201
|
Zhou X, Lu X. The role of oxidative stress in high glucose-induced apoptosis in neonatal rat cardiomyocytes. Exp Biol Med (Maywood) 2013; 238:898-902. [PMID: 23788170 DOI: 10.1177/1535370213493728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Accumulating evidence has demonstrated that apoptosis plays a critical role in the pathogenesis of diabetic cardiomyopathy. However, the exact molecular mechanisms by which hyperglycaemia induces cardiomyocyte apoptosis are not fully understood. The present study was designed to investigate the role of oxidative stress in high glucose-induced apoptosis in cultured neonatal rat cardiomyocytes. The MTT assay was used to detect the viability of cardiomyocytes exposed to different concentrations of glucose. Oxidative stress was evaluated by measuring intracellular reactive oxygen species with 2′,7′-dichlorofluoresce diacetate staining and by detecting malondialdehyde and superoxide dismutase in the supernatant of culture media. Cardiomyocyte apoptosis was determined by flow cytometry and confocal laser scanning microscopy with Annexin V/PI staining. Our results showed that high glucose can induce oxidative stress and promote apoptosis in neonatal rat cardiomyocytes and the antioxidant can protect against high glucose-induced apoptosis, which suggests that oxidative stress is involved in high glucose-induced cardiomyocyte apoptosis. Furthermore, caspase-3 was found to be activated in the process of high glucose-induced oxidative stress, which subsequently contributes to increased apoptosis in neonatal rat cardiomyocytes. In conclusion, our study demonstrates that oxidative stress is involved in high glucose-induced cardiomyocyte apoptosis via activation of caspase-3.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011 China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011 China
| |
Collapse
|
202
|
Huang H, Wu K, You Q, Huang R, Li S, Wu K. Naringin inhibits high glucose-induced cardiomyocyte apoptosis by attenuating mitochondrial dysfunction and modulating the activation of the p38 signaling pathway. Int J Mol Med 2013; 32:396-402. [PMID: 23732220 DOI: 10.3892/ijmm.2013.1403] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 11/06/2022] Open
Abstract
Recently, naringin (NAR; 4',5,7-trihydroxyflavanone-7-rhamnoglucoside) has been shown to have cardioprotective properties. However, the specific mechanisms underlying its cardioprotective effects remain unclear. In this study, we aimed to investigate the cardioprotective effects of NAR and the possible underlying molecular mechanisms in cardiomyocytes using high glucose (HG) to induce apoptosis in H9c2 cells. The effect of NAR on apoptosis was assessed by Annexin V and propidium iodide staining, and by determining the levels of active caspase-3, -8 and -9. The effect of NAR on mitochondrial dysfunction was assessed by the loss of mitochondrial membrane potential (MMP). Our results demonstrated that exposure to HG induced apoptosis and mitochondrial dysfunction in cardiomyocytes. Treatment with NAR significantly increased MMP and inhibited the activation of caspase-3, -8 and -9. NAR attenuated the HG-induced p38 and p53 phosphorylation, decreased mitochondrial Bax and Bak expression, prevented the release of cytochrome c and increased Bcl-2 expression. Pre-treatment with SB203580, a p38 inhibitor, also suppressed p53 phosphorylation and prevented the loss of MMP, as well as apoptosis in the HG-treated H9c2 cells. Taken together, these data demonstrate that NAR inhibits HG-induced apoptosis by attenuating mitochondrial dysfunction and modulating the activation of the p38 signaling pathway.
Collapse
Affiliation(s)
- Haili Huang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | | | | | | | | | | |
Collapse
|
203
|
Zhang X, Wei X, Liang Y, Liu M, Li C, Tang H. Differential Changes of Left Ventricular Myocardial Deformation in Diabetic Patients with Controlled and Uncontrolled Blood Glucose: A Three-Dimensional Speckle-Tracking Echocardiography–Based Study. J Am Soc Echocardiogr 2013; 26:499-506. [DOI: 10.1016/j.echo.2013.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Indexed: 02/04/2023]
|
204
|
Cong W, Ma W, Zhao T, Zhu Z, Wang Y, Tan Y, Li X, Jin L, Cai L. Metallothionein prevents diabetes-induced cardiac pathological changes, likely via the inhibition of succinyl-CoA:3-ketoacid coenzyme A transferase-1 nitration at Trp(374). Am J Physiol Endocrinol Metab 2013; 304:E826-E835. [PMID: 23423173 DOI: 10.1152/ajpendo.00570.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that metallothionein (MT)-mediated protection from diabetes-induced pathological changes in cardiac tissues is related to suppression of superoxide generation and protein nitration. The present study investigated which diabetes-nitrated protein(s) mediate the development of these pathological changes by identifying the panel of nitrated proteins present in diabetic hearts of wild-type (WT) mice and not in those of cardiac-specific MT-overexpressing transgenic (MT-TG) mice. At 2, 4, 8, and 16 wk after streptozotocin induction of diabetes, histopathological examination of the WT and MT-TG diabetic hearts revealed cardiac structure derangement and remodeling, significantly increased superoxide generation, and 3-nitrotyrosine accumulation. A nitrated protein of 58 kDa, succinyl-CoA:3-ketoacid CoA transferase-1 (SCOT), was identified by mass spectrometry. Although total SCOT expression was not significantly different between the two types of mice, the diabetic WT hearts showed significantly increased nitration content and dramatically decreased catalyzing activity of SCOT. Although SCOT nitration sites were identified at Tyr(76), Tyr(117), Tyr(135), Tyr(226), Tyr(368), and Trp(374), only Tyr(76) and Trp(374) were found to be located in the active site by three-dimensional structure modeling. However, only Trp(374) showed a significantly different nitration level between the WT and MT-TG diabetic hearts. These results suggest that MT prevention of diabetes-induced pathological changes in cardiac tissues is most likely mediated by suppression of SCOT nitration at Trp(374).
Collapse
Affiliation(s)
- Weitao Cong
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 2013; 17:325-44. [PMID: 21626163 DOI: 10.1007/s10741-011-9257-z] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is an important and prevalent risk factor for congestive heart failure. Diabetic cardiomyopathy has been defined as ventricular dysfunction that occurs in diabetic patients independent of a recognized cause such as coronary artery disease or hypertension. The disease course consists of a hidden subclinical period, during which cellular structural insults and abnormalities lead initially to diastolic dysfunction, later to systolic dysfunction, and eventually to heart failure. Left ventricular hypertrophy, metabolic abnormalities, extracellular matrix changes, small vessel disease, cardiac autonomic neuropathy, insulin resistance, oxidative stress, and apoptosis are the most important contributors to diabetic cardiomyopathy onset and progression. Hyperglycemia is a major etiological factor in the development of diabetic cardiomyopathy. It increases the levels of free fatty acids and growth factors and causes abnormalities in substrate supply and utilization, calcium homeostasis, and lipid metabolism. Furthermore, it promotes excessive production and release of reactive oxygen species, which induces oxidative stress leading to abnormal gene expression, faulty signal transduction, and cardiomyocytes apoptosis. Stimulation of connective tissue growth factor, fibrosis, and the formation of advanced glycation end-products increase the stiffness of the diabetic hearts. Despite all the current information on diabetic cardiomyopathy, translational research is still scarce due to limited human myocardial tissue and most of our knowledge is extrapolated from animals. This paper aims to elucidate some of the molecular and cellular pathophysiologic mechanisms, structural changes, and therapeutic strategies that may help struggle against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Unit, University of Porto, Porto, Portugal
| | | |
Collapse
|
206
|
Miao X, Wang Y, Sun J, Sun W, Tan Y, Cai L, Zheng Y, Su G, Liu Q, Wang Y. Zinc protects against diabetes-induced pathogenic changes in the aorta: roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2. Cardiovasc Diabetol 2013; 12:54. [PMID: 23536959 PMCID: PMC3621739 DOI: 10.1186/1475-2840-12-54] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/02/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cardiovascular diseases remain a leading cause of the mortality world-wide, which is related to several risks, including the life style change and the increased diabetes prevalence. The present study was to explore the preventive effect of zinc on the pathogenic changes in the aorta. METHODS A genetic type 1 diabetic OVE26 mouse model was used with/without zinc supplementation for 3 months. To determine gender difference either for pathogenic changes in the aorta of diabetic mice or for zinc protective effects on diabetes-induced pathogenic changes, both males and females were investigated in parallel by histopathological and immunohistochemical examinations, in combination of real-time PCR assay. RESULTS Diabetes induced significant increases in aortic oxidative damage, inflammation, and remodeling (increased fibrosis and wall thickness) without significant difference between genders. Zinc treatment of these diabetic mice for three months completely prevented the above pathogenic changes in the aorta, and also significantly up-regulated the expression and function of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a pivotal regulator of anti-oxidative mechanism, and the expression of metallothionein (MT), a potent antioxidant. There was gender difference for the protective effect of zinc against diabetes-induced pathogenic changes and the up-regulated levels of Nrf2 and MT in the aorta. CONCLUSIONS These results suggest that zinc supplementation provides a significant protection against diabetes-induced pathogenic changes in the aorta without gender difference in the type 1 diabetic mouse model. The aortic protection by zinc against diabetes-induced pathogenic changes is associated with the up-regulation of both MT and Nrf2 expression.
Collapse
Affiliation(s)
- Xiao Miao
- Department of Ophthalmology, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Yonggang Wang
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Jian Sun
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Weixia Sun
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Yi Tan
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, 325035, China
| | - Lu Cai
- Kosair Children Hospital Research Institute at the Department of Pediatrics, University of Louisville, Louisville, 40202, USA
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, 325035, China
- Departments of Radiation Oncology and Pharmacology and Toxicology, University of Louisville, Louisville, 40202, USA
| | - Yang Zheng
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Guanfang Su
- Department of Ophthalmology, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Quan Liu
- The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yuehui Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| |
Collapse
|
207
|
Shi FH, Cheng YS, Dai DZ, Peng HJ, Cong XD, Dai Y. Depressed calcium-handling proteins due to endoplasmic reticulum stress and apoptosis in the diabetic heart are attenuated by argirein. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:521-31. [PMID: 23525487 DOI: 10.1007/s00210-013-0852-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/11/2013] [Indexed: 12/27/2022]
Abstract
Diabetic cardiomyopathy (DC) is a unique disease frequently complicated to diabetes mellitus, manifesting endoplasmic reticulum (ER) stress and depressed calcium-handling proteins. We hypothesized that the abnormal FKBP12.6, SERCA2a, and CASQ2 are consequent to ER stress and apoptosis that are likely due to an entity of inflammation. These abnormalities may be attributed to reactive oxygen species genesis from activated NADPH oxidase which could respond to argirein (AR) through its anti-inflammatory activity. Sprague Dawley rats were randomly divided into six groups. Except the normal group, rats were injected with streptozotocin (STZ; 60 mg/kg, i.p.) once. During weeks 5 to 8 following STZ injection, rats were treated (in milligrams per kilogram per day, i.g.) with aminoguanidine (AMG, 100; an inducible nitric oxide synthase and AGEs inhibitor) or three doses of AR (50, 100, and 200). FKBP12.6, SERCA2a, and CASQ2 and ER stress chaperones Bip and PERK and apoptotic molecules were monitored in vivo and in vitro. Impaired cardiac performance and downregulated FKBP12.6, SERCA2a, and CASQ2 were significant in DC in vivo, and abnormal calcium-handling proteins were also found in high-glucose-incubated myocytes in vitro. ER stress manifested by upregulated Bip and PERK was predominant in association with DNA ladder and upregulated Bax and downregulated BCL-2 in vivo and in vitro. AR is effective to attenuate these abnormalities compared to AMG. Diabetic myocardium has inflammatory entity expressed as ER stress contributing to downregulated calcium-handling proteins. AR has potential in managing DC through attenuating depressed calcium-handling proteins, activated ER stress, and apoptosis in the myocardium.
Collapse
Affiliation(s)
- F H Shi
- Research Division of Pharmacology, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China
| | | | | | | | | | | |
Collapse
|
208
|
Wang Y, Cheng M, Zhang B, Nie F, Jiang H. Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats. PLoS One 2013; 8:e58659. [PMID: 23554912 PMCID: PMC3595269 DOI: 10.1371/journal.pone.0058659] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/05/2013] [Indexed: 12/19/2022] Open
Abstract
Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Clinical Microbiology and Immunology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou Province, China
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou Province, China
- * E-mail:
| | - Baofang Zhang
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou Province, China
| | - Fei Nie
- Guizhou Academy of Sciences, Guiyang, Guizhou Province, China
| | - Hongmei Jiang
- Department of Clinical Microbiology and Immunology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou Province, China
| |
Collapse
|
209
|
Miao X, Sun W, Fu Y, Miao L, Cai L. Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 2013; 7:31-52. [PMID: 23385610 DOI: 10.1007/s11684-013-0251-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/26/2012] [Indexed: 12/16/2022]
Abstract
Zinc (Zn) is an essential mineral that is required for various cellular functions. Zn dyshomeostasis always is related to certain disorders such as metabolic syndrome, diabetes and diabetic complications. The associations of Zn with metabolic syndrome, diabetes and diabetic complications, thus, stem from the multiple roles of Zn: (1) a constructive component of many important enzymes or proteins, (2) a requirement for insulin storage and secretion, (3) a direct or indirect antioxidant action, and (4) an insulin-like action. However, whether there is a clear cause-and-effect relationship of Zn with metabolic syndrome, diabetes, or diabetic complications remains unclear. In fact, it is known that Zn deficiency is a common phenomenon in diabetic patients. Chronic low intake of Zn was associated with the increased risk of diabetes and diabetes also impairs Zn metabolism. Theoretically Zn supplementation should prevent the metabolic syndrome, diabetes, and diabetic complications; however, limited available data are not always supportive of the above notion. Therefore, this review has tried to summarize these pieces of available information, possible mechanisms by which Zn prevents the metabolic syndrome, diabetes, and diabetic complications. In the final part, what are the current issues for Zn supplementation were also discussed.
Collapse
Affiliation(s)
- Xiao Miao
- The Second Hospital of Jilin University, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
210
|
Wang Y, Sun W, Du B, Miao X, Bai Y, Xin Y, Tan Y, Cui W, Liu B, Cui T, Epstein PN, Fu Y, Cai L. Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB. Am J Physiol Heart Circ Physiol 2013; 304:H567-H578. [PMID: 23220333 DOI: 10.1152/ajpheart.00650.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MG-132, a proteasome inhibitor, can upregulate nuclear factor (NF) erythroid 2-related factor 2 (Nrf2)-mediated antioxidative function and downregulate NF-κB-mediated inflammation. The present study investigated whether through the above two mechanisms MG-132 could provide a therapeutic effect on diabetic cardiomyopathy in the OVE26 type 1 diabetic mouse model. OVE26 mice develop hyperglycemia at 2-3 wk after birth and exhibit albuminuria and cardiac dysfunction at 3 mo of age. Therefore, 3-mo-old OVE26 diabetic and age-matched control mice were intraperitoneally treated with MG-132 at 10 μg/kg daily for 3 mo. Before and after MG-132 treatment, cardiac function was measured by echocardiography, and cardiac tissues were then subjected to pathological and biochemical examination. Diabetic mice showed significant cardiac dysfunction, including increased left ventricular systolic diameter and wall thickness and decreased left ventricular ejection fraction with an increase of the heart weight-to-tibia length ratio. Diabetic hearts exhibited structural derangement and remodeling (fibrosis and hypertrophy). In diabetic mice, there was also increased systemic and cardiac oxidative damage and inflammation. All of these pathogenic changes were reversed by MG-132 treatment. MG-132 treatment significantly increased the cardiac expression of Nrf2 and its downstream antioxidant genes with a significant increase of total antioxidant capacity and also significantly decreased the expression of IκB and the nuclear accumulation and DNA-binding activity of NF-κB in the heart. These results suggest that MG-132 has a therapeutic effect on diabetic cardiomyopathy in OVE26 diabetic mice, possibly through the upregulation of Nrf2-dependent antioxidative function and downregulation of NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Yuehui Wang
- The Second Hospital, Jilin University, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Nizamutdinova IT, Guleria RS, Singh AB, Kendall JA, Baker KM, Pan J. Retinoic acid protects cardiomyocytes from high glucose-induced apoptosis through inhibition of NF-κB signaling pathway. J Cell Physiol 2013; 228:380-92. [PMID: 22718360 DOI: 10.1002/jcp.24142] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously shown that retinoic acid (RA) has protective effects on high glucose (HG)-induced cardiomyocyte apoptosis. To further elucidate the molecular mechanisms of RA effects, we determined the interaction between nuclear factor (NF)-κB and RA signaling. HG induced a sustained phosphorylation of IKK/IκBα and transcriptional activation of NF-κB in cardiomyocytes. Activated NF-κB signaling has an important role in HG-induced cardiomyocyte apoptosis and gene expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1). All-trans RA (ATRA) and LGD1069, through activation of RAR/RXR-mediated signaling, inhibited the HG-mediated effects in cardiomyocytes. The inhibitory effect of RA on NF-κB activation was mediated through inhibition of IKK/IκBα phosphorylation. ATRA and LGD1069 treatment promoted protein phosphatase 2A (PP2A) activity, which was significantly suppressed by HG stimulation. The RA effects on IKK and IκBα were blocked by okadaic acid or silencing the expression of PP2Ac-subunit, indicating that the inhibitory effect of RA on NF-κB is regulated through activation of PP2A and subsequent dephosphorylation of IKK/IκBα. Moreover, ATRA and LGD1069 reversed the decreased PP2A activity and inhibited the activation of IKK/IκBα and gene expression of MCP-1, IL-6, and TNF-α in the hearts of Zucker diabetic fatty rats. In summary, our findings suggest that the suppressed activation of PP2A contributed to sustained activation of NF-κB in HG-stimulated cardiomyocytes; and that the protective effect of RA on hyperglycemia-induced cardiomyocyte apoptosis and inflammatory responses is partially regulated through activation of PP2A and suppression of NF-κB-mediated signaling and downstream targets.
Collapse
Affiliation(s)
- Irina T Nizamutdinova
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504, USA
| | | | | | | | | | | |
Collapse
|
212
|
Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol 2013; 304:C508-18. [PMID: 23302777 DOI: 10.1152/ajpcell.00248.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyperglycemia-induced cardiomyocyte apoptosis contributes to diabetic cardiomyopathy. Glucagon-like peptide-1 (Glp1) receptor (Glp1r) agonists improve cardiac function and survival in response to ischemia-reperfusion and myocardial infarction. The present studies assessed whether Glp1r activation exerts direct cardioprotective effects in response to hyperglycemia. Treatment with the Glp1r agonist Exendin-4 attenuated apoptosis in neonatal rat ventricular cardiomyocytes cultured in high (33 mM) glucose. This protective effect was mimicked by the cAMP inducer forskolin. The Exendin-4 protective effect was blocked by the Glp1r antagonist Exendin(9-39) or the PKA antagonist H-89. Exendin-4 also protected cardiomyocytes from hydrogen peroxide (H2O2)-induced cell death. Cardiomyocyte protection by Exendin-4 was not due to reduced reactive oxygen species levels. Instead, Exendin-4 treatment reduced endoplasmic reticulum (ER) stress, demonstrated by decreased expression of glucose-regulated protein-78 (GRP78) and CCAT/enhancer-binding homologous protein (CHOP). Reduced ER stress was not due to activation of the unfolded protein response, indicating that Exendin-4 directly prevents ER stress. Exendin-4 treatment selectively protected cardiomyocytes from thapsigargin- but not tunicamycin-induced death. This suggests that Exendin-4 attenuates thapsigargin-mediated inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase-2a (SERCA2a). High glucose attenuates SERCA2a function by reducing SERCA2a mRNA and protein levels, but Exendin-4 treatment prevented this reduction. Exendin-4 treatment also enhanced phosphorylation of the SERCA2a regulator phospholamban (PLN), which would be expected to stimulate SERCA2a activity. In sum, Glp1r activation attenuates high glucose-induced cardiomyocyte apoptosis in association with decreased ER stress and markers of enhanced SERCA2a activity. These findings identify a novel mechanism whereby Glp1-based therapies could be used as treatments for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Craig W Younce
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford Burnham Medical Research Institute at Lake Nona, 6400 Sanger Rd., Orlando, FL 32837, USA
| | | | | |
Collapse
|
213
|
Jiang S, Guo R, Zhang Y, Zou Y, Ren J. Heavy metal scavenger metallothionein mitigates deep hypothermia-induced myocardial contractile anomalies: role of autophagy. Am J Physiol Endocrinol Metab 2013; 304:E74-86. [PMID: 23132296 PMCID: PMC3543534 DOI: 10.1152/ajpendo.00176.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low-ambient temperature environment exposure increased the risk of cardiovascular morbidity and mortality, although the underlying mechanism remains unclear. This study was designed to examine the impact of cardiac overexpression of metallothionein, a cysteine-rich heavy metal scavenger, on low temperature (4°C)-induced changes in myocardial function and the underlying mechanism involved, with a focus on autophagy. Cold exposure (4°C for 3 wk) promoted oxidative stress and protein damage, increased left ventricular end-systolic and -diastolic diameter, and suppressed fractional shortening and whole heart contractility, the effects of which were significantly attenuated or ablated by metallothionein. Levels of the autophagy markers LC3B-II, beclin-1, and Atg7 were significantly upregulated with unchanged autophagy adaptor protein p62. Fluorescent immunohistochemistry revealed abundant LC3B puncta in cold temperature-exposed mouse hearts. Coimmunoprecipitation revealed increased dissociation between Bcl2 and Beclin-1. Cold exposure reduced phosphorylation of the autophagy inhibitory signaling molecules Akt and mTOR, increased ULK1 phosphorylation, and dampened eNOS phosphorylation (without changes in their total protein expression). These cold exposure-induced changes in myocardial function, autophagy, and autophagy signaling cascades were significantly alleviated or mitigated by metallothionein. Inhibition of autophagy using 3-methyladenine in vivo reversed cold exposure-induced cardiomyocyte contractile defects. Cold exposure-induced cardiomyocyte dysfunction was attenuated by the antioxidant N-acetylcysteine and the lysosomal inhibitor bafilomycin A1. Collectively, these findings suggest that metallothionein protects against cold exposure-induced cardiac anomalies possibly through attenuation of cardiac autophagy.
Collapse
Affiliation(s)
- Shasha Jiang
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
214
|
Xiao H, Gu Z, Wang G, Zhao T. The possible mechanisms underlying the impairment of HIF-1α pathway signaling in hyperglycemia and the beneficial effects of certain therapies. Int J Med Sci 2013; 10:1412-21. [PMID: 23983604 PMCID: PMC3752727 DOI: 10.7150/ijms.5630] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 07/23/2013] [Indexed: 01/07/2023] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α), an essential transcription factor which mediates the adaptation of cells to low oxygen tensions, is regulated precisely by hypoxia and hyperglycemia, which are major determinants of the chronic complications associated with diabetes. The process of HIF-1α stabilization by hypoxia is clear; however, the mechanisms underlying the potential deleterious effect of hyperglycemia on HIF-1α are still controversial, despite reports of a variety of studies demonstrating the existence of this phenomenon. In fact, HIF-1α and glucose can sometimes influence each other: HIF-1α induces the expression of glycolytic enzymes and glucose metabolism affects HIF-1α accumulation in some cells. Although hyperglycemia upregulates HIF-1α signaling in some specific cell types, we emphasize the inhibition of HIF-1α by high glucose in this review. With regard to the mechanisms of HIF-1α impairment, the role of methylglyoxal in impairment of HIF-1α stabilization and transactivation ability and the negative effect of reactive oxygen species (ROS) on HIF-1α are discussed. Other explanations for the inhibition of HIF-1α by high glucose exist: the increased sensitivity of HIF-1α to Von Hippel-Lindau (VHL) machinery, the role of osmolarity and proteasome activity, and the participation of several molecules. This review aims to summarize several important developments regarding these mechanisms and to discuss potentially effective therapeutic techniques (antioxidants eicosapentaenoic acid (EPA) and metallothioneins (MTs), pharmaceuticals cobalt chloride (CoCl2), dimethyloxalylglycine (DMOG), desferrioxamine (DFO) and gene transfer of constitutively active forms of HIF-1α) and their mechanisms of action for intervention in the chronic complications in diabetes.
Collapse
Affiliation(s)
- Haijuan Xiao
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | | | | | | |
Collapse
|
215
|
Patel SS, Goyal RK. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res 2012; 3:239-45. [PMID: 22224046 PMCID: PMC3249782 DOI: 10.4103/0974-8490.89743] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/09/2011] [Accepted: 11/15/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. OBJECTIVE This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. MATERIALS AND METHODS Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o.) for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. RESULTS Injection of STZ produced significant loss of body weight (BW), polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUC(glucose) level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. CONCLUSION The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes.
Collapse
Affiliation(s)
- Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India
| | | |
Collapse
|
216
|
Bai Y, Tan Y, Wang B, Miao X, Chen Q, Zheng Y, Cai L. Deletion of angiotensin II type 1 receptor gene or scavenge of superoxide prevents chronic alcohol-induced aortic damage and remodelling. J Cell Mol Med 2012; 16:2530-2538. [PMID: 22435601 PMCID: PMC3823445 DOI: 10.1111/j.1582-4934.2012.01569.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/28/2012] [Indexed: 12/23/2022] Open
Abstract
To investigate whether chronic alcohol consumption induces vascular injury via angiotensin II (Ang II) type 1 (AT1) receptor-dependent superoxide generation, male transgenic mice with knockout of AT1 gene (AT1-KO) and age-matched wild-type (WT) C57BL/6 mice were pair-fed a modified Lieber-DeCarli alcohol or isocaloric maltose dextrin control liquid diet for 2 months. Ethanol content (%, W/V) in the diet was 4.8 (34% of total calories) at initiation, and gradually increased up to 5.4 (38% of total calories). For some WT mice with and without alcohol treatment, superoxide dismutase mimetic (MnTMPyP) was given simultaneously by intraperitoneal injection at 5 mg/kg body weight daily for 2 months. At the end of studies, aortas were harvested for histopathological and immunohistochemical examination. Significant increases in the wall thickness and structural disarrangement of aorta were found in alcohol group, along with significant increases in aortic oxidative and/or nitrosative damage, expressions of NADPH oxidases (NOXs), inflammatory response, cell death and proliferation, and remodelling (fibrosis). However, these pathological changes were completely attenuated in alcohol-treated AT1-KO mice or in alcohol-treated WT mice that were also simultaneously treated with MnTMPyP for 2 months. These results suggest that chronic alcohol consumption may activate NOX via Ang II/AT1 receptor, to generate superoxide and associated peroxynitrite that in turn causes aortic nitrosative damage, inflammation, cell death and proliferation, and remodelling. Therefore, blocking Ang II/AT1 system or scavenging superoxide may become a potential preventive and/therapeutic approach to alcoholic vascular damage.
Collapse
Affiliation(s)
- Yang Bai
- The Cardiovascular Center, the First Hospital of Jilin UniversityChangchun, China
- Department of Pediatrics, University of LouisvilleKY, USA
| | - Yi Tan
- Department of Pediatrics, University of LouisvilleKY, USA
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical CollegeWenzhou, Zhejiang, China
| | - Bo Wang
- Department of Pediatrics, University of LouisvilleKY, USA
| | - Xiao Miao
- Department of Pediatrics, University of LouisvilleKY, USA
- The Second Hospital of Jilin UniversityChangchun, China
| | - Qiang Chen
- Department of Pediatrics, University of LouisvilleKY, USA
- School of Public Health, Jilin UniversityChangchun, China
| | - Yang Zheng
- The Cardiovascular Center, the First Hospital of Jilin UniversityChangchun, China
| | - Lu Cai
- The Cardiovascular Center, the First Hospital of Jilin UniversityChangchun, China
- Department of Pediatrics, University of LouisvilleKY, USA
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical CollegeWenzhou, Zhejiang, China
| |
Collapse
|
217
|
Zhong X, Wang L, Wang Y, Dong S, Leng X, Jia J, Zhao Y, Li H, Zhang X, Xu C, Yang G, Wu L, Wang R, Lu F, Zhang W. Exogenous hydrogen sulfide attenuates diabetic myocardial injury through cardiac mitochondrial protection. Mol Cell Biochem 2012; 371:187-98. [PMID: 23001844 DOI: 10.1007/s11010-012-1435-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/04/2012] [Indexed: 12/28/2022]
Abstract
In the study, we investigated how exogenous H(2)S (hydrogen sulfide) influenced streptozotocin (STZ)-induced diabetic myocardial injury through cardiac mitochondrial protection and nitric oxide (NO) synthesis in intact rat hearts and primary neonatal rat cardiomyocytes. Diabetes was induced by STZ (50 mg/kg) and the daily administration of 100 μM NaHS (sodium hydrosulfide, an H(2)S donor) in the diabetes + NaHS treatment group. At the end of 4, 8, and 12 weeks, the morphological alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, the production of reactive oxygen species (ROS) and the level of NO were measured. The expressions of cystathionine-γ-lyase (CSE), caspase-3 and -9, the mitochondrial NOX4 and cytochrome c were analyzed by western blotting. The results showed the cardiac function injured, morphological changes and the apoptotic rate increased in the diabetic rat hearts. In the primary neonatal rat cardiomyocytes of high glucose group, ROS production was increased markedly, whereas the expression of CSE and the level of NO was decreased. However, treatment with NaHS significantly reversed the diabetic rat hearts function, the morphological changes and decreased the levels of ROS and NO in the primary neonatal rat cardiomyocytes administrated with high glucose group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and -9 and inhibited the release of cytochrome c from mitochondria in the primary neonatal rat cardiomyocytes. In conclusion, H(2)S is involved in the attenuation of diabetic myocardial injury through the protection of cardiac mitochondria.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Miao X, Bai Y, Sun W, Cui W, Xin Y, Wang Y, Tan Y, Miao L, Fu Y, Su G, Cai L. Sulforaphane prevention of diabetes-induced aortic damage was associated with the up-regulation of Nrf2 and its down-stream antioxidants. Nutr Metab (Lond) 2012; 9:84. [PMID: 22978402 PMCID: PMC3495894 DOI: 10.1186/1743-7075-9-84] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 09/08/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Oxidative stress plays an important role in diabetes-induced vascular inflammation and pathogenesis. Nuclear factor E2-related factor-2 (Nrf2) is a transcription factor orchestrating antioxidant and cyto-protective responses to oxidative stress. In the present study, we tested whether sulforaphane (SFN) can protect the aorta from diabetes and, if so, whether the aortic protection is associated with up-regulation of Nrf2 and its down-stream antioxidants. METHODS Type 1 diabetes was induced in FVB mice by multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with or without SFN at 0.5 mg/kg daily in five days of each week for three months. At the end of 3 months treatment of SFN one set of mice were sacrificed to perform the experimental measurements. The second set of both diabetic and control mice were aged for additional 3 months without further SFN treatment and then sacrificed to perform the experimental measurements. Aortas from these mice were assessed for fibrosis, inflammation, oxidative damage, and Nrf2 expression and transcription by immunohistochemical staining and real-time PCR method, respectively. RESULTS Diabetes induced significant increases in oxidative stress and inflammation in the aorta at both 3 and 6 months, and fibrotic response at 6 months. SFN completely prevented these diabetic pathogenic changes and also significantly up-regulated the expression of Nrf2 and its down-stream antioxidants. CONCLUSIONS These results suggest that diabetes-induced aortic fibrosis, inflammation, and oxidative damage can be prevented by SFN. The aortic protection from diabetes by SFN was associated with the up-regulation of Nrf2 and its downstream antioxidants.
Collapse
Affiliation(s)
- Xiao Miao
- The Second Hospital of Jilin University, Changchun, China
- KCHRI at the Department of Pediatrics, University of Louisville, Louisville, USA
| | - Yang Bai
- KCHRI at the Department of Pediatrics, University of Louisville, Louisville, USA
- The People’s Hospital of Jilin Province, Changchun, China
| | - Weixia Sun
- KCHRI at the Department of Pediatrics, University of Louisville, Louisville, USA
- The First Hospital of Jilin University, Changchun, China
| | - Wenpeng Cui
- The Second Hospital of Jilin University, Changchun, China
- KCHRI at the Department of Pediatrics, University of Louisville, Louisville, USA
| | - Ying Xin
- KCHRI at the Department of Pediatrics, University of Louisville, Louisville, USA
- Normal Bethune Medical College of Jilin University, Changchun, China
| | - Yuehui Wang
- The Second Hospital of Jilin University, Changchun, China
| | - Yi Tan
- KCHRI at the Department of Pediatrics, University of Louisville, Louisville, USA
- Chinese-American Research Institute for Diabetic Complications at Wenzhou Medical College, Wenzhou, China
| | - Lining Miao
- The Second Hospital of Jilin University, Changchun, China
| | - Yaowen Fu
- The First Hospital of Jilin University, Changchun, China
| | - Guanfang Su
- The Second Hospital of Jilin University, Changchun, China
| | - Lu Cai
- KCHRI at the Department of Pediatrics, University of Louisville, Louisville, USA
- Chinese-American Research Institute for Diabetic Complications at Wenzhou Medical College, Wenzhou, China
- Departments of Radiation Oncology and Pharmacology and Toxicology, The University of Louisville, Louisville, USA
| |
Collapse
|
219
|
Asrih M, Steffens S. Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovasc Pathol 2012; 22:117-25. [PMID: 22951386 DOI: 10.1016/j.carpath.2012.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/06/2012] [Accepted: 07/27/2012] [Indexed: 12/11/2022] Open
Abstract
The prevalence of heart failure independent of coronary artery disease and hypertension is increasing rapidly in diabetic patients. Thus, this pathophysiology has been recognized as a distinct clinical entity termed "diabetic cardiomyopathy." Several studies support the notion that diabetes is a threatening insult for the myocardium resulting in functional, cellular, and structural changes manifesting as a cardiac myopathy. Recent data suggested that epigenetics including DNA and histone modifications as well as microRNAs play an important role in the development of cardiac diseases. The role of epigenetics in diabetes is largely recognized; however, its role in diabetes-associated cardiomyopathy remains elusive. Thus, molecular, cellular, and functional modulations in the diabetic cardiomyopathy will be investigated in this review. Moreover, particular attention will be drawn on the epigenetic mechanisms that may play an important role in the pathophysiology of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Mohamed Asrih
- Division of Cardiology, Foundation for Medical Research, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
220
|
Zhao Y, Tan Y, Dai J, Wang B, Li B, Guo L, Cui J, Wang G, Li W, Cai L. Zinc deficiency exacerbates diabetic down-regulation of Akt expression and function in the testis: essential roles of PTEN, PTP1B and TRB3. J Nutr Biochem 2012; 23:1018-1026. [PMID: 22000581 DOI: 10.1016/j.jnutbio.2011.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/04/2011] [Accepted: 05/20/2011] [Indexed: 12/29/2022]
Abstract
Since zinc (Zn) plays an important role in the spermatogenesis and Zn deficiency exacerbated diabetes-induced testicular apoptosis, the present study investigated the effect of Zn deficiency on diabetes-induced testicular Akt-mediated glucose metabolism changes and inflammation. Zn deficiency was induced by chronic treatment of normal and diabetic mice with the Zn chelator N,N,N',N', tetrakis (2-pyridylmethyl) ethylenediaminepentaethylene (TPEN). After diabetes onset induced by streptozotocin, both diabetic and age-matched control mice were given TPEN intraperitoneally for 4 months. Western blotting assay revealed that Akt-mediated glucose metabolism signaling was down-regulated in the diabetic testis and was further decreased in diabetic mice with Zn deficiency, reflected by reduced phosphorylation of both Akt and GSK-3β and increased phosphorylation of glycogen synthase along with a disarrangement of fatty acid metabolism (increased expression of PPAR-α and decreased adenosine-monophosphate-activated protein kinase phosphorylation). Testicular expressions of plasminogen activator inhibitor-1 and intracellular adhesion molecule-1 as inflammatory factors were increased in the TPEN or diabetes-alone group, but not additive in the group of diabetes with Zn deficiency. A mechanistic study showed that Akt negative regulators phosphatase and tensin homology deleted on chromosome 10 (PTEN), protein tyrosine phosphatases 1B and Tribbles 3 all increased in diabetic testis and further increased in the testis of diabetic mice with Zn deficiency. These studies suggest that Zn deficiency significantly exacerbated diabetic down-regulation of Akt expression and function, most likely by up-regulation of Akt negative regulators. Therefore, prevention of Zn deficiency for diabetic patients is important in order to avoid the exacerbation of diabetic inhibition of glucose metabolism in the testis.
Collapse
Affiliation(s)
- Yuguang Zhao
- The Cancer Center, the First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Zhang Y, Hu N, Hua Y, Richmond KL, Dong F, Ren J. Cardiac overexpression of metallothionein rescues cold exposure-induced myocardial contractile dysfunction through attenuation of cardiac fibrosis despite cardiomyocyte mechanical anomalies. Free Radic Biol Med 2012; 53:194-207. [PMID: 22565031 PMCID: PMC3392511 DOI: 10.1016/j.freeradbiomed.2012.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
Cold exposure is associated with an increased prevalence of cardiovascular disease although the mechanism is unknown. Metallothionein, a heavy-metal-scavenging antioxidant, protects against cardiac anomalies. This study was designed to examine the impact of metallothionein on cold exposure-induced myocardial dysfunction, intracellular Ca(2+) derangement, fibrosis, endoplasmic reticulum (ER) stress, and apoptosis. Echocardiography, cardiomyocyte function, and Masson trichrome staining were evaluated in Friend virus B (FVB) and cardiac-specific metallothionein transgenic mice after cold exposure (3 months, 4 °C). Cold exposure increased plasma levels of norepinephrine, endothelin-1, and TGF-β; reduced plasma NO levels and cardiac antioxidant capacity; enlarged ventricular end-systolic diameter; compromised fractional shortening; promoted reactive oxygen species (ROS) production and apoptosis; and suppressed the ER stress markers Bip, calregulin, and phospho-eIF2α, accompanied by cardiac fibrosis and elevated levels of matrix metalloproteinases and Smad-2/3 in FVB mice. Cold exposure-induced echocardiographic, histological, ER stress, ROS, apoptotic, and fibrotic signaling changes (but not plasma markers) were greatly improved by metallothionein. In vitro metallothionein induction by zinc chloride ablated H(2)O(2)- but not TGF-β-induced cell proliferation in fibroblasts. In summary, our data suggest that metallothionein protects against cold exposure-induced cardiac anomalies possibly through attenuation of myocardial fibrosis.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Kacy L. Richmond
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Feng Dong
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| |
Collapse
|
222
|
Li CJ, Lv L, Li H, Yu DM. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 2012; 11:73. [PMID: 22713251 PMCID: PMC3472273 DOI: 10.1186/1475-2840-11-73] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 12/17/2022] Open
Abstract
Background Alpha-lipoic acid (ALA), a naturally occurring compound, exerts powerful protective effects in various cardiovascular disease models. However, its role in protecting against diabetic cardiomyopathy (DCM) has not been elucidated. In this study, we have investigated the effects of ALA on cardiac dysfunction, mitochondrial oxidative stress (MOS), extracellular matrix (ECM) remodeling and interrelated signaling pathways in a diabetic rat model. Methods Diabetes was induced in rats by I.V. injection of streptozotocin (STZ) at 45 mg/kg. The animals were randomly divided into 4 groups: normal groups with or without ALA treatment, and diabetes groups with or without ALA treatment. All studies were carried out 11 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate cardiac function. Mitochondrial oxidative biochemical parameters were measured by spectophotometeric assays. Extracellular matrix content (total collagen, type I and III collagen) was assessed by staining with Sirius Red. Gelatinolytic activity of Pro- and active matrix metalloproteinase-2 (MMP-2) levels were analyzed by a zymogram. Cardiac fibroblasts differentiation to myofibroblasts was evaluated by Western blot measuring smooth muscle actin (α-SMA) and transforming growth factor–β (TGF-β). Key components of underlying signaling pathways including the phosphorylation of c-Jun N-terminal kinase (JNK), p38 MAPK and ERK were also assayed by Western blot. Results DCM was successfully induced by the injection of STZ as evidenced by abnormal heart mass and cardiac function, as well as the imbalance of ECM homeostasis. After administration of ALA, left ventricular dysfunction greatly improved; interstitial fibrosis also notably ameliorated indicated by decreased collagen deposition, ECM synthesis as well as enhanced ECM degradation. To further assess the underlying mechanism of improved DCM by ALA, redox status and cardiac remodeling associated signaling pathway components were evaluated. It was shown that redox homeostasis was disturbed and MAPK signaling pathway components activated in STZ-induced DCM animals. While ALA treatment favorably shifted redox homeostasis and suppressed JNK and p38 MAPK activation. Conclusions These results, coupled with the excellent safety and tolerability profile of ALA in humans, demonstrate that ALA may have therapeutic potential in the treatment of DCM by attenuating MOS, ECM remodeling and JNK, p38 MAPK activation.
Collapse
Affiliation(s)
- Chun-jun Li
- Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | | | | | | |
Collapse
|
223
|
Yu XY, Geng YJ, Liang JL, Zhang S, Lei HP, Zhong SL, Lin QX, Shan ZX, Lin SG, Li Y. High levels of glucose induce "metabolic memory" in cardiomyocyte via epigenetic histone H3 lysine 9 methylation. Mol Biol Rep 2012; 39:8891-8. [PMID: 22707199 DOI: 10.1007/s11033-012-1756-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 06/07/2012] [Indexed: 01/09/2023]
Abstract
Diabetic patients continue to develop inflammation and cardiovascular complication even after achieving glycemic control, suggesting a "metabolic memory". Metabolic memory is a major challenge in the treatment of diabetic complication, and the mechanisms underlying metabolic memory are not clear. Recent studies suggest a link between chromatin histone methylation and metabolic memory. In this study, we tested whether histone 3 lysine-9 tri-methylation (H3K9me3), a key epigenetic chromatin marker, was involved in high glucose (HG)-induced inflammation and metabolic memory. Incubating cardiomyocyte cells in HG resulted in increased levels of inflammatory cytokine IL-6 mRNA when compared with myocytes incubated in normal culture media, whereas mannitol (osmotic control) has no effect. Chromatin immunoprecipitation (ChIP) assays showed that H3K9me3 levels were significantly decreased at the promoters of IL-6. Immunoblotting demonstrated that protein levels of the H3K9me3 methyltransferase, Suv39h1, were also reduced after HG treatment. HG-induced apoptosis, mitochondrial dysfunction and cytochrome-c release were reversible. However, the effects of HG on the expression of IL-6 and the levels of H3K9me3 were irreversible after the removal of HG from the culture. These results suggest that HG-induced sustained inflammatory phenotype and epigenetic histone modification, rather than HG-induced mitochondrial dysfunction and apoptosis, are main mechanisms responsible for metabolic memory. In conclusion, our data demonstrate that HG increases expression of inflammatory cytokine and decreases the levels of histone-3 methylation at the cytokine promoter, and suggest that modulating histone 3 methylation and inflammatory cytokine expression may be a useful strategy to prevent metabolic memory and cardiomyopathy in diabetic patients.
Collapse
Affiliation(s)
- Xi-Yong Yu
- Guangdong Provincial Cardiovascular Institute, Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Xue W, Liu Y, Zhao J, Cai L, Li X, Feng W. Activation of HIF-1 by metallothionein contributes to cardiac protection in the diabetic heart. Am J Physiol Heart Circ Physiol 2012; 302:H2528-H2535. [PMID: 22523246 DOI: 10.1152/ajpheart.00850.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothionein (MT) protects against heavy metal-induced cellular damage and may participate in other fundamental physiological and pathological processes, such as antioxidation, proliferation, and cell survival. Previously, we have shown that elevation of MT by transgene or by induction with zinc protects the heart against diabetic cardiomyopathy by mechanisms such as antidiabetes-induced oxidative stress and inactivation of glycogen synthase kinase-3, which mediates glucose metabolism. We also reported that MT overexpression rescued the diabetic-induced reduction of hypoxia-inducible factor (HIF)-1α, which plays an important role in glucose utilization and angiogenesis. Here, we showed that overexpression of MT increased hexokinase (HK)-II expression under control conditions and attenuated diabetes-decreased HK-II expression. Glycolytic flux assay demonstrated that MT increased glycolysis output in high glucose-containing media-cultured H9c2 cells. The diabetes-induced reduction in cardiac capillaries was also attenuated by MT overexpression. Furthermore, MT induction significantly increased HIF-1 expression under both control and diabetic conditions. Moreover, in the present study, we demonstrated that MT-enhanced HIF-1α activity is likely through a mechanism of protein nuclear translocation. These results suggest that MT induces HIF-1α expression, leading to increased HK-II in the diabetic heart.
Collapse
Affiliation(s)
- Wanli Xue
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
225
|
Singh AB, Guleria RS, Nizamutdinova IT, Baker KM, Pan J. High glucose-induced repression of RAR/RXR in cardiomyocytes is mediated through oxidative stress/JNK signaling. J Cell Physiol 2012; 227:2632-44. [PMID: 21882190 DOI: 10.1002/jcp.23005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biological actions of retinoids are mediated by nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). We have recently reported that decreased expression of RARα and RXRα has an important role in high glucose (HG)-induced cardiomyocyte apoptosis. However, the regulatory mechanisms of HG effects on RARα and RXRα remain unclear. Using neonatal cardiomyocytes, we found that ligand-induced promoter activity of RAR and RXR was significantly suppressed by HG. HG promoted protein destabilization and serine-phosphorylation of RARα and RXRα. Proteasome inhibitor MG132 blocked the inhibitory effect of HG on RARα and RXRα. Inhibition of intracellular reactive oxidative species (ROS) abolished the HG effect. In contrast, H(2)O(2) stimulation suppressed the expression and ligand-induced promoter activity of RARα and RXRα. HG promoted phosphorylation of ERK1/2, JNK and p38 MAP kinases, which was abrogated by an ROS inhibitor. Inhibition of JNK, but not ERK and p38 activity, reversed HG effects on RARα and RXRα. Activation of JNK by over expressing MKK7 and MEKK1, resulted in significant downregulation of RARα and RXRα. Ligand-induced promoter activity of RARα and RXRα was also suppressed by overexpression of MEKK1. HG-induced cardiomyocyte apoptosis was potentiated by activation of JNK, and prevented by all-trans retinoic acid and inhibition of JNK. Silencing the expression of RARα and RXRα activated the JNK pathway. In conclusion, HG-induced oxidative stress and activation of the JNK pathway negatively regulated expression/activation of RAR and RXR. The impaired RAR/RXR signaling and oxidative stress/JNK pathway forms a vicious circle, which significantly contributes to hyperglycemia induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Amar B Singh
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | | | | | | | |
Collapse
|
226
|
Yao Y, Li R, Ma Y, Wang X, Li C, Zhang X, Ma R, Ding Z, Liu L. α-Lipoic acid increases tolerance of cardiomyoblasts to glucose/glucose oxidase-induced injury via ROS-dependent ERK1/2 activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:920-9. [DOI: 10.1016/j.bbamcr.2012.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/19/2012] [Accepted: 02/07/2012] [Indexed: 11/25/2022]
|
227
|
Rajesh M, Bátkai S, Kechrid M, Mukhopadhyay P, Lee WS, Horváth B, Holovac E, Cinar R, Liaudet L, Mackie K, Haskó G, Pacher P. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes 2012; 61:716-727. [PMID: 22315315 PMCID: PMC3282820 DOI: 10.2337/db11-0477] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 12/06/2011] [Indexed: 02/07/2023]
Abstract
Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1β, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, β-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Sándor Bátkai
- Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
- Institute for Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Malek Kechrid
- Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Partha Mukhopadhyay
- Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Wen-Shin Lee
- Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Béla Horváth
- Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Eileen Holovac
- Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Resat Cinar
- Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey
| | - Pál Pacher
- Laboratory of Physiological Studies, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| |
Collapse
|
228
|
Mar GY, Ku PM, Chen LJ, Cheng KC, Li YX, Cheng JT. Increase in cardiac M2-muscarinic receptor expression is regulated by GATA binding protein 4 (GATA-4) in streptozotocin-induced diabetic rats. Int J Cardiol 2012; 167:436-41. [PMID: 22293779 DOI: 10.1016/j.ijcard.2012.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 12/30/2011] [Accepted: 01/06/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND An increase in cardiac M2-muscarinic receptor (M2-mAChR) expression in diabetic rats has been observed, but the molecular mechanism of this increase remains unclear. The transcriptional activity of GATA binding protein 4 (GATA-4) has been documented to regulate the expression of M2-mAChR genes. In this study, we were interested in identifying the role of GATA-4 in the increase in M2-mAChR in diabetic rats and a primary culture of cardiomyocytes. METHODS Streptozotocin-induced diabetic rats (STZ-rats) and high-glucose (D-glucose 30 mM, 24h)-treated primary cultures of cardiomyocytes from neonatal rats were used to investigate the role of GATA-4 in the change in M2-mAChR. The protein expression was determined by Western blot analysis. Phlorizin (Na(+)-glucose co-transport inhibitor), insulin, tiron (radical scavenger), PD98059 (ERK inhibitor) and SB203580 (p38 inhibitor) were used. We also silenced GATA-4 by RNAi to investigate the changes in M2-mAChR expression. RESULTS The cardiac output was reduced in STZ-rats with a higher expression of M2-mAChR or phosphorylated GATA-4 in the heart. These changes were reversed after correction of the blood sugar level. In cardiomyocytes, high glucose treatment also increased M2-mAChR expression and GATA-4 phosphorylation. These changes were reversed by tiron (ROS scavenger) or PD98059 (MEK/ERK inhibitor). However, an increase in M2-mAChR expression was not observed when GATA-4 was silenced by small interfering RNA (siRNA) in cardiomyocytes. CONCLUSIONS We suggest that hyperglycemia can cause a higher expression of M2-mAChR in cardiomyocytes mainly through ROS to enhance MEK/ERK for phosphorylation of GATA-4.
Collapse
Affiliation(s)
- Guang-Yuan Mar
- Department of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung City 81301, Taiwan
| | | | | | | | | | | |
Collapse
|
229
|
Xu J, Zhou Q, Xu W, Cai L. Endoplasmic reticulum stress and diabetic cardiomyopathy. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:827971. [PMID: 22144992 PMCID: PMC3226330 DOI: 10.1155/2012/827971] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/02/2023]
Abstract
The endoplasmic reticulum (ER) is an organelle entrusted with lipid synthesis, calcium homeostasis, protein folding, and maturation. Perturbation of ER-associated functions results in an evolutionarily conserved cell stress response, the unfolded protein response (UPR) that is also called ER stress. ER stress is aimed initially at compensating for damage but can eventually trigger cell death if ER stress is excessive or prolonged. Now the ER stress has been associated with numerous diseases. For instance, our recent studies have demonstrated the important role of ER stress in diabetes-induced cardiac cell death. It is known that apoptosis has been considered to play a critical role in diabetic cardiomyopathy. Therefore, this paper will summarize the information from the literature and our own studies to focus on the pathological role of ER stress in the development of diabetic cardiomyopathy. Improved understanding of the molecular mechanisms underlying UPR activation and ER-initiated apoptosis in diabetic cardiomyopathy will provide us with new targets for drug discovery and therapeutic intervention.
Collapse
Affiliation(s)
- Jiancheng Xu
- Department of Clinical Laboratory at the First Bethune Hospital, Jilin University, Changchun 130021, China
| | - Qi Zhou
- Department of Pediatrics at the First Bethune Hospital, Jilin University, Changchun 130021, China
| | - Wei Xu
- Department of Clinical Laboratory at the First Bethune Hospital, Jilin University, Changchun 130021, China
| | - Lu Cai
- Department of Clinical Laboratory at the First Bethune Hospital, Jilin University, Changchun 130021, China
- Department of Pediatrics, University of Louisville, Louisville 40202, KY, USA
| |
Collapse
|
230
|
Kain V, Kumar S, Sitasawad SL. Azelnidipine prevents cardiac dysfunction in streptozotocin-diabetic rats by reducing intracellular calcium accumulation, oxidative stress and apoptosis. Cardiovasc Diabetol 2011; 10:97. [PMID: 22054019 PMCID: PMC3234183 DOI: 10.1186/1475-2840-10-97] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/04/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Numerous evidences suggest that diabetic heart is characterized by compromised ventricular contraction and prolonged relaxation attributable to multiple causative factors including calcium accumulation, oxidative stress and apoptosis. Therapeutic interventions to prevent calcium accumulation and oxidative stress could be therefore helpful in improving the cardiac function under diabetic condition. METHODS This study was designed to examine the effect of long-acting calcium channel blocker (CCB), Azelnidipine (AZL) on contractile dysfunction, intracellular calcium (Ca2+) cycling proteins, stress-activated signaling molecules and apoptosis on cardiomyocytes in diabetes. Adult male Wistar rats were made diabetic by a single intraperitoneal (IP) injection of streptozotocin (STZ). Contractile functions were traced from live diabetic rats to isolated individual cardiomyocytes including peak shortening (PS), time-to-PS (TPS), time-to-relengthening (TR90), maximal velocity of shortening/relengthening (± dL/dt) and intracellular Ca2+ fluorescence. RESULTS Diabetic heart showed significantly depressed PS, ± dL/dt, prolonged TPS, TR90 and intracellular Ca2+ clearing and showed an elevated resting intracellular Ca2+. AZL itself exhibited little effect on myocyte mechanics but it significantly alleviated STZ-induced myocyte contractile dysfunction. Diabetes increased the levels of superoxide, enhanced expression of the cardiac damage markers like troponin I, p67phox NADPH oxidase subunit, restored the levels of the mitochondrial superoxide dismutase (Mn-SOD), calcium regulatory proteins RyR2 and SERCA2a, and suppressed the levels of the anti-apoptotic Bcl-2 protein. All of these STZ-induced alterations were reconciled by AZL treatment. CONCLUSION Collectively, the data suggest beneficial effect of AZL in diabetic cardiomyopathy via altering intracellular Ca2+ handling proteins and preventing apoptosis by its antioxidant property.
Collapse
Affiliation(s)
- Vasundhara Kain
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind Road, Pune-411007, Maharashtra, India
| | | | | |
Collapse
|
231
|
Bhatti R, Sharma S, Singh J, Ishar MPS. Ameliorative effect of Aegle marmelos leaf extract on early stage alloxan-induced diabetic cardiomyopathy in rats. PHARMACEUTICAL BIOLOGY 2011; 49:1137-1143. [PMID: 22014262 DOI: 10.3109/13880209.2011.572077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVE The pathogenesis of diabetic cardiomyopathy (DCM) is complex, and the therapeutic options available to treat DCM are limited. The present study was designed to investigate the effect of Aegle marmelos (L.) Correa (Rutaceae) leaf extract on early stage DCM in alloxan-induced diabetic rats. METHODS Diabetes was induced in Wistar rats (150-200 g) by injecting alloxan (150 mg kg(-1); i.p.). Ethanol extract of A. marmelos leaves was administered at varying doses (100, 200, and 400 mg kg(-1)) and tolbutamide (100 mg kg(-1)) as standard. Fasting blood glucose (FBG), total cholesterol, thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), lactate dehydrogenase (LDH) and creatine kinase (CK) were determined by standard methods. RESULTS A. marmelos extract (AME) was found to decrease the levels of FBG, total cholesterol, TBARS, LDH and CK, and increase the levels of GSH, CAT and SOD dose dependently as compared to diabetic control groups. The maximum dose-dependent decrease in TBARS (63.46%), LDH (34.04%), CK (53.14%), and increase in GSH (64.91%), CAT (59.34%), SOD (69.65%) was evident at an optimum dose of 200 mg kg(-1). Histopathological studies revealed salvage in the morphological derangements as indicated by absence of necrosis and marked decrease in inflammatory cells in AME-treated groups as compared to diabetic control. CONCLUSIONS The present investigations conclude that treatment with AME attenuates the severity and improves the myocardium in the early stages of alloxan-induced DCM at a dose of 200 mg kg(-1).
Collapse
Affiliation(s)
- Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | | | | | | |
Collapse
|
232
|
Huang Z, Lu M, Zhu G, Gao H, Xie L, Zhang X, Ye C, Wang Y, Sun C, Li X. Acceleration of diabetic-wound healing with PEGylated rhaFGF in healing-impaired streptozocin diabetic rats. Wound Repair Regen 2011; 19:633-44. [DOI: 10.1111/j.1524-475x.2011.00722.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Meifei Lu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Guanghui Zhu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Hongchang Gao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Liyun Xie
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Xiaoqin Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Chaohui Ye
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Yan Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Chuanchuan Sun
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | | |
Collapse
|
233
|
Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF. The diabetic cardiomyopathy. Acta Diabetol 2011; 48:173-81. [PMID: 20198391 DOI: 10.1007/s00592-010-0180-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/11/2010] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy has been defined as "a distinct entity characterized by the presence of abnormal myocardial performance or structure in the absence of epicardial coronary artery disease, hypertension, and significant valvular disease". The diagnosis stems from the detection of myocardial abnormalities and the exclusion of other contributory causes of cardiomyopathy. It rests on non-invasive imaging techniques which can demonstrate myocardial dysfunction across the spectra of clinical presentation. The presence of diabetes is associated with an increased risk of developing heart failure, and the 75% of patients with unexplained idiopathic dilated cardiomyopathy were found to be diabetic. Diabetic patients with microvascular complications show the strongest association between diabetes and cardiomyopathy, an association that parallels the duration and severity of hyperglycemia. Metabolic abnormalities (that is hyperglycemia, hyperinsulinemia, and hyperlipemia) can lead to the cellular alterations characterizing diabetic cardiomyopathy (that is myocardial fibrosis and/or myocardial hypertrophy) directly or indirectly (that is by means of renin-angiotensin system activation, cardiac autonomic neuropathy, alterations in calcium homeostasis). Moreover, metabolic abnormalities represent, on a clinical ground, the main therapeutic target in the patients with diabetes since the diagnosis of diabetes is made. Since diabetic cardiomyopathy is highly prevalent in the asymptomatic type 2 diabetic patients, screening for its presence at the earliest stage of development can lead to prevent the progression to chronic heart failure. The most sensitive test is standard echocardiogram, while a less expensive pre-screening method is the detection of microalbuminuria.
Collapse
Affiliation(s)
- Roberto Tarquini
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Italy.
| | | | | | | | | |
Collapse
|
234
|
Abstract
Epidemiologic as well as clinical studies confirm the close link between diabetes mellitus and heart failure. Diabetic cardiomyopathy (DCM) is still a poorly understood "entity", however, with several contributing pathogenetic factors which lead in different stages of diabetes to characteristic clinical phenotypes. Hyperglycemia with a shift from glucose metabolism to increased beta-oxidation and consecutive free fatty acid damage (lipotoxicity) to the myocardium, insulin resistance, renin-angiotensin-aldosterone system (RAAS) activation, altered calcium homeostasis and structural changes from the natural collagen network to a stiffer matrix due to advanced glycation endproduct (AGE) formation, hypertrophy and fibrosis contribute to the respective clinical phenotypes of DCM. We propose the following classification of cardiomyopathy in diabetic patients: a) Diastolic heart failure with normal ejection fraction (HFNEF) in diabetic patients often associated with hypertrophy without relevant hypertension. Relevant coronary artery disease (CAD), valvular disease and uncontrolled hypertension are not present. This is referred to as stage 1 DCM. b) Systolic and diastolic heart failure with dilatation and reduced ejection (HFREF) in diabetic patients excluding relevant CAD, valvular disease and uncontrolled hypertension as stage 2 DCM. c) Systolic and/or diastolic heart failure in diabetic patients with small vessel disease (microvascular disease) and/or microbial infection and/or inflammation and/or hypertension but without CAD as stage 3 DCM. d) If heart failure may also be attributed to infarction or ischemia and remodeling in addition to stage 3 DCM the term should be heart failure in diabetes or stage 4 DCM. These clinical phenotypes of diabetic cardiomyopathy can be separated by biomarkers, non-invasive (echocardiography, cardiac magnetic resonance imaging) and invasive imaging methods (levocardiography, coronary angiography) and further analysed by endomyocardial biopsy for concomitant viral infection. The role of specific diabetic drivers to the clinical phenotypes, to macro- and microangiopathy as well as accompanying risk factors or confounders, e.g. hypertension, autoimmune factors or inflammation with or without viral persistence, need to be identified in each individual patient separately. Thus hyperglycemia, hyperinsulinemia and insulin resistance as well as lipotoxicity by free fatty acids (FFAs) are the factors responsible for diabetic cardiomyopathy. In stage 1 and 2 DCM diabetic cardiomyopathy is clearly a fact. However, precise determination of to what degree the various underlying pathogenetic processes are responsible for the overall heart failure phenotype remains a fiction.
Collapse
|
235
|
Hill MF. Emerging role for antioxidant therapy in protection against diabetic cardiac complications: experimental and clinical evidence for utilization of classic and new antioxidants. Curr Cardiol Rev 2011; 4:259-68. [PMID: 20066133 PMCID: PMC2801857 DOI: 10.2174/157340308786349453] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) markedly potentiates the risk of cardiovascular morbidity and mortality among individuals with diabetes as compared to the non-diabetic population. After myocardial infarction (MI), DM patients have a higher incidence of death than do non-diabetics. The excess mortality and poor prognosis of these patients results primarily from the development of recurrent MI and heart failure (HF). Although several lines of evidence support a role for increased oxidative stress in a range of cardiovascular diseases, clinical trials examining the therapeutic efficacy of antioxidants have yielded conflicting results. The reasons for these incongruous results is multifactorial. An underlying theme has been lack of patient inclusion based on elevated indices of oxidative stress which could have diluted the population susceptible to benefit in the clinical trials. Laboratory evidence has accumulated indicating that oxidative stress is dramatically accentuated in cardiac abnormalities inherent in DM. In this review, we provide the emergence of experimental and clinical evidence supporting antioxidant supplementation as a cardioprotective intervention in the setting of DM. Specifically, focus will be directed on preclinical animal studies and human clinical trials that have tested the effect of antioxidant supplements on MI and HF events in the presence of DM.
Collapse
Affiliation(s)
- Michael F Hill
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
236
|
Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1351-9. [PMID: 21256163 PMCID: PMC3149859 DOI: 10.1016/j.bbamcr.2011.01.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 12/21/2010] [Accepted: 01/11/2011] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease is common in patients with diabetes and is a significant contributor to the high mortality rates associated with diabetes. Heart failure is common in diabetic patients, even in the absence of coronary artery disease or hypertension, an entity known as diabetic cardiomyopathy. Evidence indicates that myocardial metabolism is altered in diabetes, which likely contributes to contractile dysfunction and ventricular failure. The mitochondria are the center of metabolism, and recent data suggests that mitochondrial dysfunction may play a critical role in the pathogenesis of diabetic cardiomyopathy. This review summarizes many of the potential mechanisms that lead to mitochondrial dysfunction in the diabetic heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Jennifer G Duncan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
237
|
Yang J, Tan Y, Zhao F, Ma Z, Wang Y, Zheng S, Epstein PN, Yu J, Yin X, Zheng Y, Li X, Miao L, Cai L. Angiotensin II plays a critical role in diabetic pulmonary fibrosis most likely via activation of NADPH oxidase-mediated nitrosative damage. Am J Physiol Endocrinol Metab 2011; 301:E132-E144. [PMID: 21487074 DOI: 10.1152/ajpendo.00629.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetic patients have a high risk of pulmonary disorders that are usually associated with restrictive impairment of lung function, suggesting a fibrotic process (van den Borst B, Gosker HR, Zeegers MP, Schols AM. Chest 138: 393-406, 2010; Ehrlich SF, Quesenberry CP Jr, Van Den Eeden SK, Shan J, Ferrara A. Diabetes Care 33: 55-60, 2010). The present study was undertaken to define whether and how diabetes causes lung fibrosis. Lung samples from streptozotocin-induced type 1 diabetic mice, spontaneously developed type 1 diabetic OVE26 mice, and their age-matched controls were investigated with histopathological and biochemical analysis. Signaling mechanism was investigated with cultured normal human lung fibroblasts in vitro. In both diabetes models, histological examination with Sirius red and hemotoxylin and eosin stains showed fibrosis along with massive inflammatory cell infiltration. The fibrotic and inflammatory processes were confirmed by real-time PCR and Western blotting assays for the increased fibronectin, CTGF, PAI-1, and TNFα mRNA and protein expressions. Diabetes also significantly increased NADPH oxidase (NOX) expression and protein nitration along with upregulation of angiotensin II (Ang II) and its receptor expression. In cell culture, exposure of lung fibroblasts to Ang II increased CTGF expression in a dose- and time-dependent manner, which could be abolished by inhibition of superoxide, NO, and peroxynitrite accumulation. Furthermore, chronic infusion of Ang II to normal mice at a subpressor dose induced diabetes-like lung fibrosis, and Ang II receptor AT1 blocker (losartan) abolished the lung fibrotic and inflammatory responses in diabetic mice. These results suggest that Ang II plays a critical role in diabetic lung fibrosis, which is most likely caused by NOX activation-mediated nitrosative damage.
Collapse
Affiliation(s)
- Junling Yang
- Department of Pulmonary Medicine, Second Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT. Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc Diabetol 2011; 10:57. [PMID: 21702924 PMCID: PMC3141394 DOI: 10.1186/1475-2840-10-57] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/24/2011] [Indexed: 01/10/2023] Open
Abstract
Background Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI). Methods Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis. Results Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4. Conclusions Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.
Collapse
Affiliation(s)
- Po-Ming Ku
- Department of Medical Research, Chi-Mei Medical Center, No, 901 Chon-Hwa Road, Yong Kang, Tainan City, Taiwan
| | | | | | | | | | | |
Collapse
|
239
|
Aslan M, Dogan S. Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease. J Proteomics 2011; 74:2274-88. [PMID: 21640858 DOI: 10.1016/j.jprot.2011.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 12/21/2022]
Abstract
Increased levels of reactive oxygen and nitrogen species are linked to many human diseases and can be formed as an indirect result of the disease process. The accumulation of specific nitroproteins which correlate with pathological processes suggests that nitration of protein tyrosine represents a dynamic and selective process, rather than a random event. Indeed, in numerous clinical disorders associated with an upregulation in oxidative stress, tyrosine nitration has been limited to certain cell types and to selective sites of injury. Additionally, proteomic studies show that only certain proteins are nitrated in selective tissue extracts. A growing list of nitrated proteins link the negative effects of protein nitration with their accumulation in a wide variety of diseases related to oxidation. Nitration of tyrosine has been demonstrated in diverse proteins such as cytochrome c, actin, histone, superoxide dismutase, α-synuclein, albumin, and angiotensin II. In vitro and in vivo aspects of redox-proteomics of specific nitroproteins that could be relevant to biomarker analysis and understanding of cardiovascular disease mechanism will be discussed within this review.
Collapse
Affiliation(s)
- Mutay Aslan
- Akdeniz University Faculty of Medicine, Department of Medical Biochemistry, Campus, 07070 Antalya, Turkey.
| | | |
Collapse
|
240
|
Guleria RS, Choudhary R, Tanaka T, Baker KM, Pan J. Retinoic acid receptor-mediated signaling protects cardiomyocytes from hyperglycemia induced apoptosis: role of the renin-angiotensin system. J Cell Physiol 2011; 226:1292-307. [PMID: 20945395 PMCID: PMC3043168 DOI: 10.1002/jcp.22457] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is a primary risk factor for cardiovascular diseases and heart failure. Activation of the retinoic acid receptor (RAR) and retinoid X receptor (RXR) has an anti-diabetic effect; but, a role in diabetic cardiomyopathy remains unclear. Using neonatal and adult cardiomyocytes, we determined the role of RAR and RXR in hyperglycemia-induced apoptosis and expression of renin-angiotensin system (RAS) components. Decreased nuclear expression of RARα and RXRα, activation of apoptotic signaling and cell apoptosis was observed in high glucose (HG) treated neonatal and adult cardiomyocytes and diabetic hearts in Zucker diabetic fatty (ZDF) rats. HG-induced apoptosis and reactive oxygen species (ROS) generation was prevented by both RAR and RXR agonists. Silencing expression of RARα and RXRα, by small interference RNA, promoted apoptosis under normal conditions and significantly enhanced HG-induced apoptosis, indicating that RARα and RXRα are required in regulating cell apoptotic signaling. Blocking angiotensin type 1 receptor (AT(1) R); but, not AT(2) R, attenuated HG-induced apoptosis and ROS generation. Moreover, HG induced gene expression of angiotensinogen, renin, AT(1) R, and angiotensin II (Ang II) synthesis were inhibited by RARα agonists and promoted by silencing RARα. Activation of RXRα, downregulated the expression of AT(1) R; and RXRα silencing accelerated HG induced expression of angiotensinogen and Ang II synthesis, whereas there was no significant effect on renin gene expression. These results indicate that reduction in the expression of RARα and RXRα has an important role in hyperglycemia mediated apoptosis and expression of RAS components. Activation of RAR/RXR signaling protects cardiomyocytes from hyperglycemia, by reducing oxidative stress and inhibition of the RAS.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin Receptor Antagonists/pharmacology
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Blood Glucose/metabolism
- Cells, Cultured
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/pathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Hyperglycemia/drug therapy
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Hyperglycemia/pathology
- Hypoglycemic Agents/pharmacology
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- RNA Interference
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Zucker
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/genetics
- Retinoic Acid Receptor alpha
- Retinoid X Receptor alpha/agonists
- Retinoid X Receptor alpha/genetics
- Retinoid X Receptor alpha/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Time Factors
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Rakeshwar S. Guleria
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott and White; Central Texas Veterans Health Care System, Temple, Texas
| | - Rashmi Choudhary
- Division of Hematology/Oncology, University of Colorado, Denver, CO
| | - Takemi Tanaka
- Brown Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX
| | - Kenneth M. Baker
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott and White; Central Texas Veterans Health Care System, Temple, Texas
| | - Jing Pan
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott and White; Central Texas Veterans Health Care System, Temple, Texas
| |
Collapse
|
241
|
Lindman BR, Arnold SV, Madrazo JA, Zajarias A, Johnson SN, Pérez JE, Mann DL. The adverse impact of diabetes mellitus on left ventricular remodeling and function in patients with severe aortic stenosis. Circ Heart Fail 2011; 4:286-92. [PMID: 21357546 PMCID: PMC3100796 DOI: 10.1161/circheartfailure.110.960039] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/22/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND The diabetic heart exhibits increased left ventricular (LV) mass and reduced ventricular function. However, this relationship has not been studied in patients with aortic stenosis (AS), a disease process that causes LV hypertrophy and dysfunction through a distinct mechanism of pressure overload. The aim of this study was to determine how diabetes mellitus (DM) affects LV remodeling and function in patients with severe AS. METHODS AND RESULTS Echocardiography was performed on 114 patients with severe AS (mean aortic valve area [AVA], 0.6 cm(2)) and included measures of LV remodeling and function. Multivariable linear regression models investigated the independent effect of DM on these aspects of LV structure and function. Compared to patients without diabetes (n=60), those with diabetes (n=54) had increased LV mass and LV end-systolic and end-diastolic dimensions, and decreased LV ejection fraction (EF) and longitudinal systolic strain (all P<0.01). In multivariable analyses adjusting for age, sex, systolic blood pressure, AVA, body surface area, and coronary disease, DM was an independent predictor of increased LV mass (β=26 g, P=0.01), LV end-systolic dimension (β=0.5 cm, P=0.008), and LV end-diastolic dimension (β=0.3 cm, P=0.025). After also adjusting for LV mass, DM was associated with reduced longitudinal systolic strain (β=1.9%, P=0.023) and a trend toward reduced EF (β=-5%, P=0.09). Among patients with diabetes, insulin use (as a marker of disease severity) was associated with larger LV end-systolic dimension and worse LV function. LV mass was a strong predictor of reduced EF and systolic strain (both P<0.001). CONCLUSIONS DM has an additive adverse effect on hypertrophic remodeling (increased LV mass and larger cavity dimensions) and is associated with reduced systolic function in patients with AS beyond known factors of pressure overload.
Collapse
Affiliation(s)
- Brian R Lindman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
242
|
Mazurek B, Amarjargal N, Haupt H, Fuchs J, Olze H, Machulik A, Gross J. Expression of genes implicated in oxidative stress in the cochlea of newborn rats. Hear Res 2011; 277:54-60. [PMID: 21447374 DOI: 10.1016/j.heares.2011.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 01/03/2023]
Abstract
Oxidative stress is an important mechanism inducing ototoxicity-, age- and noise-induced hearing loss. To better understand this phenomenon, we examined cochlear tissues for the expression of following genes involved directly or indirectly in the oxidative stress response: glyceraldehyde-3-phosphate dehydrogenase (Gapdh); solute carrier family-2 (facilitated glucose transporter), member-1 (Slc2a1); heme oxygenase-1 (Hmox1); heme oxygenase-2 (Hmox2); inducible nitric oxide synthase-2 (Nos2); transferrin (Tf); transferrin receptor (Tfrc); glutathione S-transferase A3 (Gsta3) and metallothionein-1a (Mt1a). Cochlear tissues were dissected from the p3-p5 Wistar rats, divided into the organ of Corti (OC), modiolus (MOD) and stria vascularis together with spiral ligament (SV + SL) and processed immediately or cultured under normoxic conditions or a short-term, mild hypoxia followed by re-oxygenation. After 24 h, explants were collected and total RNA isolated, transcribed and amplified in the real time RT-PCR. We found all genes listed above expressed in the freshly isolated cochlear tissues. In the OC and MOD, Slc2a1, Tf, and Mt1a were expressed on a lower level than in the SV + SL. In the OC, Hmox1 was expressed on a lower level than in the MOD and SV + SL. Hypoxic and normoxic cultures increased the transcript number of Gapdh, Slc2a1 and Hmox1 in all cochlear tissues. The expression of Nos2, Tf, Gsta3 and Mt1a increased in a tissue-specific manner. In the SV + SL, Mt1a expression decreased after normoxic and hypoxic conditions. Taken together, using real time RT-PCR, our results imply that oxidative stress may be an important component of cochlear injury during the developing period. In spite of the immaturity of the tissue, a differential response of antioxidant enzymes/proteins with respect to the pathway, the expression levels and regions was observed.
Collapse
Affiliation(s)
- Birgit Mazurek
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
243
|
Study on the protective effect of the Mixture of Shengmai Powder and Danshen Decoction on the myocardium of diabetic cardiomyopathy in the rat model. Chin J Integr Med 2011; 17:116-25. [PMID: 21390578 DOI: 10.1007/s11655-011-0639-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To study the protective effect of the Mixture of Shengmai Powder and Danshen Decoction (, abbreviated as the Mixture) in the rat model with type 2 diabetic cardiomyopathy in the rat model with type 2 diabetic cardiomyopathy, abbreviated as the Mixture) in the rat model with type 2 diabetic cardiomyopathy (DCM). METHODS Forty-two SD rats with DCM model, established by the combination of insulin resistance by a high-fat diet with the damage of pancreatic islet β cells by intraperitoneal injection of high dose streptozotocin (50 mg/kg) once, were evaluated in the damage of the myocardium by electrocardiogram at the end of 12 weeks of grouping and intervention administration; the extent of damage in the myocardial subcellular structure was observed by electron microscopy; the content of myocardial collagen in the left cardiac ventricle was quantified by Masson staining test; the myocardial cell apoptosis was determined by TUNEL; the changes in the mRNA expression levels of thrombospodin-1 (TSP-1) and tribbles homolog 3 (TRB-3) by real-time quantitative PCR, the expression levels of myocardial TSP-1, tumor growth factorβ1 (TGF-β1), TRB-3, and chymase were detected by immunohistochemistry, and the changes in the expression levels of myocardial TSP-1, active-TGF-β1 (A-TGF-β1) and latent-TGF-β1 (L-TGF-β1) protein were tested by Western blotting. RESULTS Compared with the control group, the myocardial tissue was less damaged, and the extent of damage in the myocardial subcellular structure was less; the collagen fiber content and the cell apoptosis were reduced; the expression levels of TSP-1mRNA and TRB-3 mRNA, the expression levels of myocardial TSP-1, TGF-β1, TRB-3, and chymase, as well as the average expression levels of the myocardial TSP-1, A-TGFβ1, and L-TGF-β1 protein were decreased in the Mixture group. CONCLUSION The Mixture of Shengmai Powder and Danshen Decoction could inhibit the process of myocardial fibrosis in the rat myocardium of DCM through multiple pathways and significantly delay the genesis and progress of DCM in hyperglycemic rats.
Collapse
|
244
|
Zhang C, Jin S, Guo W, Li C, Li X, Rane MJ, Wang G, Cai L. Attenuation of diabetes-induced cardiac inflammation and pathological remodeling by low-dose radiation. Radiat Res 2011; 175:307-321. [PMID: 21388274 DOI: 10.1667/rr1950.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the present study, novel preventive effects of repeated low-dose radiation exposure on diabetes-induced cardiac inflammation and cardiac damage were investigated. C57BL/6J mice were given multiple low doses of streptozotocin (STZ, 60 mg/kg × 6) to generate type 1 diabetes. A week after the last STZ injection, hyperglycemic mice were diagnosed and treated with and without whole-body low-dose radiation exposure (25 mGy X rays) once every 2 days for 2, 4, 8, 12 and 16 weeks. Diabetes caused significant increases in cardiac inflammation, shown by time-dependent increases in mRNA and protein expressions of interleukin 18 (IL-18), tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecule 1 (ICAM-1), plasminogen activator inhibitor 1 (PAI-1), and monocyte chemoattractant protein 1 (MCP-1). Repeated exposure of control mice to low-dose radiation caused mild increases in these inflammatory factors, except for ICAM-1. Repeated exposure of diabetic mice to low-dose radiation significantly reduced diabetes-increased cardiac expression of IL-18, TNF-α, MCP-1 and PAI-1 at both the mRNA and protein levels. Furthermore, cardiac histopathological abnormalities, oxidative damage and fibrosis were significant in diabetic mice but to a lesser extent in diabetic mice with repeated low-dose radiation exposure. These results suggest that although low-dose radiation contributes to mild cardiac inflammation in control mice, it can significantly reduce diabetes-induced cardiac inflammation and associated pathological changes. Therefore, low-dose radiation may potentially become a novel approach to the prevention of diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou 325035, China
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, Goldblatt CS, Meyer CJ, Li X, Cai L, Cui T. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes 2011; 60:625-633. [PMID: 21270272 PMCID: PMC3028364 DOI: 10.2337/db10-1164] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/20/2010] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Oxidative stress is implicated in cardiac insulin resistance, a critical risk factor for cardiac failure, but the direct evidence remains missing. This study explored a causal link between oxidative stress and insulin resistance with a focus on a regulatory role of redox sensitive transcription factor NF-E2-related factor 2 (Nrf2) in the cardiac cells in vitro and in vivo. RESEARCH DESIGN AND METHODS Chronic treatment of HL-1 adult cardiomyocyte with hydrogen peroxide led to insulin resistance, reflected by a significant suppression of the insulin-induced glucose uptake. This was associated with an exaggerated phosphorylation of extracellular signal-related kinase (ERK). Although U0126, an ERK inhibitor, enhanced insulin sensitivity and attenuated oxidative stress-induced insulin resistance, LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), worsened the insulin resistance. Moreover, insulin increased Nrf2 transcriptional activity, which was blocked by LY294002 but enhanced by U0126. Forced activation of Nrf2 by adenoviral over-expression of Nrf2 inhibited the increased ERK activity and recovered the blunted insulin sensitivity on glucose uptake in cardiomyocytes that were chronically treated with H(2)O(2). In the hearts of streptozotocin-induced diabetic mice and diabetic patients Nrf2 expression significantly decreased along with significant increases in 3-nitrotyrosine accumulation and ERK phosphorylation, whereas these pathogenic changes were not observed in the heart of diabetic mice with cardiac-specific overexpression of a potent antioxidant metallothionein. Upregulation of Nrf2 by its activator, Dh404, in cardiomyocytes in vitro and in vivo prevented hydrogen peroxide- and diabetes-induced ERK activation and insulin-signaling downregulation. CONCLUSIONS ERK-mediated suppression of Nrf2 activity leads to the oxidative stress-induced insulin resistance in adult cardiomyocytes and downregulated glucose utilization in the diabetic heart.
Collapse
Affiliation(s)
- Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Tomonaga Ichikawa
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Jinqing Li
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Qiusheng Si
- Department of Pathology, Memorial Medical Center, Johnstown, Pennsylvania
| | - Huaitao Yang
- Department of Pathology, Memorial Medical Center, Johnstown, Pennsylvania
| | - Xiangbai Chen
- Department of Pathology, Memorial Medical Center, Johnstown, Pennsylvania
| | | | | | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Taixing Cui
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
246
|
Overexpression of Jazf1 induces cardiac malformation through the upregulation of pro-apoptotic genes in mice. Transgenic Res 2011; 20:1019-31. [DOI: 10.1007/s11248-010-9476-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/15/2010] [Indexed: 11/25/2022]
|
247
|
Zhang Y, Peng T, Zhu H, Zheng X, Zhang X, Jiang N, Cheng X, Lai X, Shunnar A, Singh M, Riordan N, Bogin V, Tong N, Min WP. Prevention of hyperglycemia-induced myocardial apoptosis by gene silencing of Toll-like receptor-4. J Transl Med 2010; 8:133. [PMID: 21159162 PMCID: PMC3020152 DOI: 10.1186/1479-5876-8-133] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/15/2010] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Apoptosis is an early event involved in cardiomyopathy associated with diabetes mellitus. Toll-like receptor (TLR) signaling triggers cell apoptosis through multiple mechanisms. Up-regulation of TLR4 expression has been shown in diabetic mice. This study aimed to delineate the role of TLR4 in myocardial apoptosis, and to block this process through gene silencing of TLR4 in the myocardia of diabetic mice. METHODS Diabetes was induced in C57/BL6 mice by the injection of streptozotocin. Diabetic mice were treated with 50 μg of TLR4 siRNA or scrambled siRNA as control. Myocardial apoptosis was determined by TUNEL assay. RESULTS After 7 days of hyperglycemia, the level of TLR4 mRNA in myocardial tissue was significantly elevated. Treatment of TLR4 siRNA knocked down gene expression as well as diminished its elevation in diabetic mice. Apoptosis was evident in cardiac tissues of diabetic mice as detected by a TUNEL assay. In contrast, treatment with TLR4 siRNA minimized apoptosis in myocardial tissues. Mechanistically, caspase-3 activation was significantly inhibited in mice that were treated with TLR4 siRNA, but not in mice treated with control siRNA. Additionally, gene silencing of TLR4 resulted in suppression of apoptotic cascades, such as Fas and caspase-3 gene expression. TLR4 deficiency resulted in inhibition of reactive oxygen species (ROS) production and NADPH oxidase activity, suggesting suppression of hyperglycemia-induced apoptosis by TLR4 is associated with attenuation of oxidative stress to the cardiomyocytes. CONCLUSIONS In summary, we present novel evidence that TLR4 plays a critical role in cardiac apoptosis. This is the first demonstration of the prevention of cardiac apoptosis in diabetic mice through silencing of the TLR4 gene.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Endocrinology, West China Hospital of Sichuan University, Chengdu, China
| | - Tianqing Peng
- Departments of Surgery, Pathology, Medicine, Oncology, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Huaqing Zhu
- Departments of Surgery, Pathology, Medicine, Oncology, University of Western Ontario, London, Ontario, Canada
| | - Xiufen Zheng
- Departments of Surgery, Pathology, Medicine, Oncology, University of Western Ontario, London, Ontario, Canada
| | - Xusheng Zhang
- Departments of Surgery, Pathology, Medicine, Oncology, University of Western Ontario, London, Ontario, Canada
| | - Nan Jiang
- Departments of Surgery, Pathology, Medicine, Oncology, University of Western Ontario, London, Ontario, Canada
| | - Xiaoshu Cheng
- Nanchang University Second Affiliated Hospital, Nanchang, China
| | - Xiaoyan Lai
- Nanchang University Second Affiliated Hospital, Nanchang, China
| | - Aminah Shunnar
- Departments of Surgery, Pathology, Medicine, Oncology, University of Western Ontario, London, Ontario, Canada
| | - Manpreet Singh
- Departments of Surgery, Pathology, Medicine, Oncology, University of Western Ontario, London, Ontario, Canada
| | - Neil Riordan
- Medistem Panama City of Knowledge, Clayton, Republic of Panama
| | | | - Nanwei Tong
- Department of Endocrinology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei-Ping Min
- Departments of Surgery, Pathology, Medicine, Oncology, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Nanchang University Second Affiliated Hospital, Nanchang, China
| |
Collapse
|
248
|
Rajesh M, Mukhopadhyay P, Bátkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horváth B, Mukhopadhyay B, Becker L, Haskó G, Liaudet L, Wink DA, Veves A, Mechoulam R, Pacher P. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 2010; 56:2115-25. [PMID: 21144973 PMCID: PMC3026637 DOI: 10.1016/j.jacc.2010.07.033] [Citation(s) in RCA: 387] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVES In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. BACKGROUND Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. METHODS Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. RESULTS Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-κB and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38α) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-α, markers of fibrosis (transforming growth factor-β, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-κB activation, and cell death in primary human cardiomyocytes. CONCLUSIONS Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Laboratories of Physiological Studies, National Institutes of Health, Bethesda, Maryland, USA
| | - Partha Mukhopadhyay
- Laboratories of Physiological Studies, National Institutes of Health, Bethesda, Maryland, USA
| | - Sándor Bátkai
- Laboratories of Physiological Studies, National Institutes of Health, Bethesda, Maryland, USA
| | - Vivek Patel
- Laboratories of Physiological Studies, National Institutes of Health, Bethesda, Maryland, USA
| | - Keita Saito
- Radiation Biology Branch, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Shingo Matsumoto
- Radiation Biology Branch, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshihiro Kashiwaya
- Metabolic Control, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
| | - Béla Horváth
- Laboratories of Physiological Studies, National Institutes of Health, Bethesda, Maryland, USA
| | - Bani Mukhopadhyay
- Laboratories of Physiological Studies, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren Becker
- Laboratories of Physiological Studies, National Institutes of Health, Bethesda, Maryland, USA
| | - György Haskó
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - David A Wink
- Radiation Biology Branch, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Aristidis Veves
- Microcirculation Laboratory and Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Raphael Mechoulam
- Department for Medicinal Chemistry and Natural Products, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Pál Pacher
- Laboratories of Physiological Studies, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
249
|
Lee TI, Kao YH, Chen YC, Pan NH, Chen YJ. Oxidative stress and inflammation modulate peroxisome proliferator-activated receptors with regional discrepancy in diabetic heart. Eur J Clin Invest 2010; 40:692-9. [PMID: 20561028 DOI: 10.1111/j.1365-2362.2010.02318.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) play a pivotal role in myocardial lipid and glucose homeostasis. We investigated the effects of diabetes on PPAR isoforms in different cardiac regions and explored whether proinflammatory cytokines or oxidative stress modulate PPARs in diabetic hearts. MATERIALS AND METHODS Male Wistar rats were separated into control, diabetes and ascorbate-treated diabetes groups. Real-time PCR and Western blot analysis were performed on PPAR isoforms, tumour necrosis factor (TNF)-alpha and interleukin (IL)-6, from left and right atria and ventricles. Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase activity was quantified through photometric measurements. RESULTS In control hearts, PPAR-alpha was most expressed, and PPAR-gamma least expressed in mRNA and protein levels. Diabetes decreased the protein and mRNA levels of PPAR-alpha and PPAR-delta. Ascorbate attenuated the diabetes-induced down-regulations of PPAR-alpha and PPAR-delta proteins in all cardiac regions and down-regulation of PPAR-alpha mRNA in the left atrium. In PPAR-gamma, the protein and mRNA levels were increased in diabetic atria and ventricles, which were decreased by ascorbate. Moreover, diabetes increased the TNF-alpha and IL-6 protein levels, and NAD(P)H oxidase activities in atria and ventricles. Ascorbate attenuated the increase of TNF-alpha, IL-6 protein levels and NAD(P)H oxidase activity in the atria, but only attenuated the increase of NAD(P)H oxidase activities in the ventricles. CONCLUSIONS Peroxisome proliferator-activated receptor isoforms are differentially expressed in the atria and ventricles. Diabetes can modulate PPARs through increased inflammatory cytokines and oxidative stress, which are attenuated by ascorbate treatment.
Collapse
Affiliation(s)
- Ting-I Lee
- Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
250
|
Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S, Li Y. High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res 2010; 316:2903-9. [PMID: 20633551 DOI: 10.1016/j.yexcr.2010.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 12/28/2022]
Abstract
Diabetic hyperglycemia result in cardiovascular complications, but the mechanisms by which high levels of glucose (HG) cause diabetic cardiomyopathy are not known. We investigate whether HG-induced repression of insulin-like growth factor 1 receptor (IGF-1R) mediated by epigenetic modifications is one potential mechanism. We found that HG resulted in decreased IGF-1 receptor (IGF-1R) mRNA levels, and IGF-1R protein when compared with H9C2 rat cardiomyocyte cells incubated in normal glucose. HG also induced apoptosis of H9C2 cells. The effects of HG on reduced expression of IGF-1R and increased apoptosis were blocked by silencing p53 with small interference RNA but not by non-targeting scrambled siRNA. Moreover, HG negatively regulated IGF-1R promoter activity as determined by ChIP analysis, which was dependent on p53 since siRNA-p53 attenuated the effects of HG on IGF-1R promoter activity. HG also increased the association of p53 with histone deacetylase 1 (HDAC1), and decreased the association of acetylated histone-4 with the IGF-1R promoter. Furthermore, HDAC inhibitor relieved the repression of IGF-1R following HG state. These results suggest that HG-induced repression of IGF-1R is mediated by the association of p53 with the IGF-1R promoter, and by the subsequent enhanced recruitment of chromatin-modifying proteins, such as HDAC1, to the IGF-1R promoter-p53 complex. In conclusion, our data demonstrate that HG decreases expression of IGF-1R and decreases the association of acetylated histone-4 with the IGF-1R promoter. These studies may help delineate the complex pathways regulating diabetic cardiomyopathy, and have implications for the development of novel therapeutic strategies to prevent diabetic cardiomyopathy by epigenetic regulation of IGF-1R.
Collapse
Affiliation(s)
- Xi-Yong Yu
- Medical Research Center, Guangdong General Hospital, Guangdong Provincial Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China.
| | | | | | | | | | | | | |
Collapse
|