201
|
Abstract
Preclinical evidence strongly suggests a role for the gut microbiome in modulating the host central nervous system function and behavior. Several communication channels have been identified that enable microbial signals to reach the brain and that enable the brain to influence gut microbial composition and function. In rodent models, endocrine, neural, and inflammatory signals generated by gut microbes can alter brain structure and function, while autonomic nervous system activity can affect the microbiome by modulating the intestinal environment and by directly regulating microbial behavior. The amount of information that reaches the brain is dynamically regulated by the blood-brain barrier and the intestinal barrier. In humans, associations between gut microbial composition and function and several brain disorders have been reported, and fecal microbial transplants from patient populations into gnotobiotic mice have resulted in the reproduction of homologous features in the recipient mice. However, in contrast to preclinical findings, there is little information about a causal role of the gut microbiome in modulating human central nervous system function and behavior. Longitudinal studies in large patient populations with therapeutic interventions are required to demonstrate such causality, which will provide the basis for future clinical trials. © 2020 American Physiological Society. Compr Physiol 10:57-72, 2020.
Collapse
Affiliation(s)
- Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Clair R Martin
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
202
|
Dempsey JL, Little M, Cui JY. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 2019; 75:41-69. [PMID: 31454513 PMCID: PMC7703666 DOI: 10.1016/j.neuro.2019.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
There is growing recognition that the gut microbiome is an important regulator for neurological functions. This review provides a summary on the role of gut microbiota in various neurological disorders including neurotoxicity induced by environmental stressors such as drugs, environmental contaminants, and dietary factors. We propose that the gut microbiome remotely senses and regulates CNS signaling through the following mechanisms: 1) intestinal bacteria-mediated biotransformation of neurotoxicants that alters the neuro-reactivity of the parent compounds; 2) altered production of neuro-reactive microbial metabolites following exposure to certain environmental stressors; 3) bi-directional communication within the gut-brain axis to alter the intestinal barrier integrity; and 4) regulation of mucosal immune function. Distinct microbial metabolites may enter systemic circulation and epigenetically reprogram the expression of host genes in the CNS, regulating neuroinflammation, cell survival, or cell death. We will also review the current tools for the study of the gut-brain axis and provide some suggestions to move this field forward in the future.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Mallory Little
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, United States.
| |
Collapse
|
203
|
Effect of probiotics on depressive symptoms: A meta-analysis of human studies. Psychiatry Res 2019; 282:112568. [PMID: 31563280 DOI: 10.1016/j.psychres.2019.112568] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
Abstract
Accumulating data show that probiotics may be beneficial in reducing depressive symptoms. We conducted an updated meta-analysis and evaluated the effects of probiotics on depressive symptoms. A systematic search of six databases was performed, and the results were reported according to Preferred Reporting Items for Systematic Reviews and Meta-analyses, with the priori-defined protocol registered at PROSPERO (CRD42018107426). In total, 19 double-blind, randomized, placebo-controlled trials with a total of 1901 participants were included in the qualitative synthesis. Participants treated with probiotics showed significantly greater improvement in depressive symptoms than those receiving placebo. The clinical population was stratified by clinical diagnosis into those with major depressive disorder (MDD) and those with other clinical conditions. The beneficial effect of probiotics on depressive symptoms was significant in patients with MDD, but not in those with other clinical conditions and in the general population. In addition, multiple strains of probiotics were more effective in reducing depressive symptoms. In conclusion, altering the gut-brain axis with probiotics may be an approach to improve depression severity. It is essential to verify the efficacy of specific combinations or strains of probiotics for depressive symptoms by conducting studies with a larger sample size in the future.
Collapse
|
204
|
Crane J, Barthow C, Kang J, Hood F, Stanley T, Wickens K. Probiotics for humans: hoax, hype, hope, or help. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1692364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Julian Crane
- Dept. of Medicine, University of Otago, Wellington, New Zealand
| | | | - Janice Kang
- Dept. of Medicine, University of Otago, Wellington, New Zealand
| | - Fiona Hood
- Dept. of Medicine, University of Otago, Wellington, New Zealand
| | - Thorsten Stanley
- Dept. of Paediatrics, University of Otago, Wellington, New Zealand
| | - Kristin Wickens
- Dept. of Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
205
|
Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front Neurosci 2019; 13:1196. [PMID: 31749681 PMCID: PMC6848798 DOI: 10.3389/fnins.2019.01196] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology of depression is multifactorial yet generally aggravated by stress and its associated physiological consequences. To effectively treat these diverse risk factors, a broad acting strategy is required and is has been suggested that gut-brain-axis signaling may play a pinnacle role in promoting resilience to several of these stress-induced changes including pathogenic load, inflammation, HPA-axis activation, oxidative stress and neurotransmitter imbalances. The gut microbiota also manages the bioaccessibility of phenolic metabolites from dietary polyphenols whose multiple beneficial properties have known therapeutic efficacy against depression. Although several potential therapeutic mechanisms of dietary polyphenols toward establishing cognitive resilience to neuropsychiatric disorders have been established, only a handful of studies have systematically identified how the interaction of the gut microbiota with dietary polyphenols can synergistically alleviate the biological signatures of depression. The current review investigates several of these potential mechanisms and how synbiotics, that combine probiotics with dietary polyphenols, may provide a novel therapeutic strategy for depression. In particular, synbiotics have the potential to alleviate neuroinflammation by modulating microglial and inflammasome activation, reduce oxidative stress and balance serotonin metabolism therefore simultaneously targeting several of the major pathological risk factors of depression. Overall, synbiotics may act as a novel therapeutic paradigm for neuropsychiatric disorders and further understanding the fundamental mechanisms of gut-brain-axis signaling will allow full utilization of the gut microbiota's as a therapeutic tool.
Collapse
Affiliation(s)
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
206
|
Abstract
Background:Gut microbes influence the development several chronic conditions marking them as targets for holistic care, prevention strategies, and potential treatments. Microbiome studies are relatively new to health research and present unfamiliar terms to clinicians and researchers. "Dysbiosis" often refers to an alteration in the gut microbiome, but conceptual clarification is rarely provided. Purpose: The purpose of this study is to refine a conceptual definition of dysbiosis based on a review of nursing literature. Method: A Rodgerian approach to concept analysis was used. CINAHL, PubMed, and Web of Science were queried using "dysbiosis" through December 2018. Each article was analyzed with regard to the antecedents, attributes, and consequences of dysbiosis. Essential elements were tabulated and compared across studies to determine recurring themes and notable outliers. Findings: Analysis revealed several important antecedences, attributes, and consequences of dysbiosis. The findings also elucidated notable gaps and highlighted the co-evolving nature of the proposed definition with advances in microbiome research. Conclusion: This article adds a proposed definition of dysbiosis, offering a contribution of conceptual clarity upon which to enhance dialogue and build research. The definition emphasizes risk factors and consequences of dysbiosis as implications for holistic nursing practice.
Collapse
|
207
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2692] [Impact Index Per Article: 448.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
208
|
Dinan TG, Stanton C, Long-Smith C, Kennedy P, Cryan JF, Cowan CS, Cenit MC, van der Kamp JW, Sanz Y. Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clin Nutr 2019; 38:1995-2001. [DOI: 10.1016/j.clnu.2018.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
|
209
|
Cruz-Pereira JS, Rea K, Nolan YM, O'Leary OF, Dinan TG, Cryan JF. Depression's Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annu Rev Psychol 2019; 71:49-78. [PMID: 31567042 DOI: 10.1146/annurev-psych-122216-011613] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Depression remains one of the most prevalent psychiatric disorders, with many patients not responding adequately to available treatments. Chronic or early-life stress is one of the key risk factors for depression. In addition, a growing body of data implicates chronic inflammation as a major player in depression pathogenesis. More recently, the gut microbiota has emerged as an important regulator of brain and behavior and also has been linked to depression. However, how this holy trinity of risk factors interact to maintain physiological homeostasis in the brain and body is not fully understood. In this review, we integrate the available data from animal and human studies on these three factors in the etiology and progression of depression. We also focus on the processes by which this microbiota-immune-stress matrix may influence centrally mediated events and on possible therapeutic interventions to correct imbalances in this triune.
Collapse
Affiliation(s)
- Joana S Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , ,
| | - Yvonne M Nolan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork T12 K8AF, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
210
|
Long-Smith C, O'Riordan KJ, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2019; 60:477-502. [PMID: 31506009 DOI: 10.1146/annurev-pharmtox-010919-023628] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The traditional fields of pharmacology and toxicology are beginning to consider the substantial impact our gut microbiota has on host physiology. The microbiota-gut-brain axis is emerging as a particular area of interest and a potential new therapeutic target for effective treatment of central nervous system disorders, in addition to being a potential cause of drug side effects. Microbiota-gut-brain axis signaling can occur via several pathways, including via the immune system, recruitment of host neurochemical signaling, direct enteric nervous system routes and the vagus nerve, and the production of bacterial metabolites. Altered gut microbial profiles have been described in several psychiatric and neurological disorders. Psychobiotics, live biotherapeutics or substances whose beneficial effects on the brain are bacterially mediated, are currently being investigated as direct and/or adjunctive therapies for psychiatric and neurodevelopmental disorders and possibly for neurodegenerative disease, and they may emerge as new therapeutic options in the clinical management of brain disorders.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; .,Department of Psychiatry & Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; .,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; .,Department of Psychiatry & Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
211
|
Bernabé BP, Tussing-Humphreys L, Rackers HS, Welke L, Mantha A, Kimmel MC. Improving Mental Health for the Mother-Infant Dyad by Nutrition and the Maternal Gut Microbiome. Gastroenterol Clin North Am 2019; 48:433-445. [PMID: 31383280 DOI: 10.1016/j.gtc.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perinatal mood and anxiety disorders (PMAD) have significant negative impacts on mother and child, yet treatments are limited. Adequate nutrition during the perinatal period is essential to maternal and infant health, including maternal mental health and the child's neurologic and neuropsychiatric development. Nutrition holds promise to improve prevention and treatment of PMAD. The ability to manipulate the gut microbiota composition and structure through host nutrition and to harness the gut microbes for improved individualized nutrition may be an important new direction for prevention and treatment of PMAD, thus improving the mental health of mother and child.
Collapse
Affiliation(s)
- Beatriz Peñalver Bernabé
- Department of Surgery, Microbiome Center, University of Chicago, 5841 S. Maryland Street, Chicago, IL 60637, USA; Division of Academic Internal Medicine, Department of Medicine, Institute for Health Research and Policy Cancer Center, University of Illinois at Chicago, 1747 W. Roosevelt Road, Chicago, IL 60608, USA
| | - Lisa Tussing-Humphreys
- Division of Academic Internal Medicine, Department of Medicine, Institute for Health Research and Policy Cancer Center, University of Illinois at Chicago, 1747 W. Roosevelt Road, Chicago, IL 60608, USA
| | - Hannah S Rackers
- Department of Psychiatry, UNC School of Medicine Campus Box 7160, Chapel Hill, NC 27599-7160, USA
| | - Lauren Welke
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W. Taylor Street, Chicago, IL 60612, USA
| | - Alina Mantha
- Department of Maternal and Child Health, UNC Gillings School of Global Public Health, 401 Rosenau Hall, CB #7445, Chapel Hill, NC 27599-7445, USA
| | - Mary C Kimmel
- Department of Psychiatry, UNC School of Medicine Campus Box 7160, Chapel Hill, NC 27599-7160, USA.
| |
Collapse
|
212
|
Cheng D, Song J, Xie M, Song D. The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
213
|
Sharpe M, Shah V, Freire-Lizama T, Cates EC, McGrath K, David I, Cowan S, Letkeman J, Stewart-Wilson E. Effectiveness of oral intake of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on Group B Streptococcus colonization during pregnancy: a midwifery-led double-blind randomized controlled pilot trial. J Matern Fetal Neonatal Med 2019; 34:1814-1821. [PMID: 31362572 DOI: 10.1080/14767058.2019.1650907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Group B streptococcus (GBS) vaginal/rectal colonization in pregnancy has been associated with early-onset GBS disease (EOGBSD), a leading cause of neonatal morbidity and mortality. In Canada, universal screening for GBS colonization is offered to pregnant people at 35-37 weeks' gestation and those who test positive are offered intrapartum antibiotic prophylaxis (IAP). Universal screening and treatment with IAP have not eradicated all cases of EOGBSD, and IAP has documented side effects. Probiotic supplements have been proposed as a possible way to reduce GBS colonization. MATERIALS AND METHODS Pregnant midwifery clients >18 years of age and <45 years of age and with a gestational age of <25 weeks at the time of enrolment were randomly assigned to receive two capsules of probiotics (Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14) or placebo orally daily for 12 weeks at 23-25 weeks' gestation. The primary aim was to determine the feasibility of a larger study. The rate of GBS vaginal/rectal colonization at 35-37 weeks' gestation was also assessed in both groups. RESULTS In total, 139 pregnant midwifery clients were randomized (probiotic group [N = 73] and placebo group [N = 66]). Of these, 113 were included in the final analysis (probiotic group [N = 57] and placebo group [N = 56]). Baseline characteristics between groups were similar with the exception of gestational age (p < .01). The recruitment rate was low at 12%, but the mean compliance rate was 87%. The eligibility/ineligibility criteria were too strict and changes to the study design will be required for the larger proposed study. The rates of vaginal/rectal GBS colonization did not differ significantly between groups (15.8 versus 21.43%; p = .48). No adverse effects were documented in the probiotic group. CONCLUSION This was the first midwifery-led trial involving a natural health product in the province of Ontario. Although treatment with oral probiotics is feasible, the results were not superior to placebo in reducing the rate of GBS colonization. An adequately powered, randomly controlled trial is required to assess the effectiveness of the two probiotic strains.
Collapse
Affiliation(s)
- Mary Sharpe
- Midwifery Education Program, Ryerson University, Toronto, Canada
| | - Vibhuti Shah
- Department of Pediatrics, Mount Sinai Hospital, Toronto, Canada
| | | | | | - Kory McGrath
- Midwifery Education Program, Ryerson University, Toronto, Canada
| | - Iuliana David
- Midwifery Education Program, Ryerson University, Toronto, Canada
| | - Sara Cowan
- Department of Psychology, Ryerson University, Toronto, Canada
| | - Janaya Letkeman
- Midwifery Education Program, Ryerson University, Toronto, Canada
| | | |
Collapse
|
214
|
Rincel M, Aubert P, Chevalier J, Grohard PA, Basso L, Monchaux de Oliveira C, Helbling JC, Lévy É, Chevalier G, Leboyer M, Eberl G, Layé S, Capuron L, Vergnolle N, Neunlist M, Boudin H, Lepage P, Darnaudéry M. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav Immun 2019; 80:179-192. [PMID: 30872090 DOI: 10.1016/j.bbi.2019.03.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
The accumulation of adverse events in utero and during childhood differentially increases the vulnerability to psychiatric diseases in men and women. Gut microbiota is highly sensitive to the early environment and has been recently hypothesized to affect brain development. However, the impact of early-life adversity on gut microbiota, notably with regards to sex differences, remains to be explored. We examined the effects of multifactorial early-life adversity on behavior and microbiota composition in C3H/HeN mice of both sexes exposed to a combination of maternal immune activation (lipopolysaccharide injection on embryonic day 17, 120 µg/kg, i.p.), maternal separation (3hr per day from postnatal day (PND)2 to PND14) and maternal unpredictable chronic mild stress. At adulthood, offspring exposed to multi-hit early adversity showed sex-specific behavioral phenotypes with males exhibiting deficits in social behavior and females showing increased anxiety in the elevated plus maze and increased compulsive behavior in the marble burying test. Early adversity also differentially regulated gene expression in the medial prefrontal cortex (mPFC) according to sex. Interestingly, several genes such as Arc, Btg2, Fosb, Egr4 or Klf2 were oppositely regulated by early adversity in males versus females. Finally, 16S-based microbiota profiling revealed sex-dependent gut dysbiosis. In males, abundance of taxa belonging to Lachnospiraceae and Porphyromonadaceae families or other unclassified Firmicutes, but also Bacteroides, Lactobacillus and Alloprevotella genera was regulated by early adversity. In females, the effects of early adversity were limited and mainly restricted to Lactobacillus and Mucispirillum genera. Our work reveals marked sex differences in a multifactorial model of early-life adversity, both on emotional behaviors and gut microbiota, suggesting that sex should systematically be considered in preclinical studies both in neurogastroenterology and psychiatric research.
Collapse
Affiliation(s)
- Marion Rincel
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Philippe Aubert
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Julien Chevalier
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Pierre-Antoine Grohard
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Lilian Basso
- Institut de Recherche en Santé Digestive, INSERM UMR1220, INRA UMR1416, ENVT, UPS, Toulouse, France
| | - Camille Monchaux de Oliveira
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Jean Christophe Helbling
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Élodie Lévy
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | | | - Marion Leboyer
- Université Paris-est-Créteil, Laboratoire Psychiatrie translationnelle, INSERM U955, Hôpital Chenevier-Mondor, Créteil, France
| | - Gérard Eberl
- Unité Microenvironnement et Immunité, Institut Pasteur, Paris, France
| | - Sophie Layé
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Lucile Capuron
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, INSERM UMR1220, INRA UMR1416, ENVT, UPS, Toulouse, France
| | - Michel Neunlist
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Hélène Boudin
- The Enteric Nervous System in Gut and Brain Disorders, INSERM UMR1235, IMAD, Nantes, France
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Univ. Paris-Saclay, Jouy-en-Josas, France
| | - Muriel Darnaudéry
- Univ. Bordeaux, INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
215
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
216
|
Okesene-Gafa KA, Li M, McKinlay CJ, Taylor RS, Rush EC, Wall CR, Wilson J, Murphy R, Taylor R, Thompson JM, Crowther CA, McCowan LM. Effect of antenatal dietary interventions in maternal obesity on pregnancy weight-gain and birthweight: Healthy Mums and Babies (HUMBA) randomized trial. Am J Obstet Gynecol 2019; 221:152.e1-152.e13. [PMID: 30878323 DOI: 10.1016/j.ajog.2019.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Pregnancy interventions that improve maternal and infant outcomes are urgently needed in populations with high rates of obesity. We undertook the Healthy Mums and Babies (HUMBA) randomized controlled trial to assess the effect of dietary interventions and or probiotics in a multiethnic population of pregnant women with obesity, living in an area of high deprivation. OBJECTIVES To determine whether a culturally tailored dietary intervention and or daily probiotic capsules in pregnant women with obesity reduces the co-primary outcomes of (1) excessive gestational weight gain (mean >0.27 kg/week) and (2) birthweight. STUDY DESIGN We conducted a 2 × 2 factorial, randomized controlled trial in women without diabetes at pregnancy booking, body mass index ≥30 kg/m2, and a singleton pregnancy. At 12+0 to 17+6 weeks' gestation, eligible women were randomized to a dietary intervention (4 tailored educational sessions at ≤28 weeks' gestation by a community health worker trained in key aspects of pregnancy nutrition plus text messaging until birth) or to routine dietary advice; and to daily capsules containing either (Lactobacillus rhamnosus GG and Bifidobacterium lactis BB12, minimum 6.5 × 109 colony forming units), or placebo, until birth. Analysis was by intention to treat with adjustment for maternal baseline body mass index. Infant outcomes were additionally adjusted for ethnicity, sex, and gestational age at birth. RESULTS In total, 230 women were recruited between April 2015 and June 2017 (dietary intervention N = 116 vs routine dietary advice N = 114; probiotics N = 115 vs placebo N = 115). Baseline characteristics and demographic variables were similar across all groups. There was no significant difference between intervention groups, for the co-primary outcomes of (1) proportion of women with excessive gestational weight gain (dietary intervention vs routine advice: 79/107 [73.8%] vs 90/110 [81.8%], adjusted relative risk [relative risk, 0.92; 95% confidence interval, 0.80-1.05]; probiotics versus placebo: 89/108 [82.4%] and 80/109 [73.4%], relative risk, 1.14, 95% confidence interval, 0.99-1.31) or (2) birthweight (dietary intervention vs routine advice: 3575 vs 3612 g, adjusted mean difference, -24 g, 95% confidence interval, -146 to 97; probiotics vs placebo: 3685 vs 3504 g, adjusted mean difference, 107 g, 95% confidence interval, -14 to 228). Total maternal weight gain, a secondary outcome, was lower with dietary intervention compared with routine dietary advice (9.7 vs 11.4 kg, adjusted mean difference, -1.76, 95% confidence interval, -3.55 to 0.03). There were no significant differences between intervention groups in other secondary maternal or neonatal outcomes. CONCLUSION Although dietary education and or probiotics did not alter rates of excessive gestational weight gain or birthweight in this multiethnic, high-deprivation population of pregnant women with obesity, dietary education was associated with a modest reduction in total weight gain with potential future benefit for the health of mothers and their offspring if sustained.
Collapse
|
217
|
Barthow C, Hood F, McKinlay E, Hilder J, Cleghorn C, Huthwaite M, Weatherall M, Parry-Strong A, Pullon S, Gray B, Wickens K, Crane J, Krebs J. Food 4 Health - He Oranga Kai: Assessing the efficacy, acceptability and economic implications of Lactobacillus rhamnosus HN001 and β-glucan to improve glycated haemoglobin, metabolic health, and general well-being in adults with pre-diabetes: study protocol for a 2 × 2 factorial design, parallel group, placebo-controlled randomized controlled trial, with embedded qualitative study and economic analysis. Trials 2019; 20:464. [PMID: 31358022 PMCID: PMC6664750 DOI: 10.1186/s13063-019-3553-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/02/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The rates of pre-diabetes and type 2 diabetes mellitus are increasing worldwide, producing significant burdens for individuals, families, and healthcare systems. In New Zealand, type 2 diabetes mellitus and pre-diabetes disproportionally affect Māori, Pacific, and South Asian peoples. This research evaluates the efficacy, acceptability, and economic impact of a probiotic capsule and a prebiotic cereal intervention in adults with pre-diabetes on metabolic and mental health and well-being outcomes. METHODS Eligible adults (n = 152) aged 18-80 years with pre-diabetes (glycated haemoglobin 41-49 mmol/mol) will be enrolled in a 2 × 2 factorial design, randomised, parallel-group, placebo-controlled trial. Computer-generated block randomization will be performed independently. Interventions are capsulated Lactobacillus rhamnosus HN001 (6 × 109 colony-forming units/day) (A) and cereal containing 4 g β-glucan (B), placebo capsules (O1), and calorie-matched control cereal (O2). Eligible participants will receive 6 months intervention in the following groups: AB, AO1, BO2, and O1O2. The primary outcome is glycated haemoglobin after 6 months. Follow-up at 9 months will assess the durability of response. Secondary outcomes are glycated haemoglobin after 3 and 9 months, fasting glucose, insulin resistance, blood pressure, body weight, body mass index, and blood lipid levels. General well-being and quality of life will be measured by the Short-Form Health Survey 36 and Depression Anxiety Stress Scale 21 at 6 and 9 months. Outcome assessors will be blind to capsule allocation. An accompanying qualitative study will include 24 face-to-face semistructured interviews with an ethnically balanced sample from the β-glucan arms at 2 months, participant focus groups at 6 months, and three health professional focus groups. These will explore how interventions are adopted, their acceptability, and elicit factors that may support the uptake of interventions. A simulation model of the pre-diabetic New Zealand population will be used to estimate the likely impact in quality-adjusted life years and health system costs of the interventions if rolled out in New Zealand. DISCUSSION This study will examine the efficacy of interventions in a population with pre-diabetes. Qualitative components provide rich description of views on the interventions. When combined with the economic analysis, the study will provide insights into how to translate the interventions into practice. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry, ACTRN12617000990325. Prospectively registered on 10 July 2017.
Collapse
Affiliation(s)
- Christine Barthow
- Department of Medicine, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Fiona Hood
- Department of Medicine, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Eileen McKinlay
- Department of Primary Health Care & General Practice, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Jo Hilder
- Department of Primary Health Care & General Practice, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Christine Cleghorn
- Department of Public Health, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Mark Huthwaite
- Department of Psychological Medicine, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Mark Weatherall
- Department of Medicine, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Amber Parry-Strong
- Centre for Endocrine, Diabetes and Obesity Research (CEDOR), PO Box 7902, Wellington South, Wellington, New Zealand
| | - Sue Pullon
- Department of Primary Health Care & General Practice, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Ben Gray
- Department of Primary Health Care & General Practice, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Kristin Wickens
- Department of Medicine, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Julian Crane
- Department of Medicine, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| | - Jeremy Krebs
- Department of Medicine, University of Otago, PO Box 7343, Wellington South, Wellington, 6242 New Zealand
| |
Collapse
|
218
|
Probiotics in pregnancy: protocol of a double-blind randomized controlled pilot trial for pregnant women with depression and anxiety (PIP pilot trial). Trials 2019; 20:440. [PMID: 31315657 PMCID: PMC6637581 DOI: 10.1186/s13063-019-3389-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 05/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background Maternal prenatal depressive or anxiety symptoms are associated with adverse maternal and infant health outcomes. With prevalence rates of maternal prenatal depression and anxiety ranging between 10 and 20%, attempts to identify effective interventions to reduce symptoms are priority. There are indications that probiotics can reduce symptoms of maternal depression or anxiety. Probiotics ingested by the mother may thus offer a promising and accessible intervention to complement existing treatments. Methods The Probiotics in Pregnancy (PIP) pilot trial is a double-blind, placebo-controlled, randomized pilot trial. While one group orally consumes a probiotic mixture (Ecologic® Barrier; 2,5 × 109 colony forming units/g; 2 g; daily), the other group consumes a placebo, from between 26 and 30 weeks gestation until delivery. Subjects are randomly allocated (1:1) to the intervention or placebo group. Forty healthy pregnant women with symptoms of depression or anxiety and uncomplicated pregnancies at randomization will be included. The primary aim is to determine the feasibility and acceptability of a probiotic trial to reduce symptoms of maternal depression or anxiety in pregnancy. The secondary aim is to exploratorily compare the potential effect of probiotics, compared to placebo, on depressive and/or anxiety symptoms, maternal stress (i.e. reported/hair cortisol), maternal vaginal and intestinal microbiota, and by possibly affecting maternal mood and microbiota, maternal bonding to offspring, infant microbiota and infant crying. Discussion Results of this pilot trial will help determine whether or not to proceed with a full trial after the pilot trial, and if so, whether revisions should be made to the study protocol and procedures before conducting a full randomized controlled trial. Additionally, they are expected to provide insights into whether changes in psychological, behavioral and biological parameters can be attributed to the probiotic intervention. Trial registration Netherlands Trial Register, NTR6219. Registered on 28 February 2017. Electronic supplementary material The online version of this article (10.1186/s13063-019-3389-1) contains supplementary material, which is available to authorized users.
Collapse
|
219
|
Ozsavci D, Ozakpinar OB, Cetin M, Aricioglu F. Level of clinical evidence of herbal complementary therapies in psychiatric disorders. PSYCHIAT CLIN PSYCH 2019; 29:239-243. [DOI: 10.1080/24750573.2019.1625587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Derya Ozsavci
- Department of Biochemistry, School of Pharmacy, Marmara University, Istanbul, Turkey
| | | | - Mesut Cetin
- Psychiatry and Clinical Psychopharmacology, Istanbul, Turkey
| | - Feyza Aricioglu
- Department of Pharmacology and Psychopharmacology Research Unit, School of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
220
|
Liu RT, Walsh RFL, Sheehan AE. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev 2019; 102:13-23. [PMID: 31004628 PMCID: PMC6584030 DOI: 10.1016/j.neubiorev.2019.03.023] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
With growing interest in the gut microbiome, prebiotics and probiotics have received considerable attention as potential treatments for depression and anxiety. We conducted a random-effects meta-analysis of 34 controlled clinical trials evaluating the effects of prebiotics and probiotics on depression and anxiety. Prebiotics did not differ from placebo for depression (d = -.08, p = .51) or anxiety (d = .12, p = .11). Probiotics yielded small but significant effects for depression (d = -.24, p < .01) and anxiety (d = -.10, p = .03). Sample type was a moderator for probiotics and depression, with a larger effect observed for clinical/medical samples (d = -.45, p < .001) than community ones. This effect increased to medium-to-large in a preliminary analysis restricted to psychiatric samples (d = -.73, p < .001). There is general support for antidepressant and anxiolytic effects of probiotics, but the pooled effects were reduced by the paucity of trials with clinical samples. Additional randomized clinical trials with psychiatric samples are necessary fully to evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Richard T Liu
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, East Providence, RI, United States.
| | - Rachel F L Walsh
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, East Providence, RI, United States
| | - Ana E Sheehan
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, East Providence, RI, United States
| |
Collapse
|
221
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
222
|
Mills S, Lane JA, Smith GJ, Grimaldi KA, Ross RP, Stanton C. Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients 2019; 11:E1468. [PMID: 31252674 PMCID: PMC6683087 DOI: 10.3390/nu11071468] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Modulation of the human gut microbiota through probiotics, prebiotics and dietary fibre are recognised strategies to improve health and prevent disease. Yet we are only beginning to understand the impact of these interventions on the gut microbiota and the physiological consequences for the human host, thus forging the way towards evidence-based scientific validation. However, in many studies a percentage of participants can be defined as 'non-responders' and scientists are beginning to unravel what differentiates these from 'responders;' and it is now clear that an individual's baseline microbiota can influence an individual's response. Thus, microbiome composition can potentially serve as a biomarker to predict responsiveness to interventions, diets and dietary components enabling greater opportunities for its use towards disease prevention and health promotion. In Part I of this two-part review, we reviewed the current state of the science in terms of the gut microbiota and the role of diet and dietary components in shaping it and subsequent consequences for human health. In Part II, we examine the efficacy of gut-microbiota modulating therapies at different life stages and their potential to aid in the management of undernutrition and overnutrition. Given the significance of an individual's gut microbiota, we investigate the feasibility of microbiome testing and we discuss guidelines for evaluating the scientific validity of evidence for providing personalised microbiome-based dietary advice. Overall, this review highlights the potential value of the microbiome to prevent disease and maintain or promote health and in doing so, paves the pathway towards commercialisation.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Jonathan A Lane
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - Graeme J Smith
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Fermoy P61 C996, Co Cork, Ireland.
| |
Collapse
|
223
|
Guo Y, Xie JP, Deng K, Li X, Yuan Y, Xuan Q, Xie J, He XM, Wang Q, Li JJ, Luo HR. Prophylactic Effects of Bifidobacterium adolescentis on Anxiety and Depression-Like Phenotypes After Chronic Stress: A Role of the Gut Microbiota-Inflammation Axis. Front Behav Neurosci 2019; 13:126. [PMID: 31275120 PMCID: PMC6591489 DOI: 10.3389/fnbeh.2019.00126] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Stress disturbs the balance of the gut microbiota and stimulates inflammation-to-brain mechanisms. Moreover, stress leads to anxiety and depressive disorders. Bifidobacterium adolescentis displays distinct anti-inflammatory effects. However, no report has focused on the anxiolytic and antidepressant effects of B. adolescentis related to the gut microbiome and the inflammation on chronic restraint stress (CRS) in mice. We found that pretreatment with B. adolescentis increased the time spent in the center of the open field apparatus, increased the percentage of entries into the open arms of the elevated plus-maze (EPM) and the percentage of time spent in the open arms of the EPM, and decreased the immobility duration in the tail suspension test as well as the forced swimming test (FST). Moreover, B. adolescentis increased the sequence proportion of Lactobacillus and reduced the sequence proportion of Bacteroides in feces. Furthermore, B. adolescentis markedly reduced the protein expression of interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), p-nuclear factor-kappa B (NF-κB) p65 and Iba1 and elevated brain derived neurotrophic factor (BDNF) expression in the hippocampus. We conclude that the anxiolytic and antidepressant effects of B. adolescentis are related to reducing inflammatory cytokines and rebalancing the gut microbiota.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,School of Basic Medical Sciences, Kunming Medical University, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Ke Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yun Yuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qun Xuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Jing Xie
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Ming He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qian Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Juan-Juan Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
224
|
The IDO genetic polymorphisms and postpartum depressive symptoms: an association study in Chinese parturients who underwent cesarean section. Arch Womens Ment Health 2019; 22:339-348. [PMID: 30121843 DOI: 10.1007/s00737-018-0898-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
Abstract
Postpartum depressive symptoms (PDS) are not an uncommon mood disorder in postpartum women. Our previous research indicated a role for increased tryptophan (TRP) metabolism along the kynurenine pathway (KP) in the pathogenesis of PDS. Accordingly, this study was going to investigate the association of indoleamine-2,3-dioxygenase (IDO, a key enzyme of KP) genetic polymorphisms with PDS. Seven hundred twenty-five women receiving cesarean section were enrolled in this study. PDS was determined by an Edinburgh Postnatal Depression Scale (EPDS) score ≥ 13. Subsequently, 48 parturients with PDS and 48 parturients without PDS were selected for investigation of perinatal serum concentrations of TRP, kynurenine (KYN), and KYN/TRP ratio, the latter is the representative of IDO activity. In addition, seven single nucleotide polymorphisms of the IDO gene were examined. Following this genotyping, 50 parturients carrying the IDO rs10108662 AA genotype and 50 parturients carrying the IDO rs10108662 AC + CC genotype were selected for comparisons of TRP, KYN, and KYN/TRP ratio levels. This study showed the PDS incidence of 6.9% in the Chinese population, with PDS characterized by increased IDO activity (p < 0.05), versus women without PDS. We also found that the variations of IDO1 gene rs10108662 were significantly related to PDS incidence (p < 0.05). Furthermore, there was a significant difference in IDO activity between the IDO rs10108662 CA + AA, versus CC, genotypes. Our findings indicate a role of the kynurenine pathway in the development of PDS, rs10108662 genetic polymorphism resulting in changes of IDO activity might contribute to PDS pathogenesis.
Collapse
|
225
|
Abstract
In recent years, interest in the relationship between gut microbiota and disease states has grown considerably. Indeed, several strategies have been employed to modify the microbiome through the administration of different diets, by the administration of antibiotics or probiotics, or even by transplantation of feces. In the present manuscript, we focus specifically on the potential application of probiotics, which seem to be a safe strategy, in the management of digestive, pain, and emotional disorders. We present evidence from animal models and human studies, notwithstanding that translation to clinic still deserves further investigation. The microbiome influences gut functions as well as neurological activity by a variety of mechanisms, which are also discussed. The design and performance of larger trials is urgently needed to verify whether these new strategies might be useful not only for the treatment of disorders affecting the gastrointestinal tract but also in the management of emotional and pain disorders not directly related to the gut.
Collapse
|
226
|
A potential role for the gut microbiome in substance use disorders. Psychopharmacology (Berl) 2019; 236:1513-1530. [PMID: 30982128 PMCID: PMC6599482 DOI: 10.1007/s00213-019-05232-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Pathological substance use disorders represent a major public health crisis with limited effective treatment options. While much work has been done to understand the neuronal signaling networks and intracellular signaling cascades associated with prolonged drug use, these studies have yielded few successful treatment options for substance use disorders. In recent years, there has been a growing interest to explore interactions between the peripheral immune system, the gut microbiome, and the CNS. In this review, we will present a summary of existing evidence, suggesting a potential role for gut dysbiosis in the pathogenesis of substance use disorders. Clinical evidence of gut dysbiosis in human subjects with substance use disorder and preclinical evidence of gut dysbiosis in animal models of drug addiction are discussed in detail. Additionally, we examine how changes in the gut microbiome and its metabolites may not only be a consequence of substance use disorders but may in fact play a role in mediating behavioral response to drugs of abuse. While much work still needs to be done, understanding the interplay of gut microbiome in substance use disorders may offer a promising avenue for future therapeutic development.
Collapse
|
227
|
Sanders A, Rackers H, Kimmel M. A role for the microbiome in mother-infant interaction and perinatal depression. Int Rev Psychiatry 2019; 31:280-294. [PMID: 30784334 DOI: 10.1080/09540261.2018.1548431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Perinatal depression is a significant public health problem, due to its negative impact on maternal well-being and long-term adverse effects for children. Mother-infant interaction and maternal responsiveness and sensitivity are a hypothesized mechanism by which perinatal depression effects child development, and increasing research in the microbiota-gut-brain axis may provide a new avenue of investigation. There is limited efficacy for treatment of perinatal depression for improving the mother-infant relationship and child outcomes. The maternal microbiota may be the basis of child outcomes through foetal programming and sharing of microbes between mother and infant. There is evidence that less diversity of the intestinal microbial community is associated with neuropsychiatric disorders, including depression and anxiety in mothers and offspring. Assessing the maternal and child's microbial communities may be an important missing component in mother-infant attachment-based therapies during treatment of perinatal depression. Probiotics and prebiotics require further research as additions to mother-infant interventions. Further research may enable identification of bacterial genes that indicate specific pathways that could be targeted to improve outcomes for mother and child.
Collapse
Affiliation(s)
- Amanda Sanders
- a Department of Psychiatry , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Hannah Rackers
- a Department of Psychiatry , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Mary Kimmel
- a Department of Psychiatry , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| |
Collapse
|
228
|
Liu YW, Liong MT, Chung YCE, Huang HY, Peng WS, Cheng YF, Lin YS, Wu YY, Tsai YC. Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2019; 11:E820. [PMID: 30979038 PMCID: PMC6521002 DOI: 10.3390/nu11040820] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
This four-week, randomized, double-blind, placebo-controlled study investigated the effects of Lactobacillus plantarum PS128 (PS128) on boys with autism spectrum disorder (ASD) aged 7-15 in Taiwan. All subjects fulfilled the criteria for ASD diagnosis of DSM-V and the Autism Diagnostic Interview-Revised (ADI-R). Questionnaires used for the primary outcome measure include the Autism Behavior Checklist-Taiwan version (ABC-T), the Social Responsiveness Scale (SRS) and the Child Behavior Checklist (CBCL). The Swanson, Nolan, and Pelham-IV-Taiwan version (SNAP-IV) and the Clinical Global Impression-improvement (CGI-I) were used for the secondary outcome measure. The results showed that PS128 ameliorated opposition/defiance behaviors, and that the total score of SNAP-IV for younger children (aged 712) improved significantly compared with the placebo group. Additionally, several elements were also notably improved in the PS128 group after 28-day consumption of PS128. Further studies are needed to better clarify the effects of PS128 for younger children with ASD on broader symptoms.
Collapse
Affiliation(s)
- Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.
- Microbiome Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Min Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yu-Chu Ella Chung
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10050, Taiwan.
| | - Hui-Yi Huang
- Department of Psychology, National Taiwan University, Taipei 10090, Taiwan.
| | - Wu-Shun Peng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yun-Fang Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Yu-Siou Lin
- Department of Psychology, National Chengchi University, Taipei 11605, Taiwan.
| | - Yu-Yu Wu
- YuNing Clinic, Taipei 10664, Taiwan.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.
- Microbiome Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
229
|
Jang HM, Lee KE, Kim DH. The Preventive and Curative Effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on Immobilization Stress-Induced Anxiety/Depression and Colitis in Mice. Nutrients 2019; 11:nu11040819. [PMID: 30979031 PMCID: PMC6521032 DOI: 10.3390/nu11040819] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
The gut dysbiosis by stressors such as immobilization deteriorates psychiatric disorders through microbiota-gut-brain axis activation. To understand whether probiotics could simultaneously alleviate anxiety/depression and colitis, we examined their effects on immobilization stress (IS)-induced anxiety/depression and colitis in mice. The probiotics Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 were isolated from healthy human feces. Mice with anxiety/depression and colitis were prepared by IS treatment. NK33 and NK98 potently suppressed NF-κB activation in lipopolysaccharide (LPS)-induced BV-2 cells. Treatment with NK33 and/or NK98, which were orally gavaged in mice before or after IS treatment, significantly suppressed the occurrence and development of anxiety/depression, infiltration of Iba1+ and LPS+/CD11b+ cells (activated microglia) into the hippocampus, and corticosterone, IL-6, and LPS levels in the blood. Furthermore, they induced hippocampal BDNF expression while NF-κB activation was suppressed. NK33 and/or NK98 treatments suppressed IS-induced colon shortening, myeloperoxidase activity, infiltration of CD11b+/CD11c+ cells, and IL-6 expression in the colon. Their treatments also suppressed the IS-induced fecal Proteobacteria population and excessive LPS production. They also induced BDNF expression in LPS-induced SH-SY5Y cells in vitro. In conclusion, NK33 and NK98 synergistically alleviated the occurrence and development of anxiety/depression and colitis through the regulation of gut immune responses and microbiota composition.
Collapse
Affiliation(s)
- Hyo-Min Jang
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Kyung-Eon Lee
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
230
|
Probiotics in Extraintestinal Diseases: Current Trends and New Directions. Nutrients 2019; 11:nu11040788. [PMID: 30959761 PMCID: PMC6521300 DOI: 10.3390/nu11040788] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Probiotics are defined as live microorganisms that when administered in adequate amounts confer a health benefit to the host. Their positive supplementation outcomes on several gastrointestinal disorders are well defined. Nevertheless, their actions are not limited to the gut, but may also impart their beneficial effects at distant sites and organs. In this regard, in this review article we: (i) comprehensively describe the main mechanisms of action of probiotics at distant sites, including bones, skin, and brain; (ii) critically present their therapeutic potential against bone, skin, and neuronal diseases (e.g., osteoporosis, non-healing wounds and autoimmune skin illnesses, mood, behavior, memory, and cognitive impairments); (iii) address the current gaps in the preclinical and clinical research; and (iv) indicate new research directions and suggest future investigations.
Collapse
|
231
|
Kentner AC, Cryan JF, Brummelte S. Resilience priming: Translational models for understanding resiliency and adaptation to early life adversity. Dev Psychobiol 2019; 61:350-375. [PMID: 30311210 PMCID: PMC6447439 DOI: 10.1002/dev.21775] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Despite the increasing attention to early life adversity and its long-term consequences on health, behavior, and the etiology of neurodevelopmental disorders, our understanding of the adaptations and interventions that promote resiliency and rescue against such insults are underexplored. Specifically, investigations of the perinatal period often focus on negative events/outcomes. In contrast, positive experiences (i.e. enrichment/parental care//healthy nutrition) favorably influence development of the nervous and endocrine systems. Moreover, some stressors result in adaptations and demonstrations of later-life resiliency. This review explores the underlying mechanisms of neuroplasticity that follow some of these early life experiences and translates them into ideas for interventions in pediatric settings. The emerging role of the gut microbiome in mediating stress susceptibility is also discussed. Since many negative outcomes of early experiences are known, it is time to identify mechanisms and mediators that promote resiliency against them. These range from enrichment, quality parental care, dietary interventions and those that target the gut microbiota.
Collapse
Affiliation(s)
- Amanda C. Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115,
| | - John F. Cryan
- Dept. Anatomy & Neuroscience & APC Microbiome Institute, University College Cork, College Rd., Cork, Ireland,
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, 5057 Woodward Ave, Detroit, MI 48202,
| |
Collapse
|
232
|
Abstract
In the past forty-five years, the field of probiotics has grown from a handful of laboratory studies and clinical ideas into a legitimate research and translational entity conferring multiple benefits to humans around the world. This has been founded upon three principles: (i) the need for alterna-tives to drugs that either have sub-optimal efficacy or severe adverse effects; (ii) a growing interest in natural products and microbes, in particular cata-lyzed by studies showing the extent of microbes within humans and on our planet; and (iii) evidence on the genetics and metabolic properties of probi-otic strains, and clinical studies showing their effectiveness. While some man-ufacturers have sadly taken advantage of the market growth to sell supple-ments and foods they term probiotic, without the necessary human study evidence, there are more and more companies basing their formulations on science. Adherence to the definition of what constitutes a probiotic, conclu-sions based on tested products not generalizations of the whole field, and applications emanating from microbiome research identifying new strains that provide benefits, will make the next forty-five years significantly changed approaches to health management. Exciting applications will emerge for car-diovascular, urogenital, respiratory, brain, digestive and skin health, detoxifi-cation, as well as usage across the world's ecosystems.
Collapse
Affiliation(s)
- Scarlett Puebla-Barragan
- Departments of Microbiology & Immunology, and Surgery, Western University.,Lawson Health Research Institute
| | - Gregor Reid
- Departments of Microbiology & Immunology, and Surgery, Western University.,Lawson Health Research Institute
| |
Collapse
|
233
|
Redpath N, Rackers HS, Kimmel MC. The Relationship Between Perinatal Mental Health and Stress: a Review of the Microbiome. Curr Psychiatry Rep 2019; 21:18. [PMID: 30826885 DOI: 10.1007/s11920-019-0998-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Our current understanding of the underlying mechanisms and etiologies of perinatal mood and anxiety disorders (PMADs) is not clearly identified. The relationship of stress-induced adaptations (i.e., the hypothalamic-pituitary-adrenal (HPA) axis, the autonomic nervous system (ANS), the immune system) and the microbiota are potential contributors to psychopathology exhibited in women during pregnancy and postpartum and should be investigated. RECENT FINDINGS The stress response activates the HPA axis and dysregulates the ANS, leading to the inhibition of the parasympathetic system. Sustained high levels of cortisol, reduced heart variability, and modulated immune responses increase the vulnerability to PMAD. Bidirectional communication between the nervous system and the microbiota is an important factor to alter host homeostasis and development of PMAD. Future research in the relationship between the psychoneuroimmune system, the gut microbiota, and PMAD has the potential to be integrated in clinical practice to improve screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Nusiebeh Redpath
- Department of Maternal and Child Health, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah S Rackers
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mary C Kimmel
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
234
|
Dome P, Tombor L, Lazary J, Gonda X, Rihmer Z. Natural health products, dietary minerals and over-the-counter medications as add-on therapies to antidepressants in the treatment of major depressive disorder: a review. Brain Res Bull 2019; 146:51-78. [DOI: 10.1016/j.brainresbull.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/04/2018] [Accepted: 12/26/2018] [Indexed: 12/23/2022]
|
235
|
Codagnone MG, Spichak S, O'Mahony SM, O'Leary OF, Clarke G, Stanton C, Dinan TG, Cryan JF. Programming Bugs: Microbiota and the Developmental Origins of Brain Health and Disease. Biol Psychiatry 2019; 85:150-163. [PMID: 30064690 DOI: 10.1016/j.biopsych.2018.06.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
It has been nearly 30 years since Dr. David Barker first highlighted the importance of prenatal factors in contributing to the developmental origins of adult disease. This concept was later broadened to include postnatal events. It is clear that the interaction between genetic predisposition and early life environmental exposures is key in this regard. However, recent research has also identified another important factor in the microbiota-the trillions of microorganisms that inhabit key body niches, including the vagina and gastrointestinal tract. Because the composition of these maternal microbiome sites has been linked to maternal metabolism and is also vertically transmitted to offspring, changes in the maternal microbiota are poised to significantly affect the newborn. In fact, several lines of evidence show that the gut microbiota interacts with diet, drugs, and stress both prenatally and postnatally and that these exogenous factors could also affect the dynamic changes in the microbiota composition occurring during pregnancy. Animal models have shown great utility in illuminating how these disruptions result in behavioral and brain morphological phenotypes reminiscent of psychiatric disorders (anxiety, depression, schizophrenia, and autism spectrum disorders). Increasing evidence points to critical interactions among the microbiota, host genetics, and both the prenatal and postnatal environments to temporally program susceptibility to psychiatric disorders later in life. Sex-specific phenotypes may be programmed through the influence of the microbiota on the hypothalamic-pituitary-adrenal axis and neuroimmune system.
Collapse
Affiliation(s)
- Martin G Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Irish Centre for Fetal and Neonatal Translational Research and Cork University Maternity Hospital, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Irish Centre for Fetal and Neonatal Translational Research and Cork University Maternity Hospital, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
236
|
Reid G. Disentangling What We Know About Microbes and Mental Health. Front Endocrinol (Lausanne) 2019; 10:81. [PMID: 30828318 PMCID: PMC6384226 DOI: 10.3389/fendo.2019.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
Much has been written in recent years about the gut-brain axis. Exciting pilot studies suggest probiotic applications to the gut can reduce anxiety and depression via the vagus nerve. But not to diminish such findings, much still needs to be considered, including the fact that the vagus nerve links to many other body sites that also host a microbiome. Questions remain that touch the core of being human: (i) Do our microbes influence happiness and to what extent? (ii) What components of the gut microbiota and their function, including as it relates to mental health, are critical and how do they differ between agile, fit hunter gatherers and obese westerners or Danes described as the happiest people on the planet? (iii) What role do environmental pollutants play in this microbes-host ecosystem? While approaching life from a reductionist perspective has a long history in science, we need to try to interrogate these health and disease issues from a wider perspective. For verification of a link between the gut microbiota and brain, and to test new therapies, human studies are needed, and are long overdue.
Collapse
Affiliation(s)
- Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, and Surgery, Western University, London, ON, Canada
- *Correspondence: Gregor Reid
| |
Collapse
|
237
|
Osadchiy V, Martin CR, Mayer EA. The Gut-Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin Gastroenterol Hepatol 2019; 17:322-332. [PMID: 30292888 PMCID: PMC6999848 DOI: 10.1016/j.cgh.2018.10.002] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Based largely on results from preclinical studies, the concept of a brain gut microbiome axis has been established, mediating bidirectional communication between the gut, its microbiome, and the nervous system. Limited data obtained in human beings suggest that alterations in these interactions may play a role in several brain gut disorders. METHODS We reviewed the preclinical and clinical literature related to the topic of brain gut microbiome interactions. RESULTS Well-characterized bidirectional communication channels, involving neural, endocrine, and inflammatory mechanisms, exist between the gut and the brain. Communication through these channels may be modulated by variations in the permeability of the intestinal wall and the blood-brain barrier. Brain gut microbiome interactions are programmed during the first 3 years of life, including the prenatal period, but can be modulated by diet, medications, and stress throughout life. Based on correlational studies, alterations in these interactions have been implicated in the regulation of food intake, obesity, and in irritable bowel syndrome, even though causality remains to be established. CONCLUSIONS Targets within the brain gut microbiome axis have the potential to become targets for novel drug development for brain gut disorders.
Collapse
|
238
|
Getachew B, Aubee JI, Schottenfeld RS, Csoka AB, Thompson KM, Tizabi Y. Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties. BMC Microbiol 2018; 18:222. [PMID: 30579332 PMCID: PMC6303954 DOI: 10.1186/s12866-018-1373-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Appreciable evidence suggest that dysbiosis in microbiota, reflected in gut microbial imbalance plays a key role in the pathogenesis of neuropsychiatric disorders including depression and inflammatory diseases. Recently, the antidepressant properties of ketamine have gained prominence due to its fast and long lasting effects. Additional uses for ketamine in inflammatory disorders such as irritable bowel syndrome have been suggested. However, ketamine's exact mechanism of action and potential effects on microbiome is not known. Here, we examined the effects of low dose ketamine, known to induce antidepressant effects, on stool microbiome profile in adult male Wistar rats. Animals (5/group) were injected intraperitoneally with ketamine (2.5 mg/kg) or saline, daily for 7 days and sacrificed on day 8 when intestinal stools were collected and stored at - 80 °C. DNA was extracted from the samples and the 16 S rRNA gene-based microbiota analysis was performed using 16S Metagenomics application. RESULTS At genus-level, ketamine strikingly amplified Lactobacillus, Turicibacter and Sarcina by 3.3, 26 and 42 fold, respectively. Conversely, opportunistic pathogens Mucispirillum and Ruminococcus were reduced by approximately 2.6 and 26 fold, respectively, in ketamine group. Low levels of Lactobacillus and Turicibacter are associated with various disorders including depression and administration of certain species of Lactobacillus ameliorates depressive-like behavior in animal models. Hence, some of the antidepressant effects of ketamine might be mediated through its interaction with these gut bacteria. Additionally, high level of Ruminococcus is positively associated with the severity of irritable bowel syndrome (IBS), and some species of Mucispirillum have been associated with intestinal inflammation. Indirect evidence of anti-inflammatory role of Sarcina has been documented. Hence, some of the anti-inflammatory effects of ketamine and its usefulness in specific inflammatory diseases including IBS may be mediated through its interaction with these latter bacteria. CONCLUSION Our data suggest that at least some of the antidepressant and anti-inflammatory effects of daily ketamine treatment for 7 days may be mediated via its interaction with specific gut bacteria. These findings further validate the usefulness of microbiome as a target for therapeutic intervention and call for more detailed investigation of microbiome interaction with central mediators of mood and/or inflammatory disorders.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC 20059 USA
| | - Joseph I. Aubee
- Department of Microbiology, Howard University College Medicine, Washington, DC 20059 USA
| | - Richard S. Schottenfeld
- Department of Psychiatry and Behavioral Sciences, Howard University College Medicine, Washington, DC 20059 USA
| | - Antonei B. Csoka
- Department of Anatomy, Howard University College Medicine, Washington, DC 20059 USA
| | - Karl M. Thompson
- Department of Microbiology, Howard University College Medicine, Washington, DC 20059 USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC 20059 USA
| |
Collapse
|
239
|
Slykerman RF, Kang J, Van Zyl N, Barthow C, Wickens K, Stanley T, Coomarasamy C, Purdie G, Murphy R, Crane J, Mitchell EA. Effect of early probiotic supplementation on childhood cognition, behaviour and mood a randomised, placebo-controlled trial. Acta Paediatr 2018; 107:2172-2178. [PMID: 30246890 DOI: 10.1111/apa.14590] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
AIM To determine whether probiotic supplementation in early life improves neurocognitive outcomes assessed at 11 years of age. METHODS A total of 474 children who were born March 2004-Aug 2005 participated in a two-centre randomised placebo-controlled trial of infants at risk of developing allergic disease. Pregnant women were randomised to take Lactobacillus rhamnosus strain HN001, Bifidobacterium animalis subsp. lactis strain HN019 or placebo daily from 35 weeks gestation until six months if breastfeeding, and their infants the same treatment from birth to two years. Intelligence, executive function, attention, depression and anxiety were assessed when the children were 11 years of age. RESULTS A total of 342 (72.2%) children were assessed (HN001 n = 109, HN019 n = 118 and placebo n = 115). Overall, there were no significant differences in the neurocognitive outcomes between the treatment groups. CONCLUSION HN001 and HN019 given in early life were not associated with neurocognitive outcomes at 11 years of age in this study. However, we cannot exclude that other probiotics may have a beneficial effect. Further clinical trials are indicated.
Collapse
Affiliation(s)
- R F Slykerman
- Department of Psychological Medicine; University of Auckland; Auckland New Zealand
| | - J Kang
- Department of Medicine; University of Otago; Wellington New Zealand
| | - N Van Zyl
- Department of Paediatrics: Child and Youth Health; University of Auckland; Auckland New Zealand
| | - C Barthow
- Department of Medicine; University of Otago; Wellington New Zealand
| | - K Wickens
- Department of Medicine; University of Otago; Wellington New Zealand
| | - T Stanley
- Department of Paediatrics; University of Otago; Wellington New Zealand
| | - C Coomarasamy
- Department of Paediatrics: Child and Youth Health; University of Auckland; Auckland New Zealand
| | - G Purdie
- Dean's Office; University of Otago; Wellington New Zealand
| | - R Murphy
- Department of Medicine; University of Auckland; Auckland New Zealand
| | - J Crane
- Department of Medicine; University of Otago; Wellington New Zealand
| | - E A Mitchell
- Department of Paediatrics: Child and Youth Health; University of Auckland; Auckland New Zealand
| |
Collapse
|
240
|
George F, Daniel C, Thomas M, Singer E, Guilbaud A, Tessier FJ, Revol-Junelles AM, Borges F, Foligné B. Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Front Microbiol 2018; 9:2899. [PMID: 30538693 PMCID: PMC6277688 DOI: 10.3389/fmicb.2018.02899] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are representative members of multiple ecosystems on earth, displaying dynamic interactions within animal and plant kingdoms in respect with other microbes. This highly heterogeneous phylogenetic group has coevolved with plants, invertebrates, and vertebrates, establishing either mutualism, symbiosis, commensalism, or even parasitism-like behavior with their hosts. Depending on their location and environment conditions, LAB can be dominant or sometimes in minority within ecosystems. Whatever their origins and relative abundance in specific anatomic sites, LAB exhibit multifaceted ecological and functional properties. While some resident LAB permanently inhabit distinct animal mucosal cavities, others are provided by food and may transiently occupy the gastrointestinal tract. It is admitted that the overall gut microbiome has a deep impact on health and diseases. Here, we examined the presence and the physiological role of LAB in the healthy human and several animal microbiome. Moreover, we also highlighted some dysbiotic states and related consequences for health, considering both the resident and the so-called "transionts" microorganisms. Whether LAB-related health effects act collectively or follow a strain-specificity dogma is also addressed. Besides the highly suggested contribution of LAB to interplay with immune, metabolic, and even brain-axis regulation, the possible involvement of LAB in xenobiotic detoxification processes and metal equilibrium is also tackled. Recent technological developments such as functional metagenomics, metabolomics, high-content screening and design in vitro and in vivo experimental models now open new horizons for LAB as markers applied for disease diagnosis, susceptibility, and follow-up. Moreover, identification of general and more specific molecular mechanisms based on antioxidant, antimicrobial, anti-inflammatory, and detoxifying properties of LAB currently extends their selection and promising use, either as probiotics, in traditional and functional foods, for dedicated treatments and mostly for maintenance of normobiosis and homeostasis.
Collapse
Affiliation(s)
- Fanny George
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Catherine Daniel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisabeth Singer
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Axel Guilbaud
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Frédéric J. Tessier
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Benoît Foligné
- Université de Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| |
Collapse
|
241
|
Cross-species examination of single- and multi-strain probiotic treatment effects on neuropsychiatric outcomes. Neurosci Biobehav Rev 2018; 99:160-197. [PMID: 30471308 DOI: 10.1016/j.neubiorev.2018.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/10/2018] [Accepted: 11/18/2018] [Indexed: 12/15/2022]
Abstract
Interest in elucidating gut-brain-behavior mechanisms and advancing neuropsychiatric disorder treatments has led to a recent proliferation of probiotic trials. Yet, a considerable gap remains in our knowledge of probiotic efficacy across populations and experimental contexts. We conducted a cross-species examination of single- and multi-strain combinations of established probiotics. Forty-eight human (seven infant/child, thirty-six young/middle-aged adult, five older adult) and fifty-eight non-human (twenty-five rat, twenty-seven mouse, five zebrafish, one quail) investigations met the inclusion/exclusion criteria. Heterogeneity of probiotic strains, substrains, and study methodologies limited our ability to conduct meta-analyses. Human trials detected variations in anxiety, depression, or emotional regulation (single-strain 55.6%; multi-strain 50.0%) and cognition or social functioning post-probiotic intake (single-strain 25.9%; multi-strain 31.5%). For the non-human studies, single- (60.5%) and multi-strain (45.0%) combinations modified stress, anxiety, or depression behaviors in addition to altering social or cognitive performance (single-strain 57.9%; multi-strain 85.0%). Rigorous trials that confirm existing findings, investigate additional probiotic strain/substrain combinations, and test novel experimental paradigms, are necessary to develop future probiotic treatments that successfully target specific neuropsychiatric outcomes.
Collapse
|
242
|
Dantzer R, Cohen S, Russo SJ, Dinan TG. Resilience and immunity. Brain Behav Immun 2018; 74:28-42. [PMID: 30102966 PMCID: PMC6545920 DOI: 10.1016/j.bbi.2018.08.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
Resilience is the process that allows individuals to adapt to adverse conditions and recover from them. This process is favored by individual qualities that have been amply studied in the field of stress such as personal control, positive affect, optimism, and social support. Biopsychosocial studies on the individual qualities that promote resilience show that these factors help protect against the deleterious influences of stressors on physiology in general and immunity in particular. The reverse is also true as there is evidence that immune processes influence resilience. Most of the data supporting this relationship comes from animal studies on individual differences in the ability to resist situations of chronic stress. These data build on the knowledge that has accumulated on the influence of immune factors on brain and behavior in both animal and human studies. In general, resilient individuals have a different immunophenotype from that of stress susceptible individuals. It is possible to render susceptible individuals resilient and vice versa by changing their inflammatory phenotype. The adaptive immune phenotype also influences the ability to recover from inflammation-induced symptoms. The modulation of these bidirectional relationships between resilience and immunity by the gut microbiota opens the possibility to influence them by probiotics and prebiotics. However, more focused studies on the reciprocal relationship between resilience and immunity will be necessary before this can be put into practice.
Collapse
Affiliation(s)
- Robert Dantzer
- The University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA.
| | - Sheldon Cohen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Scott J Russo
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustav L. Levy Place, New York, NY 10029, USA
| | - Timothy G Dinan
- APC Microbiome Ireland and Dept. of Psychiatry, University College Cork, Ireland
| |
Collapse
|
243
|
Guo Y, Xie J, Li X, Yuan Y, Zhang L, Hu W, Luo H, Yu H, Zhang R. Antidepressant Effects of Rosemary Extracts Associate With Anti-inflammatory Effect and Rebalance of Gut Microbiota. Front Pharmacol 2018; 9:1126. [PMID: 30364169 PMCID: PMC6192164 DOI: 10.3389/fphar.2018.01126] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
It is currently believed that inflammation acts as a central part in the pathophysiology of depression. Rosemary extracts (RE), the crucial active constituents extracted from Rosmarinus officinalis Linn, have drawn wide concerns because of their potential for anti-inflammatory effects. However, no study has highlighted the antidepressant effects of RE on chronic restraint stress (CRS) mice, and the inflammatory mechanisms related to gut microbiome have not yet been elucidated. This study showed that depressive-like behaviors, gut microbiota dysbiosis, and activation of inflammatory reactions in the hippocampus and serum of CRS mice, as well as activation of inflammatory reactions in BV-2 microglia cells induced by lipopolysaccharide (LPS), could be attenuated by RE. We found that the pretreatment with RE increased the time in the center of open field test (OFT), and decreased immobility duration in tail suspension test (TST) as well as forced swimming test (FST). Furthermore, RE enhanced the sequences proportion of Lactobacillus and Firmicutes, and reduced the sequences proportion of Bacteroidetes and Proteobacteria in feces. Moreover, RE obviously suppressed protein expression of IL-1β, TNF-α, p-NF-κ B p65 and Iba1 in hippocampus, and elevated BDNF as well as p-AKT/AKT expression. Importantly, pre-incubation with RE protected microglia by alleviating protein expression of IL-1β, TNF-α and p-NF-κ B p65 induced by LPS. Additionally, RE downregulated the level of IL-1β and TNF-α in serum. In conclusion, this study showed the antidepressant effects of RE are mediated by anti-inflammatory effects in hippocampus, serum and BV-2 microglia as well as rebalancing gut microbiota.
Collapse
Affiliation(s)
- Ying Guo
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.,School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Jianping Xie
- Library, Yunnan Minzu University, Kunming, China
| | - Xia Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yun Yuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Lanchun Zhang
- Department of Zoology, Kunming Medical University, Kunming, China
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Haiyun Luo
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Haofei Yu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Rongping Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| |
Collapse
|
244
|
Park C, Brietzke E, Rosenblat JD, Musial N, Zuckerman H, Ragguett RM, Pan Z, Rong C, Fus D, McIntyre RS. Probiotics for the treatment of depressive symptoms: An anti-inflammatory mechanism? Brain Behav Immun 2018; 73:115-124. [PMID: 30009996 DOI: 10.1016/j.bbi.2018.07.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
During the past decade, there has been renewed interest in the relationship between brain-based disorders, the gut microbiota, and the possible beneficial effects of probiotics. Emerging evidence suggests that modifying the composition of the gut microbiota via probiotic supplementation may be a viable adjuvant treatment option for individuals with major depressive disorder (MDD). Convergent evidence indicates that persistent low-grade inflammatory activation is associated with the diagnosis of MDD as well as the severity of depressive symptoms and probability of treatment response. The objectives of this review are to (1) evaluate the evidence supporting an anti-inflammatory effect of probiotics and (2) describe immune system modulation as a potential mechanism for the therapeutic effects of probiotics in populations with MDD. A narrative review of studies investigating the effects of probiotics on systemic inflammation was conducted. Studies were identified using PubMed/Medline, Google Scholar, and clinicaltrials.gov (from inception to November 2017) using the following search terms (and/or variants): probiotic, inflammation, gut microbiota, and depression. The available evidence suggests that probiotics should be considered a promising adjuvant treatment to reduce the inflammatory activation commonly found in MDD. Several controversial points remain to be addressed including the role of leaky gut, the role of stress exposure, and the role of blood-brain-barrier permeability. Taken together, the results of this review suggest that probiotics may be a potentially beneficial, but insufficiently studied, antidepressant treatment intervention.
Collapse
Affiliation(s)
- Caroline Park
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Natalie Musial
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Hannah Zuckerman
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Renee-Marie Ragguett
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Carola Rong
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Dominika Fus
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| |
Collapse
|
245
|
Kuo PH, Chung YCE. Moody microbiome: Challenges and chances. J Formos Med Assoc 2018; 118 Suppl 1:S42-S54. [PMID: 30262220 DOI: 10.1016/j.jfma.2018.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023] Open
Abstract
Growing evidence link gut microbiome to the development and maturation of the central nervous system, which are regulated by microbiota potentially through stress response, neurotransmitter, neuroimmune, and endocrine pathways. The dysfunction of such microbiota-gut-brain axis is implicated in neuropsychiatric disorders, depression, and other stress-related conditions. Using affective disorders as our primary outcomes, we inspect the current evidence of microbiota studies mainly in human clinical samples. Additionally, to restore microbiome equilibrium in bacteria diversity and abundance might represent a novel strategy to prevent or treat mood symptoms. We reviewed findings from clinical trials regarding efficacy of probiotics supplement with or without antidepressant treatment, and adjuvant antimicrobiotics treatment. In microbiota studies, the considerations of host-microbiota interaction and bacteria-bacteria interaction are discussed. In conclusion, the roles of microbiota in depression and mania state are not fully elucidated. One of the challenges is to find reliable targets for functional analyses and experiments. Notwithstanding some inconsistencies and methodological limitations across studies, results from recent clinical trials support for the beneficial effects of probiotics on alleviating depressive symptoms and increasing well-beings. Moreover, modifying the composition of gut microbiota via antibiotics can be a viable adjuvant treatment option for individuals with depressive symptoms.
Collapse
Affiliation(s)
- Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yu-Chu Ella Chung
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
246
|
Zhang Q, Berger FG, Love B, Banister CE, Murphy EA, Hofseth LJ. Maternal stress and early-onset colorectal cancer. Med Hypotheses 2018; 121:152-159. [PMID: 30396471 DOI: 10.1016/j.mehy.2018.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Early-onset colorectal cancer (EOCRC) is defined as colorectal cancer (CRC) diagnosed before the age of 50. Alarmingly, there has been a significant increase in EOCRC diagnoses' worldwide over the past several decades. Emerging data suggest EOCRCs have distinguishing clinical, pathological, biological and molecular features; and thus, are a fundamentally different subtype of CRCs. Unfortunately, there is no simple explanation for the causes of EOCRC. Scientifically rigorous studies are needed to determine what may be driving the challenging epidemiology of EOCRC. We contend here that a reasonable hypothesis is that prenatal risk factors such as maternal stress and associated sleeping disorders influence offspring epigenetic make-up, and shape immune system and gut health contributing to an increased risk for EOCRC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Drug Discovery and Biomedical Science, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan Love
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Carolyn E Banister
- Department of Drug Discovery and Biomedical Science, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Elizabeth A Murphy
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Science, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
247
|
Colonetti K, Roesch LF, Schwartz IVD. The microbiome and inborn errors of metabolism: Why we should look carefully at their interplay? Genet Mol Biol 2018; 41:515-532. [PMID: 30235399 PMCID: PMC6136378 DOI: 10.1590/1678-4685-gmb-2017-0235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Research into the influence of the microbiome on the human body has been shedding new light on diseases long known to be multifactorial, such as obesity, mood disorders, autism, and inflammatory bowel disease. Although inborn errors of metabolism (IEMs) are monogenic diseases, genotype alone is not enough to explain the wide phenotypic variability observed in patients with these conditions. Genetics and diet exert a strong influence on the microbiome, and diet is used (alone or as an adjuvant) in the treatment of many IEMs. This review will describe how the effects of the microbiome on the host can interfere with IEM phenotypes through interactions with organs such as the liver and brain, two of the structures most commonly affected by IEMs. The relationships between treatment strategies for some IEMs and the microbiome will also be addressed. Studies on the microbiome and its influence in individuals with IEMs are still incipient, but are of the utmost importance to elucidating the phenotypic variety observed in these conditions.
Collapse
Affiliation(s)
- Karina Colonetti
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Luiz Fernando Roesch
- Interdisciplinary Research Center on Biotechnology-CIP-Biotec, Universidade Federal do Pampa, Bagé, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
248
|
Scriven M, Dinan TG, Cryan JF, Wall M. Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Diseases 2018; 6:E78. [PMID: 30200574 PMCID: PMC6163507 DOI: 10.3390/diseases6030078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
The microbiome gut brain (MGB) axis consists of bidirectional routes of communication between the gut and the brain. It has emerged as a potential therapeutic target for multiple medical specialties including psychiatry. Significant numbers of preclinical trials have taken place with some transitioning to clinical studies in more recent years. Some positive results have been reported secondary to probiotic administration in both healthy populations and specific patient groups. This review aims to summarise the current understanding of the MGB axis and the preclinical and clinical findings relevant to psychiatry. Significant differences have been identified between the microbiome of patients with a diagnosis of depressive disorder and healthy controls. Similar findings have occurred in patients diagnosed with bipolar affective disorder and irritable bowel syndrome. A probiotic containing Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum produced a clinically measurable symptom improvement in patients with depressive disorder. To date, some promising results have suggested that probiotics could play a role in the treatment of stress-related psychiatric disease. However, more well-controlled clinical trials are required to determine which clinical conditions are likely to benefit most significantly from this novel approach.
Collapse
Affiliation(s)
- Mary Scriven
- Department of Psychiatry, University College Cork, T12 DC4A Cork, Ireland.
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, T12 DC4A Cork, Ireland.
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland.
| | - Mary Wall
- Department of Psychiatry, University College Cork, T12 DC4A Cork, Ireland.
| |
Collapse
|
249
|
Inserra A, Rogers GB, Licinio J, Wong ML. The Microbiota-Inflammasome Hypothesis of Major Depression. Bioessays 2018; 40:e1800027. [PMID: 30004130 DOI: 10.1002/bies.201800027] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/13/2018] [Indexed: 01/06/2025]
Abstract
We propose the "microbiota-inflammasome" hypothesis of major depressive disorder (MDD, a mental illness affecting the way a person feels and thinks, characterized by long-lasting feelings of sadness). We hypothesize that pathological shifts in gut microbiota composition (dysbiosis) caused by stress and gut conditions result in the upregulation of pro-inflammatory pathways mediated by the Nod-like receptors family pyrin domain containing 3 (NLRP3) inflammasome (an intracellular platform involved in the activation of inflammatory processes). This upregulation exacerbates depressive symptomatology and further compounds gut dysbiosis. In this review we describe MDD/chronic stress-induced changes in: 1) NLRP3 inflammasome; 2) gut microbiota; and 3) metabolic pathways; and how inflammasome signaling may affect depressive-like behavior and gut microbiota composition. The implication is that novel therapeutic strategies could emerge for MDD and co-morbid conditions. A number of testable predictions surface from this microbiota-gut-inflammasome-brain hypothesis of MDD, using approaches that modulate gut microbiota composition via inflammasome modulation, fecal microbiota transplantation, psychobiotics supplementation, or dietary change.
Collapse
Affiliation(s)
- Antonio Inserra
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, 5001, SA, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, SA, Australia
- Centre for Neuroscience, Flinders University, Bedford Park, 5042, Australia
| | - Geraint B Rogers
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, North TerracAdelaide, 5001, SA, Australia
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Bedford Park, 5001, SA, Australia
| | - Julio Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, 5001, SA, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, SA, Australia
- State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Ma-Li Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, 5001, SA, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, SA, Australia
- State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
250
|
Kimmel MC, Cox E, Schiller C, Gettes E, Meltzer-Brody S. Pharmacologic Treatment of Perinatal Depression. Obstet Gynecol Clin North Am 2018; 45:419-440. [DOI: 10.1016/j.ogc.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|