201
|
Anticancer Activity of Liquid Treated with Microwave Plasma-Generated Gas through Macrophage Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2946820. [PMID: 32089766 PMCID: PMC7013299 DOI: 10.1155/2020/2946820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Abstract
Reactive nitrogen species (RNS), including nitric oxide (NO·) has been known as one of the key regulatory molecules in the immune system. In this study, we generated RNS-containing water treated with microwave plasma-generated gas in which the major component was nitric oxide (PGNO), and the effect on the macrophage polarization was investigated. The RNS-containing water was diluted in complete cell culture media (PGNO-solution) into the concentration that did not induce cell death in RAW 264.7 murine macrophages. PGNO-solution upregulates M1-type macrophage activation and downregulates the characteristics of M2-type macrophage at the transcriptional level. In addition, the PGNO-solution-treated M2-like macrophages had higher potential in killing melanoma cells. The anticancer potential was also investigated in a syngeneic mouse model. Our results show that PGNO-solution has the potential to convert the fate of macrophages, suggesting PGNO-solution treatment as a supportive method for controlling the function of macrophages under the tumor microenvironment.
Collapse
|
202
|
Gore A, Gauthier AG, Lin M, Patel V, Thomas DD, Ashby CR, Mantell LL. The nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate/D-NO), increases survival by attenuating hyperoxia-compromised innate immunity in bacterial clearance in a mouse model of ventilator-associated pneumonia. Biochem Pharmacol 2020; 176:113817. [PMID: 31972169 DOI: 10.1016/j.bcp.2020.113817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Mechanical ventilation (MV) with supraphysiological levels of oxygen (hyperoxia) is a life-saving therapy for the management of patients with respiratory distress. However, a significant number of patients on MV develop ventilator-associated pneumonia (VAP). Previously, we have reported that prolonged exposure to hyperoxia impairs the capacity of macrophages to phagocytize Pseudomonas aeruginosa (PA), which can contribute to the compromised innate immunity in VAP. In this study, we show that the high mortality rate in mice subjected to hyperoxia and PA infection was accompanied by a significant decrease in the airway levels of nitric oxide (NO). Decreased NO levels were found to be, in part, due to a significant reduction in NO release by macrophages upon exposure to PA lipopolysaccharide (LPS). Based on these findings, we postulated that NO supplementation should restore hyperoxia-compromised innate immunity and decrease mortality by increasing the clearance of PA under hyperoxic conditions. To test this hypothesis, cultured macrophages were exposed to hyperoxia (95% O2) in the presence or absence of the NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate/D-NO). Interestingly, D-NO (up to 37.5 µM) significantly attenuated hyperoxia-compromised macrophage migratory, phagocytic, and bactericidal function. To determine whether the administration of exogenous NO enhances the host defense in bacteria clearance, C57BL/6 mice were exposed to hyperoxia (99% O2) and intranasally inoculated with PA in the presence or absence of D-NO. D-NO (300 µM-800 µM) significantly increased the survival of mice inoculated with PA under hyperoxic conditions, and significantly decreased bacterial loads in the lung and attenuated lung injury. These results suggest the NO donor, D-NO, can improve the clinical outcomes in VAP by augmenting the innate immunity in bacterial clearance. Thus, provided these results can be extrapolated to humans, NO supplementation may represent a potential therapeutic strategy for preventing and treating patients with VAP.
Collapse
Affiliation(s)
- Ashwini Gore
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Vivek Patel
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA; Cardiopulmonary Research, The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY 11030, USA.
| |
Collapse
|
203
|
Hall JR, Rouillard KR, Suchyta DJ, Brown MD, Ahonen MJR, Schoenfisc MH. Mode of nitric oxide delivery affects antibacterial action. ACS Biomater Sci Eng 2020; 6:433-441. [PMID: 32671191 PMCID: PMC7363046 DOI: 10.1021/acsbiomaterials.9b01384] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) is a broad-spectrum antibacterial agent, making it an attractive alternative to traditional antibiotics for treating infections. To date, a direct comparison of the antibacterial activity of gaseous NO (gNO) versus water-soluble NO-releasing biopolymers has not been reported. In this study, the bactericidal action of NO-releasing chitosan oligosaccharides was compared to gNO treatment against cystic fibrosis-relevant Gram-positive and Gram-negative bacteria. A NO exposure chamber was constructed to enable the dosing of bacteria with gNO at concentrations up to 800 ppm under both aerobic and anaerobic conditions. Bacteria viability, solution properties (i.e., pH, NO concentration), and toxicity to mammalian cells were monitored to ensure a thorough understanding of bactericidal action and reproducibility for each delivery method. The NO-releasing chitosan oligosaccharides required significantly lower NO doses relative to gNO therapy to elicit antibacterial action against Pseudomonas aeruginosa and Staphylococcus aureus under both aerobic and anaerobic conditions. Reduced NO doses required for bacteria eradication using water-soluble NO-releasing chitosan were attributed to the release of NO in solution, removing the need to transfer from gas to liquid phase and the associated long diffusion distances of gNO treatment.
Collapse
Affiliation(s)
- Jackson R. Hall
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Kaitlyn R. Rouillard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Dakota J. Suchyta
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Micah D. Brown
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Mona Jasmine R. Ahonen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Mark H. Schoenfisc
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
204
|
Small molecule inhibitors and stimulators of inducible nitric oxide synthase in cancer cells from natural origin (phytochemicals, marine compounds, antibiotics). Biochem Pharmacol 2020; 176:113792. [PMID: 31926145 DOI: 10.1016/j.bcp.2020.113792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide synthases (NOS) are a family of isoforms, which generate nitric oxide (NO). NO is one of the smallest molecules in nature and acts mainly as a potent vasodilator. It participates in various biological processes ranging from physiological to pathological conditions. Inducible NOS (iNOS, NOS2) is a calcium-independent and inducible isoform. Despite high iNOS expression in many tumors, the role of iNOS is still unclear and complex with both enhancing and prohibiting actions in tumorigenesis. Nature presents a broad variety of natural stimulators and inhibitors, which may either promote or inhibit iNOS response. In the present review, we give an overview of iNOS-modulating agents with a special focus on both natural and synthetic molecules and their effects in related biological processes. The role of iNOS in physiological and pathological conditions is also discussed.
Collapse
|
205
|
Abstract
Nitric oxide (NO) is a radical that is used as an attack molecule by immune cells. NO can interact and damage a range of biomolecules, and the biological outcome for bacteria assaulted with NO will be governed by how the radical distributes within their biochemical reaction networks. Measurement of those NO fluxes is complicated by the low abundance and transience of many of its reaction products. To overcome this challenge, we use computational modeling to translate measurements of several biochemical species (e.g., NO, O2, NO2-) into NO flux distributions. In this chapter, we provide a detailed protocol, which includes experimental measurements and computational modeling, to estimate the NO flux distribution in an Escherichia coli culture. Those fluxes will have uncertainty associated with them and we also discuss how further experiments and modeling can be employed for flux refinement.
Collapse
Affiliation(s)
| | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
206
|
Escamilla PR, Shen Y, Zhang Q, Hernandez DS, Howard CJ, Qian X, Filonov DY, Kinev AV, Shear JB, Anslyn EV, Yang Y. 2-Amino-3'-dialkylaminobiphenyl-based fluorescent intracellular probes for nitric oxide surrogate N 2O 3. Chem Sci 2020; 11:1394-1403. [PMID: 34123264 PMCID: PMC8148321 DOI: 10.1039/c9sc04304g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
Fluorescent probes for nitric oxide (NO), or more frequently for its oxidized surrogate dinitrogen trioxide (N2O3), have enabled scientists to study the contributions of this signaling molecule to many physiological processes. Seeking to improve upon limitations of other probes, we have developed a family of fluorescent probes based on a 2-amino-3'-dialkylaminobiphenyl core. This core condenses with N2O3 to form benzo[c]cinnoline structures, incorporating the analyte into the newly formed fluorophore, which results in product fluorescence with virtually no background contribution from the initial probe. We varied the substituents in the core in order to optimize both the reactivity of the probes with N2O3 and their cinnoline products' fluorescence wavelengths and brightness. The top candidates were then applied to cultured cells to verify that they could respond to NO within cellular milieus, and the top performer, NO530, was compared with a "gold standard" commercial probe, DAF-FM, in a macrophage-derived cell line, RAW 264.7, stimulated to produce NO. NO530 demonstrated similar or better sensitivity and higher selectivity for NO than DAF, making it an attractive potential alternative for NO tracking in various applications.
Collapse
Affiliation(s)
| | - Yanming Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Quanjuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Derek S Hernandez
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Cecil J Howard
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | | | | | - Jason B Shear
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
207
|
Reinhardt CJ, Xu R, Chan J. Nitric oxide imaging in cancer enabled by steric relaxation of a photoacoustic probe platform. Chem Sci 2020. [DOI: 10.1039/c9sc05600a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systematic optimization of the aza-BODIPY dye platform facilitated planarization and a red-shift in the absorbance. SR-APNO-3 enabled the first validated detection of cancer-derived nitric oxide with PA imaging.
Collapse
Affiliation(s)
- Christopher J. Reinhardt
- Department of Chemistry
- The Beckman Institute for Advanced Science and Technology
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Ruiwen Xu
- Department of Chemistry
- The Beckman Institute for Advanced Science and Technology
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Jefferson Chan
- Department of Chemistry
- The Beckman Institute for Advanced Science and Technology
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
208
|
Orenha RP, Morgon NH, Contreras-García J, Silva GCG, Nagurniak GR, Piotrowski MJ, Caramori GF, Muñoz-Castro A, Parreira RLT. How does the acidic milieu interfere in the capability of ruthenium nitrosyl complexes to release nitric oxide? NEW J CHEM 2020. [DOI: 10.1039/c9nj04643g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The nitric oxide has a well-defined role in biology. The ruthenium complexes are model for study NO release mechanisms. The proton increases the capability of these compounds to release NO after reduction reaction or of the light supported reaction.
Collapse
Affiliation(s)
- Renato Pereira Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | | | | | | | | | | | - Giovanni Finoto Caramori
- Departamento de Química
- Universidade Federal de Santa Catarina
- Campus Universitário Trindade
- CP 476
- Florianópolis
| | - Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares
- Facultad de Ingenieria
- Universidad Autonoma de Chile
- San Miguel
- Chile
| | | |
Collapse
|
209
|
Li H, Hao YH, Feng W, Song QH. Rapid and sensitive detection of nitric oxide by a BODIPY-based fluorescent probe in live cells: glutathione effects. J Mater Chem B 2020; 8:9785-9793. [DOI: 10.1039/d0tb01784a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutathione effects on the sensing reaction toward nitric oxide in live cells.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Yu-Hao Hao
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Wei Feng
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Qin-Hua Song
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|
210
|
Girotti AW, Fahey JM. Upregulation of pro-tumor nitric oxide by anti-tumor photodynamic therapy. Biochem Pharmacol 2019; 176:113750. [PMID: 31836386 DOI: 10.1016/j.bcp.2019.113750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Many malignant tumors use endogenous nitric oxide (NO) to promote survival, growth, and metastatic migration. This NO, which is typically generated by inducible nitric oxide synthase (iNOS), can also antagonize various anti-cancer therapies and its source is most often assumed to be constitutive or pre-existing iNOS. In this paper, we provide evidence (i) that many different cancer cells exhibit resistance to oxidative killing by photodynamic therapy (PDT), and (ii) that cells surviving the challenge grow, migrate and invade more aggressively, as do non-targeted bystander cells. Accompanying these effects are activation or upregulation of pro-survival/progression effector proteins such as NF-κB, Akt, and Survivin. Observed in the author's laboratory, these responses were not attributed to basal iNOS/NO in most cases, but rather to NO from enzyme that was strongly upregulated by photodynamic stress. Each of these effects and how they can be mitigated by inhibitors of iNOS activity or transcription, or by NO scavengers will be discussed. When approved for clinical use, such pharmacologic agents could improve PDT efficacy as well as reduce potentially negative side-effects of this therapy.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
211
|
Lambden S. Bench to bedside review: therapeutic modulation of nitric oxide in sepsis-an update. Intensive Care Med Exp 2019; 7:64. [PMID: 31792745 PMCID: PMC6888802 DOI: 10.1186/s40635-019-0274-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide is a signalling molecule with an extensive range of functions in both health and disease. Discovered in the 1980s through work that earned the Nobel prize, nitric oxide is an essential factor in regulating cardiovascular, immune, neurological and haematological function in normal homeostasis and in response to infection. Early work implicated exaggerated nitric oxide synthesis as a potentially important driver of septic shock; however, attempts to modulate production through global inhibition of nitric oxide synthase were associated with increased mortality. Subsequent work has shown that regulation of nitric oxide production is determined by numerous factors including substrate and co-factor availability and expression of endogenous regulators. In sepsis, nitric oxide synthesis is dysregulated with exaggerated production leading to cardiovascular dysfunction, bioenergetic failure and cellular toxicity whilst at the same time impaired microvascular function may be driven in part by reduced nitric oxide synthesis by the endothelium. This bench to bedside review summarises our current understanding of the ways in which nitric oxide production is regulated on a tissue and cellular level before discussing progress in translating these observations into novel therapeutic strategies for patients with sepsis.
Collapse
Affiliation(s)
- Simon Lambden
- Department of Medicine, Addenbrooke's Hospital, Cambridge University, 5th Floor, Cambridge, CB20QQ, UK.
| |
Collapse
|
212
|
Mazzeo A, Pellegrino J, Doctorovich F. Water-Soluble Nitroxyl Porphyrin Complexes Fe IITPPSHNO and Fe IITPPSNO - Obtained from Isolated Fe IITPPSNO •. J Am Chem Soc 2019; 141:18521-18530. [PMID: 31657216 DOI: 10.1021/jacs.9b09161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first biomimetic water-soluble FeII-porphyrin nitroxyl complexes were obtained and characterized by UV-vis in protonated and deprotonated forms by reduction of previously isolated and characterized FeIITPPSNO•. The pKa involved in the FeII-HNO ⇄ FeII-NO- + H+ equilibrium was estimated to be around 9.7. The FeIITPPSHNO complex spontaneously reoxidizes to the nitrosyl form following a first-order kinetic decay with a measured kinetic constant of k = 0.017 s-1. Experiments show that the HNO adduct undergoes unimolecular homolytic cleavage of the H-NO bond. DFT calculations suggest a phlorin radical intermediate for this reaction. The deprotonated NO- complex resulted to be more stable, with a half-life of about 10 min.
Collapse
Affiliation(s)
- Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA , Buenos Aires , Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA , Buenos Aires , Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, C1428EHA , Buenos Aires , Argentina
| |
Collapse
|
213
|
Kaoud TS, Mohassab AM, Hassan HA, Yan C, Van Ravenstein SX, Abdelhamid D, Dalby KN, Abdel-Aziz M. NO-releasing STAT3 inhibitors suppress BRAF-mutant melanoma growth. Eur J Med Chem 2019; 186:111885. [PMID: 31784187 DOI: 10.1016/j.ejmech.2019.111885] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Constitutive activation of STAT3 can play a vital role in the development of melanoma. STAT3-targeted therapeutics are reported to show efficacy in melanomas harboring the BRAFV600E mutant and also in vemurafenib-resistant melanomas. We designed and synthesized a series of substituted nitric oxide (NO)-releasing quinolone-1,2,4-triazole/oxime hybrids, hypothesizing that the introduction of a STAT3 binding scaffold would augment their cytotoxicity. All the hybrids tested showed a comparable level of in vitro NO production. 7b and 7c exhibited direct binding to the STAT3-SH domain with IC50 of ∼ 0.5 μM. Also, they abrogated STAT3 tyrosine phosphorylation in several cancer cell lines, including the A375 melanoma cell line that carries the BRAFV600E mutation. At the same time, they did not affect the phosphorylation of upstream kinases or other STAT isoforms. 7c inhibited STAT3 nuclear translocation in mouse embryonic fibroblast while 7b and 7c inhibited STAT3 DNA-binding activity in the A375 cell line. Their anti-proliferating activity is attributed to their ability to trigger the production of reactive oxygen species and induce G1 cell cycle arrest in the A375 cell line. Interestingly, 7b and 7c showed robust cell growth suppression and apoptosis induction in two pairs of BRAF inhibitor-naïve (-S) and resistant (-R) melanoma cell lines containing a BRAF V600E mutation. Surprisingly, MEL1617-R cells that are known to be more resistance to MEK inhibition by GSK1120212 than MEL1617-S cells exhibit a similar response to 7b and 7c.
Collapse
Affiliation(s)
- Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aliaa M Mohassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Sabrina X Van Ravenstein
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
214
|
Li J, Duan M, Yao X, Tian D, Tang J. Prenylated benzenepropanoic acid analogues from the Citrus grandis (L.) Osbeck and their anti-neuroinflammatory activity. Fitoterapia 2019; 139:104410. [PMID: 31707127 DOI: 10.1016/j.fitote.2019.104410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
Abstract
Phytochemical studies of the air-dried pericarp of Citrus grandis led to the isolation of four new compounds including three prenylated benzenepropanoic acids (2, 3 and 5) and one alkamidic glycoside (6), together with ten known compounds (1, 4 and 7-14). The structures of these compounds were determined by the NMR spectroscopy, optical rotation data and modified Mosher's method. Meanwhile, the anti-neuroinflammatory activities of all isolated compounds were evaluated by detecting the production of nitric oxide (NO) in LPS-stimulated BV2 cells. The results showed that compounds 1, 2, 5 and 13 exhibited strong inhibition effects on NO production in LPS-stimulated BV2 cells. Mechanistically, compounds 1, 2 and 5 could suppress the expressions of iNOS. In addition, compounds 1, 2 and 5 also showed obvious inhibition effects on COX-2 expression, another vital enzyme in the inflammation process, in LPS-treated BV2 cells. These findings shed light on the potent anti-neuroinflammatory effects of Citrus grandis.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Menglong Duan
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Key Laboratory of Standard Material in Natural Medicine of Guangdong Province, Guangzhou Xiangxue Pharmaceutical Ltd. Co., Guangzhou 510663, China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
215
|
De Moraes TF, Filho JCC, Oishi JC, Almeida-Lopes L, Parizotto NA, Rodrigues GJ. Energy-dependent effect trial of photobiomodulation on blood pressure in hypertensive rats. Lasers Med Sci 2019; 35:1041-1046. [PMID: 31664552 DOI: 10.1007/s10103-019-02883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Abstract
The main purpose of this work was to construct an energy-dependent response curve of photobiomodulation on arterial pressure in hypertension animal model. To reach this objective, we have used a two-kidney one clip (2K-1C) rat model. Animals received acute laser light irradiation (660 nm) on abdominal region using different energy (0.6, 1.8, 3.6, 7.2, 13.8, 28.2, 55.8, and 111.6 J), the direct arterial pressure was measured by femoral cannulation, and systolic arterial pressure (SAP), diastolic arterial pressure (DAP), heart rate (HR), and time of effect were obtained. Our results indicated that 660 nm laser light presents an energy-dependent hypotensive effect, and 28.2 J energy irradiation reached the maximum hypotensive effect, inducing a decreased SAP, DAP, and HR (decrease in SAP: - 19.23 ± 1.82 mmHg, n = 11; DAP: - 9.57 ± 2.23 mmHg, n = 11; HR: - 39.15 ± 5.10 bpm, n = 11; and time of hypotensive effect: 3068.00 ± 719.00 s, n = 11). The higher energy irradiation evaluated (111.6 J) did not induce a hypotensive effect and induced an increase in HR (21.69 ± 7.89 bpm, n = 7). Taken together, our results indicate that red laser energy irradiation from 7.2 to 55.8 J is the effective therapeutic window to reduce SAP, DAP, MAP, and HR and induce a long-lasting hypotensive effect in rats, with effect loss at higher energy irradiation (111.6 J).
Collapse
Affiliation(s)
- T F De Moraes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - J C C Filho
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - J C Oishi
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - L Almeida-Lopes
- Nucleus of Research and Teaching of Phototherapy in Health Sciences - NUPEN, São Carlos, SP, Brazil
| | - N A Parizotto
- Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - G J Rodrigues
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
216
|
Singh M, Kasna S, Roy S, Aldosary S, Saeedan AS, Ansari MN, Kaithwas G. Repurposing mechanistic insight of PDE-5 inhibitor in cancer chemoprevention through mitochondrial-oxidative stress intervention and blockade of DuCLOX signalling. BMC Cancer 2019; 19:996. [PMID: 31651285 PMCID: PMC6814136 DOI: 10.1186/s12885-019-6152-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study evaluates the anti-cancer effects of Tadalafil (potent PDE-5 inhibitor) in female albino wistar rats against n-methyl n-nitrosourea induced mammary gland carcinogenesis. METHODS The animals were selected and randomly divided among four groups and each group contains six animals per group. The animal tissue and serum samples were evaluated for the presence of antioxidant parameters and the cellular morphology was studied using carminic staining, haematoxylin staining and scanning electron microscopy followed by immunoblotting analysis. RESULTS On the grounds of hemodynamic recordings and morphology, n-methyl n-nitrosourea treated group showed distorted changes along with distorted morphological parameters. For morphological analysis, the mammary gland tissues were evaluated using scanning electron microscopy, whole mount carmine staining, haematoxylin and eosin staining. The serum samples were evaluated for the evaluation of oxidative stress markers and inflammatory markers. The level of caspase 3 and 8 were also evaluated for the estimation of apoptosis. The fatty acid profiling of mammary gland tissue was evaluated using fatty acid methyl esters formation. The mitochondrial mediated apoptosis and inflammatory markers were evaluated using immunoblotting assay. CONCLUSION The results confirm that Tadalafil treatment restored all the biological markers to the normal and its involvement in mitochondrial mediated death apoptosis pathway along with inhibition of inflammatory markers.
Collapse
Affiliation(s)
- Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Sweta Kasna
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S. Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohd. Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| |
Collapse
|
217
|
Hua W, Zhao J, Wang X, Pei S, Gou S. A lysosome specific theranostic NO donor inhibits cancer cells by stimuli responsive molecular self-decomposition with an on-demand fluorescence pattern. Analyst 2019; 144:6681-6688. [PMID: 31599280 DOI: 10.1039/c9an01746a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anticancer mechanism of NO is difficult to study owing to its short lifetime and high reactivity. Thus, a theranostic anticancer NO donor assembled with NO on-demand release abilities, accurate lysosome location capabilities and signal feedback behavior was developed. Profiting from the theranostic properties, the specific mechanism was comprehensively studied. Spectral and cell imaging studies revealed that the as prepared NO donors could release NO in solution or within cancer cells. Fluorescence co-dyeing experiments demonstrated that Mo-Nap-NO entered lysosomes specifically and disrupted them after being triggered by light. Upon irradiation with 460 nm visible light, both the donors demonstrated considerable in vitro anticancer effects. A further mechanistic study showed that after entering the lysosome and being triggered by 460 nm irradiation, NO ruptured the lysosome, resulting in the release of cathepsin D into the cytosol, which activated the caspase3 mediated apoptosis pathway.
Collapse
Affiliation(s)
- Wuyang Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Sinan Pei
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. and Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
218
|
S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants (Basel) 2019; 8:antiox8090404. [PMID: 31533268 PMCID: PMC6769533 DOI: 10.3390/antiox8090404] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.
Collapse
|
219
|
Chakraborty S, Datta S, Ghosh S. Induction of autophagy under nitrosative stress: A complex regulatory interplay between SIRT1 and AMPK in MCF7 cells. Cell Signal 2019; 64:109411. [PMID: 31491460 DOI: 10.1016/j.cellsig.2019.109411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Induction of nitrosative stress has been observed in various cancer types and in tumor environment. However, it is still unclear how cancer cells combat the effect of nitrosative stress. The main targets of nitrosative stress in cells are cellular lipids, proteins and DNA. Autophagy or self-cleaning generates energy for cell survival under stress conditions. In the present study we investigated the role of autophagy under nitrosative stress in MCF7, a breast cancer cell line. Interestingly, we observed induction of autophagy associated with cell death when MCF7 cells were treated with NO donor compound DETA-NONOate for eight hours. While investigating the mode of cell death under nitrosative stress in MCF7 cells, it was found that it was neither apoptotic nor necrotic. Moreover, nitrosative stress did not alter mitochondrial membrane potential and cellular redox status in MCF7 cells. But we observed an increase in NAD+/NADH and a drop in NADH level in MCF7 cells following NO donor treatment. Sirtuins having NAD+ dependent deacetylase activity, play an important role in cell survival mechanisms. So we further checked the status of SIRT1 under nitrosative stress in MCF7 cells. Surprisingly, we observed an induction of SIRT1, phospho-AMPK and p53 in MCF7 cells under nitrosative stress. Interestingly, autophagy markers were down regulated in MCF7 cells upon treatment with nicotinamide, an inhibitor of SIRT1 activity and dorsomorphin, a phospho-AMPK inhibitor when treated separately under nitrosative stress. To further confirm the role of SIRT1 in the induction of autophagy associated cell death, it was knocked down using si-RNA and nitrosative stress was applied. SIRT1 knock down led to increase in MCF7 cell viability along with down regulation of autophagic markers and phospho-AMPK as well as accumulation of acetylated p53. The increase in p53 controlled DRAM1 mRNA expression in MCF7 cells under nitrosative stress further confirmed a complex interplay between p53, SIRT1 and AMPK under nitrosative stress in MCF7 cells. Altogether our work for the first time suggests a complex inter-twined partnership between AMPK, SIRT1 and p53 in regulating autophagy in response to nitrosative stress in MCF7 cells.
Collapse
Affiliation(s)
- Subhamoy Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sampurna Datta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
220
|
Shimizu T, Matsumoto A, Noda M. Cooperative Roles of Nitric Oxide-Metabolizing Enzymes To Counteract Nitrosative Stress in Enterohemorrhagic Escherichia coli. Infect Immun 2019; 87:e00334-19. [PMID: 31209149 PMCID: PMC6704613 DOI: 10.1128/iai.00334-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/08/2019] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) has at least three enzymes, NorV, Hmp, and Hcp, that act independently to lower the toxicity of nitric oxide (NO), a potent antimicrobial molecule. This study aimed to reveal the cooperative roles of these defensive enzymes in EHEC against nitrosative stress. Under anaerobic conditions, combined deletion of all three enzymes significantly increased the NO sensitivity of EHEC determined by the growth at late stationary phase; however, the expression of norV restored the NO resistance of EHEC. On the other hand, the growth of Δhmp mutant EHEC was inhibited after early stationary phase, indicating that NorV and Hmp play a cooperative role in anaerobic growth. Under microaerobic conditions, the growth of Δhmp mutant EHEC was inhibited by NO, indicating that Hmp is the enzyme that protects cells from NO stress under microaerobic conditions. When EHEC cells were exposed to a lower concentration of NO, the NO level in bacterial cells of Δhcp mutant EHEC was higher than those of the other EHEC mutants, suggesting that Hcp is effective at regulating NO levels only at a low concentration. These findings of a low level of NO in bacterial cells with hcp indicate that the NO consumption activity of Hcp was suppressed by Hmp at a low range of NO concentrations. Taken together, these results show that the cooperative effects of NO-metabolizing enzymes are regulated by the range of NO concentrations to which the EHEC cells are exposed.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, School of Medicine, Toho University, Tokyo, Japan
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
221
|
Associations of Plasma Nitrite, L-Arginine and Asymmetric Dimethylarginine With Morbidity and Mortality in Patients With Necrotizing Soft Tissue Infections. Shock 2019; 49:667-674. [PMID: 28863028 PMCID: PMC5929495 DOI: 10.1097/shk.0000000000000975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: The nitric oxide system could play an important role in the pathophysiology related to necrotizing soft tissue infection (NSTI). Accordingly, we investigated the association between plasma nitrite level at admission and the presence of septic shock in patients with NSTI. We also evaluated the association between nitrite, asymmetric dimethylarginine (ADMA), l-arginine, l-arginine/ADMA ratio, and outcome. Methods: We analyzed plasma from 141 NSTI patients taken upon hospital admission. The severity of NSTI was assessed by the presence of septic shock, Simplified Acute Physiology Score (SAPS) II, Sepsis-Related Organ Failure Assessment (SOFA) score, use of renal replacement therapy (RRT), amputation, and 28-day mortality. Results: No difference in nitrite levels was found between patients with and without septic shock (median 0.82 μmol/L [interquartile range (IQR) 0.41–1.21] vs. 0.87 μmol/L (0.62–1.24), P = 0.25). ADMA level was higher in patients in need of RRT (0.64 μmol/L (IQR 0.47–0.90) vs. (0.52 μmol/L (0.34–0.70), P = 0.028), and ADMA levels correlated positively with SAPS II (rho = 0.32, P = 0.0002) and SOFA scores (rho = 0.22, P = 0.01). In a logistic regression analysis, an l-arginine/ADMA ratio below 101.59 was independently associated with 28-day mortality, odds ratio 6.03 (95% confidence interval, 1.41–25.84), P = 0.016. None of the other analyses indicated differences in the NO system based on differences in disease severity. Conclusions: In patients with NSTI, we found no difference in baseline nitrite levels according to septic shock. High baseline ADMA level was associated with the use of RRT and patients with a low baseline l-arginine/ADMA ratio were at higher risk of dying within 28 days after hospital admission.
Collapse
|
222
|
Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective. Nitric Oxide 2019; 89:1-13. [DOI: 10.1016/j.niox.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
|
223
|
Kay J, Thadhani E, Samson L, Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst) 2019; 83:102673. [PMID: 31387777 DOI: 10.1016/j.dnarep.2019.102673] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022]
Abstract
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.
Collapse
Affiliation(s)
- Jennifer Kay
- Department of Biological Engineering, United States.
| | | | - Leona Samson
- Department of Biological Engineering, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | | |
Collapse
|
224
|
Rolly NK, Lee SU, Imran QM, Hussain A, Mun BG, Kim KM, Yun BW. Nitrosative stress-mediated inhibition of OsDHODH1 gene expression suggests roots growth reduction in rice ( Oryza sativa L.). 3 Biotech 2019; 9:273. [PMID: 31245237 PMCID: PMC6581995 DOI: 10.1007/s13205-019-1800-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
This study monitored the transcriptional response of OsDHODH1 under nitrosative stress conditions relative to the transcripts accumulations for the core mitochondrial cytochrome c oxidase1 (CcOX1) subunit, nuclear CcOX subunits 5b and 5c, two rice nitrate reductases (OsNIA1 and OsNIA2), and nitric oxide excess 1 (OsNOE1) genes. Our findings reveal that short-term exposure of rice seedlings to 1 mM SNP (Nitric oxide donor) applied exogenously for 1 h resulted in significant down-regulation of OsDHODH1 expression in all rice cultivars. In addition, the transcriptional patterns for the CcOX subunits, which are known to have a high affinity for nitric oxide, showed that the core catalytic subunit (OsCcOX1) and the nuclear subunit (OsCcOX5b) were up-regulated, while the nuclear subunit (OsCcOX5c) gene expression was suppressed. OsGSNOR1 expression was enhanced or decreased concomitant with a decrease or increase in SNO accumulation, particularly at the basal level. Moreover, high OsNIA1 expression was consistent with impaired root development, whereas low transcript accumulation matched a balanced root-growth pattern. This suggests that OsNIA1 expression would prevail over OsNIA2 expression under nitrosative stress response in rice. The level of malondialdehyde (MDA) content increased with the increase in SNP concentration, translating enhanced oxidative damage to the cell. We also observed increased catalase activity in response to 5 mM SNP suggesting that potential cross-talk exist between nitrosative and oxidative stress. These results collectively suggest a possible role of OsDHODH1 and OsCcOX5b role in plant root growth during nitrosative stress responses.
Collapse
Affiliation(s)
- Nkulu Kabange Rolly
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan
| | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Laboratory of Plant Molecular Breeding, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
225
|
Malone-Povolny MJ, Maloney SE, Schoenfisch MH. Nitric Oxide Therapy for Diabetic Wound Healing. Adv Healthc Mater 2019; 8:e1801210. [PMID: 30645055 PMCID: PMC6774257 DOI: 10.1002/adhm.201801210] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) represents a potential wound therapeutic agent due to its ability to regulate inflammation and eradicate bacterial infections. Two broad strategies exist to utilize NO for wound healing; liberating NO from endogenous reservoirs, and supplementing NO from exogenous sources. This progress report examines the efficacy of a variety of NO-based methods to improve wound outcomes, with particular attention given to diabetes-associated chronic wounds.
Collapse
Affiliation(s)
- Maggie J Malone-Povolny
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sara E Maloney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
226
|
Fahey JM, Korytowski W, Girotti AW. Upstream signaling events leading to elevated production of pro-survival nitric oxide in photodynamically-challenged glioblastoma cells. Free Radic Biol Med 2019; 137:37-45. [PMID: 30991141 PMCID: PMC6526063 DOI: 10.1016/j.freeradbiomed.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) generated endogenously by inducible nitric oxide synthase (iNOS) promotes growth and migration/invasion of glioblastoma cells and also fosters resistance to chemotherapy and ionizing radiotherapy. Our recent studies revealed that glioblastoma cell iNOS/NO also opposes the cytotoxic effects of non-ionizing photodynamic therapy (PDT), and moreover stimulates growth/migration aggressiveness of surviving cells. These negative responses, which depended on PI3K/Akt/NF-κB activation, were strongly suppressed by blocking iNOS transcription with JQ1, a BET bromodomain inhibitor. In the present study, we sought to identify additional molecular events that precede iNOS transcriptional upregulation. Akt activation, iNOS induction, and viability loss in PDT-challenged glioblastoma U87 cells were all strongly inhibited by added l-histidine, consistent with primary involvement of photogenerated singlet oxygen (1O2). Transacetylase p300 not only underwent greater Akt-dependent activation after PDT, but greater interaction with NF-κB subunit p65, which in turn exhibited greater K310 acetylation. In addition, PDT promoted intramolecular disulfide formation and inactivation of tumor suppressor PTEN, thereby favoring Akt and p300 activation leading to iNOS upregulation. Importantly, deacetylase Sirt1 was down-regulated by PDT stress, consistent with the observed increase in p65-acK310 level, which fostered iNOS transcription. This study provides new mechanistic insights into how glioblastoma tumors can exploit iNOS/NO to not only resist PDT, but to attain a more aggressive survival phenotype.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA
| | | | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA.
| |
Collapse
|
227
|
LeBaron TW, Kura B, Kalocayova B, Tribulova N, Slezak J. A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress. Molecules 2019; 24:E2076. [PMID: 31159153 PMCID: PMC6600250 DOI: 10.3390/molecules24112076] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the most common causes of morbidity and mortality worldwide. Redox dysregulation and a dyshomeostasis of inflammation arise from, and result in, cellular aberrations and pathological conditions, which lead to cardiovascular diseases. Despite years of intensive research, there is still no safe and effective method for their prevention and treatment. Recently, molecular hydrogen has been investigated in preclinical and clinical studies on various diseases associated with oxidative and inflammatory stress such as radiation-induced heart disease, ischemia-reperfusion injury, myocardial and brain infarction, storage of the heart, heart transplantation, etc. Hydrogen is primarily administered via inhalation, drinking hydrogen-rich water, or injection of hydrogen-rich saline. It favorably modulates signal transduction and gene expression resulting in suppression of proinflammatory cytokines, excess ROS production, and in the activation of the Nrf2 antioxidant transcription factor. Although H2 appears to be an important biological molecule with anti-oxidant, anti-inflammatory, and anti-apoptotic effects, the exact mechanisms of action remain elusive. There is no reported clinical toxicity; however, some data suggests that H2 has a mild hormetic-like effect, which likely mediate some of its benefits. The mechanistic data, coupled with the pre-clinical and clinical studies, suggest that H2 may be useful for ROS/inflammation-induced cardiotoxicity and other conditions.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
- Molecular Hydrogen Institute, Enoch City, UT, 847 21, USA.
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Narcis Tribulova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 841 04, Slovak Republic.
| |
Collapse
|
228
|
Ghosh S, Roy P, Prasad S, Mugesh G. Crystal-facet-dependent denitrosylation: modulation of NO release from S-nitrosothiols by Cu 2O polymorphs. Chem Sci 2019; 10:5308-5318. [PMID: 31191887 PMCID: PMC6540961 DOI: 10.1039/c9sc01374a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/24/2019] [Indexed: 01/07/2023] Open
Abstract
Nitric oxide (NO), a gaseous small molecule generated by the nitric oxide synthase (NOS) enzymes, plays key roles in signal transduction. The thiol groups present in many proteins and small molecules undergo nitrosylation to form the corresponding S-nitrosothiols. The release of NO from S-nitrosothiols is a key strategy to maintain the NO levels in biological systems. However, the controlled release of NO from the nitrosylated compounds at physiological pH remains a challenge. In this paper, we describe the synthesis and NO releasing ability of Cu2O nanomaterials and provide the first experimental evidence that the nanocrystals having different crystal facets within the same crystal system exhibit different activities toward S-nitrosothiols. We used various imaging techniques and time-dependent spectroscopic measurements to understand the nature of catalytically active species involved in the surface reactions. The denitrosylation reactions by Cu2O can be carried out multiple times without affecting the catalytic activity.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India .
| | - Punarbasu Roy
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India .
| | - Sanjay Prasad
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India .
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India .
| |
Collapse
|
229
|
Hassan E, El-Neweshy M, Hassan M, Noreldin A. Thymoquinone attenuates testicular and spermotoxicity following subchronic lead exposure in male rats: Possible mechanisms are involved. Life Sci 2019; 230:132-140. [PMID: 31136753 DOI: 10.1016/j.lfs.2019.05.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
AIMS The testis is one of the main target organs for lead (Pb) toxicity. The current study was investigated the mechanism (s) of the therapeutic potential of thymoquinone (TQ), the active principle of Nigella sativa seed, against testicular toxicity following subchronic Pb exposure in the light of cytopathic effects, apoptotic signaling pathways, oxidative stress, serum sex hormones levels and testicular aromatase gene expression. MATERIALS AND METHODS Thirty-two male albino rats were randomly allocated into control, PbAc (20 mg PbAc/kg bwt, orally), TQ (5 mg TQ/kg bwt dissolved in corn oil, orally), and PbAc + TQ groups for 56 successive days. KEY FINDINGS PbAc-treated rats showed significant decrease of testes and epididymes weights, sperm count, motility and viability, spermatogenesis score and serum FSH, LH, testosterone and estradiol levels, as well as a significant decreased testicular antioxidant molecules (Superoxide dismutase enzyme and reduced glutathione), and a significant elevation of sperm abnormalities, oxidative biomarkers (Malondialdehyde and Nitric oxide) compared to a control group. In addition, Pb induced significant downregulation of aromatase gene expression, activation of Bax and Caspase-3 apoptotic pathways. Moreover, Pb caused complete seminiferous tubules hyalinization (38%), germinal epithelium sloughing (15%) and hypocellularity (8%). However, administration of TQ with PbAc improved sperm quality, testicular histology and oxidative/antioxidative status, and serum levels of LH, testosterone and E2 with respect to PbAc group. Additionally, TQ with PbAc significantly lessen the staining intensity and the area of Bax and Caspase-3 immunoexpression. SIGNIFICANCE TQ might exert its acceptable therapeutic potential against Pb-induced testicular and spermotoxicity via anti-oxidative, endocrine and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Eman Hassan
- Department of Biochemistry, Faculty of Science, Mansoura University, Eldakahliya, Egypt.
| | - Mahmoud El-Neweshy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Marwa Hassan
- Department of Anatomy and Embryology, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
230
|
Influence of Pluronic F127 microenvironments on the photochemical nitric oxide release from S-nitrosoglutathione. J Colloid Interface Sci 2019; 544:217-229. [DOI: 10.1016/j.jcis.2019.02.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
|
231
|
Deryagina VP, Reutov VP. Modulation of the formation of active forms of nitrogen by ingredients of plant products in the inhibition of carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2019-6-1-18-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- V. P. Deryagina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - V. P. Reutov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
| |
Collapse
|
232
|
Zhu L, Zhang C, Liu Q. PTEN S-nitrosylation by NOS1 inhibits autophagy in NPC cells. Cell Death Dis 2019; 10:306. [PMID: 30952837 PMCID: PMC6451008 DOI: 10.1038/s41419-019-1542-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
Affiliation(s)
- Lingqun Zhu
- Department of Radiotherapy, Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, China
- Cancer Research Institute, Southern Medical University, 1838 Guangzhou road north, Guangzhou, Guangdong, China
| | - Chun Zhang
- Department of Radiotherapy, Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, China.
| | - Qiuzhen Liu
- Cancer Research Institute, Southern Medical University, 1838 Guangzhou road north, Guangzhou, Guangdong, China.
| |
Collapse
|
233
|
Malone-Povolny MJ, Schoenfisch MH. Extended Nitric Oxide-Releasing Polyurethanes via S-Nitrosothiol-Modified Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12216-12223. [PMID: 30888145 PMCID: PMC6773253 DOI: 10.1021/acsami.8b19236] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
S-Nitrosothiol (RSNO)-modified mesoporous silica nanoparticles (MSNs) were doped into polyurethane (PU) to achieve extended NO-releasing coatings. Parameters influencing the synthesis of RSNO-functionalized nitric oxide (NO)-releasing MSNs were evaluated to elucidate the impact of pore structure on NO release characteristics. The porous particles were characterized as having larger NO payloads and longer NO release durations than those of nonporous particles, a feature attributed to the recombination of the NO radical in confined intraporous microenvironments. NO release kinetics, particle leaching, and thermal stability of the RSNO-modified MSNs dispersed in PU were evaluated as a function of PU structure to determine the feasibility of preparing a range of NO-releasing polymers for biomedical device-coating applications. The NO release kinetics from the PUs proved to be highly extended (>30 d) and consistent over a range of PU properties. Furthermore, RSNO-modified MSN leaching was not observed from the PUs. The NO release payloads were also maintained for 4 days for polymers stored at 0 °C.
Collapse
Affiliation(s)
- Maggie J. Malone-Povolny
- Department of Chemistry, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, North Carolina, 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB3290, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
234
|
Mooney MR, Geerts D, Kort EJ, Bachmann AS. Anti-tumor effect of sulfasalazine in neuroblastoma. Biochem Pharmacol 2019; 162:237-249. [DOI: 10.1016/j.bcp.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/08/2019] [Indexed: 01/18/2023]
|
235
|
Somasundaram V, Basudhar D, Bharadwaj G, No JH, Ridnour LA, Cheng RY, Fujita M, Thomas DD, Anderson SK, McVicar DW, Wink DA. Molecular Mechanisms of Nitric Oxide in Cancer Progression, Signal Transduction, and Metabolism. Antioxid Redox Signal 2019; 30:1124-1143. [PMID: 29634348 PMCID: PMC6354612 DOI: 10.1089/ars.2018.7527] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 01/03/2023]
Abstract
SIGNIFICANCE Cancer is a complex disease, which not only involves the tumor but its microenvironment comprising different immune cells as well. Nitric oxide (NO) plays specific roles within tumor cells and the microenvironment and determines the rate of cancer progression, therapy efficacy, and patient prognosis. Recent Advances: Key understanding of the processes leading to dysregulated NO flux within the tumor microenvironment over the past decade has provided better understanding of the dichotomous role of NO in cancer and its importance in shaping the immune landscape. It is becoming increasingly evident that nitric oxide synthase 2 (NOS2)-mediated NO/reactive nitrogen oxide species (RNS) are heavily involved in cancer progression and metastasis in different types of tumor. More recent studies have found that NO from NOS2+ macrophages is required for cancer immunotherapy to be effective. CRITICAL ISSUES NO/RNS, unlike other molecules, are unique in their ability to target a plethora of oncogenic pathways during cancer progression. In this review, we subcategorize the different levels of NO produced by cells and shed light on the context-dependent temporal effects on cancer signaling and metabolic shift in the tumor microenvironment. FUTURE DIRECTIONS Understanding the source of NO and its spaciotemporal profile within the tumor microenvironment could help improve efficacy of cancer immunotherapies by improving tumor infiltration of immune cells for better tumor clearance.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jae Hong No
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Robert Y.S. Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Basic Medical Sciences for Radiation Damages, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Douglas D. Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen K. Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Daniel W. McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
236
|
Fujita M, Somasundaram V, Basudhar D, Cheng RYS, Ridnour LA, Higuchi H, Imadome K, No JH, Bharadwaj G, Wink DA. Role of nitric oxide in pancreatic cancer cells exhibiting the invasive phenotype. Redox Biol 2019; 22:101158. [PMID: 30852389 PMCID: PMC6409427 DOI: 10.1016/j.redox.2019.101158] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a highly metastatic tumor with an extremely low 5-year survival rate. Lack of efficient diagnostics and dearth of effective therapeutics that can target the cancer as well as the microenvironment niche are the reasons for limited success in treatment and management of this disease. Cell invasion through extracellular matrix (ECM) involves the complex regulation of adhesion to and detachment from ECM and its understanding is critical to metastatic potential of pancreatic cancer. To understand the characteristics of these cancer cells and their ability to metastasize, we compared human pancreatic cancer cell line, PANC-1 and its invading phenotype (INV) collected from transwell inserts. The invasive cell type, INV, exhibited higher resistance to Carbon-ion radiation compared to whole cultured (normally dish-cultured) PANC-1 (WCC), and had more efficient in vitro spheroid formation capability. Invasiveness of INV was hampered by nitric oxide synthase (NOS) inhibitors, suggesting that nitric oxide (NO) plays a cardinal role in PANC-1 invasion. In addition, in vitro studies indicated that a MEK-ERK-dependent, JAK independent mechanism through which NOS/NO modulate PANC-1 invasiveness. Suspended INV showed enhanced NO production as well as induction of several pro-metastatic, and stemness-related genes. NOS inhibitor, l-NAME, reduced the expression of these pro-metastatic or stemness-related genes, and dampened spheroid formation ability, suggesting that NO can potentially influence pancreatic cancer aggressiveness. Furthermore, xenograft studies with INV and WCC in NSG mouse model revealed a greater ability of INV compared to WCC, to metastasize to the liver and l-NAME diminished the metastatic lesions in mice injected with INV. Overall, data suggest that NO is a key player associated with resistance to radiation and metastasis of pancreatic cancer; and inhibition of NOS demonstrates therapeutic potential as observed in the animal model by specifically targeting the metastatic cells that harbor stem-like features and are potentially responsible for relapse. Highly invasive pancreatic cancer cell line, collected from transwell inserts showed increased resistance to C-ion radiation. NO is a key player in pancreatic cancer aggressiveness inducing pro-metastatic and stemness-related genes. NOS/NO modulate invasiveness through a MEK-ERK dependent, JAK signaling independent mechanism. NOS inhibition showed promising therapeutic potential in mouse model by reversing the pro-metastatic phenotype.
Collapse
Affiliation(s)
- Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA; Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - Harumi Higuchi
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaori Imadome
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jae Hong No
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA.
| |
Collapse
|
237
|
Banks DA, Ahlbrand SE, Hughitt VK, Shah S, Mayer-Barber KD, Vogel SN, El-Sayed NM, Briken V. Mycobacterium tuberculosis Inhibits Autocrine Type I IFN Signaling to Increase Intracellular Survival. THE JOURNAL OF IMMUNOLOGY 2019; 202:2348-2359. [PMID: 30833347 DOI: 10.4049/jimmunol.1801303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
The type I IFNs (IFN-α and -β) are important for host defense against viral infections. In contrast, their role in defense against nonviral pathogens is more ambiguous. In this article, we report that IFN-β signaling in murine bone marrow-derived macrophages has a cell-intrinsic protective capacity against Mycobacterium tuberculosis via the increased production of NO. The antimycobacterial effects of type I IFNs were mediated by direct signaling through the IFN-α/β-receptor (IFNAR), as Ab-mediated blocking of IFNAR1 prevented the production of NO. Furthermore, M. tuberculosis is able to inhibit IFNAR-mediated cell signaling and the subsequent transcription of 309 IFN-β-stimulated genes in a dose-dependent way. The molecular mechanism of inhibition by M. tuberculosis involves reduced phosphorylation of the IFNAR-associated protein kinases JAK1 and TYK2, leading to reduced phosphorylation of the downstream targets STAT1 and STAT2. Transwell experiments demonstrated that the M. tuberculosis-mediated inhibition of type I IFN signaling was restricted to infected cells. Overall, our study supports the novel concept that M. tuberculosis evolved to inhibit autocrine type I IFN signaling to evade host defense mechanisms.
Collapse
Affiliation(s)
- Dallas A Banks
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Sarah E Ahlbrand
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - V Keith Hughitt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Swati Shah
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814; and
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742;
| |
Collapse
|
238
|
Premkumar K, Nair J, Shankar BS. Differential radio-adaptive responses in BALB/c and C57BL/6 mice: pivotal role of calcium and nitric oxide signalling. Int J Radiat Biol 2019; 95:655-666. [PMID: 30676176 DOI: 10.1080/09553002.2019.1571647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Our earlier studies demonstrated that transient radio-adaptive responses (RAR) in BALB/c mice were due to MAPK hyperactivation. The objective of this study was to determine the time duration of this low dose induced MAPK activation in BALB/c mice and to find out if similar adaptive responses are observed in C57BL/6 mice. Materials and methods: Mice were irradiated with 0.1 Gy priming dose (PD), 2 Gy challenge dose (CD) with an interval of 4 h (P + CD) and radiation induced immunosuppression in splenic lymphocytes was monitored as the endpoint for RAR. Results: Time kinetics following 0.1 Gy demonstrated persistence of MAPK hyperactivation till 48 h. Similar experiments in C57BL/6 mice indicated absence of RAR at 24 h following CD, in spite of MAPK activation which was also confirmed by time kinetics. Therefore, upstream activators of MAPK, viz., reactive oxygen and nitrogen species (ROS, RNS) and calcium levels were estimated. There was increased intracellular calcium (Ca2+) and nitric oxide (NO) in BALB/c and an increase in intracellular ROS in C57BL/6 mice 24 h after PD. Inhibition of NO and calcium chelation abrogated RAR in BALB/c mice. In vitro treatment of spleen cells with combination of NO donor and Ca2+ ionophore mimicked the effect of PD and induced adaptive response after 2 Gy not only in BALB/c but also in C57BL/6 mice confirming their crucial role in RAR. Conclusions: These results suggest that low dose induced differential induction of Ca2+ and NO signaling along with MAPK was responsible for contrasting RAR with respect to immune system of BALB/c and C57BL/6 mice. Abbreviations [3H]-TdR: 3H-methyl-thymidine; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; CD: Challenge Dose; CFSE: Carboxy Fluorescein Succinamidyl Ester; on A: Concanavalin A; DAF-FM: 4-amino-5-methylamino-2',7'-difluorescein; DCF-DA: 2',7'-dichlorofluorescein diacetate; DSB: Double Strand Break; ELISA: Enzyme Linked ImmunoSorbent Assay; ERK: Extracellular signal-Regulated protein Kinase; FBS: Fetal Bovine Serum; HIF-1A: Hypoxia-Inducible Factor 1-alpha; LDR: Low Dose Radiation; MAPK: Mitogen Activated Protein Kinase; MAPKK/MKK: MAPK Kinase; MAPKKK: MAPK Kinase Kinase; NO: Nitric Oxide; NOS: Nitric Oxide Synthase; P + CD: Priming + Challenge dose; PBS: Phosphate Buffered Saline; PBST: Phosphate Buffered Saline-Tween 20; PD: Priming Dose; PI3K: Phosphatidyl Inositol 3-Kinase; PKC: Protein Kinase C; RAR: Radio Adaptive Response; RNS: Reactive Nitrogen Species; ROS: Reactive Oxygen Species; RPMI-1640: Roswell Park Memorial Institute-1640 medium; SAPK/JNK: Stress-Activated Protein Kinase/ c-Jun NH2-terminal Kinase; SEM: Standard Error of Mean; SNAP: S-nitro amino penicillamine; TP53: Tumor Protein 53; γ-H2AX: Gamma- H2A histone family member X; Th1: Type 1 helper T cell responses; Th2: Type 2 helper T cell responses.
Collapse
Affiliation(s)
- Kavitha Premkumar
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| | - Jisha Nair
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| | - Bhavani S Shankar
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| |
Collapse
|
239
|
A Novel Ruthenium-based Molecular Sensor to Detect Endothelial Nitric Oxide. Sci Rep 2019; 9:1720. [PMID: 30737439 PMCID: PMC6368587 DOI: 10.1038/s41598-019-39123-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) is a key regulator of endothelial cell and vascular function. The direct measurement of NO is challenging due to its short half-life, and as such surrogate measurements are typically used to approximate its relative concentrations. Here we demonstrate that ruthenium-based [Ru(bpy)2(dabpy)]2+ is a potent sensor for NO in its irreversible, NO-bound active form, [Ru(bpy)2(T-bpy)]2+. Using spectrophotometry we established the sensor’s ability to detect and measure soluble NO in a concentration-dependent manner in cell-free media. Endothelial cells cultured with acetylcholine or hydrogen peroxide to induce endogenous NO production showed modest increases of 7.3 ± 7.1% and 36.3 ± 25.0% respectively in fluorescence signal from baseline state, while addition of exogenous NO increased their fluorescence by 5.2-fold. The changes in fluorescence signal were proportionate and comparable against conventional NO assays. Rabbit blood samples immediately exposed to [Ru(bpy)2(dabpy)]2+ displayed 8-fold higher mean fluorescence, relative to blood without sensor. Approximately 14% of the observed signal was NO/NO adduct-specific. Optimal readings were obtained when sensor was added to freshly collected blood, remaining stable during subsequent freeze-thaw cycles. Clinical studies are now required to test the utility of [Ru(bpy)2(dabpy)]2+ as a sensor to detect changes in NO from human blood samples in cardiovascular health and disease.
Collapse
|
240
|
Oszajca M, Wądołek A, Hooper J, Brindell M, van Eldik R, Stochel G. Urban Particulate Matter-Induced Decomposition of S-Nitrosoglutathione Relevant to Aberrant Nitric Oxide Biological Signaling. CHEMSUSCHEM 2019; 12:661-671. [PMID: 30427595 DOI: 10.1002/cssc.201802201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Exposure to airborne particulate matter (PM) is associated with hazardous effects on human health. Soluble constituents of PM may be released in biological fluids and disturb the precisely tuned nitric oxide signaling processes. The influence of aqueous extracts from two types of airborne urban PM (SRM 1648a, a commercially available sample, and KR PM2.5, a sample collected "in-house" in Krakow, Poland) on the stability of S-nitrosoglutathione (GSNO) was investigated. The particle interfaces had no direct effect on the studied reaction, but extracts obtained from both samples facilitated NO release from GSNO. The effectiveness of NO release was significantly affected by glutathione (GSH) and ascorbic acid (AscA). Examination of the combined influence of Cu2+ , Fe3+ , and reductants on GSNO stability revealed copper to be the main GSNO decomposing species. Computational models of nitrosothiols interacting with metal oxide substrates and solvated metal ions support these claims. The study stresses the importance of the interplay between metal ions and biological reductants in S-nitrosothiols decomposition.
Collapse
Affiliation(s)
- Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Anna Wądołek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - James Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Małgorzata Brindell
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| |
Collapse
|
241
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
242
|
Recio J, Alvarez JM, Rodriguez-Quijano M, Vallejo A. Nitrification inhibitor DMPSA mitigated N2O emission and promoted NO sink in rainfed wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:199-207. [PMID: 30423534 DOI: 10.1016/j.envpol.2018.10.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Fertilized cropping systems are important sources of nitrous oxide (N2O) and nitric oxide (NO) to the atmosphere, and biotic and abiotic processes control the production and consumption of these gases in the soil. In fact, the inhibition of nitrification after application of urea or an ammonium-based fertilizer to agricultural soils has resulted in an efficient strategy to mitigate both N2O and NO in aerated agricultural soils. Therefore, the NO and N2O mitigation capacity of a novel nitrification inhibitor (NI), 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA), has been studied in a winter wheat crop. A high temporal resolution of fluxes of NO and NO2, obtained by using automatic chambers for urea (U) and urea with DMPSA, allowed a better understanding of the temporal net emissions of these gases under field conditions. Seventy-five days after fertilization, the effective reduction of nitrification by DMPSA significantly decreased the production of NO with respect to the treatment without it, giving net consumption of NO in the soil (-61.72 g-N ha-1) for U + DMPSA in comparison to net production (227.44 g-N ha-1) for U. The explanation of NO deposition after NI application, due to biotic and abiotic processes in the soil-plant system, supposes a challenge that needs to be studied in the future. In the case of N2O, the addition of DMPSA significantly mitigated the emissions of this gas by 71%, though the total N2O emissions in both fertilized treatments were significantly greater than those of the control (43.69 g-N ha-1). Regarding the fertilized treatments, no significant effect of DMPSA in comparison to urea alone was observed on grain yield nor bread-making wheat quality. To sum up, we got a significant reduction of N2O and NO with the addition of DMPSA, without a loss in yield and quality parameters in wheat.
Collapse
Affiliation(s)
- Jaime Recio
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain; Research Center for the Management of Environmental and Agricultural Risks (CEIGRAM), Universidad Politécnica de Madrid, Madrid, 28040, Spain.
| | - Jose M Alvarez
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain; Research Center for the Management of Environmental and Agricultural Risks (CEIGRAM), Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Marta Rodriguez-Quijano
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Antonio Vallejo
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain; Research Center for the Management of Environmental and Agricultural Risks (CEIGRAM), Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
243
|
Choi M, Park S, Park K, Jeong H, Hong J. Nitric Oxide Delivery Using Biocompatible Perfluorocarbon Microemulsion for Antibacterial Effect. ACS Biomater Sci Eng 2019; 5:1378-1383. [DOI: 10.1021/acsbiomaterials.9b00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
244
|
Ciesielska S, Bil P, Gajda K, Poterala-Hejmo A, Hudy D, Rzeszowska-Wolny J. Cell type-specific differences in redox regulation and proliferation after low UVA doses. PLoS One 2019; 14:e0205215. [PMID: 30682016 PMCID: PMC6347369 DOI: 10.1371/journal.pone.0205215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/04/2019] [Indexed: 01/09/2023] Open
Abstract
Ultraviolet A (UVA) radiation is harmful for living organisms but in low doses may stimulate cell proliferation. Our aim was to examine the relationships between exposure to different low UVA doses, cellular proliferation, and changes in cellular reactive oxygen species levels. In human colon cancer (HCT116) and melanoma (Me45) cells exposed to UVA doses comparable to environmental, the highest doses (30–50 kJ/m2) reduced clonogenic potential but some lower doses (1 and 10 kJ/m2) induced proliferation. This effect was cell type and dose specific. In both cell lines the levels of reactive oxygen species and nitric oxide fluctuated with dynamics which were influenced differently by UVA; in Me45 cells decreased proliferation accompanied the changes in the dynamics of H2O2 while in HCT116 cells those of superoxide. Genes coding for proteins engaged in redox systems were expressed differently in each cell line; transcripts for thioredoxin, peroxiredoxin and glutathione peroxidase showed higher expression in HCT116 cells whereas those for glutathione transferases and copper chaperone were more abundant in Me45 cells. We conclude that these two cell types utilize different pathways for regulating their redox status. Many mechanisms engaged in maintaining cellular redox balance have been described. Here we show that the different cellular responses to a stimulus such as a specific dose of UVA may be consequences of the use of different redox control pathways. Assays of superoxide and hydrogen peroxide level changes after exposure to UVA may clarify mechanisms of cellular redox regulation and help in understanding responses to stressing factors.
Collapse
Affiliation(s)
- Sylwia Ciesielska
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Patryk Bil
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Karolina Gajda
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Aleksandra Poterala-Hejmo
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Dorota Hudy
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Joanna Rzeszowska-Wolny
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
- * E-mail:
| |
Collapse
|
245
|
Horton A, Schiefer IT. Pharmacokinetics and pharmacodynamics of nitric oxide mimetic agents. Nitric Oxide 2019; 84:69-78. [PMID: 30641123 DOI: 10.1016/j.niox.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Drug discovery focusing on NO mimetics has been hamstrung due to its unconventional nature. Central to these challenges is the fact that direct measurement of molecular NO in biological systems is exceedingly difficulty. Hence, drug development of NO mimetics must rely upon measurement of the NO donating specie (i.e., a prodrug) and a downstream marker of efficacy without directly measuring the molecule, NO, that is responsible for biological effect. The focus of this review is to catalog in vivo attempts to monitor the pharmacokinetics (PK) of the NO donating specie and the pharmacodynamic (PD) readout of NO bioactivity.
Collapse
Affiliation(s)
- Austin Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA.
| |
Collapse
|
246
|
Mansfield KM, Gilmore TD. Innate immunity and cnidarian-Symbiodiniaceae mutualism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:199-209. [PMID: 30268783 DOI: 10.1016/j.dci.2018.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The phylum Cnidaria (sea anemones, corals, hydra, jellyfish) is one the most distantly related animal phyla to humans, and yet cnidarians harbor many of the same cellular pathways involved in innate immunity in mammals. In addition to its role in pathogen recognition, the innate immune system has a role in managing beneficial microbes and supporting mutualistic microbial symbioses. Some corals and sea anemones undergo mutualistic symbioses with photosynthetic algae in the family Symbiodiniaceae. These symbioses can be disrupted by anthropogenic disturbances of ocean environments, which can have devastating consequences for the health of coral reef ecosystems. Several studies of cnidarian-Symbiodiniaceae symbiosis have implicated proteins in the host immune system as playing a role in both symbiont tolerance and loss of symbiosis (i.e., bleaching). In this review, we critically evaluate current knowledge about the role of host immunity in the regulation of symbiosis in cnidarians.
Collapse
Affiliation(s)
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
247
|
DeMartino AW, Kim‐Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol 2019; 176:228-245. [PMID: 30152056 PMCID: PMC6295445 DOI: 10.1111/bph.14484] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Inorganic nitrate (NO3 - ), nitrite (NO2 - ) and NO are nitrogenous species with a diverse and interconnected chemical biology. The formation of NO from nitrate and nitrite via a reductive 'nitrate-nitrite-NO' pathway and resulting in vasodilation is now an established complementary route to traditional NOS-derived vasodilation. Nitrate, found in our diet and abundant in mammalian tissues and circulation, is activated via reduction to nitrite predominantly by our commensal oral microbiome. The subsequent in vivo reduction of nitrite, a stable vascular reserve of NO, is facilitated by a number of haem-containing and molybdenum-cofactor proteins. NO generation from nitrite is enhanced during physiological and pathological hypoxia and in disease states involving ischaemia-reperfusion injury. As such, modulation of these NO vascular repositories via exogenously supplied nitrite and nitrate has been evaluated as a therapeutic approach in a number of diseases. Ultimately, the chemical biology of nitrate and nitrite is governed by local concentrations, reaction equilibrium constants, and the generation of transient intermediates, with kinetic rate constants modulated at differing physiological pH values and oxygen tensions. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
| | - Daniel B. Kim‐Shapiro
- Department of PhysicsWake Forest UniversityWinston‐SalemNCUSA
- Translational Science CenterWake Forest UniversityWinston‐SalemNCUSA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
248
|
Dutta A, Islam ASM, Maiti D, Sasmal M, Pradhan C, Ali M. A smart molecular probe for selective recognition of nitric oxide in 100% aqueous solution with cell imaging application and DFT studies. Org Biomol Chem 2019; 17:2492-2501. [DOI: 10.1039/c9ob00177h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, least-cytotoxic as well as an efficient fluorescent sensor HqEN480 recognizes NO in 100% aqueous solution with cell imaging application.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | | | - Debjani Maiti
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Mihir Sasmal
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Chandradoy Pradhan
- Molecular & Human Genetics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Mahammad Ali
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
- Vice-Chancellor
- Aliah University
| |
Collapse
|
249
|
Li H, Wang K, Wan Q, Chen Y. Design, synthesis and anti-tumor evaluation of novel steroidal glycoconjugate with furoxan derivatives. Steroids 2019; 141:81-95. [PMID: 30521816 DOI: 10.1016/j.steroids.2018.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 11/24/2022]
Abstract
In this study, eighteen novel steroidal-furoxan derivatives with 3-glycosyl or 3-methoxy moiety (12a-c, 13a-c, 17a-c, 26a-c, 27a-c and 28a-c) were synthesized and their anti-proliferative activity was evaluated against eight drug-sensitive and three drug-resistant cancer cell lines HeLa, A2780, LNCaP, PC-3, MDA-MB-231, MCF-7, SW480, A549, MCF-7/ADR, A2780/CDDP and A2780/T. Most of them displayed significant anti-cancer potency in vitro with IC50 values at the nanomole level. Among them, 3-methoxy steroidal-furoxan hybrids expressed much better activity than that of 3-glycosyl substitute ones, while estrane and 5α-H-androstane scaffold were slightly more favorable to the improvement of anti-proliferative activity. Especially, compounds 27c and 28b showed the strongest cytotoxicity with IC50 values of 0.0007-0.034 and 0.0011-0.008 µM, respectively in five drug-sensitive cancer cell lines. Furthermore, 3-glycoconjugates 13a, 13c, 17b and 3-methoxy compounds 27a, 27c, 28b displayed lower toxicity in nontumorigenesis cells HOSEC and expressed a good selectivity against malignant cells in vitro. Preliminary study of pharmacology showed that the introduction of glucose at 3-position in steroidal core seems unable to use glucose transporters to improve the selectivity against proliferation of malignant cells, while the NO-releasing capacity might explain the potent anti-neoplastic activity of these compounds. And compound 28b could induce the apoptosis and hardly affected the cell cycle of A2780. Then, the further study of these steroidal-furoxan hybrids merits to explore and develop a desirable anti-cancer candidate.
Collapse
Affiliation(s)
- Haihong Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qi Wan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ying Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
250
|
Song Q, Li L, Xiong K, Tian W, Lu J, Wang J, Huang N, Tu Q, Yang Z. A facile dopamine-mediated metal-catecholamine coating for therapeutic nitric oxide gas interface-catalytic engineering of vascular devices. Biomater Sci 2019; 7:3741-3750. [DOI: 10.1039/c9bm00017h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A facile copper-dopamine coating with possibility of continuously generating NO from endogenous RSNOs was constructed on vascular stent for inhibiting coagulation and selectively promoting endothelial cells while inhibiting smooth muscle cell.
Collapse
Affiliation(s)
- Qiang Song
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Long Li
- Institute of Environmental Engineering Technology
- China Institute for Radiation Protection
- Taiyuan
- China
| | - Kaiqin Xiong
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Wenjie Tian
- Cardiology Department
- Sichuan Provincial People's Hospital & Sichuan Academy of Medical Sciences
- Chengdu
- China
| | - Jing Lu
- Anesthesiology Department
- Sichuan Provincial People's Hospital & Sichuan Academy of Medical Sciences
- Chengdu
- China
| | - Jin Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Nan Huang
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Qiufen Tu
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Zhilu Yang
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| |
Collapse
|