineering, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
243
|
van Belzen IAEM, Kesmir C. Immune biomarkers for predicting response to adoptive cell transfer as cancer treatment. Immunogenetics 2018; 71:71-86. [PMID: 30232514 PMCID: PMC6326979 DOI: 10.1007/s00251-018-1083-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Adoptive cell transfer (ACT) is a form of personalised immunotherapy which has shown promising results in metastasised cancer. For this treatment, autologous T lymphocytes are selected and stimulated in vitro before re-administration in large numbers. However, only a fraction of patients benefit from ACT, and it is not yet known what biomarkers can predict treatment outcome. In this review, we describe what tumour characteristics are associated with response to ACT. Based on the current knowledge, the best candidate biomarker for a good anti-tumour response seems to be a large number of neoantigens with a homogeneous distribution across the tumour in combination with sufficient MHC-I expression level. Additionally, it is necessary to be able to isolate a diverse population of T cells reactive to these neoantigens from tumour tissue or peripheral blood. Additional promising candidate biomarkers shared with other cancer immunotherapies are a large number of tumour-infiltrating cytotoxic and memory T cells, normal levels of glycolysis, and a pro-inflammatory cytokine profile within the tumour. Intense research in this field will hopefully result in identification of more biomarkers for cancers with low mutational load.
Collapse
Affiliation(s)
- Ianthe A E M van Belzen
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
244
|
Tong Q, Wang XL, Li SB, Yang GL, Jin S, Gao ZY, Liu XB. Combined detection of IL-6 and IL-8 is beneficial to the diagnosis of early stage esophageal squamous cell cancer: a preliminary study based on the screening of serum markers using protein chips. Onco Targets Ther 2018; 11:5777-5787. [PMID: 30254470 PMCID: PMC6140751 DOI: 10.2147/ott.s171242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The diagnosis rate of early stage esophageal squamous cell carcinoma (ESCC) is low due to the lack of specific tumor markers. Seeking for these markers is beneficial to improve the early diagnosis rate and the prognosis of patients. This study profiles the differentially expressed proteins of early stage ESCC patients via the AAH-BLG-507 protein chip, which further consolidates the clinical evidence of ESCC diagnosis. Materials and methods In this study, 20 serum samples were collected from Taihe Hospital between August 2016 and June 2017. Ten of them carried ESCC, while the rest were healthy controls. To profile the proteins’ expression level, the AAH-BLG-507 protein chip was used, and both highly expressed and lowly expressed proteins were fished out. Meanwhile, their biological roles were examined by using Gene Ontology (GO) database and String database, and they were further verified by ELISA. Results Results showed that the expression levels of AXL, ARTN, Ang2, BDNF, BMP7, cripto-1, CCL28, E-selectin, IL-6, IL-8 and SHH in the serum of early ESCC were significantly upregulated (P<0.05), particularly IL-6 and IL-8. The expression levels of TSP1 and MMP-8 were markedly downregulated (P<0.05). Analysis showed that these proteins were mainly involved in angiogenesis, signal transduction, cell proliferation and migration, indicating the close relationship with the development of ESCC. Conclusion It suggested that IL-6 and IL-8 proteins could be considered as the markers for ESCC diagnosis.
Collapse
Affiliation(s)
- Qiang Tong
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| | - Xiao-Long Wang
- Department of Gastroenterology, Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China
| | - Sheng-Bao Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| | - Gong-Li Yang
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| | - Zi-Ye Gao
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China
| | - Xiao-Bo Liu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, People's Republic of China,
| |
Collapse
|
245
|
Zhang ZH, Luo B, Xu S, Fu L, Chen YH, Zhang C, Wang H, Xie DD, Xu DX. Vitamin D deficiency promotes prostatic hyperplasia in middle-age mice through exacerbating local inflammation. J Steroid Biochem Mol Biol 2018; 182:14-20. [PMID: 29684478 DOI: 10.1016/j.jsbmb.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/07/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
Vitamin D deficiency is especially prevalent in pregnant women and children. Our recent study demonstrated that vitamin D deficiency in early life disturbed testicular development. This study investigated the effects of vitamin D deficiency in early life on prostatic hyperplasia in middle-aged mice. In control group, dams and their male pups were fed with standard-chow diets. In VDD group, dams were fed with vitamin D deficient (VDD) diets throughout pregnancy and lactation. After weaning, male pups continued to be fed with VDD diets. As expected, prostate weight was elevated and prostatic hyperplasia was observed in VDD-fed mice. The number of prostatic Ki-67-positive epithelial cells, a proliferation marker, was increased in VDD-fed mice. Further analysis found that vitamin D deficiency promoted inflammatory infiltration and stromal fibrosis in prostate of middle-aged mice. Moreover, vitamin D deficiency activated NF-κB and up-regulated Il-6 mRNA in prostate of middle-aged mice. In addition, vitamin D deficiency activated prostatic STAT3, a proliferation pathway in middle-aged mice. Of interest, VDD-induced prostatic inflammation and hyperplasia were partially reversed when VDD diets was replaced with standard diets. These results provide evidence that vitamin D deficiency in early life promotes prostatic hyperplasia in middle-aged mice through exacerbating local inflammation.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Biao Luo
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Shen Xu
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Yuan-Hua Chen
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Dong-Dong Xie
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China.
| |
Collapse
|
246
|
HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death Dis 2018; 9:867. [PMID: 30158543 PMCID: PMC6115420 DOI: 10.1038/s41419-018-0922-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are important components of tumor stroma and play a key role in tumor progression. CAFs involve in crosstalk with tumor cells through various kinds of cytokines. In the present study, we screened hepatocyte growth factor (HGF) as a cytokine predominantly originating from CAFs. CAFs-derived HGF was found to promote MET-unamplified gastric cancer (GC) proliferation, migration, and invasion through the activation of HGF/c-Met/STAT3/twist1 pathway. It also activated interleukin (IL)-6/IL-6R/JAK2/STAT3/twist1 pathway by up-regulating IL-6R expression. As IL-6 was also found to upregulate c-Met expression, we identified the cooperation of HGF and IL-6 in enhancing the characteristics of CAFs. In vivo experiments revealed that CAFs-derived HGF promoted tumorigenesis and metastasis of MET-unamplified GC. Gene set enrichment analysis (GSEA) was performed to confirm our findings. Our study found that the increased expression of HGF in CAFs induced by MET-unamplified GC contributed to the malignant phenotype of both MET-unamplified GC and CAFs in tumor microenvironment.
Collapse
|
247
|
Cytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets. J Leukoc Biol 2018; 104:987-1002. [DOI: 10.1002/jlb.ma1217-499rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
|
248
|
Gao Q, Xiang SD, Wilson K, Madondo M, Stephens AN, Plebanski M. Sperm Protein 17 Expression by Murine Epithelial Ovarian Cancer Cells and Its Impact on Tumor Progression. Cancers (Basel) 2018; 10:cancers10080276. [PMID: 30127274 PMCID: PMC6115966 DOI: 10.3390/cancers10080276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The cancer testis antigen sperm protein 17 (Sp17) is a promising antigenic target in epithelial ovarian cancer (EOC) vaccine development. However, its role in ovarian cancer is unclear. We isolated and expanded Sp17+ and Sp17− clones from the murine EOC cell line ID8, and compared their in-vitro cell growth characteristics and in-vivo tumorigenicity. We also examined the potential co-expression of molecules that may influence cancer cell survival and interaction with immune cells. These include stimulatory and immunosuppressive molecules, such as major histocompatibility class I molecules (MHC I), MHC II, cytotoxic T lymphocyte associated antigen-4 (CTLA-4), CD73, CD39, tumor necrosis factor receptor II (TNFRII), signal transducer and activator of transcription 3 (STAT3) and programmed death-ligand 1 (PD-L1). Whilst the presence of Sp17 was not correlated with the ID8 cell proliferation/growth capacity in vitro, it was critical to enable progressive tumor formation in vivo. Flow cytometry revealed that Sp17+ ID8 cells displayed higher expression of both STAT3 and PD-L1, whilst MHC II expression was lower. Moreover, Sp17high (PD-L1+MHCII−) cell populations showed significantly enhanced resistance to Paclitaxel-induced cell death in vitro compared to Sp17low (PD-L1−MHCII+) cells, which was associated in turn with increased STAT3 expression. Together, the data support Sp17 as a factor associated with in-vivo tumor progression and chemo-resistance, validating it as a suitable target for vaccine development.
Collapse
Affiliation(s)
- Qian Gao
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Sue D Xiang
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Kirsty Wilson
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
| | - Mutsa Madondo
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
| | - Andrew N Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
249
|
Colombo M, Mirandola L, Chiriva-Internati M, Basile A, Locati M, Lesma E, Chiaramonte R, Platonova N. Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Front Immunol 2018; 9:1823. [PMID: 30154786 PMCID: PMC6102368 DOI: 10.3389/fimmu.2018.01823] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling is a well-known key player in the communication between adjacent cells during organ development, when it controls several processes involved in cell differentiation. Notch-mediated communication may occur through the interaction of Notch receptors with ligands on adjacent cells or by a paracrine/endocrine fashion, through soluble molecules that can mediate the communication between cells at distant sites. Dysregulation of Notch pathway causes a number of disorders, including cancer. Notch hyperactivation may be caused by mutations of Notch-related genes, dysregulated upstream pathways, or microenvironment signals. Cancer cells may exploit this aberrant signaling to "educate" the surrounding microenvironment cells toward a pro-tumoral behavior. This may occur because of key cytokines secreted by tumor cells or it may involve the microenvironment through the activation of Notch signaling in stromal cells, an event mediated by a direct cell-to-cell contact and resulting in the increased secretion of several pro-tumorigenic cytokines. Up to now, review articles were mainly focused on Notch contribution in a specific tumor context or immune cell populations. Here, we provide a comprehensive overview on the outcomes of Notch-mediated pathological interactions in different tumor settings and on the molecular and cellular mediators involved in this process. We describe how Notch dysregulation in cancer may alter the cytokine network and its outcomes on tumor progression and antitumor immune response.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Maurizio Chiriva-Internati
- Kiromic Biopharma Inc., Houston, TX, United States.,Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
250
|
Fujii T, Naing A, Rolfo C, Hajjar J. Biomarkers of response to immune checkpoint blockade in cancer treatment. Crit Rev Oncol Hematol 2018; 130:108-120. [PMID: 30196907 DOI: 10.1016/j.critrevonc.2018.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitors (ICPis) are emerging as the new corner stone of cancer treatment due to their ability to produce durable responses in patients with various cancers. But, objective responses to ICPis vary among each type of cancer. Further, treatment with ICPis is often associated with risk of developing immune-related adverse event, which are potentially life-threatening if untreated, indicating a need for patient selection. However, given the complexity of the tumor microenvironment and the dynamic interaction between tumor and immune cells, development of robust biomarkers to predict patients who are likely to respond to treatment with ICPis remains a challenge. In this review we present an overview of the immune monitoring strategies that are currently in use to enable appropriate patient selection.
Collapse
Affiliation(s)
- Takeo Fujii
- University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christian Rolfo
- Thoracic Medical Oncology, Early Clinical Trials, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center (UMGCCC), Baltimore, MD, United States
| | - Joud Hajjar
- Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|