201
|
Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. THE JOURNAL OF IMMUNOLOGY 2015; 194:4081-7. [PMID: 25888704 DOI: 10.4049/jimmunol.1403169] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian intestine harbors a community of trillions of microbes, collectively known as the gut microbiota, which coevolved with the host in a mutually beneficial relationship. Among the numerous gut microbial species, certain commensal bacteria are known to provide health benefits to the host when administered in adequate amounts and, as such, are labeled "probiotics." We review some of the mechanisms by which probiotics and other beneficial commensals provide colonization resistance to pathogens. The battle for similar nutrients and the bacterial secretion of antimicrobials provide a direct means of competition between beneficial and harmful microbes. Beneficial microbes can also indirectly diminish pathogen colonization by stimulating the development of innate and adaptive immunity, as well as the function of the mucosal barrier. Altogether, we gather and present evidence that beneficial microbes cooperate with host immunity in an effort to shut out pathogens.
Collapse
Affiliation(s)
- Martina Sassone-Corsi
- Department of Microbiology and Molecular Genetics and Institute for Immunology, University of California Irvine School of Medicine, Irvine, CA 92697
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics and Institute for Immunology, University of California Irvine School of Medicine, Irvine, CA 92697
| |
Collapse
|
202
|
IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol 2015; 8:930-42. [PMID: 25563499 PMCID: PMC4481137 DOI: 10.1038/mi.2014.123] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/30/2014] [Indexed: 02/04/2023]
Abstract
Eosinophils are multifunctional leukocytes that reside in the gastrointestinal (GI) lamina propria, where their basal function remains largely unexplored. In this study, by examining mice with a selective deficiency of systemic eosinophils (by lineage ablation) or GI eosinophils (eotaxin-1/2 double deficient or CC chemokine receptor 3 deficient), we show that eosinophils support immunoglobulin A (IgA) class switching, maintain intestinal mucus secretions, affect intestinal microbial composition, and promote the development of Peyer's patches. Eosinophil-deficient mice showed reduced expression of mediators of secretory IgA production, including intestinal interleukin 1β (IL-1β), inducible nitric oxide synthase, lymphotoxin (LT) α, and LT-β, and reduced levels of retinoic acid-related orphan receptor gamma t-positive (ROR-γt(+)) innate lymphoid cells (ILCs), while maintaining normal levels of APRIL (a proliferation-inducing ligand), BAFF (B cell-activating factor of the tumor necrosis factor family), and TGF-β (transforming growth factor β). GI eosinophils expressed a relatively high level of IL-1β, and IL-1β-deficient mice manifested the altered gene expression profiles observed in eosinophil-deficient mice and decreased levels of IgA(+) cells and ROR-γt(+) ILCs. On the basis of these collective data, we propose that eosinophils are required for homeostatic intestinal immune responses including IgA production and that their affect is mediated via IL-1β in the small intestine.
Collapse
|
203
|
Karaffová V, Bobíková K, Husáková E, Levkut M, Herich R, Revajová V, Levkutová M, Levkut M. Interaction of TGF-β4 and IL-17 with IgA secretion in the intestine of chickens fed with E. faecium AL41 and challenged with S. Enteritidis. Res Vet Sci 2015; 100:75-9. [DOI: 10.1016/j.rvsc.2015.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 11/30/2022]
|
204
|
Oliveira FL, Bernardes ES, Brand C, dos Santos SN, Cabanel MP, Arcanjo KD, Brito JM, Borojevic R, Chammas R, El-Cheikh MC. Lack of galectin-3 up-regulates IgA expression by peritoneal B1 lymphocytes during B cell differentiation. Cell Tissue Res 2015; 363:411-26. [DOI: 10.1007/s00441-015-2203-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/23/2015] [Indexed: 01/13/2023]
|
205
|
Xiong N, Hu S. Regulation of intestinal IgA responses. Cell Mol Life Sci 2015; 72:2645-55. [PMID: 25837997 DOI: 10.1007/s00018-015-1892-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/20/2022]
Abstract
The intestine harbors enormous numbers of commensal bacteria and is under frequent attack from food-borne pathogens and toxins. A properly regulated immune response is critical for homeostatic maintenance of commensals and for protection against infection and toxins in the intestine. Immunoglobulin A (IgA) isotype antibodies function specifically in mucosal sites such as the intestines to help maintain intestinal health by binding to and regulating commensal microbiota, pathogens and toxins. IgA antibodies are produced by intestinal IgA antibody-secreting plasma cells generated in gut-associated lymphoid tissues from naïve B cells in response to stimulations of the intestinal bacteria and components. Research on generation, migration, and maintenance of IgA-secreting cells is important in our effort to understand the biology of IgA responses and to help better design vaccines against intestinal infections.
Collapse
Affiliation(s)
- Na Xiong
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA, 16802, USA,
| | | |
Collapse
|
206
|
Qiao Y, Sun J, Xia S, Li L, Li Y, Wang P, Shi Y, Le G. Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
207
|
Monteiro RC. Immunoglobulin A as an anti-inflammatory agent. Clin Exp Immunol 2015; 178 Suppl 1:108-10. [PMID: 25546782 DOI: 10.1111/cei.12531] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- R C Monteiro
- Centre for Inflammation Research, Bichat Medical School of Paris Diderot University - INSERM Unit 699, Paris, France
| |
Collapse
|
208
|
Kikuchi Y, Yoshida H, Ogita T, Okita K, Fukudome SI, Suzuki T, Tanabe S. In vivo dose response and in vitro mechanistic analysis of enhanced immunoglobulin A production by Lactobacillus plantarum AYA. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2015. [PMID: 26221576 PMCID: PMC4513256 DOI: 10.12938/bmfh.2014-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Secretory immunoglobulin A (IgA) mediates the mucosal immune system, which provides the first line of defense against inhaled and ingested pathogenic bacteria and viruses. Lactobacillus plantarum AYA increases the IgA level of Peyer’s patch (PP) cells, but the recommended amount of consumption and the mechanism of action remains unclear. Better understanding of these is essential to development of L. plantarum AYA for use in functional foods. Therefore, we investigated the dose-response effect (in vivo) and mechanism (in vitro) of IgA enhancement induced by L. plantarum AYA. In the small intestine of the mice fed a diet containing 0.03% or 0.3% of L. plantarum AYA powder for 4 weeks, the IgA levels were significantly increased. Thus, it is suggested that the recommended amount of consumption of L. plantarum AYA is about 0.72 mg per day. In addition, the
bacterial cell wall fraction significantly enhanced the IgA production level of murine PP cells in the in vitro assay. The ability of whole cells and the cell wall fraction to enhance IgA levels was significantly inhibited by an anti-Toll-like receptor-2 (TLR-2) antibody, which suggests that the cell wall fraction of L. plantarum AYA increases the IgA level via TLR-2. These findings indicate that L. plantarum AYA is a potential functional food source that maintains mucosal immunity.
Collapse
Affiliation(s)
- Yosuke Kikuchi
- Research Center for Basic Science, Research, and Development, Quality Assurance Division, Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino, Saitama 356-8511, Japan
| | - Hikaru Yoshida
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| | - Tasuku Ogita
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| | - Kimiko Okita
- Yeast Function Development Unit, Oriental Yeast Co., Ltd., 3-6-10 Azusawa, Itabashi, Tokyo 174-8505, Japan
| | - Shin-Ichi Fukudome
- Research Center for Basic Science, Research, and Development, Quality Assurance Division, Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino, Saitama 356-8511, Japan
| | - Takuya Suzuki
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| | - Soichi Tanabe
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
209
|
Navarro SL, White E, Kantor ED, Zhang Y, Rho J, Song X, Milne GL, Lampe PD, Lampe JW. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PLoS One 2015; 10:e0117534. [PMID: 25719429 PMCID: PMC4342228 DOI: 10.1371/journal.pone.0117534] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans. METHODS We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d) plus chondroitin sulfate (1200 mg/d) for 28 days compared to placebo in 18 (9 men, 9 women) healthy, overweight (body mass index 25.0-32.5 kg/m2) adults, aged 20-55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP), interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin. RESULTS Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048). There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the "cytokine activity" pathway (P = 2.6 x 10-16), after glucosamine and chondroitin compared to placebo. CONCLUSION Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer. TRIAL REGISTRATION ClinicalTrials.gov NCT01682694.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Elizabeth D. Kantor
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Yuzheng Zhang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Junghyun Rho
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xiaoling Song
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Vanderbilt University, School of Medicine, Nashville, Tennessee, United States of America
| | - Paul D. Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Johanna W. Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
210
|
Kang SH, Jin BR, Kim HJ, Seo GY, Jang YS, Kim SJ, An SJ, Park SR, Kim WS, Kim PH. Lactoferrin Combined with Retinoic Acid Stimulates B1 Cells to Express IgA Isotype and Gut-homing Molecules. Immune Netw 2015; 15:37-43. [PMID: 25713507 PMCID: PMC4338266 DOI: 10.4110/in.2015.15.1.37] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/03/2022] Open
Abstract
It is well established that TGF-β1 and retinoic acid (RA) cause IgA isotype switching in mice. We recently found that lactoferrin (LF) also has an activity of IgA isotype switching in spleen B cells. The present study explored the effect of LF on the Ig production by mouse peritoneal B cells. LF, like TGF-β1, substantially increased IgA production in peritoneal B1 cells but little in peritoneal B2 cells. In contrast, LF increased IgG2b production in peritoneal B2 cells much more strongly than in peritoneal B1 cells. LF in combination with RA further enhanced the IgA production and, interestingly, this enhancement was restricted to IgA isotype and B1 cells. Similarly, the combination of the two molecules also led to expression of gut homing molecules α4β7 and CCR9 on peritoneal B1 cells, but not on peritoneal B2 cells. Thus, these results indicate that LF and RA can contribute to gut IgA response through stimulating IgA isotype switching and expression of gut-homing molecules in peritoneal B1 cells.
Collapse
Affiliation(s)
- Seong-Ho Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Bo-Ra Jin
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyeon-Jin Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Goo-Young Seo
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Young-Saeng Jang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sun-Jin Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sun-Jin An
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Woan-Sub Kim
- Department of Animal Life and Environmental Science, College of Agriculture and Life Science, Hankyong National University, Anseong 456-749, Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
211
|
Alexander KL, Targan SR, Elson CO. Microbiota activation and regulation of innate and adaptive immunity. Immunol Rev 2015; 260:206-20. [PMID: 24942691 DOI: 10.1111/imr.12180] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human host has coevolved with the collective of bacteria species, termed microbiota, in a complex fashion that affects both innate and adaptive immunity. Differential regulation of regulatory T-cell and effector T-cell responses are a direct result of specific microbial species present within the gut, and this relationship is subject to dysregulation during inflammation and disease. The microbiota varies widely between individuals and has a profound effect on how one reacts to various environmental stimuli, particularly if a person is genetically predisposed to an immune-mediated inflammatory disorder such as inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Approximately, half of all CD patients have elevated antibodies to CBir1, a microbiota flagellin common to mice and humans, demonstrating flagellins as immunodominant antigens in the intestines. This review focuses on the use of flagellins as probes to study microbiota-specific responses in the context of health and disease as well as probes of innate and adaptive responses employed by the host to deal with the overwhelming bacterial presence of the microbiota.
Collapse
Affiliation(s)
- Katie L Alexander
- Department of Immunology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|
212
|
Fung TC, Artis D, Sonnenberg GF. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol Rev 2015; 260:35-49. [PMID: 24942680 DOI: 10.1111/imr.12186] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian gastrointestinal (GI) tract is colonized by trillions of beneficial commensal bacteria that are essential for promoting normal intestinal physiology. While the majority of commensal bacteria are found in the intestinal lumen, many species have also adapted to colonize different anatomical locations in the intestine, including the surface of intestinal epithelial cells (IECs) and the interior of gut-associated lymphoid tissues. These distinct tissue localization patterns permit unique interactions with the mammalian immune system and collectively influence intestinal immune cell homeostasis. Conversely, dysregulated localization of commensal bacteria can lead to inappropriate activation of the immune system and is associated with numerous chronic infectious, inflammatory, and metabolic diseases. Therefore, regulatory mechanisms that control proper anatomical containment of commensal bacteria are essential to maintain tissue homeostasis and limit pathology. In this review, we propose that commensal bacteria associated with the mammalian GI tract can be anatomically defined as (i) luminal, (ii) epithelial-associated, or (iii) lymphoid tissue-resident, and we discuss the role and regulation of these microbial populations in health and disease.
Collapse
Affiliation(s)
- Thomas C Fung
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
213
|
Wan LYM, Chen ZJ, Shah NP, El-Nezami H. Modulation of Intestinal Epithelial Defense Responses by Probiotic Bacteria. Crit Rev Food Sci Nutr 2015; 56:2628-41. [DOI: 10.1080/10408398.2014.905450] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
214
|
Limón-Camacho L, Solleiro-Villavicencio H, Pupko-Sissa I, Lascurain R, Vargas-Rojas MI. [Regulatory T cells in chronic obstructive pulmonary disease]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2015; 83:45-54. [PMID: 23474149 DOI: 10.1016/j.acmx.2013.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022] Open
Abstract
Exposition to tobacco smoke has been established as the main risk factor to develop chronic obstructive pulmonary disease (COPD), by inducing inflammation of the airways. Several cell populations participate in this inflammatory process. It has been accepted that a maladaptive modulation of inflammatory responses plays a critical role in the development of the disease. Regulatory T cells (Treg) are a subset of T CD4(+) lymphocytes that modulate the immune response through secretion of cytokines. The role of the Treg cells in chronic obstructive pulmonary disease is not clearly known, that is why it is important to focus in understanding their participation in the pathogenesis of the disease. To elaborate a systematic review of original articles in which we could describe Treg cells (their ontogeny, mechanisms of action) and their role in COPD, we made a systematic literature search in some data bases (MEDLINE, AMED, PubMed and Scielo) looking through the next keywords: "COPD and Regulatory T cells/EPOC y células T reguladoras", «Inflammation and COPD/Inflamación y EPOC», «Regulatory T cells/Células T reguladoras». We included basic science articles, controlled and non-controlled clinical trials, meta-analysis and guides. From this search we conclude that Treg cells are a subpopulation of T CD4(+) lymphocytes and their major functions are the suppression of immune responses and the maintenance of tolerance to self-antigens. A disruption in the regulatory mechanisms of the Treg cells leads to the development and perpetuation of inflammation in COPD.
Collapse
Affiliation(s)
- Leonardo Limón-Camacho
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México, D.F., México
| | | | | | | | | |
Collapse
|
215
|
|
216
|
Chorny A, Cerutti A. Regulation and Function of Mucosal IgA and IgD. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
217
|
Rescigno M. Microbial Sensing and Regulation of Mucosal Immune Responses by Intestinal Epithelial Cells. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
218
|
Nurkic J, Numanovic F, Arnautalic L, Tihic N, Halilovic D, Jahic M. Diagnostic significance of reduced IgA in children. Med Arch 2014; 68:381-3. [PMID: 25648982 PMCID: PMC4314178 DOI: 10.5455/medarh.2014.68.381-383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/10/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction: The finding of reduced value of immunoglobulin A (IgA) in children is frequent in daily medical practice. It is important to correctly interpret the findings as adequate further diagnostic evaluation of the patient in order to make the determination on the significance of such findings. In children younger than 4 years always consider the transient impairment of immunoglobulins, maturation of child and his immune system can lead to an improvement in the clinical picture. In older children decreased IgA may lead to serious illnesses that need to be recognize and acknowledge through the appropriate diagnostic methods. Material and methods: Research was realized at the University Clinical Center Tuzla. Children with suspected deficient immune response due to reduced values of IgA observed and, goes through further diagnostic evaluation at the Polyclinic for Laboratory Medicine, Department of Immunology and Department of Microbiology, as well as the Clinic of Radiology. In the period of year 2013, there were a total of 91 patients with reduced values of IgA, age up to 13 years, of which 55 boys and 36 girls. Results: Our study followed 91 patients, for the year 2013, through their medical charts and made evaluation of diagnostic and screening tests. The significance of this paper is to draw attention to the importance of diagnostic approach to IgA deficient pediatric patient and relevance of knowledge of individual diagnostic methods as well as to the proper interpretation of the results thereof.
Collapse
Affiliation(s)
- Jasmina Nurkic
- Polyclinic for laboratory diagnostic. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Fatima Numanovic
- Polyclinic for laboratory diagnostic. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Lejla Arnautalic
- Clinic for Radiology. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Nijaz Tihic
- Polyclinic for laboratory diagnostic. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Dzenan Halilovic
- Clinic for Pulmonary Disease. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Mahira Jahic
- Polyclinic for laboratory diagnostic. University Clinical Centre Tuzla, Bosnia and Herzegovina
| |
Collapse
|
219
|
Franz CMAP, Huch M, Seifert S, Kramlich J, Bub A, Cho GS, Watzl B. Influence of a probiotic Lactobacillus casei strain on the colonisation with potential pathogenic streptococci and Staphylococcus aureus in the nasopharyngeal space of healthy men with a low baseline NK cell activity. Med Microbiol Immunol 2014; 204:527-38. [PMID: 25416927 DOI: 10.1007/s00430-014-0366-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/05/2014] [Indexed: 12/30/2022]
Abstract
The effect of a daily intake of the probiotic strain Lactobacillus casei Shirota (LcS) on the colonisation of pathogens, specifically streptococci and Staphylococcus aureus, in the nose and throat of healthy human volunteers with low natural killer cell activity, was investigated in a randomised and controlled intervention study. The study consisted of a 2-week run-in phase, followed by a 4-week intervention phase. The probiotic treatment group received a fermented milk drink with LcS, while the placebo group received an equally composed milk drink without the probiotic additive. To isolate potential pathogenic streptococci and Staph. aureus, samples from the pharynx, as well as of both middle nasal meati, were taken, once after the run-in phase and once at the end of the intervention phase. Isolated bacteria were identified as either Staph. aureus and α- or β-haemolytic streptococci in a polyphasic taxonomical approach based on phenotypic tests, amplified ribosomal DNA restriction analysis genotyping, and 16S rRNA gene sequencing of representative strains. Salivary secretory immunoglobulin A (SIgA) was used as marker of protective mucosal immunity to evaluate whether LcS treatment influenced SIgA production. No statistically significant effect could be determined for intervention with LcS on the incidence of Staph. aureus in the nasal space, Staph. aureus in the pharyngeal space or for β-haemolytic streptococci and Streptococcus pneumoniae in the pharyngeal space. Thus, the intervention did not influence the nasopharyngeal colonisation with Gram-positive potential pathogens. Production of salivary SIgA as a potential means of microbiota modulation was also not affected.
Collapse
Affiliation(s)
- Charles M A P Franz
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany,
| | | | | | | | | | | | | |
Collapse
|
220
|
Castro CD, Flajnik MF. Putting J chain back on the map: how might its expression define plasma cell development? THE JOURNAL OF IMMUNOLOGY 2014; 193:3248-55. [PMID: 25240020 DOI: 10.4049/jimmunol.1400531] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Joining chain (J chain) is a small polypeptide that regulates multimerization of secretory IgM and IgA, the only two mammalian Igs capable of forming multimers. J chain also is required for poly-Ig receptor-mediated transport of these Ig classes across the mucosal epithelium. It is generally assumed that all plasma cells express J chain regardless of expressed isotype, despite the documented presence of J chain(-) plasma cells in mammals, specifically in all monomeric IgA-secreting cells and some IgG-secreting cells. Compared with most other immune molecules, J chain has not been studied extensively, in part because of technical limitations. Even the reported phenotype of the J chain-knockout mouse is often misunderstood or underappreciated. In this short review, we discuss J chain in light of the various proposed models of its expression and regulation, with an added focus on its evolutionary significance, as well as its expression in different B cell lineages/differentiation states.
Collapse
Affiliation(s)
- Caitlin D Castro
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
221
|
Proietti M, Cornacchione V, Rezzonico Jost T, Romagnani A, Faliti CE, Perruzza L, Rigoni R, Radaelli E, Caprioli F, Preziuso S, Brannetti B, Thelen M, McCoy KD, Slack E, Traggiai E, Grassi F. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer's patches to promote host-microbiota mutualism. Immunity 2014; 41:789-801. [PMID: 25464855 DOI: 10.1016/j.immuni.2014.10.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022]
Abstract
Microbial colonization of the gut induces the development of gut-associated lymphoid tissue (GALT). The molecular mechanisms that regulate GALT function and result in gut-commensal homeostasis are poorly defined. T follicular helper (Tfh) cells in Peyer's patches (PPs) promote high-affinity IgA responses. Here we found that the ATP-gated ionotropic P2X7 receptor controls Tfh cell numbers in PPs. Lack of P2X7 in Tfh cells enhanced germinal center reactions and high-affinity IgA secretion and binding to commensals. The ensuing depletion of mucosal bacteria resulted in reduced systemic translocation of microbial components, lowering B1 cell stimulation and serum IgM concentrations. Mice lacking P2X7 had increased susceptibility to polymicrobial sepsis, which was rescued by Tfh cell depletion or administration of purified IgM. Thus, regulation of Tfh cells by P2X7 activity is important for mucosal colonization, which in turn results in IgM serum concentrations necessary to protect the host from bacteremia.
Collapse
Affiliation(s)
- Michele Proietti
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Vanessa Cornacchione
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Novartis Institute for Biomedical Research, Fabrickstrasse 2, 4002 Basel, Switzerland
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Andrea Romagnani
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Caterina Elisa Faliti
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Rosita Rigoni
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | | | - Flavio Caprioli
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Unit of Gastroenterology 2, Fondazione IRCCS Ca' Granda, Ospedale Policlinico di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Silvia Preziuso
- Department of Veterinary Medical Sciences, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - Barbara Brannetti
- Novartis Institute for Biomedical Research, Fabrickstrasse 2, 4002 Basel, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Kathy D McCoy
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | - Emma Slack
- Institute of Microbiology, ETH Zurich, HCI F 413 Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Elisabetta Traggiai
- Novartis Institute for Biomedical Research, Fabrickstrasse 2, 4002 Basel, Switzerland
| | - Fabio Grassi
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Department of Medical Biotechnology and Translational Medicine, University of Milan, Via G.B. Viotti 3/5, 20133 Milan, Italy.
| |
Collapse
|
222
|
Abstract
Microbiome analysis has identified a state of microbial imbalance (dysbiosis) in patients with chronic intestinal inflammation and colorectal cancer. The bacterial phylum Proteobacteria is often overrepresented in these individuals, with Escherichia coli being the most prevalent species. It is clear that a complex interplay between the host, bacteria and bacterial genes is implicated in the development of these intestinal diseases. Understanding the basic elements of these interactions could have important implications for disease detection and management. Recent studies have revealed that E. coli utilizes a complex arsenal of virulence factors to colonize and persist in the intestine. Some of these virulence factors, such as the genotoxin colibactin, were found to promote colorectal cancer in experimental models. In this Review, we summarize key features of the dysbiotic states associated with chronic intestinal inflammation and colorectal cancer, and discuss how the dysregulated interplay between host and bacteria could favor the emergence of E. coli with pathological traits implicated in these pathologies.
Collapse
Affiliation(s)
- Ye Yang
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA. Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
223
|
Abstract
Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn's disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution.
Collapse
|
224
|
Francino MP. Early development of the gut microbiota and immune health. Pathogens 2014; 3:769-90. [PMID: 25438024 PMCID: PMC4243441 DOI: 10.3390/pathogens3030769] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 08/29/2014] [Accepted: 09/19/2014] [Indexed: 12/13/2022] Open
Abstract
In recent years, the increase in human microbiome research brought about by the rapidly evolving “omic” technologies has established that the balance among the microbial groups present in the human gut, and their multipronged interactions with the host, are crucial for health. On the other hand, epidemiological and experimental support has also grown for the ‘early programming hypothesis’, according to which factors that act in utero and early in life program the risks for adverse health outcomes later on. The microbiota of the gut develops during infancy, in close interaction with immune development, and with extensive variability across individuals. It follows that the specific process of gut colonization and the microbe-host interactions established in an individual during this period have the potential to represent main determinants of life-long propensity to immune disease. Although much remains to be learnt on the progression of events by which the gut microbiota becomes established and initiates its intimate relationships with the host, and on the long-term repercussions of this process, recent works have advanced significatively in this direction.
Collapse
Affiliation(s)
- M Pilar Francino
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública/Institut Cavanilles de Biodiversitat i Biologia Evolutiva (Universitat de València), València 46020, Spain.
| |
Collapse
|
225
|
Korn LL, Thomas HL, Hubbeling HG, Spencer SP, Sinha R, Simkins HMA, Salzman NH, Bushman FD, Laufer TM. Conventional CD4+ T cells regulate IL-22-producing intestinal innate lymphoid cells. Mucosal Immunol 2014; 7:1045-57. [PMID: 24448096 PMCID: PMC4107180 DOI: 10.1038/mi.2013.121] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/04/2013] [Indexed: 02/04/2023]
Abstract
The innate and adaptive immune systems in the intestine cooperate to maintain the integrity of the intestinal barrier and to regulate the composition of the resident microbiota. However, little is known about the crosstalk between the innate and adaptive immune systems that contribute to this homeostasis. We find that CD4+ T cells regulate the number and function of barrier-protective innate lymphoid cells (ILCs), as well as production of antimicrobial peptides (AMPs), Reg3γ and Reg3β. RAG1-/- mice lacking T and B cells had elevated ILC numbers, interleukin-22 (IL-22) production, and AMP expression, which were corrected by replacement of CD4+ T cells. Major histocompatibility class II-/- (MHCII-/-) mice lacking CD4+ T cells also had increased ILCs, IL-22, and AMPs, suggesting that negative regulation by CD4+ T cells occurs at steady state. We utilized transfers and genetically modified mice to show that reduction of IL-22 is mediated by conventional CD4+ T cells and is T-cell receptor dependent. The IL-22-AMP axis responds to commensal bacteria; however, neither the bacterial repertoire nor the gross localization of commensal bacteria differed between MHCII+/- and MHCII-/- littermates. These data define a novel ability of CD4+ T cells to regulate intestinal IL-22-producing ILCs and AMPs.
Collapse
Affiliation(s)
- Lisa L. Korn
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Hannah L. Thomas
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Harper G. Hubbeling
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Sean P. Spencer
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Rohini Sinha
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Helen M. A. Simkins
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Nita H. Salzman
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Terri M. Laufer
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104
| |
Collapse
|
226
|
van de Ven AAJM, Janssen WJM, Schulz LS, van Loon AM, Voorkamp K, Sanders EAM, Kusters JG, Nierkens S, Boes M, Wensing AMJ, van Montfrans JM. Increased prevalence of gastrointestinal viruses and diminished secretory immunoglobulin a levels in antibody deficiencies. J Clin Immunol 2014; 34:962-70. [PMID: 25135597 DOI: 10.1007/s10875-014-0087-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Gastrointestinal disease occurs frequently in antibody deficiencies. This study aims to explore the relation between gastrointestinal infections and mucosal homeostasis in patients with antibody deficiencies. METHODS We performed an observational study including 54 pediatric antibody deficient patients (48 % CVID, 41 % CVID-like, 11 % XLA) and 66 healthy controls. Clinical symptom scores and stool samples were collected prospectively. Stool samples were evaluated for bacteria, parasites, viruses, secretory IgA- and for calprotectin levels. Results were compared between patients and controls. RESULTS 24 % of antibody deficient patients versus 9 % of healthy controls tested positive for gastrointestinal viruses (p = 0.028). Fecal calprotectin levels were significantly higher in virus positive patients compared to virus negative patients (p = 0.002). However, in controls, fecal calprotectin levels were similar between virus positive and virus negative controls. Moreover, gastrointestinal virus positive patients had low serum IgA levels in 13/14 cases (94 %) versus 40/62 (62 %) patients in the virus negative patient group (p = 0.04). The virus positive patient group also displayed significantly lower secretory IgA levels in stool (median 13 ug/ml) than patients without gastrointestinal viruses detected or healthy controls (median 155 ug/ml) (p = 0.046). CONCLUSION We here report an increased prevalence of gastrointestinal viruses and gastrointestinal complaints in antibody deficient patients. Patients that tested positive for gastrointestinal viruses showed diminished serum- and secretory IgA levels, and only in patients, virus positivity was associated with signs of mucosal inflammation. These findings suggest that particularly patients with low IgA are at risk for longstanding replication of gastrointestinal viruses, which may eventually result in CVID-related enteropathy.
Collapse
Affiliation(s)
- A A J M van de Ven
- Department of Pediatric Immunology and Infectious Diseases/Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Lundlaan 6, Post box 85090 KC.03.063.0, 3508 AB, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Mann ER, Li X. Intestinal antigen-presenting cells in mucosal immune homeostasis: Crosstalk between dendritic cells, macrophages and B-cells. World J Gastroenterol 2014; 20:9653-9664. [PMID: 25110405 PMCID: PMC4123356 DOI: 10.3748/wjg.v20.i29.9653] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 02/26/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance of the commensal microbiota. Inflammatory bowel disease (IBD) involves a breakdown in tolerance towards the microbiota. Dendritic cells (DC), macrophages (MΦ) and B-cells are known as professional antigen-presenting cells (APC) due to their specialization in presenting processed antigen to T-cells, and in turn shaping types of T-cell responses generated. Intestinal DC are migratory cells, unique in their ability to generate primary T-cell responses in mesenteric lymph nodes or Peyer’s patches, whilst MΦ and B-cells contribute to polarization and differentiation of secondary T-cell responses in the gut lamina propria. The antigen-sampling function of gut DC and MΦ enables them to sample bacterial antigens from the gut lumen to determine types of T-cell responses generated. The primary function of intestinal B-cells involves their secretion of large amounts of immunoglobulin A, which in turn contributes to epithelial barrier function and limits immune responses towards to microbiota. Here, we review the role of all three types of APC in intestinal immunity, both in the steady state and in inflammation, and how these cells interact with one another, as well as with the intestinal microenvironment, to shape mucosal immune responses. We describe mechanisms of maintaining intestinal immune tolerance in the steady state but also inappropriate responses of APC to components of the gut microbiota that contribute to pathology in IBD.
Collapse
|
228
|
Gelderman KA, Drop ACAD, Trouw LA, Bontkes HJ, Bouma G, van Hoogstraten IMW, von Blomberg BME. Serum autoantibodies directed against transglutaminase-2 have a low avidity compared with alloantibodies against gliadin in coeliac disease. Clin Exp Immunol 2014; 177:86-93. [PMID: 24666357 DOI: 10.1111/cei.12302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 12/19/2022] Open
Abstract
Coeliac disease is characterized by intolerance to gliadin and related gluten components present in wheat, barley and rye. Coeliac disease patients harbour antibodies directed against alloantigens such as gliadin, but also against the autoantigen transglutaminase-2 (TG2). The type and quality of antibody responses provides insight into the underlying immune activation processes. Therefore, in this study we have analysed the avidity of the antibody response directed against the autoantigen TG2 and compared this with antibody responses against the alloantigens gliadin and Escherichia coli. We observed that the immunoglobulin (Ig)A autoantibody response directed against TG2 is of low avidity compared with the IgA response against the alloantigens gliadin and E. coli in the same patients; the same was true for IgG, both in IgA-deficient and in -sufficient coeliac patients. The observed avidities appear not to be related to disease stage, antibody levels, age or duration of exposure to gluten. In conclusion, in coeliac disease there is a clear difference in avidity of the antibody responses directed against the auto- and alloantigens, indicating different regulation or site of initiation of these responses.
Collapse
Affiliation(s)
- K A Gelderman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
The human fetus lives in a germ-free intrauterine environment and enters the outside world containing microorganisms from several sources, resulting in gut colonization. Full-term, vaginally born infants are completely colonized with a diverse array of bacterial families in clusters (Phyla) and species (>1000) by the first year of life. Colonizing bacteria communicating with the gut epithelium and underlying lymphoid tissues ('bacterial-epithelial crosstalk') result in a functional immune phenotype and no expression of disease (immune homeostasis). Appropriate colonization is influenced by the prebiotic effect of breast milk oligosaccharides. Adequate colonization results in an innate and adaptive mucosal immune phenotype via communication between molecular patterns on colonizing bacteria and pattern-recognition receptors (e.g., toll-like receptors) on epithelial and lymphoid cells. This ontogeny affects the immune system's capacity to develop oral tolerance to innocuous bacteria and benign antigens. Inadequate intestinal colonization with premature delivery, delivery by Cesarean section and excessive use of perinatal antibiotics results in the absence of adequate bacterial-epithelial crosstalk and an increased incidence of immune-mediated diseases [e.g., asthma, allergy in general and necrotizing enterocolitis (NEC)]. Fortunately, infants with inadequate intestinal colonization can be restored to a bacterial balance with the intake of probiotics. This has been shown to prevent debilitating diseases such as NEC. Thus, understanding the role of gut microbiota in programming of the immune phenotype may be important in preventing disease expression in later childhood and adulthood.
Collapse
|
230
|
Godínez-Victoria M, Campos-Rodriguez R, Rivera-Aguilar V, Lara-Padilla E, Pacheco-Yepez J, Jarillo-Luna RA, Drago-Serrano ME. Intermittent fasting promotes bacterial clearance and intestinal IgA production in Salmonella typhimurium-infected mice. Scand J Immunol 2014; 79:315-24. [PMID: 24612255 DOI: 10.1111/sji.12163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/23/2014] [Indexed: 12/20/2022]
Abstract
The impact of intermittent fasting versus ad libitum feeding during Salmonella typhimurium infection was evaluated in terms of duodenum IgA levels, bacterial clearance and intestinal and extra-intestinal infection susceptibility. Mice that were intermittently fasted for 12 weeks or fed ad libitum were infected with S. typhimurium and assessed at 7 and 14 days post-infection. Next, we evaluated bacterial load in the faeces, Peyer's patches, spleen and liver by plate counting, as well as total and specific intestinal IgA and plasmatic corticosterone levels (by immunoenzymatic assay) and lamina propria IgA levels in plasma cells (by cytofluorometry). Polymeric immunoglobulin receptor, α- and J-chains, Pax-5 factor, pro-inflammatory cytokine (tumour necrosis factor-α and interferon-γ) and anti-inflammatory cytokine (transforming growth factor-β) mRNA levels were assessed in mucosal and liver samples (by real-time PCR). Compared with the infected ad libitum mice, the intermittently fasted infected animals had (1) lower intestinal and systemic bacterial loads; (2) higher SIgA and IgA plasma cell levels; (3) higher mRNA expression of most intestinal parameters; and (4) increased or decreased corticosterone levels on day 7 and 14 post-infection, respectively. No contribution of liver IgA was observed at the intestinal level. Apparently, the changes following metabolic stress induced by intermittent fasting during food deprivation days increased the resistance to S. typhimurium infection by triggering intestinal IgA production and presumably, pathogen elimination by phagocytic inflammatory cells.
Collapse
Affiliation(s)
- M Godínez-Victoria
- Research and Graduate Studies Section, Superior School of Medicine, National Polytechnic Institute, Col. Santo Tomas, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
231
|
Nguyen NL, So KK, Kim JM, Kim SH, Jang YS, Yang MS, Kim DH. Expression and characterization of an M cell-specific ligand-fused dengue virus tetravalent epitope using Saccharomyces cerevisiae. J Biosci Bioeng 2014; 119:19-27. [PMID: 25027708 DOI: 10.1016/j.jbiosc.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
Abstract
A fusion construct (Tet-EDIII-Co1) consisting of an M cell-specific peptide ligand (Co1) at the C-terminus of a recombinant tetravalent gene encoding the amino acid sequences of dengue envelope domain III (Tet-EDIII) from four serotypes was expressed and tested for binding activity to the mucosal immune inductive site M cells for the development of an oral vaccine. The yeast episomal expression vector, pYEGPD-TER, which was designed to direct gene expression using the glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, a functional signal peptide of the amylase 1A protein from rice, and the GAL7 terminator, was used to clone the Tet-EDIII-Co1 gene and resultant plasmids were then used to transform Saccharomyces cerevisiae. PCR and back-transformation into Escherichia coli confirmed the presence of the Tet-EDIII-Co1 gene-containing plasmid in transformants. Northern blot analysis of transformed S. cerevisiae identified the presence of the Tet-EDIII-Co1-specific transcript. Western blot analysis indicated that the produced Tet-EDIII-Co1 protein with the expected molecular weight was successfully secreted into the culture medium. Quantitative Western blot analysis and ELISA revealed that the recombinant Tet-EDIII-Co1 protein comprised approximately 0.1-0.2% of cell-free extracts (CFEs). In addition, 0.1-0.2 mg of Tet-EDIII-Co1 protein per liter of culture filtrate was detected on day 1, and this quantity peaked on day 3 after cultivation. In vivo binding assays showed that the Tet-EDIII-Co1 protein was delivered specifically to M cells in Peyer's patches (PPs) while the Tet-EDIII protein lacking the Co1 ligand did not, which demonstrated the efficient targeting of this antigenic protein through the mucosal-specific ligand.
Collapse
Affiliation(s)
- Ngoc-Luong Nguyen
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Kum-Kang So
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea
| | - Sae-Hae Kim
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Yong-Suk Jang
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Moon-Sik Yang
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Dae-Hyuk Kim
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea.
| |
Collapse
|
232
|
Faucette AN, Unger BL, Gonik B, Chen K. Maternal vaccination: moving the science forward. Hum Reprod Update 2014; 21:119-35. [PMID: 25015234 DOI: 10.1093/humupd/dmu041] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Infections remain one of the leading causes of morbidity in pregnant women and newborns, with vaccine-preventable infections contributing significantly to the burden of disease. In the past decade, maternal vaccination has emerged as a promising public health strategy to prevent and combat maternal, fetal and neonatal infections. Despite a number of universally recommended maternal vaccines, the development and evaluation of safe and effective maternal vaccines and their wide acceptance are hampered by the lack of thorough understanding of the efficacy and safety in the pregnant women and the offspring. METHODS An outline was synthesized based on the current status and major gaps in the knowledge of maternal vaccination. A systematic literature search in PUBMED was undertaken using the key words in each section title of the outline to retrieve articles relevant to pregnancy. Articles cited were selected based on relevance and quality. On the basis of the reviewed information, a perspective on the future directions of maternal vaccination research was formulated. RESULTS Maternal vaccination can generate active immune protection in the mother and elicit systemic immunoglobulin G (IgG) and mucosal IgG, IgA and IgM responses to confer neonatal protection. The maternal immune system undergoes significant modulation during pregnancy, which influences responsiveness to vaccines. Significant gaps exist in our knowledge of the efficacy and safety of maternal vaccines, and no maternal vaccines against a large number of old and emerging pathogens are available. Public acceptance of maternal vaccination has been low. CONCLUSIONS To tackle the scientific challenges of maternal vaccination and to provide the public with informed vaccination choices, scientists and clinicians in different disciplines must work closely and have a mechanistic understanding of the systemic, reproductive and mammary mucosal immune responses to vaccines. The use of animal models should be coupled with human studies in an iterative manner for maternal vaccine experimentation, evaluation and optimization. Systems biology approaches should be adopted to improve the speed, accuracy and safety of maternal vaccine targeting.
Collapse
Affiliation(s)
- Azure N Faucette
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Benjamin L Unger
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Bernard Gonik
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, USA Department of Oncology, Wayne State University, Detroit, MI 48201, USA Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
233
|
Rose MA. Mucosal Immunity and acute viral gastroenteritis. Hum Vaccin Immunother 2014; 10:2112-4. [DOI: 10.4161/hv.29605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
234
|
Zhang Y, Yang S, Zhao X, Yang Y, Li B, Zhu F, Zhu R. Immune enhancement of Taishan Robinia pseudoacacia polysaccharide on recombinant Proteus mirabilis OmpA in chickens. Int Immunopharmacol 2014; 22:236-41. [PMID: 25000334 DOI: 10.1016/j.intimp.2014.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 01/20/2023]
Abstract
This study was conducted to evaluate the effects of Taishan Robinia pseudoacacia polysaccharide (TRPPS) on immune responses of chickens immunized with Proteus mirabilis outer membrane protein A (OmpA) recombinant protein vaccine. OmpA was expressed in Pichia pastoris and mixed with TRPPS. 360 chickens were randomly divided into six groups. Groups I to IV were treated with OmpA which contained TRPPS of three different dosages, Freund's adjuvant, respectively. Groups V and VI were treated with pure OmpA and physiological saline, respectively. The data showed that the antibody titers against OmpA, the concentration of IL-2, CD4 +, and CD8 +, T lymphocyte proliferation rate in Group II were significantly higher (P < 0.05) than those in the other groups, little difference in SIgA content was observed among groups I to VI. These results indicated that TRPPS strengthened humoral and cellular immune responses against recombinant OmpA vaccine. Moreover, 200 mg/mL TRPPS showed significance (P < 0.05) compared with Freund's adjuvant. Therefore, TRPPS can be developed into an adjuvant for recombinant subunit vaccine.
Collapse
Affiliation(s)
- Yongbing Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Shifa Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Xue Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Ya Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Bing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Fujie Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China.
| |
Collapse
|
235
|
He Y, Fang J, Peng X, Cui H, Zuo Z, Deng J, Chen Z, Geng Y, Lai W, Shu G, Tang L. Effects of sodium selenite on aflatoxin B1-induced decrease of ileal IgA+ cell numbers and immunoglobulin contents in broilers. Biol Trace Elem Res 2014; 160:49-55. [PMID: 24909240 DOI: 10.1007/s12011-014-0035-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
This study was aimed to assess the protective effect of sodium selenite on the ileum mucosal immunologic injury induced by AFB1. One hundred eighty-one-day-old healthy male Avian broilers were divided into four groups of three replicates and 15 birds per replicate and fed with basal diet (control group), 0.3 mg/kg AFB1 (AFB1 group), 0.4 mg/kg Se (+Se group), and 0.3 mg/kg AFB1 + 0.4 mg/kg Se (AFB1 + Se group) respectively. The numbers of IgA(+) cells of ileum were determined by immunohistochemistry as well as the contents of sIgA, IgA, IgG, and IgM in the mucosa of ileum by ELISA. Compared with those in the control group, the numbers of IgA(+) cells as well as the sIgA, IgA, IgG, and IgM contents were decreased in the AFB1 group. However, compared with those in the AFB1 group, the numbers of IgA(+) cells as well as the sIgA, IgA, IgG, and IgM contents were increased in the AFB1 + Se group, and these data had no difference between AFB1 + Se group and control group. It was concluded that 0.3 mg/kg AFB1 could reduce the humoral immune function of the ileum mucosa, but 0.4 mg/kg supplemented dietary selenium could protect the mucosal humoral immune function from AFB1-induced impairment.
Collapse
Affiliation(s)
- Yang He
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Su B, Moog C. Which Antibody Functions are Important for an HIV Vaccine? Front Immunol 2014; 5:289. [PMID: 24995008 PMCID: PMC4062070 DOI: 10.3389/fimmu.2014.00289] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023] Open
Abstract
HIV antibody (Ab) functions capable of preventing mucosal cell-free or cell-to-cell HIV transmission are critical for the development of effective prophylactic and therapeutic vaccines. In addition to CD4(+) T cells, other potential HIV-target cell types including antigen-presenting cells (APCs) (dendritic cells, macrophages) residing at mucosal sites are infected. Moreover, the interactions between APCs and HIV lead to HIV cell-to-cell transmission. Recently discovered broadly neutralizing antibodies (NAbs) are able to neutralize a broad spectrum of HIV strains, inhibit cell-to-cell transfer, and efficiently protect from infection in the experimentally challenged macaque model. However, the 31% protection observed in the RV144 vaccine trial in the absence of detectable NAbs in blood samples pointed to the possible role of additional Ab inhibitory functions. Increasing evidence suggests that IgG Fcγ receptor (FcγR)-mediated inhibition of Abs present at the mucosal site may play a role in protection against HIV mucosal transmission. Moreover, mucosal IgA Abs may be determinant in protection against HIV sexual transmission. Therefore, defining Ab inhibitory functions that could lead to protection is critical for further HIV vaccine design. Here, we review different inhibitory properties of HIV-specific Abs and discuss their potential role in protection against HIV sexual transmission.
Collapse
Affiliation(s)
- Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| |
Collapse
|
237
|
Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:268-76. [PMID: 24899508 DOI: 10.4049/jimmunol.1203040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction from the BCR is regulated by the equilibrium between kinases (e.g., spleen tyrosine kinase [Syk]) and phosphatases (e.g., Shp-1). Previous studies showed that Syk-deficient B cells have a developmental block at the pro/pre-B cell stage, whereas a B cell-specific Shp-1 deficiency promoted B-1a cell development and led to autoimmunity. We generated B cell-specific Shp-1 and Syk double-knockout (DKO) mice and compared them to the single-knockout mice deficient for either Syk or Shp-1. Unlike Syk-deficient mice, the DKO mice can generate mature B cells, albeit at >20-fold reduced B cell numbers. The DKO B-2 cells are all Syk-negative, whereas the peritoneal B1 cells of the DKO mice still express Syk, indicating that they require this kinase for their proper development. The DKO B-2 cells cannot be stimulated via the BCR, whereas they are efficiently activated via TLR or CD40. We also found that in DKO pre-B cells, the kinase Zap70 is associated with the pre-BCR, suggesting that Zap70 is important to promote B cell maturation in the absence of Syk and SHP-1. Together, our data show that a properly balanced kinase/phosphatase equilibrium is crucial for normal B cell development and function.
Collapse
Affiliation(s)
- Ameera Alsadeq
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany; and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - Elias Hobeika
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - David Medgyesi
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - Kathrin Kläsener
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - Michael Reth
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany; and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| |
Collapse
|
238
|
Savilahti EM, Kuitunen M, Savilahti E, Mäkelä MJ. Specific antibodies in oral immunotherapy for cow's milk allergy: kinetics and prediction of clinical outcome. Int Arch Allergy Immunol 2014; 164:32-9. [PMID: 24853260 DOI: 10.1159/000361023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/03/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND METHODS for predicting the clinical outcome of specific oral immunotherapy (OIT) would improve the safety of the therapy. METHODS We investigated 40 children aged 6-17 years with IgE-mediated cow's milk allergy (CMA) who either successfully completed OIT (n = 32) or discontinued the therapy due to adverse reactions (n = 8). From sera drawn before and after OIT, we analyzed specific IgA, IgG, IgG1 and IgG4 to cow's milk (CM), casein, β-lactoglobulin and ovalbumin (with enzyme-linked immunosorbent assay) and IgE to CM and hen's egg white [with enzymatic fluoroimmunoassay (Phadia ThermoFisher Scientific CAP system)]. As a reference, we also analyzed serum samples from 8- to 9-year-old children who either had no history of CMA (n = 76) or who had spontaneously recovered from IgE-mediated CMA (n = 56). RESULTS Levels of specific IgA, IgG, IgG1 and IgG4 to CM and casein, and CM-specific IgE prior to OIT were higher in children who discontinued the therapy than in those who achieved desensitization (p < 0.05). Adverse reactions in the entire population were associated with low IgG and IgG4, but high IgG1 levels to ovalbumin (p < 0.05). Specific IgA, IgG, IgG1 and IgG4 to CM proteins significantly increased and IgE to CM decreased during OIT in children who achieved desensitization (p < 0.01). In those who discontinued OIT, only IgG, IgG1 and IgG4 to CM increased significantly (p < 0.03) and CM IgE remained unchanged. CONCLUSIONS High specific IgE, IgA and IgG-class antibodies to CM proteins appear to predict failure to achieve desensitization in CM OIT. Specific IgA and IgG-class antibodies to CM increase and CM IgE decreases during desensitization.
Collapse
|
239
|
Liberti A, Melillo D, Zucchetti I, Natale L, Dishaw LJ, Litman GW, De Santis R, Pinto MR. Expression of Ciona intestinalis variable region-containing chitin-binding proteins during development of the gastrointestinal tract and their role in host-microbe interactions. PLoS One 2014; 9:e94984. [PMID: 24788831 PMCID: PMC4008424 DOI: 10.1371/journal.pone.0094984] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/21/2014] [Indexed: 02/04/2023] Open
Abstract
Variable region-containing chitin-binding proteins (VCBPs) are secreted, immune-type molecules that have been described in both amphioxus, a cephalochordate, and sea squirt, Ciona intestinalis, a urochordate. In adult Ciona, VCBP-A, -B and -C are expressed in hemocytes and the cells of the gastrointestinal tract. VCBP-C binds bacteria in the stomach lumen and functions as an opsonin in vitro. In the present paper the expression of VCBPs has been characterized during development using in situ hybridization, immunohistochemical staining and quantitative polymerase chain reaction (qPCR) technologies. The expression of VCBP-A and -C is detected first in discrete areas of larva endoderm and becomes progressively localized during differentiation in the stomach and intestine, marking the development of gut tracts. In “small adults” (1–2 cm juveniles) expression of VCBP-C persists and VCBP-A gradually diminishes, ultimately replaced by expression of VCBP-B. The expression of VCBP-A and -C in stage 7–8 juveniles, at which point animals have already started feeding, is influenced significantly by challenge with either Gram-positive or -negative bacteria. A potential role for VCBPs in gut-microbiota interactions and homeostasis is indicated.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Daniela Melillo
- Department of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Ivana Zucchetti
- Department of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Lenina Natale
- Department of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Larry J. Dishaw
- Department of Pediatrics, University of South Florida College of Medicine, St Petersburg, Florida, United States of America
| | - Gary W. Litman
- Department of Pediatrics, University of South Florida College of Medicine, St Petersburg, Florida, United States of America
| | - Rosaria De Santis
- Department of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Maria Rosaria Pinto
- Department of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
- * E-mail:
| |
Collapse
|
240
|
Bar-Shira E, Cohen I, Elad O, Friedman A. Role of goblet cells and mucin layer in protecting maternal IgA in precocious birds. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:186-194. [PMID: 24370536 DOI: 10.1016/j.dci.2013.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/14/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
Immune protection of the gut in early life depends on provision of maternal antibodies, particularly that of IgA. In precocial birds (in this study Gallus gallus domesticus) the egg provides the only source of maternal antibodies, IgA inclusive. The gut-life of IgA in hatchlings is expected to be brief due to antigen binding and intestinal washout, and maternal IgA is likely to be depleted prior to immune independence at 7-10 days of age in the domestic fowl. We followed the track of maternal IgA in mucosal surfaces of the fowl and describe for the first time a mechanism that might provide the means to extend the active period of maternal IgA in the gut. Maternal IgA was located in the gut, lung, and cloacal bursa in embryos and hatchlings prior to the appearance of endogenic IgA positive plasma cells (D3 in the bursa or D7 in the gut and lung); the source of IgA was most probably the yolk, as the plasma was devoid of IgA till D7 post-hatch. The levels of maternal IgA decreased with time, but were still easily determined at the onset of endogenous IgA production following maturation of the adaptive immune system. Persistence of maternal IgA in the gut was enabled by goblet cell up-take by a yet un-described mechanism, and its consequent release in a mucin-like layer on enterocyte apical surfaces.
Collapse
Affiliation(s)
- Enav Bar-Shira
- Animal Sciences, R.H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Inbal Cohen
- Animal Sciences, R.H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Ori Elad
- Animal Sciences, R.H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Aharon Friedman
- Animal Sciences, R.H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
241
|
Rescigno M. Intestinal microbiota and its effects on the immune system. Cell Microbiol 2014; 16:1004-13. [PMID: 24720613 DOI: 10.1111/cmi.12301] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/11/2022]
Abstract
The microbiota colonizes every surface exposed to the external world and in the gut, it plays important roles in physiological functions such as the maturation of the immune system, the degradation of complex food macromolecules and also behaviour. As such, the immune system has developed tools to cohabit with the microbiota, but also to keep it under control. When this control is lost, dysbiosis, i.e. deregulation in bacterial communities, can occur and this can lead to inflammatory disorders, including inflammatory bowel disease, obesity, diabetes and autism. For these reasons, the analysis of the microbiota, its interactions with the host and its composition in disease, have been intensively investigated in the last few years. In this review, we summarize the major findings in the interaction of the microbiota with the host immune system.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
242
|
Maeda S, Ohno K, Fujiwara-Igarashi A, Tomiyasu H, Fujino Y, Tsujimoto H. Methylation of TNFRSF13B and TNFRSF13C in duodenal mucosa in canine inflammatory bowel disease and its association with decreased mucosal IgA expression. Vet Immunol Immunopathol 2014; 160:97-106. [PMID: 24814046 DOI: 10.1016/j.vetimm.2014.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 01/28/2023]
Abstract
Although decreased intestinal IgA expression has been reported in dogs with inflammatory bowel disease (IBD), the mechanism underlying this decrease is unknown. Transmembrane activator and calcium-modulating cyclophilin-ligand interactor (TACI) and B cell-activating factor of the TNF family (BAFF) receptor (BAFF-R) are key receptors for T cell-independent IgA class switching by the binding of IgA-inducing cytokine a proliferation-inducing ligand (APRIL) and BAFF. Here we show decreased TACI and BAFF-R mRNA expression and hypermethylation of their corresponding genes TNFRSF13B and TNFRSF13C, respectively in the duodenal mucosa of dogs with IBD. To examine whether DNA methylation of the TNFRSF13B and TNFRSF13C influences the mRNA expression of TACI and BAFF-R, respectively, we first analyzed methylation and mRNA expression levels in vitro using 2 canine B lymphoid cell lines, GL-1 and CLBL-1. Methylation profiles in the cells were examined by bisulfite sequencing and methylation-specific PCR (MSP) with primer pairs specific to methylated or unmethylated sequences. These methylation analyses revealed hypermethylation of the CpG islands of both TNFRSF13B and TNFRSF13C in GL-1, but not in CLBL-1 cells. The mRNA expression levels of TACI and BAFF-R were significantly lower in GL-1 than in CLBL-1 cells. Treatment with 5-aza-2'-deoxycytidine significantly increased TACI and BAFF-R mRNA expression in GL-1 cells through demethylation of TNFRSF13B and TNFRSF13C, respectively. These results suggest that the mRNA expression of TACI and BAFF-R is regulated through methylation of their genes in canine B cells. Quantitative real-time MSP showed significant hypermethylation of the CpG islands of TNFRSF13B and TNFRSF13C in the duodenal mucosa of dogs with IBD. Furthermore, duodenal mRNA expression levels of TACI and BAFF-R were significantly lower in dogs with IBD than in healthy controls. The mRNA expression levels of TACI positively correlated with intestinal IgA expression, whereas the methylation level of its gene (TNFRSF13B) negatively correlated with IgA expression. The present results suggest the role of TACI in the regulation of mucosal IgA expression through epigenetic modifications.
Collapse
Affiliation(s)
- Shingo Maeda
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Aki Fujiwara-Igarashi
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuhito Fujino
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
243
|
Tiburzy B, Kulkarni U, Hauser AE, Abram M, Manz RA. Plasma cells in immunopathology: concepts and therapeutic strategies. Semin Immunopathol 2014; 36:277-88. [PMID: 24740168 DOI: 10.1007/s00281-014-0426-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
Plasma cells are terminally differentiated B cells that secrete antibodies, important for immune protection, but also contribute to any allergic and autoimmune disease. There is increasing evidence that plasma cell populations exhibit a considerable degree of heterogeneity with respect to their immunophenotype, migration behavior, lifetime, and susceptibility to immunosuppressive drugs. Pathogenic long-lived plasma cells are refractory to existing therapies. In contrast, short-lived plasma cells can be depleted by steroids and cytostatic drugs. Therefore, long-lived plasma cells are responsible for therapy-resistant autoantibodies and resemble a challenge for the therapy of antibody-mediated autoimmune diseases. Both lifetime and therapy resistance of plasma cells are supported by factors produced within their microenviromental niches. Current results suggest that plasma cell differentiation and survival factors such as IL-6 also signal via mammalian miRNAs within the plasma cell to modulate downstream transcription factors. Recent evidence also suggests that plasma cells and/or their immediate precursors (plasmablasts) can produce important cytokines and act as antigen-presenting cells, exhibiting so far underestimated roles in immune regulation and bone homeostasis. Here, we provide an overview on plasma cell biology and discuss exciting, experimental, and potential therapeutic approaches to eliminate pathogenic plasma cells.
Collapse
Affiliation(s)
- Benjamin Tiburzy
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | | | | | | | | |
Collapse
|
244
|
Masahata K, Umemoto E, Kayama H, Kotani M, Nakamura S, Kurakawa T, Kikuta J, Gotoh K, Motooka D, Sato S, Higuchi T, Baba Y, Kurosaki T, Kinoshita M, Shimada Y, Kimura T, Okumura R, Takeda A, Tajima M, Yoshie O, Fukuzawa M, Kiyono H, Fagarasan S, Iida T, Ishii M, Takeda K. Generation of colonic IgA-secreting cells in the caecal patch. Nat Commun 2014; 5:3704. [PMID: 24718324 DOI: 10.1038/ncomms4704] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/21/2014] [Indexed: 01/22/2023] Open
Abstract
Gut-associated lymphoid tissues are responsible for the generation of IgA-secreting cells. However, the function of the caecal patch, a lymphoid tissue in the appendix, remains unknown. Here we analyse the role of the caecal patch using germ-free mice colonized with intestinal bacteria after appendectomy. Appendectomized mice show delayed accumulation of IgA(+) cells in the large intestine, but not the small intestine, after colonization. Decreased colonic IgA(+) cells correlate with altered faecal microbiota composition. Experiments using photoconvertible Kaede-expressing mice or adoptive transfer show that the caecal patch IgA(+) cells migrate to the large and small intestines, whereas Peyer's patch cells are preferentially recruited to the small intestine. IgA(+) cells in the caecal patch express higher levels of CCR10. Dendritic cells in the caecal patch, but not Peyer's patches, induce CCR10 on cocultured B cells. Thus, the caecal patch is a major site for generation of IgA-secreting cells that migrate to the large intestine.
Collapse
Affiliation(s)
- Kazunori Masahata
- 1] Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan [2] Department of Pediatric Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eiji Umemoto
- 1] Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hisako Kayama
- 1] Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Manato Kotani
- Department of Immunology and Cell Biology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Kurakawa
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuyoshi Gotoh
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shintaro Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tomonori Higuchi
- Department of Microbiology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yoshihiro Baba
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Kinoshita
- 1] Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yosuke Shimada
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taishi Kimura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Tajima
- The Institute of Experimental Animal Sciences, Faculty of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Osamu Yoshie
- Department of Microbiology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masahiro Fukuzawa
- Department of Pediatric Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Kiyono
- 1] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan [2] Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN, Yokohama 230-0045, Japan
| | - Tetsuya Iida
- 1] Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan [2] Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Ishii
- 1] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan [2] Department of Immunology and Cell Biology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Takeda
- 1] Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
245
|
Gordon JR, Ma Y, Churchman L, Gordon SA, Dawicki W. Regulatory dendritic cells for immunotherapy in immunologic diseases. Front Immunol 2014; 5:7. [PMID: 24550907 PMCID: PMC3907717 DOI: 10.3389/fimmu.2014.00007] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
We recognize well the abilities of dendritic cells to activate effector T cell (Teff cell) responses to an array of antigens and think of these cells in this context as pre-eminent antigen-presenting cells, but dendritic cells are also critical to the induction of immunologic tolerance. Herein, we review our knowledge on the different kinds of tolerogenic or regulatory dendritic cells that are present or can be induced in experimental settings and humans, how they operate, and the diseases in which they are effective, from allergic to autoimmune diseases and transplant tolerance. The primary conclusions that arise from these cumulative studies clearly indicate that the agent(s) used to induce the tolerogenic phenotype and the status of the dendritic cell at the time of induction influence not only the phenotype of the dendritic cell, but also that of the regulatory T cell responses that they in turn mobilize. For example, while many, if not most, types of induced regulatory dendritic cells lead CD4+ naïve or Teff cells to adopt a CD25+Foxp3+ Treg phenotype, exposure of Langerhans cells or dermal dendritic cells to vitamin D leads in one case to the downstream induction of CD25+Foxp3+ regulatory T cell responses, while in the other to Foxp3− type 1 regulatory T cells (Tr1) responses. Similarly, exposure of human immature versus semi-mature dendritic cells to IL-10 leads to distinct regulatory T cell outcomes. Thus, it should be possible to shape our dendritic cell immunotherapy approaches for selective induction of different types of T cell tolerance or to simultaneously induce multiple types of regulatory T cell responses. This may prove to be an important option as we target diseases in different anatomic compartments or with divergent pathologies in the clinic. Finally, we provide an overview of the use and potential use of these cells clinically, highlighting their potential as tools in an array of settings.
Collapse
Affiliation(s)
- John R Gordon
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Yanna Ma
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Laura Churchman
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Sara A Gordon
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Wojciech Dawicki
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| |
Collapse
|
246
|
Oral administration of Shiga toxin-producing Escherichia coli induces intestinal and systemic specific immune response in mice. Med Microbiol Immunol 2014; 203:145-54. [DOI: 10.1007/s00430-013-0325-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022]
|
247
|
Shigwedha N, Sichel L, Jia L, Zhang L. Probiotical Cell Fragments (PCFs) as “Novel Nutraceutical Ingredients”. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbm.2014.23007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
248
|
Swiatczak B. Immune balance: the development of the idea and its applications. JOURNAL OF THE HISTORY OF BIOLOGY 2014; 47:411-442. [PMID: 25574533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It has long been taken for granted that the immune system’s capacity to protect an individual from infection and disease depends on the power of the system to distinguish between self and nonself. However, accumulating data have undermined this fundamental concept. Evidence against the self/nonself discrimination model left researchers in need of a new overarching framework able to capture the immune system’s reactivity. Here, I highlight that along with the self/nonself model, another powerful representation of the immune system’s reactivity has been developed in the twentieth century immunology. According to this alternative view, the immune system is not a killer of nonself strangers but a peace-maker helping to establish harmony with the environment. The balance view of the system has never become part of the dominant paradigm. However, it is gaining more and more currency as new research develops. Advances in mucosal immunology confirm that instead of distinguishing between self and foreign the immune system reacts to microbial, chemical and self-induced alterations to produce responses that counterbalance effects of these changes.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|
249
|
Swiatczak B. Immune balance: the development of the idea and its applications. JOURNAL OF THE HISTORY OF BIOLOGY 2014; 47:411-442. [PMID: 24129740 DOI: 10.1007/s10739-013-9370-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
It has long been taken for granted that the immune system's capacity to protect an individual from infection and disease depends on the power of the system to distinguish between self and nonself. However, accumulating data have undermined this fundamental concept. Evidence against the self/nonself discrimination model left researchers in need of a new overarching framework able to capture the immune system's reactivity. Here, I highlight that along with the self/nonself model, another powerful representation of the immune system's reactivity has been developed in the twentieth century immunology. According to this alternative view, the immune system is not a killer of nonself strangers but a peace-maker helping to establish harmony with the environment. The balance view of the system has never become part of the dominant paradigm. However, it is gaining more and more currency as new research develops. Advances in mucosal immunology confirm that instead of distinguishing between self and foreign the immune system reacts to microbial, chemical and self-induced alterations to produce responses that counterbalance effects of these changes.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China,
| |
Collapse
|
250
|
Meier D, Rumbo M, Gondolesi GE. Current Status of Allograft Tolerance in Intestinal Transplantation. Int Rev Immunol 2013; 33:245-60. [DOI: 10.3109/08830185.2013.829468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|