201
|
Shchepinova MM, Cairns AG, Prime TA, Logan A, James AM, Hall AR, Vidoni S, Arndt S, Caldwell ST, Prag HA, Pell VR, Krieg T, Mulvey JF, Yadav P, Cobley JN, Bright TP, Senn HM, Anderson RF, Murphy MP, Hartley RC. MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chem Biol 2017; 24:1285-1298.e12. [PMID: 28890317 PMCID: PMC6278870 DOI: 10.1016/j.chembiol.2017.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/06/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022]
Abstract
Mitochondrial superoxide (O2⋅-) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅-, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅- probe, MitoNeoD, which can assess O2⋅- changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅--sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅- over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅- from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅- production in health and disease.
Collapse
Affiliation(s)
| | - Andrew G Cairns
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew R Hall
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Sara Vidoni
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Sabine Arndt
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Stuart T Caldwell
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Victoria R Pell
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Pooja Yadav
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Thomas P Bright
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Hans M Senn
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Robert F Anderson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
202
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 961] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
203
|
Resseguie EA, Brookes PS, O’Reilly MA. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia. Exp Lung Res 2017; 43:229-239. [PMID: 28749708 PMCID: PMC5956894 DOI: 10.1080/01902148.2017.1339143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. MATERIALS AND METHODS Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. RESULTS Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. CONCLUSIONS Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.
Collapse
Affiliation(s)
- Emily A. Resseguie
- Department of Environmental Medicine, The University of Rochester, Rochester, New York, USA
| | - Paul S. Brookes
- Department of Anesthesiology, The University of Rochester, Rochester, New York, USA
| | - Michael A. O’Reilly
- Department of Environmental Medicine, The University of Rochester, Rochester, New York, USA
- Department of Pediatrics, The University of Rochester, Rochester, New York, USA
| |
Collapse
|
204
|
Liu K, Hughes JMX, Hay S, Scrutton NS. Liver microsomal lipid enhances the activity and redox coupling of colocalized cytochrome P450 reductase-cytochrome P450 3A4 in nanodiscs. FEBS J 2017; 284:2302-2319. [PMID: 28618157 PMCID: PMC5575521 DOI: 10.1111/febs.14129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 01/22/2023]
Abstract
The haem-containing mono-oxygenase cytochrome P450 3A4 (CYP3A4) and its redox partner NADPH-dependent cytochrome P450 oxidoreductase (CPR) are among the most important enzymes in human liver for metabolizing drugs and xenobiotic compounds. They are membrane-bound in the endoplasmic reticulum (ER). How ER colocalization and the complex ER phospholipid composition influence enzyme activity are not well understood. CPR and CYP3A4 were incorporated into phospholipid bilayer nanodiscs, both singly, and together in a 1 : 1 ratio, to investigate the significance of membrane insertion and the influence of varying membrane composition on steady-state reaction kinetics. Reaction kinetics were analysed using a fluorimetric assay with 7-benzyloxyquinoline as substrate for CYP3A4. Full activity of the mono-oxygenase system, with electron transfer from NADPH via CPR, could only be reconstituted when CPR and CYP3A4 were colocalized within the same nanodiscs. No activity was observed when CPR and CYP3A4 were each incorporated separately into nanodiscs then mixed together, or when soluble forms of CPR were mixed with preassembled CYP3A4-nanodiscs. Membrane integration and colocalization are therefore essential for electron transfer. Liver microsomal lipid had an enhancing effect compared with phosphatidylcholine on the activity of CPR alone in nanodiscs, and a greater enhancing effect on the activity of CPR-CYP3A4 nanodisc complexes, which was not matched by a phospholipid mixture designed to mimic the ER composition. Furthermore, liver lipid enhanced redox coupling within the system. Thus, natural ER lipids possess properties or include components important for enhanced catalysis by CPR-CYP3A4 nanodisc complexes. Our findings demonstrate the importance of using natural lipid preparations for the detailed analysis of membrane protein activity.
Collapse
Affiliation(s)
- Kang‐Cheng Liu
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)School of ChemistryManchester Institute of BiotechnologyThe University of ManchesterUK
| | - John M. X. Hughes
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)School of ChemistryManchester Institute of BiotechnologyThe University of ManchesterUK
| | - Sam Hay
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)School of ChemistryManchester Institute of BiotechnologyThe University of ManchesterUK
| | - Nigel S. Scrutton
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)School of ChemistryManchester Institute of BiotechnologyThe University of ManchesterUK
| |
Collapse
|
205
|
Photosensitization in Porphyrias and Photodynamic Therapy Involves TRPA1 and TRPV1. J Neurosci 2017; 36:5264-78. [PMID: 27170124 DOI: 10.1523/jneurosci.4268-15.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Photosensitization, an exaggerated sensitivity to harmless light, occurs genetically in rare diseases, such as porphyrias, and in photodynamic therapy where short-term toxicity is intended. A common feature is the experience of pain from bright light. In human subjects, skin exposure to 405 nm light induced moderate pain, which was intensified by pretreatment with aminolevulinic acid. In heterologous expression systems and cultured sensory neurons, exposure to blue light activated TRPA1 and, to a lesser extent, TRPV1 channels in the absence of additional photosensitization. Pretreatment with aminolevulinic acid or with protoporphyrin IX dramatically increased the light sensitivity of both TRPA1 and TRPV1 via generation of reactive oxygen species. Artificial lipid bilayers equipped with purified human TRPA1 showed substantial single-channel activity only in the presence of protoporphyrin IX and blue light. Photosensitivity and photosensitization could be demonstrated in freshly isolated mouse tissues and led to TRP channel-dependent release of proinflammatory neuropeptides upon illumination. With antagonists in clinical development, these findings may help to alleviate pain during photodynamic therapy and also allow for disease modification in porphyria patients. SIGNIFICANCE STATEMENT Cutaneous porphyria patients suffer from burning pain upon exposure to sunlight and other patients undergoing photodynamic therapy experience similar pain, which can limit the therapeutic efforts. This study elucidates the underlying molecular transduction mechanism and identifies potential targets of therapy. Ultraviolet and blue light generates singlet oxygen, which oxidizes and activates the ion channels TRPA1 and TRPV1. The disease and the therapeutic options could be reproduced in models ranging from isolated ion channels to human subjects, applying protoporphyrin IX or its precursor aminolevulinic acid. There is an unmet medical need, and our results suggest a therapeutic use of the pertinent antagonists in clinical development.
Collapse
|
206
|
Arora D, Bhatla SC. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radic Biol Med 2017; 106:315-328. [PMID: 28254544 DOI: 10.1016/j.freeradbiomed.2017.02.042] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Abstract
Salinity results in significant reduction in sunflower (Helianthus annuus L.) seedling growth and excessive generation of reactive oxygen species (ROS). Present work highlights the possible role of melatonin as an antioxidant through its interaction with nitric oxide (NO), and as an early and long distance NaCl-stress sensing signaling molecule in seedling cotyledons. Exogenous melatonin (15µM)±NaCl (120mM) inhibit seedling growth, which is also correlated with NO availability, accumulation of potential superoxide anion (O2•-) and peroxynitrite anion (ONOO-), extent of tyrosine-nitration of proteins, spatial localization and activity of superoxide dismutase (SOD) isoforms. NO acts as a positive modulator of melatonin accumulation in seedling cotyledons as a long-distance signaling response. Modulation of superoxide anion and peroxynitrite anion content by melatonin highlights its crucial role in combating deleterious effects of ROS and reactive nitrogen species (RNS). Present findings provide evidence for an interaction between melatonin and NO in their effect on seedling growth under salt stress accompanying differential modulation of two SOD isoforms, i.e. Cu/Zn SOD and Mn SOD.
Collapse
Affiliation(s)
- Dhara Arora
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
207
|
Diao Z, Asico LD, Villar VAM, Zheng X, Cuevas S, Armando I, Jose PA, Wang X. Increased renal oxidative stress in salt-sensitive human GRK4γ486V transgenic mice. Free Radic Biol Med 2017; 106:80-90. [PMID: 28189851 PMCID: PMC5376361 DOI: 10.1016/j.freeradbiomed.2017.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/16/2022]
Abstract
We tested the hypothesis that salt-sensitive hypertension is caused by renal oxidative stress by measuring the blood pressure and reactive oxygen species-related proteins in the kidneys of human G protein-coupled receptor kinase 4γ (hGRK4γ) 486V transgenic mice and non-transgenic (Non-T) littermates on normal and high salt diets. High salt diet increased the blood pressure, associated with impaired sodium excretion, in hGRK4γ486V mice. Renal expressions of NOX isoforms were similar in both strains on normal salt diet but NOX2 was decreased by high salt diet to a greater extent in Non-T than hGRK4γ486V mice. Renal HO-2, but not HO-1, protein was greater in hGRK4γ486V than Non-T mice on normal salt diet and normalized by high salt diet. On normal salt diet, renal CuZnSOD and ECSOD proteins were similar but renal MnSOD was lower in hGRK4γ486V than Non-T mice and remained low on high salt diet. High salt diet decreased renal CuZnSOD in hGRK4γ486V but not Non-T mice and decreased renal ECSOD to a greater extent in hGRK4γ486V than Non-T mice. Renal SOD activity, superoxide production, and NOS3 protein were similar in two strains on normal salt diet. However, high salt diet decreased SOD activity and NOS3 protein and increased superoxide production in hGRK4γ486V mice but not in Non-T mice. High salt diet also increased urinary 8-isoprostane and 8-hydroxydeoxyguanosine to a greater extent in hGRK4γ486V than Non-T mice. hGRK4γwild-type mice were normotensive and hGRK4γ142V mice were hypertensive but both were salt-resistant and in normal redox balance. Chronic tempol treatment partially prevented the salt-sensitivity of hGRK4γ486V mice. Thus, hGRK4γ486V causes salt-sensitive hypertension due, in part, to defective renal antioxidant mechanisms.
Collapse
Affiliation(s)
- Zhenyu Diao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China
| | - Laureano D Asico
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Xiaoxu Zheng
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Santiago Cuevas
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Xiaoyan Wang
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
208
|
Thom SR, Bhopale VM, Hu J, Yang M. Increased carbon dioxide levels stimulate neutrophils to produce microparticles and activate the nucleotide-binding domain-like receptor 3 inflammasome. Free Radic Biol Med 2017; 106:406-416. [PMID: 28288918 DOI: 10.1016/j.freeradbiomed.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022]
Abstract
We hypothesized that elevations of carbon dioxide (CO2) commonly found in modern buildings will stimulate leukocytes to produce microparticles (MPs) and activate the nucleotide-binding domain-like receptor 3 (NLRP3) inflammasome due to mitochondrial oxidative stress. Human and murine neutrophils generate MPs with high interleukin-1β (IL-1β) content when incubated ex vivo in buffer equilibrated with 0.1-0.4% additional CO2. Enhanced MPs production requires mitochondrial reactive oxygen species production, which is mediated by activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Subsequent events leading to MPs generation include perturbation of inositol 1,3,5-triphosphate receptors, a transient elevation of intracellular calcium, activation of protein kinase C and NADPH oxidase (Nox). Concomitant activation of type-2 nitric oxide synthase yields secondary oxidants resulting in actin S-nitrosylation and enhanced filamentous actin turnover. Numerous proteins are linked to short filamentous actin including vasodilator-stimulated phosphoprotein, focal adhesion kinase, the membrane phospholipid translocation enzymes flippase and floppase, and the critical inflammasome protein ASC (Apoptosis-associated Speck protein with CARD domain). Elevations of CO2 cause oligomerization of the inflammasome components ASC, NLRP3, caspase 1, thioredoxin interacting protein, and calreticulin - a protein from endoplasmic reticulum, leading to IL-1β synthesis. An increased production rate of MPs containing elevated amounts of IL-1β persists for hours after short-term exposures to elevated CO2.
Collapse
Affiliation(s)
- Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Veena M Bhopale
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - JingPing Hu
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
209
|
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Sikora A, Zielonka J, Dwinell MB. Modified Metformin as a More Potent Anticancer Drug: Mitochondrial Inhibition, Redox Signaling, Antiproliferative Effects and Future EPR Studies. Cell Biochem Biophys 2017; 75:311-317. [PMID: 28429253 DOI: 10.1007/s12013-017-0796-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/08/2017] [Indexed: 01/01/2023]
Abstract
Metformin, one of the most widely prescribed antidiabetic drugs in the world, is being repurposed as a potential drug in cancer treatment. Epidemiological studies suggest that metformin exerts anticancer effects in diabetic patients with pancreatic cancer. However, at typical antidiabetic doses the bioavailability of metformin is presumably too low to exert antitumor effects. Thus, more potent analogs of metformin are needed in order to increase its anticancer efficacy. To this end, a new class of mitochondria-targeted metformin analogs (or mito-metformins) containing a positively-charged lipophilic triphenylphosphonium group was synthesized and tested for their antitumor efficacy in pancreatic cancer cells. Results indicate that the lead compound, mito-metformin10, was nearly 1000-fold more potent than metformin in inhibiting mitochondrial complex I activity, inducing reactive oxygen species (superoxide and hydrogen peroxide) that stimulate redox signaling mechanisms, including the activation of adenosinemonophosphate kinase and inhibition of proliferation of pancreatic cancer cells. The potential use of the low-temperature electron paramagnetic resonance technique in assessing the role of mitochondrial complexes including complex I in tumor regression in response to metformin and mito-metformins in the in vivo setting is discussed.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- CNRS, Institut de Chimie Radicalaire (ICR), Aix-Marseille Univ, UMR 7273, Marseille, 13013, France
| | - Olivier Ouari
- CNRS, Institut de Chimie Radicalaire (ICR), Aix-Marseille Univ, UMR 7273, Marseille, 13013, France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
210
|
Abstract
The balance of oxidants and antioxidants within the cell is crucial for maintaining health, and regulating physiological processes such as signalling. Consequently, imbalances between oxidants and antioxidants are now understood to lead to oxidative stress, a physiological feature that underlies many diseases. These processes have spurred the field of chemical biology to develop a plethora of sensors, both small-molecule and fluorescent protein-based, for the detection of specific oxidizing species and general redox balances within cells. The mitochondrion, in particular, is the site of many vital redox reactions. There is therefore a need to target redox sensors to this particular organelle. It has been well established that targeting mitochondria can be achieved by the use of a lipophilic cation-targeting group, or by utilizing natural peptidic mitochondrial localization sequences. Here, we review how these two approaches have been used by a number of researchers to develop mitochondrially localized fluorescent redox sensors that are already proving useful in providing insights into the roles of reactive oxygen species in the mitochondria.
Collapse
Affiliation(s)
| | | | - Elizabeth J. New
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
211
|
Kalyanaraman B, Hardy M, Podsiadly R, Cheng G, Zielonka J. Recent developments in detection of superoxide radical anion and hydrogen peroxide: Opportunities, challenges, and implications in redox signaling. Arch Biochem Biophys 2017; 617:38-47. [PMID: 27590268 PMCID: PMC5318280 DOI: 10.1016/j.abb.2016.08.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022]
Abstract
In this review, some of the recent developments in probes and assay techniques specific for superoxide (O2-) and hydrogen peroxide (H2O2) are discussed. Over the last decade, significant progress has been made in O2- and H2O2 detection due to syntheses of new redox probes, better understanding of their chemistry, and development of specific and sensitive assays. For superoxide detection, hydroethidine (HE) is the most suitable probe, as the product, 2-hydroxyethidium, is specific for O2-. In addition, HE-derived dimeric products are specific for one-electron oxidants. As red-fluorescent ethidium is always formed from HE intracellularly, chromatographic techniques are required for detecting 2-hydroxyethidium. HE analogs, Mito-SOX and hydropropidine, exhibit the same reaction chemistry with O2- and one-electron oxidants. Thus, mitochondrial superoxide can be unequivocally detected using HPLC-based methods and not by fluorescence microscopy. Aromatic boronate-based probes react quantitatively with H2O2, forming a phenolic product. However, peroxynitrite and hypochlorite react more rapidly with boronates, forming the same product. Using ROS-specific probes and HPLC assays, it is possible to screen chemical libraries to discover specific inhibitors of NADPH oxidases. We hope that rigorous detection of O2- and H2O2 in different cellular compartments will improve our understanding of their role in redox signaling.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Radoslaw Podsiadly
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
212
|
Abstract
Adipose tissue-derived stem cells (ADSC) are promising candidates for therapeutic applications in cardiovascular regenerative medicine. By definition, the phenotype ADSCs, e.g., the ubiquitous secretion of growth factors, cytokines, and extracellular matrix components is not met in vivo, which renders ADSC a culture "artefact." The medium constituents therefore impact the efficacy of ADSC. Little attention has been paid to the energy source in medium, i.e., glucose, which feeds the cell's power plants: mitochondria. The role of mitochondria in stem cell biology goes beyond their function in ATP synthesis, because it includes cell signaling, reactive oxygen species (ROS) production, regulation of apoptosis, and aging. Appropriate application of ADSC for stem cells therapy of cardiovascular disease warrants knowledge of their mitochondrial phenotype and function. We discuss several methodologies for assessing ADSC mitochondrial function and structural changes under environmental cues, in particular, increased ROS caused by hyperglycemia.
Collapse
|
213
|
Restaino RM, Deo SH, Parrish AR, Fadel PJ, Padilla J. Increased monocyte-derived reactive oxygen species in type 2 diabetes: role of endoplasmic reticulum stress. Exp Physiol 2017; 102:139-153. [PMID: 27859785 DOI: 10.1113/ep085794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Patients with type 2 diabetes exhibit increased oxidative stress in peripheral blood mononuclear cells, including monocytes; however, the mechanisms remain unknown. What is the main finding and its importance? The main finding of this study is that factors contained within the plasma of patients with type 2 diabetes can contribute to increased oxidative stress in monocytes, making them more adherent to endothelial cells. We show that these effects are largely mediated by the interaction between endoplasmic reticulum stress and NADPH oxidase activity. Recent evidence suggests that exposure of human monocytes to glucolipotoxic media to mimic the composition of plasma of patients with type 2 diabetes (T2D) results in the induction of endoplasmic reticulum (ER) stress markers and formation of reactive oxygen species (ROS). The extent to which these findings translate to patients with T2D remains unclear. Thus, we first measured ROS (dihydroethidium fluorescence) in peripheral blood mononuclear cells (PBMCs) from whole blood of T2D patients (n = 8) and compared the values with age-matched healthy control subjects (n = 8). The T2D patients exhibited greater basal intracellular ROS (mean ± SD, +3.4 ± 1.4-fold; P < 0.05) compared with control subjects. Next, the increase in ROS in PBMCs isolated from T2D patients was partly recapitulated in cultured human monocytes (THP-1 cells) exposed to plasma from T2D patients for 36 h (+1.3 ± 0.08-fold versus plasma from control subjects; P < 0.05). In addition, we found that increased ROS formation in THP-1 cells treated with T2D plasma was NADPH oxidase derived and led to increased endothelial cell adhesion (+1.8 ± 0.5-fold; P < 0.05) and lipid uptake (+1.3 ± 0.3-fold; P < 0.05). Notably, we found that T2D plasma-induced monocyte ROS and downstream functional effects were abolished by treating cells with tauroursodeoxycholic acid, a chemical chaperone known to inhibit ER stress. Collectively, these data indicate that monocyte ROS production with T2D can be attributed, in part, to signals from the circulating environment. Furthermore, an interplay between ER stress and NADPH oxidase activity contributes to ROS production and may be a mechanism mediating endothelial cell adhesion and foam cell formation in T2D.
Collapse
Affiliation(s)
- Robert M Restaino
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Shekhar H Deo
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas-Arlington, Arlington, TX, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
214
|
Savchenko AA, Kudryavtsev IV, Borisov AG. METHODS OF ESTIMATION AND THE ROLE OF RESPIRATORY BURST IN THE PATHOGENESIS OF INFECTIOUS AND INFLAMMATORY DISEASES. ACTA ACUST UNITED AC 2017. [DOI: 10.15789/2220-7619-2017-4-327-340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
215
|
Roy J, Fauconnier J, Oger C, Farah C, Angebault-Prouteau C, Thireau J, Bideaux P, Scheuermann V, Bultel-Poncé V, Demion M, Galano JM, Durand T, Lee JCY, Le Guennec JY. Non-enzymatic oxidized metabolite of DHA, 4(RS)-4-F 4t-neuroprostane protects the heart against reperfusion injury. Free Radic Biol Med 2017; 102:229-239. [PMID: 27932075 DOI: 10.1016/j.freeradbiomed.2016.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
Acute myocardial infarction leads to an increase in oxidative stress and lipid peroxidation. 4(RS)-4-F4t-Neuroprostane (4-F4t-NeuroP) is a mediator produced by non-enzymatic free radical peroxidation of the cardioprotective polyunsaturated fatty acid, docosahexaenoic acid (DHA). In this study, we investigated whether intra-cardiac delivery of 4-F4t-NeuroP (0.03mg/kg) prior to occlusion (ischemia) prevents and protects rat myocardium from reperfusion damages. Using a rat model of ischemic-reperfusion (I/R), we showed that intra-cardiac infusion of 4-F4t-NeuroP significantly decreased infarct size following reperfusion (-27%) and also reduced ventricular arrhythmia score considerably during reperfusion (-41%). Most notably, 4-F4t-NeuroP decreased ventricular tachycardia and post-reperfusion lengthening of QT interval. The evaluation of the mitochondrial homeostasis indicates a limitation of mitochondrial swelling in response to Ca2+ by decreasing the mitochondrial permeability transition pore opening and increasing mitochondria membrane potential. On the other hand, mitochondrial respiration measured by oxygraphy, and mitochondrial ROS production measured with MitoSox red® were unchanged. We found decreased cytochrome c release and caspase 3 activity, indicating that 4-F4t-NeuroP prevented reperfusion damages and reduced apoptosis. In conclusion, 4-F4t-NeuroP derived from DHA was able to protect I/R cardiac injuries by regulating the mitochondrial homeostasis.
Collapse
Affiliation(s)
- Jérôme Roy
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France.
| | - Jérémy Fauconnier
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | - Camille Oger
- IBMM, CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Charlotte Farah
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | | | - Jérôme Thireau
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | - Patrice Bideaux
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | - Valérie Scheuermann
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | | | - Marie Demion
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| | - Jean-Marie Galano
- IBMM, CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, CNRS UMR 5247, Université de Montpellier, ENSCM, Montpellier, France
| | | | - Jean-Yves Le Guennec
- Inserm U1046 - UMR CNRS 9214 PHYMEDEX, Université de Montpellier, Montpellier, France
| |
Collapse
|
216
|
Dąbrowski JM. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of Their Generation and Potentiation. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
217
|
Xu Y, Qian S. Techniques for Detecting Reactive Oxygen Species in Pulmonary Vasculature Redox Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:361-372. [DOI: 10.1007/978-3-319-63245-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
218
|
Measurement of Superoxide Production and NADPH Oxidase Activity by HPLC Analysis of Dihydroethidium Oxidation. Methods Mol Biol 2017; 1527:233-249. [PMID: 28116721 DOI: 10.1007/978-1-4939-6625-7_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The fluorogenic probe dihydroethidium (DHE) is widely used for detecting intracellular superoxide. DHE oxidation by superoxide generates specifically the compound 2-hydroxyethidium (2-E+OH), so that 2-E+OH detection confers specificity to superoxide assessment among many other reactive oxygen species. However, DHE oxidation in biological systems leads to formation of other fluorescent products, particularly ethidium, usually formed at higher quantities than 2-E+OH. Since both 2-E+OH and ethidium are fluorescent, their identification and quantification is possible only after their physical separation by HPLC. Here we describe the detailed procedures for superoxide measurement in cells (adhered or not) and fresh tissues fragments, followed by acetonitrile extraction and simultaneous fluorescent detection of 2-E+OH and ethidium and absorbance detection of remaining unreacted DHE. In addition we report the use of DHE/HPLC for measuring NADPH oxidase activity in enriched-membrane fraction isolated from cells or tissues. These methods can improve accuracy and precision of quantitative superoxide measurements in biological samples.
Collapse
|
219
|
Niemann J, Johne C, Schröder S, Koch F, Ibrahim SM, Schultz J, Tiedge M, Baltrusch S. An mtDNA mutation accelerates liver aging by interfering with the ROS response and mitochondrial life cycle. Free Radic Biol Med 2017; 102:174-187. [PMID: 27890640 DOI: 10.1016/j.freeradbiomed.2016.11.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022]
Abstract
Mitochondrial dysfunction affects liver metabolism, but it remains unclear whether this interferes with normal liver aging. We investigated several mitochondrial pathways in hepatocytes and liver tissue from a conplastic mouse strain compared with the control C57BL/6NTac strain over 18 months of life. The C57BL/6NTac-mtNODLtJ mice differed from C57BL/6NTac mice by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase. Young C57BL/6NTac-mtNODLtJ mice showed reduced mitochondrial metabolism but similar reactive oxygen species (ROS) production to C57BL/6NTac mice. Whereas ROS increased almost equally up to 9 months in both strains, different mitochondrial adaptation strategies resulted in decreasing ROS in advanced age in C57BL/6NTac mice, but persistent ROS production in C57BL/6NTac-mtNODLtJ mice. Only the conplastic strain developed elongated mitochondrial networks with artificial loop structures, depressed autophagy, high mitochondrial respiration and up-regulated antioxidative response. Our results indicate that mtDNA mutations accelerate liver ballooning degeneration and carry a serious risk of premature organ aging.
Collapse
Affiliation(s)
- Jan Niemann
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Cindy Johne
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Susanne Schröder
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Franziska Koch
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany; Institute of Nutritional Physiology "Oskar Kellner","Oskar Kellner", Leibnitz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Saleh M Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Julia Schultz
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Markus Tiedge
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany.
| |
Collapse
|
220
|
Parker D, Moran A, Mitra K. Studying Mitochondrial Structure and Function in Drosophila Ovaries. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2016:54989. [PMID: 28117804 PMCID: PMC6622407 DOI: 10.3791/54989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of the mitochondrial structure-function relationship is required for a thorough understanding of the regulatory mechanisms of mitochondrial functionality. Fluorescence microscopy is an indispensable tool for the direct assessment of mitochondrial structure and function in live cells and for studying the mitochondrial structure-function relationship, which is primarily modulated by the molecules governing fission and fusion events between mitochondria. This paper describes and demonstrates specific methods for studying mitochondrial structure and function in live as well as in fixed tissue in the model organism Drosophila melanogaster. The tissue of choice here is the Drosophila ovary, which can be isolated and made amenable for ex vivo live confocal microscopy. Furthermore, the paper describes how to genetically manipulate the mitochondrial fission protein, Drp1, in Drosophila ovaries to study the involvement of Drp1-driven mitochondrial fission in modulating the mitochondrial structure-function relationship. The broad use of such methods is demonstrated in already-published as well as in novel data. The described methods can be further extended towards understanding the direct impact of nutrients and/or growth factors on the mitochondrial properties ex vivo. Given that mitochondrial dysregulation underlies the etiology of various diseases, the described innovative methods developed in a genetically tractable model organism, Drosophila, are anticipated to contribute significantly to the understanding of the mechanistic details of the mitochondrial structure-function relationship and to the development of mitochondria-directed therapeutic strategies.
Collapse
Affiliation(s)
- Danitra Parker
- Department of Genetics, School of Medicine, University of Alabama at
Birmingham
| | - Aida Moran
- Department of Genetics, School of Medicine, University of Alabama at
Birmingham
| | - Kasturi Mitra
- Department of Genetics, School of Medicine, University of Alabama at
Birmingham
| |
Collapse
|
221
|
Li HH, Lin SL, Huang CN, Lu FJ, Chiu PY, Huang WN, Lai TJ, Lin CL. miR-302 Attenuates Amyloid-β-Induced Neurotoxicity through Activation of Akt Signaling. J Alzheimers Dis 2016; 50:1083-98. [PMID: 26890744 DOI: 10.3233/jad-150741] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deficiency of insulin signaling has been linked to diabetes and ageing-related neurodegenerative diseases such as Alzheimer's disease (AD). In this regard, brains exhibit defective insulin receptor substrate-1 (IRS-1) and hence result in alteration of insulin signaling in progression of AD, the most common cause of dementia. Consequently, dysregulation of insulin signaling plays an important role in amyloid-β (Aβ)-induced neurotoxicity. As the derivation of induced pluripotent stem cells (iPSC) involves cell reprogramming, it may provide a means for regaining the control of ageing-associated dysfunction and neurodegeneration via affecting insulin-related signaling. To this, we found that an embryonic stem cell (ESC)-specific microRNA, miR-302, silences phosphatase and tensin homolog (PTEN) to activate Akt signaling, which subsequently stimulates nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) elevation and hence inhibits Aβ-induced neurotoxicity. miR-302 is predominantly expressed in iPSCs and is known to regulate several important biological processes of anti-oxidative stress, anti-apoptosis, and anti-aging through activating Akt signaling. In addition, we also found that miR-302-mediated Akt signaling further stimulates Nanog expression to suppress Aβ-induced p-Ser307 IRS-1 expression and thus enhances tyrosine phosphorylation and p-Ser 473-Akt/p-Ser 9-GSK3β formation. Furthermore, our in vivo studies revealed that the mRNA expression levels of both Nanog and miR-302-encoding LARP7 genes were significantly reduced in AD patients' blood cells, providing a novel diagnosis marker for AD. Taken together, our findings demonstrated that miR-302 is able to inhibit Aβ-induced cytotoxicity via activating Akt signaling to upregulate Nrf2 and Nanog expressions, leading to a marked restoration of insulin signaling in AD neurons.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pai-Yi Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wen-Nung Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
222
|
Optimized and Automated Radiosynthesis of [ 18F]DHMT for Translational Imaging of Reactive Oxygen Species with Positron Emission Tomography. Molecules 2016; 21:molecules21121696. [PMID: 27941676 PMCID: PMC5505691 DOI: 10.3390/molecules21121696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/27/2016] [Accepted: 12/02/2016] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) play important roles in cell signaling and homeostasis. However, an abnormally high level of ROS is toxic, and is implicated in a number of diseases. Positron emission tomography (PET) imaging of ROS can assist in the detection of these diseases. For the purpose of clinical translation of [18F]6-(4-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-5-methyl-5,6-dihydrophenanthridine-3,8-diamine ([18F]DHMT), a promising ROS PET radiotracer, we first manually optimized the large-scale radiosynthesis conditions and then implemented them in an automated synthesis module. Our manual synthesis procedure afforded [18F]DHMT in 120 min with overall radiochemical yield (RCY) of 31.6% ± 9.3% (n = 2, decay-uncorrected) and specific activity of 426 ± 272 GBq/µmol (n = 2). Fully automated radiosynthesis of [18F]DHMT was achieved within 77 min with overall isolated RCY of 6.9% ± 2.8% (n = 7, decay-uncorrected) and specific activity of 155 ± 153 GBq/µmol (n = 7) at the end of synthesis. This study is the first demonstration of producing 2-[18F]fluoroethyl azide by an automated module, which can be used for a variety of PET tracers through click chemistry. It is also the first time that [18F]DHMT was successfully tested for PET imaging in a healthy beagle dog.
Collapse
|
223
|
Extracellular Superoxide Dismutase Enhances Recruitment of Immature Neutrophils to the Liver. Infect Immun 2016; 84:3302-3312. [PMID: 27600509 DOI: 10.1128/iai.00603-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that causes spontaneous abortion in pregnant women, as well as septicemia, meningitis, and gastroenteritis, primarily in immunocompromised individuals. Although L. monocytogenes can usually be effectively treated with antibiotics, there is still around a 25% mortality rate with individuals who develop clinical listeriosis. Neutrophils are innate immune cells required for the clearance of pathogenic organisms, including L. monocytogenes The diverse roles of neutrophils during both infectious and noninfectious inflammation have recently gained much attention. However, the impact of reactive oxygen species, and the enzymes that control their production, on neutrophil recruitment and function is not well understood. Using congenic mice with varying levels of extracellular superoxide dismutase (ecSOD) activity, we have recently shown that the presence of ecSOD decreases clearance of L. monocytogenes while increasing the recruitment of neutrophils that are not protective in the liver. The data presented here show that ecSOD activity does not lead to a cell-intrinsic increase in neutrophil-homing potential or a decrease in protection against L. monocytogenes Instead, ecSOD activity enhances the production of neutrophil-attracting factors and protects hyaluronic acid (HA) from damage. Furthermore, neutrophils from the livers of ecSOD-expressing mice have decreased intracellular and surface-bound myeloperoxidase, are less capable of killing phagocytosed L. monocytogenes, and have decreased oxidative burst. Collectively, our data reveal that ecSOD activity modulates neutrophil recruitment and function in a cell-extrinsic fashion, highlighting the importance of the enzyme in protecting tissues from oxidative damage.
Collapse
|
224
|
McMurray F, Patten DA, Harper ME. Reactive Oxygen Species and Oxidative Stress in Obesity-Recent Findings and Empirical Approaches. Obesity (Silver Spring) 2016; 24:2301-2310. [PMID: 27804267 DOI: 10.1002/oby.21654] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE High levels of reactive oxygen species (ROS) are intricately linked to obesity and associated pathologies, notably insulin resistance and type 2 diabetes. However, ROS are also thought to be important in intracellular signaling, which may paradoxically be required for insulin sensitivity. Many theories have been developed to explain this apparent paradox, which have broadened our understanding of these important small molecules. While many sites for intracellular ROS production have been described, mitochondrial generated ROS remain a major contributor in most cell types. Mitochondrial ROS generation is controlled by a number of factors described in this review. Moreover, these studies have established both a demand for novel sensitive approaches to measure ROS, as well as a need to standardize and review their suitability for different applications. METHODS To properly assess levels of ROS and mitochondrial ROS in the development of obesity and its complications, a growing number of tools have been developed. This paper reviews many of the common methods for the investigation of ROS in mitochondria, cell, animal, and human models. RESULTS Available approaches can be generally divided into those that measure ROS-induced damage (e.g., DNA, lipid, and protein damage); those that measure antioxidant levels and redox ratios; and those that use novel biosensors and probes for a more direct measure of different forms of ROS (e.g., 2',7'-di-chlorofluorescein (DCF), dihydroethidium (DHE) and its mitochondrial targeted form (MitoSOX), Amplex Red, roGFP, HyPer, mt-cpYFP, ratiometric H2 O2 probes, and their derivatives). Moreover, this review provides caveats and strengths for the use of these techniques in different models. CONCLUSIONS Advances in these techniques will undoubtedly advance the understanding of ROS in obesity and may help resolve unanswered questions in the field.
Collapse
Affiliation(s)
- Fiona McMurray
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
225
|
Srivastava N, Pande M. Mitochondrion: Features, functions and comparative analysis of specific probes in detecting sperm cell damages. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
226
|
Tang HJ, Zhang XW, Yang L, Li W, Li JH, Wang JX, Chen J. Synthesis and evaluation of xanthine oxidase inhibitory and antioxidant activities of 2-arylbenzo[ b ]furan derivatives based on salvianolic acid C. Eur J Med Chem 2016; 124:637-648. [DOI: 10.1016/j.ejmech.2016.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/04/2023]
|
227
|
Garcia-Diaz M, Huang YY, Hamblin MR. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 2016; 109:158-166. [PMID: 27374076 PMCID: PMC5075498 DOI: 10.1016/j.ymeth.2016.06.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy involves the excitation of a non-toxic dye by harmless visible light to produce a long-lived triplet state that can interact with molecular oxygen to produce reactive oxygen species (ROS), which can damage biomolecules and kill cells. ROS produced by electron transfer (Type 1) include superoxide, hydrogen peroxide and hydroxyl radical (HO), while singlet oxygen (1O2) is produced by energy transfer. Diverse methods exist to distinguish between these two pathways, some of which are more specific or more sensitive than others. In this review we cover the use of two fluorescence probes: singlet oxygen sensor green (SOSG) detects 1O2; and 4-hydroxyphenyl-fluorescein (HPF) that detects HO. Interesting data was collected concerning the photochemical pathways of functionalized fullerenes compared to tetrapyrroles, stable synthetic bacteriochlorins with and without central metals, phenothiazinium dyes interacting with inorganic salts such as azide.
Collapse
Affiliation(s)
- Maria Garcia-Diaz
- Department of Pharmacy, University of Copenhagen, Universitetsparken, 2, DK-2100, Copenhagen, Denmark
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
228
|
Zielonka J, Podsiadły R, Zielonka M, Hardy M, Kalyanaraman B. On the use of peroxy-caged luciferin (PCL-1) probe for bioluminescent detection of inflammatory oxidants in vitro and in vivo - Identification of reaction intermediates and oxidant-specific minor products. Free Radic Biol Med 2016; 99:32-42. [PMID: 27458121 PMCID: PMC5107150 DOI: 10.1016/j.freeradbiomed.2016.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
Abstract
Peroxy-caged luciferin (PCL-1) probe was first used to image hydrogen peroxide in living systems (Van de Bittner et al., 2010 [9]). Recently this probe was shown to react with peroxynitrite more potently than with hydrogen peroxide (Sieracki et al., 2013 [11]) and was suggested to be a more suitable probe for detecting peroxynitrite under in vivo conditions. In this work, we investigated in detail the products formed from the reaction between PCL-1 and hydrogen peroxide, hypochlorite, and peroxynitrite. HPLC analysis showed that hydrogen peroxide reacts slowly with PCL-1, forming luciferin as the only product. Hypochlorite reaction with PCL-1 yielded significantly less luciferin, as hypochlorite oxidized luciferin to form a chlorinated luciferin. Reaction between PCL-1 and peroxynitrite consists of a major and minor pathway. The major pathway results in luciferin and the minor pathway produces a radical-mediated nitrated luciferin. Radical intermediate was characterized by spin trapping. We conclude that monitoring of chlorinated and nitrated products in addition to bioluminescence in vivo will help identify the nature of oxidant responsible for bioluminescence derived from PCL-1.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France.
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
229
|
Banerjee S, Aykin-Burns N, Krager KJ, Shah SK, Melnyk SB, Hauer-Jensen M, Pawar SA. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 2016; 99:296-307. [PMID: 27554969 PMCID: PMC5673253 DOI: 10.1016/j.freeradbiomed.2016.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
Exposure of cells to ionizing radiation (IR) generates reactive oxygen species (ROS). This results in increased oxidative stress and DNA double strand breaks (DSBs) which are the two underlying mechanisms by which IR causes cell/tissue injury. Cells that are deficient or impaired in the cellular antioxidant response are susceptible to IR-induced apoptosis. The transcription factor CCAAT enhancer binding protein delta (Cebpd, C/EBPδ) has been implicated in the regulation of oxidative stress, DNA damage response, genomic stability and inflammation. We previously reported that Cebpd-deficient mice are sensitive to IR and display intestinal and hematopoietic injury, however the underlying mechanism is not known. In this study, we investigated whether an impaired ability to detoxify IR-induced ROS was the underlying cause of the increased radiosensitivity of Cebpd-deficient cells. We found that Cebpd-knockout (KO) mouse embryonic fibroblasts (MEFs) expressed elevated levels of ROS, both at basal levels and after exposure to gamma radiation which correlated with increased apoptosis, and decreased clonogenic survival. Pre-treatment of wild type (WT) and KO MEFs with polyethylene glycol-conjugated Cu-Zn superoxide dismutase (PEG-SOD) and catalase (PEG-CAT) combination prior to irradiation showed a partial rescue of clonogenic survival, thus demonstrating a role for increased intracellular oxidants in promoting IR-induced cell death. Analysis of mitochondrial bioenergetics revealed that irradiated KO MEFs showed significant reductions in basal, adenosine triphosphate (ATP)-linked, maximal respiration and reserved respiratory capacity and decrease in intracellular ATP levels compared to WT MEFs indicating they display mitochondrial dysfunction. KO MEFs expressed significantly lower levels of the cellular antioxidant glutathione (GSH) and its precursor- cysteine as well as methionine. In addition to its antioxidant function, GSH plays an important role in detoxification of lipid peroxidation products such as 4-hydroxynonenal (4-HNE). The reduced GSH levels observed in KO MEFs correlated with elevated levels of 4-HNE protein adducts in irradiated KO MEFs compared to respective WT MEFs. We further showed that pre-treatment with the GSH precursor, N-acetyl L-cysteine (NAC) prior to irradiation showed a significant reduction of IR-induced cell death and increases in GSH levels, which contributed to the overall increase in clonogenic survival of KO MEFs. In contrast, pre-treatment with the GSH synthesis inhibitor- buthionine sulfoximine (BSO) further reduced the clonogenic survival of irradiated KO MEFs. This study demonstrates a novel role for C/EBPδ in protection from basal as well as IR-induced oxidative stress and mitochondrial dysfunction thus promoting post-radiation survival.
Collapse
Affiliation(s)
- Sudip Banerjee
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Kimberly J Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sumit K Shah
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Stepan B Melnyk
- Arkansas Children's Hospital Research Institute, Little Rock, AR 72205, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Surgical Services, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States
| | - Snehalata A Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
230
|
Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy. Methods 2016; 109:31-43. [DOI: 10.1016/j.ymeth.2016.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 01/23/2023] Open
|
231
|
Nakamura S, Nakanishi A, Takazawa M, Okihiro S, Urano S, Fukui K. Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: analysis of a time-lapse live cell imaging system. Free Radic Res 2016; 50:1214-1225. [PMID: 27573976 DOI: 10.1080/10715762.2016.1227074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species induce neuronal cell death. However, the detailed mechanisms of cell death have not yet been elucidated. Previously, we reported neurite degeneration before the induction of cell death. Here, we attempted to elucidate the mechanisms of neurite degeneration before the induction of cell death using the neuroblastoma N1E-115 cell line and a time-lapse live cell imaging system. Treatment with the calcium ionophore ionomycin induced cell death and neurite degeneration in a concentration- and time-dependent manner. Treatment with a low concentration of ionomycin immediately produced a significant calcium influx into the intracellular region in N1E-115 cells. After 1-h incubation with ionomycin, the fluorescence emission of MitoSOXTM increased significantly compared to the control. Finally, analysis using a new mitochondrial specific fluorescence dye, MitoPeDPP, indicated that treatment with ionomycin significantly increased the mitochondrial lipid hydroperoxide production in N1E-115 cells. The fluorescence emissions of Fluo-4 AM and MitoPeDPP were detected in the cell soma and neurite regions in ionomycin-treated N1E-115 cells. However, the emissions of neurites were much lower than those of the cell soma. TBARS values of ionomycin-treated cells significantly increased compared to the control. These results indicate that ionomycin induces calcium influx into the intracellular region and reactive oxygen species production in N1E-115 cells. Lipid hydroperoxide production was induced in ionomycin-treated N1E-115 cells. Calcium influx into the intracellular region is a possible activator of neurite degeneration.
Collapse
Affiliation(s)
- Saki Nakamura
- a Molecular Cell Biology Laboratory, Systems Engineering and Science , Graduate School of Engineering and Science, Shibaura Institute of Technology , Saitama , Japan
| | - Ayumi Nakanishi
- b Molecular Cell Biology Laboratory, Department of Bioscience and Engineering , College of Systems Engineering and Sciences, Shibaura Institute of Technology , Saitama , Japan
| | - Minami Takazawa
- b Molecular Cell Biology Laboratory, Department of Bioscience and Engineering , College of Systems Engineering and Sciences, Shibaura Institute of Technology , Saitama , Japan
| | - Shunsuke Okihiro
- a Molecular Cell Biology Laboratory, Systems Engineering and Science , Graduate School of Engineering and Science, Shibaura Institute of Technology , Saitama , Japan
| | - Shiro Urano
- b Molecular Cell Biology Laboratory, Department of Bioscience and Engineering , College of Systems Engineering and Sciences, Shibaura Institute of Technology , Saitama , Japan
| | - Koji Fukui
- a Molecular Cell Biology Laboratory, Systems Engineering and Science , Graduate School of Engineering and Science, Shibaura Institute of Technology , Saitama , Japan.,b Molecular Cell Biology Laboratory, Department of Bioscience and Engineering , College of Systems Engineering and Sciences, Shibaura Institute of Technology , Saitama , Japan
| |
Collapse
|
232
|
Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy. Sci Rep 2016; 6:33944. [PMID: 27681159 PMCID: PMC5041117 DOI: 10.1038/srep33944] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/24/2016] [Indexed: 02/08/2023] Open
Abstract
Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging.
Collapse
|
233
|
Ribou AC. Synthetic Sensors for Reactive Oxygen Species Detection and Quantification: A Critical Review of Current Methods. Antioxid Redox Signal 2016; 25:520-33. [PMID: 27225539 DOI: 10.1089/ars.2016.6741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE Redox reactions play important roles in both physiological and pathological processes, highlighting the importance of quantifying and localizing intracellular redox-active components. Most research has focused on direct investigation of reactive oxygen species (ROS). Intensity-based fluorescent methods are very sensitive and easy to use, but they lack specificity and can produce artifacts. In this article, we focus on synthetic sensors, describing experimental pitfalls associated with their use. We also present alternative methods for the detection of free radicals. RECENT ADVANCES New approaches have been developed to overcome the main artifact of intensity-based methods: spurious changes in fluorescence intensity caused by oxidation. These new approaches are based on analytical measurements of the oxidized sensors or techniques that are not susceptible to oxidation, such as electron spin resonance and fluorescence lifetime-based methods. Regardless of the approach, the need for detection of ROS on the subcellular level, especially in the mitochondria, has motivated the development of new probes. CRITICAL ISSUES Flow cytometry systems and confocal microscopes are now available to the majority of biologists, and commercially available probes are, therefore, more widely used. The fact that these new applications are cited in thousands of publications makes these sensors even more attractive. FUTURE DIRECTIONS The field of ROS detection by synthetic sensors continues to expand, bringing needed additional research to the development of robust techniques that are applicable both in vitro and in vivo. Antioxid. Redox Signal. 25, 520-533.
Collapse
Affiliation(s)
- Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia , Perpignan, France
| |
Collapse
|
234
|
NOX2 amplifies acetaldehyde-mediated cardiomyocyte mitochondrial dysfunction in alcoholic cardiomyopathy. Sci Rep 2016; 6:32554. [PMID: 27624556 PMCID: PMC5021994 DOI: 10.1038/srep32554] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023] Open
Abstract
Alcoholic cardiomyopathy (ACM) resulting from excess alcohol consumption is an important cause of heart failure (HF). Although it is assumed that the cardiotoxicity of the ethanol (EtOH)-metabolite acetaldehyde (ACA) is central for its development and progression, the exact mechanisms remain obscure. Murine cardiomyocytes (CMs) exposed to ACA or EtOH showed increased superoxide (O2•−) levels and decreased mitochondrial polarization, both being normalized by NADPH oxidase (NOX) inhibition. C57BL/6 mice and mice deficient for the ACA-degrading enzyme mitochondrial aldehyde dehydrogenase (ALDH-2−/−) were fed a 2% EtOH diet for 5 weeks creating an ACA-overload. 2% EtOH-fed ALDH-2−/− mice exhibited a decreased cardiac function, increased heart-to-body and lung-to-body weight ratios, increased cardiac levels of the lipid peroxidation product malondialdehyde (MDA) as well as increased NOX activity and NOX2/glycoprotein 91phox (NOX2/gp91phox) subunit expression compared to 2% EtOH-fed C57BL/6 mice. Echocardiography revealed that ALDH-2−/−/gp91phox−/− mice were protected from ACA-overload-induced HF after 5 weeks of 2% EtOH-diet, demonstrating that NOX2-derived O2•− contributes to the development of ACM. Translated to human pathophysiology, we found increased gp91phox expression in endomyocardial biopsies of ACM patients. In conclusion, ACM is promoted by ACA-driven mitochondrial dysfunction and can be improved by ablation of NOX2/gp91phox. NOX2/gp91phox therefore might be a potential pharmacological target to treat ACM.
Collapse
|
235
|
Kauffman ME, Kauffman MK, Traore K, Zhu H, Trush MA, Jia Z, Li YR. MitoSOX-Based Flow Cytometry for Detecting Mitochondrial ROS. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:361-370. [PMID: 29721549 DOI: 10.20455/ros.2016.865] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MitoSOX-based assays are widely used to detect mitochondrial reactive oxygen species (ROS), especially superoxide. To this end, 5 μM MitoSOX is commonly used. In this ROS Protocols article, we described the flow cytometric protocol involving the use of various concentrations of MitoSOX (1, 2.5, 5 μM) for detecting mitochondrial ROS in control and mitochondrial DNA-deficient (MD) melanoma B16-F10 cells. We also compared the MitoSOX-based flow cytometry with lucigenin-derived chemiluminometry for their ability to reliably detect the relative differences in mitochondrial ROS formation in the control and MD cells. Our results suggested that 1 μM, rather than the commonly used 5 μM, appeared to be the optimal concentration of MitoSOX for detecting mitochondrial ROS via flow cytometry.
Collapse
Affiliation(s)
- Megan E Kauffman
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | | | - Kassim Traore
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Hong Zhu
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Michael A Trush
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Y Robert Li
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA.,Department of Biology, University of North Carolina, Greensboro, NC 27412, USA.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
236
|
Sakellariou GK, Pearson T, Lightfoot AP, Nye GA, Wells N, Giakoumaki II, Griffiths RD, McArdle A, Jackson MJ. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle. FASEB J 2016; 30:3771-3785. [PMID: 27550965 PMCID: PMC5067250 DOI: 10.1096/fj.201600450r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022]
Abstract
Age-related skeletal muscle dysfunction is the underlying cause of morbidity that affects up to half the population aged 80 and over. Considerable evidence indicates that oxidative damage and mitochondrial dysfunction contribute to the sarcopenic phenotype that occurs with aging. To examine this, we administered the mitochondria-targeted antioxidant mitoquinone mesylate {[10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenylphosphonium; 100 μM} to wild-type C57BL/6 mice for 15 wk (from 24 to 28 mo of age) and investigated the effects on age-related loss of muscle mass and function, changes in redox homeostasis, and mitochondrial organelle integrity and function. We found that mitoquinone mesylate treatment failed to prevent age-dependent loss of skeletal muscle mass associated with myofiber atrophy or alter a variety of in situ and ex vivo muscle function analyses, including maximum isometric tetanic force, decline in force after a tetanic fatiguing protocol, and single-fiber-specific force. We also found evidence that long-term mitoquinone mesylate administration did not reduce mitochondrial reactive oxygen species or induce significant changes in muscle redox homeostasis, as assessed by changes in 4-hydroxynonenal protein adducts, protein carbonyl content, protein nitration, and DNA damage determined by the content of 8-hydroxydeoxyguanosine. Mitochondrial membrane potential, abundance, and respiration assessed in permeabilized myofibers were not significantly altered in response to mitoquinone mesylate treatment. Collectively, these findings demonstrate that long-term mitochondria-targeted mitoquinone mesylate administration failed to attenuate age-related oxidative damage in skeletal muscle of old mice or provide any protective effect in the context of muscle aging.—Sakellariou, G. K., Pearson, T., Lightfoot, A. P., Nye, G. A., Wells, N., Giakoumaki, I. I., Griffiths, R. D., McArdle, A., Jackson, M. J. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle.
Collapse
Affiliation(s)
- Giorgos K Sakellariou
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Timothy Pearson
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Adam P Lightfoot
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Gareth A Nye
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Nicola Wells
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ifigeneia I Giakoumaki
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Richard D Griffiths
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Anne McArdle
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm J Jackson
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
237
|
Sieprath T, Corne TDJ, Willems PHGM, Koopman WJH, De Vos WH. Integrated High-Content Quantification of Intracellular ROS Levels and Mitochondrial Morphofunction. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016; 219:149-77. [PMID: 27207366 DOI: 10.1007/978-3-319-28549-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-content microscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells.
Collapse
Affiliation(s)
- Tom Sieprath
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Tobias D J Corne
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter H G M Willems
- Department of Biochemistry (286), Radboud University Medical Centre (RUMC), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Biochemistry (286), Radboud University Medical Centre (RUMC), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Winnok H De Vos
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium. .,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
238
|
Seredenina T, Nayernia Z, Sorce S, Maghzal GJ, Filippova A, Ling SC, Basset O, Plastre O, Daali Y, Rushing EJ, Giordana MT, Cleveland DW, Aguzzi A, Stocker R, Krause KH, Jaquet V. Evaluation of NADPH oxidases as drug targets in a mouse model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2016; 97:95-108. [PMID: 27212019 DOI: 10.1016/j.freeradbiomed.2016.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/29/2016] [Accepted: 05/17/2016] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by progressive loss of motor neurons, gliosis, neuroinflammation and oxidative stress. The aim of this study was to evaluate the involvement of NADPH oxidases (NOX) in the oxidative damage and progression of ALS neuropathology. We examined the pattern of NOX expression in spinal cords of patients and mouse models of ALS and analyzed the impact of genetic deletion of the NOX1 and 2 isoforms as well as pharmacological NOX inhibition in the SOD1(G93A) ALS mouse model. A substantial (10-60 times) increase of NOX2 expression was detected in three etiologically different ALS mouse models while up-regulation of some other NOX isoforms was model-specific. In human spinal cord samples, high NOX2 expression was detected in microglia. In contrast to previous publications, survival of SOD1(G93A) mice was not modified upon breeding with constitutive NOX1 and NOX2 deficient mice. As genetic deficiency of a single NOX isoform is not necessarily predictive of a pharmacological intervention, we treated SOD1(G93A) mice with broad-spectrum NOX inhibitors perphenazine and thioridazine. Both compounds reached in vivo CNS concentrations compatible with NOX inhibition and thioridazine significantly decreased superoxide levels in the spinal cord of SOD1(G93A) mice in vivo. Yet, neither perphenazine nor thioridazine prolonged survival. Thioridazine, but not perphenazine, dampened the increase of microglia markers in SOD1(G93A) mice. Thioridazine induced an immediate and temporary enhancement of motor performance (rotarod) but its precise mode of action needs further investigation. Additional studies using specific NOX inhibitors will provide further evidence on the relevance of NOX as drug targets for ALS and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Tamara Seredenina
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Zeynab Nayernia
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Ghassan J Maghzal
- Victor Chang Cardiac Research Institute, Vascular Biology Division, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Aleksandra Filippova
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physiology, National University of Singapore, Singapore
| | - Olivier Basset
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Olivier Plastre
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospital, Geneva, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Maria T Giordana
- Department of Neuroscience, Medical School of the University of Turin, Italy
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Vascular Biology Division, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland; Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland.
| |
Collapse
|
239
|
Talib J, Maghzal GJ, Cheng D, Stocker R. Detailed protocol to assess in vivo and ex vivo myeloperoxidase activity in mouse models of vascular inflammation and disease using hydroethidine. Free Radic Biol Med 2016; 97:124-135. [PMID: 27184954 DOI: 10.1016/j.freeradbiomed.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) activity contributes to arterial inflammation, vascular dysfunction and disease, including atherosclerosis. Current assessment of MPO activity in biological systems in vivo utilizes 3-chlorotyrosine (3-Cl-Tyr) as a biomarker of hypochlorous acid (HOCl) and other chlorinating species. However, 3-Cl-Tyr is formed in low yield and is subject to further metabolism. Recently, we reported a method to selectively assess MPO-activity in vivo by measuring the conversion of hydroethidine to 2-chloroethidium (2-Cl-E(+)) by liquid chromatography with tandem mass spectrometry (LC-MS/MS) (J. Biol. Chem., 289, 2014, pp. 5580-5595). The hydroethidine-based method has greater sensitivity for MPO activity than measurement of 3-Cl-Tyr. The current methods paper provides a detailed protocol to determine in vivo and ex vivo MPO activity in arteries from mouse models of vascular inflammation and disease by utilizing the conversion of hydroethidine to 2-Cl-E(+). Procedures for the synthesis of standards, preparation of tissue homogenates and the generation of 2-Cl-E(+) are also provided in detail, as are the conditions for LC-MS/MS detection of 2-Cl-E(+).
Collapse
Affiliation(s)
- Jihan Talib
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - David Cheng
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
240
|
Alpha-synuclein-induced oxidative stress correlates with altered superoxide dismutase and glutathione synthesis in human neuroblastoma SH-SY5Y cells. Arch Toxicol 2016; 91:1245-1259. [PMID: 27424009 DOI: 10.1007/s00204-016-1788-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
Alpha-synuclein (α-syn) is a major component of Lewy bodies found in sporadic and inherited forms of Parkinson's disease (PD). Mutations in the gene encoding α-syn and duplications and triplications of wild-type (WT) α-syn have been associated with PD. Several mechanisms have been implicated in the degeneration of dopaminergic neurons in PD, including oxidative stress and mitochondrial dysfunction. Here we defined the occurrence of oxidative stress in SH-SY5Y cells overexpressing WT α-syn in a doxycycline (Dox) regulated manner, before and after exposure to iron (500 µM), and determined the changes in proteins involved in the intracellular antioxidant defense system. Data evidenced an increase in caspase-3 activation and diminished reducing capacity of -Dox cells, associated with decreased activity of mitochondria complex I and reduced mitochondrial transcription factor A (TFAM) levels in these cells. Furthermore, total and mitochondrial reactive oxygen species levels were higher under basal conditions in cells overexpressing α-syn (-Dox) and this increase was apparently correlated with diminished levels and activities of SOD1 and SOD2 in -Dox cells. Moreover, both reduced and oxidized glutathione levels were diminished in -Dox cells under basal conditions, concomitantly with decreased activity of GCL and reduced protein levels of GCLc. The effects caused by iron (500 µM) were mostly independent of α-syn expression and triggered different antioxidant responses to possibly counterbalance higher levels of free radicals. Overall, data suggest that overexpression of α-syn modifies the antioxidant capacity of SH-SY5Y cells due to altered activity and protein levels of SOD1 and SOD2, and decreased glutathione pool.
Collapse
|
241
|
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016; 119:e39-75. [PMID: 27418630 DOI: 10.1161/res.0000000000000110] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
Collapse
|
242
|
Oliveira MP, Correa Soares JBR, Oliveira MF. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology. PLoS One 2016; 11:e0158429. [PMID: 27380021 PMCID: PMC4933344 DOI: 10.1371/journal.pone.0158429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute to redox biology among parasite sexes.
Collapse
Affiliation(s)
- Matheus P. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Juliana B. R. Correa Soares
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Marcus F. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
243
|
Huang S, Van Aken O, Schwarzländer M, Belt K, Millar AH. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. PLANT PHYSIOLOGY 2016; 171:1551-9. [PMID: 27021189 PMCID: PMC4936549 DOI: 10.1104/pp.16.00166] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 05/18/2023]
Abstract
Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, programmed cell death, and defense against pathogens have been attributed to ROS generated in plant mitochondria (mtROS). The shortcomings of the black box-idea of mtROS are discussed in the context of mechanistic considerations and the measurement of mtROS The overall aim of this update is to better define our current understanding of mtROS and appraise their potential influence on cellular function in plants. Furthermore, directions for future research are provided, along with suggestions to increase reliability of mtROS measurements.
Collapse
Affiliation(s)
- Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - Markus Schwarzländer
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - Katharina Belt
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| |
Collapse
|
244
|
Itani HA, Dikalova AE, McMaster WG, Nazarewicz RR, Bikineyeva AT, Harrison DG, Dikalov SI. Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension. Hypertension 2016; 67:1218-27. [PMID: 27067720 PMCID: PMC4865418 DOI: 10.1161/hypertensionaha.115.07085] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension.
Collapse
Affiliation(s)
- Hana A Itani
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Anna E Dikalova
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - William G McMaster
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Rafal R Nazarewicz
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Alfiya T Bikineyeva
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - David G Harrison
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Sergey I Dikalov
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
245
|
Nacarelli T, Azar A, Sell C. Mitochondrial stress induces cellular senescence in an mTORC1-dependent manner. Free Radic Biol Med 2016; 95:133-54. [PMID: 27016071 DOI: 10.1016/j.freeradbiomed.2016.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/25/2022]
Abstract
Although mitochondrial stress is a key determinant of cellular homeostasis, the intracellular mechanisms by which this stress is communicated to the nucleus and its impact on cell fate decisions are not well defined. In this study, we report that activation of mTORC1 signaling triggered by mitochondrial-generated reactive oxygen species (ROS) results in activation of the senescence program. We show that exposure of human fibroblasts to nucleoside analogs commonly used in antiretroviral therapies, and known to induce mitochondrial dysfunction, increases mitochondrial ROS and leads to a rise in intracellular ROS concomitant with activation of mTORC1. In this setting, it appears that mTORC1 activates senescence through HDM2 phosphorylation, facilitating a p53-mediated response. Inhibition of mTORC1 by rapamycin decreases HDM2 phosphorylation and blocks activation of the senescence program in human cells. In addition, decreasing mitochondrial ROS directly blocks mTORC1 signaling and prevents the onset of senescence. Consistent with these results, both total and mitochondrial-specific ROS increased in cells undergoing replicative senescence along with ribosomal p70 phosphorylation. The results reveal a novel link between mitochondrial dysfunction, mTORC1 signaling, and the senescence program.
Collapse
Affiliation(s)
- Timothy Nacarelli
- Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, United States
| | - Ashley Azar
- Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, United States
| | - Christian Sell
- Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, United States.
| |
Collapse
|
246
|
Folbergrová J, Ješina P, Kubová H, Druga R, Otáhal J. Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction. Front Cell Neurosci 2016; 10:136. [PMID: 27303267 PMCID: PMC4881382 DOI: 10.3389/fncel.2016.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus (SE) and, on the other hand, evidence of oxidative stress in immature brain during a specific model of SE. To solve this dilemma, we have decided to investigate oxidative stress following SE induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. Fluoro-Jade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ∼60%) in the hippocampus, cerebral cortex and thalamus of immature rats during status. SE lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complexes II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy, allowing to target the mechanisms which play a crucial or additive role in the pathogenesis of epilepsies in infants and children.
Collapse
|
247
|
Wages PA, Cheng WY, Gibbs-Flournoy E, Samet JM. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress. Biochim Biophys Acta Gen Subj 2016; 1860:2802-15. [PMID: 27208426 DOI: 10.1016/j.bbagen.2016.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. SCOPE OF REVIEW The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. MAJOR CONCLUSIONS Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. GENERAL SIGNIFICANCE Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, NC, USA
| | - Wan-Yun Cheng
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Eugene Gibbs-Flournoy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| |
Collapse
|
248
|
Kalyanaraman B, Hardy M, Zielonka J. A Critical Review of Methodologies to Detect Reactive Oxygen and Nitrogen Species Stimulated by NADPH Oxidase Enzymes: Implications in Pesticide Toxicity. ACTA ACUST UNITED AC 2016; 2:193-201. [PMID: 27774407 DOI: 10.1007/s40495-016-0063-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this review, potential fluorescent probe applications for detecting reactive oxygen and nitrogen species (ROS/RNS) generated from NADPH oxidases (e.g., Nox2) and nitric oxide synthase enzymes are discussed in the context of pesticide toxicology. Identification of the specific marker products derived from the interaction between ROS/RNS and the fluorescent probes (e.g., hydroethidine and coumarin boronate) is critical. Due to the complex nature of reactions between the probes and ROS/RNS, we suggest avoiding the use of fluorescence microscopy for detecting oxidizing/nitrating species. We also critically examined the viability of using radiolabeling or positron emission tomography (PET) for ROS/RNS detection. Although these techniques differ in sensitivity and detection modalities, the chemical mechanism governing the reaction between these probes and ROS/RNS should remain the same. To unequivocally detect superoxide with these probes (i.e., radiolabeled and PET-labeled hydroethidine analogs), the products should be isolated and characterized by LC-MS/MS or HPLC using an appropriate standard.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Micael Hardy
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
249
|
Booth DM, Joseph SK, Hajnóczky G. Subcellular ROS imaging methods: Relevance for the study of calcium signaling. Cell Calcium 2016; 60:65-73. [PMID: 27209367 DOI: 10.1016/j.ceca.2016.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
Recent advances in genetically encoded fluorescent probes have dramatically increased the toolkit available for imaging the intracellular environment. Perhaps the biggest improvements have been made in sensing specific reactive oxygen species (ROS) and redox changes under physiological conditions. The new generation of probes may be targeted to a wide range of subcellular environments. By targeting such probes to compartments and organelle surfaces they may be exposed to environments, which support local signal transduction and regulation. The close apposition of the endoplasmic reticulum (ER) with mitochondria and other organelles forms such a local environment where Ca(2+) dynamics are greatly enhanced compared to the bulk cytosol. We describe here how newly developed genetically encoded redox indicators (GERIs) might be used to monitor ROS and probe their interaction with Ca(2+) at both global and local level.
Collapse
Affiliation(s)
- David M Booth
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Suresh K Joseph
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
250
|
Quan YY, Qin GQ, Huang H, Liu YH, Wang XP, Chen TS. Dominant roles of Fenton reaction in sodium nitroprusside-induced chondrocyte apoptosis. Free Radic Biol Med 2016; 94:135-44. [PMID: 26923801 DOI: 10.1016/j.freeradbiomed.2016.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 01/08/2023]
Abstract
Sodium nitroprusside (SNP) has been widely used as an exogenous nitric oxide (NO) donor to explore the molecular mechanism of NO-mediated chondrocyte apoptosis during the latest two decades. We have recently found that NO-independent ROS play a key role in SNP-induced apoptosis in rabbit chondrocytes. This study aims to investigate what kind of ROS and how the reliable ROS mediators mediate the SNP-induced apoptosis. Data shows that SNP and NO-exhausted SNP (SNPex) induced ROS production or cytotoxicity to identically degree. SNP induced a marked increase in iron ions, superoxide anion (O2(•-)), hydrogen peroxide (H2O2) and hydroxyl radical ((•)OH) level. H2O2 scavenger (CAT) and (•)OH scavenger (DMSO) significantly inhibited SNP-induced chondrocyte apoptosis. Iron ions chelator (DFO) entirely prevented SNP-induced chondrocyte apoptosis. In contrast, O2(•-) scavenger (SOD) and glutathione depletion agent (BSO) promoted SNP-induced cytotoxicity. K3[Fe(CN)6] exhibited no cytotoxicity, and H2O2 alone up to 250µM or iron ions alone up to 90µM is non-cytotoxic to chondrocytes. Combination of 25µM FeSO4 and 100µM H2O2 in the presence of BSO induced chondrocyte death similar to SNP treatment. Fetal bovine serum (FBS) enhanced iron ions release from SNP and the cytotoxicity of SNP. Our data shows that the extracellular Fenton reaction between iron ions released from SNP and H2O2 induced by SNP plays a key role in SNP-induced chondrocyte apoptosis. Overall, our results indicate that the potential of SNP to increase iron ions and ROS should be especially considered for some biological functions and, possibly, also for clinical applications of this drug.
Collapse
Affiliation(s)
- Ying-Yao Quan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Gui-Qi Qin
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China
| | - Hao Huang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Hong Liu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Ping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Tong-Sheng Chen
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China.
| |
Collapse
|