201
|
Gobin C, Shallcross J, Schwendt M. Neurobiological substrates of persistent working memory deficits and cocaine-seeking in the prelimbic cortex of rats with a history of extended access to cocaine self-administration. Neurobiol Learn Mem 2019; 161:92-105. [PMID: 30946882 DOI: 10.1016/j.nlm.2019.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/21/2019] [Accepted: 03/26/2019] [Indexed: 01/16/2023]
Abstract
Cocaine use disorder (CUD) is associated with prefrontal cortex dysfunction and cognitive deficits that may contribute to persistent relapse susceptibility. As the relationship between cognitive deficits, cortical abnormalities and drug seeking is poorly understood, development of relevant animal models is of high clinical importance. Here, we used an animal model to characterize working memory and reversal learning in rats with a history of extended access cocaine self-administration and prolonged abstinence. We also investigated immediate and long-term functional changes within the prelimbic cortex (PrL) in relation to cognitive performance and drug-seeking. Adult male rats underwent 6 days of short-access (1 h/day) followed by 12 days of long-access (6 h/day) cocaine self-administration, or received passive saline infusions. Next, rats were tested in delayed match-to-sample (DMS) and (non)match-to-sample (NMS) tasks, and finally in a single context + cue relapse test on day 90 of abstinence. We found that a history of chronic cocaine self-administration impaired working memory, though sparing reversal learning, and that the components of these cognitive measures correlated with later drug-seeking. Further, we found that dysregulated metabolic activity and mGlu5 receptor signaling in the PrL of cocaine rats correlated with past working memory performance and/or drug-seeking, as indicated by the analysis of cytochrome oxidase reactivity, mGlu5 and Homer 1b/c protein expression, as well as Arc mRNA expression in mGlu5-positive cells. These findings advocate for a persistent post-cocaine PrL dysfunction, rooted in ineffective compensatory changes and manifested as impaired working memory performance and hyperreactivity to cocaine cues. Considering the possible interplay between the neural correlates underlying post-cocaine cognitive deficits and drug-seeking, cognitive function should be evaluated and considered when developing neurobiologically-based treatments of cocaine relapse.
Collapse
Affiliation(s)
- Christina Gobin
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA
| | - John Shallcross
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA
| | - Marek Schwendt
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA.
| |
Collapse
|
202
|
Jiang C, Lin WJ, Labonté B, Tamminga CA, Turecki G, Nestler EJ, Russo SJ, Salton SR. VGF and its C-terminal peptide TLQP-62 in ventromedial prefrontal cortex regulate depression-related behaviors and the response to ketamine. Neuropsychopharmacology 2019; 44:971-981. [PMID: 30504797 PMCID: PMC6462025 DOI: 10.1038/s41386-018-0277-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Patients with major depressive disorder (MDD) often have structural and functional deficits in the ventromedial prefrontal cortex (vmPFC), but the underlying molecular pathways are incompletely understood. The neuropeptide precursor VGF (non-acronymic) plays a critical role in depression and antidepressant efficacy in hippocampus and nucleus accumbens, however its function in vmPFC has not been investigated. Here, we show that VGF levels were reduced in Brodmann area 25 (a portion of human vmPFC) of MDD patients and in mouse vmPFC following chronic restraint stress (CRS), and were increased by ketamine in mouse vmPFC. VGF overexpression in vmPFC prevented behavioral deficits induced by CRS, and VGF knockdown in vmPFC increased susceptibility to subchronic variable stress (SCVS) and reduced ketamine's antidepressant efficacy. Acute intra-vmPFC TLQP-62 infusion induced behavioral phenotypes that mimic those produced by antidepressant drug treatment. These antidepressant-like effects were sustained for 7 days and were abolished by local Bdnf gene ablation, or pretreatment with xestospongin C, an inhibitor of IP3-mediated Ca2+ release, or SKF96365, an inhibitor of store-operated and TRPC channel-mediated Ca2+ entry. In conclusion, VGF in the vmPFC regulates susceptibility to stress and the antidepressant response to ketamine. TLQP-62 infusion produces sustained antidepressant responses that require BDNF expression and calcium mobilization in vmPFC.
Collapse
Affiliation(s)
- Cheng Jiang
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Wei-Jye Lin
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,0000 0001 2360 039Xgrid.12981.33RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, 510120 Guangzhou, China ,0000 0001 2360 039Xgrid.12981.33Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangdong, Guangzhou, China
| | - Benoit Labonté
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,0000 0004 1936 8390grid.23856.3aDepartment of Neuroscience and Psychiatry, Faculty of Medicine, Laval University, 2601 Chemin de la Canardière, Québec, QC G1J 2G3 Canada
| | - Carol A. Tamminga
- 0000 0000 9482 7121grid.267313.2Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - Gustavo Turecki
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Eric J. Nestler
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cFriedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Scott J. Russo
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cFriedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Stephen R. Salton
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cFriedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cDepartment of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
203
|
Wang L, Holland L, Fong R, Khokhar S, Fox AP, Xie Z. A pilot study showing that repeated exposure to stress produces alterations in subsequent responses to anesthetics in rats. PLoS One 2019; 14:e0214093. [PMID: 30908509 PMCID: PMC6433219 DOI: 10.1371/journal.pone.0214093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
The repeated use of a drug frequently leads to alterations in the response to that drug. We undertook this study to determine whether multiple exposures to the general anesthetic produced alterations in subsequent exposures to this anesthetic. For this study, adult male rats were anesthetized with 2.5% isoflurane for one hour. The rats were divided into 4 groups of 8 rats each. Groups 1-3 were transported between their homeroom and the anesthesia testing room and were handled in an identical manner weekly for a period of 12 weeks, but were anesthetized on different schedules. Group 1 was anesthetized weekly for 12 weeks, Group 2 on either a 3 or 4 week schedule and Group 3 was anesthetized a single time, at the end of the 12 week period. To receive anesthesia multiple times, animals were transported from their homeroom to the anesthesia location and handled repeatedly. We took into consideration of the frequency of anesthesia exposure and the stress involved. Rats in groups 2 and 3 were placed in the anesthesia chamber, with O2 but with no anesthetic, every week when they were not scheduled to receive anesthesia. In Group 4, rats were not transported or handled in any way and stayed in the home room for a period of 12 weeks. Rats in this group were anesthetized once, at the very end of the study. Recovery of the rat's righting reflex was used to assess the acceleration of recovery time from general anesthesia. Group 1 rats showed dramatically faster emergence from anesthesia after several rounds of anesthesia. Surprisingly, Groups 2 and 3 rats, treated in an identical manner as Group 1, but which were anesthetized on different schedules, also exhibited more rapid emergence from anesthesia, when compared to Group 4 rats, which were never handled or transported prior to a single anesthesia. These results suggest that the stress of transportation and handling altered responsiveness to anesthesia. Our results show that responsiveness to anesthetic agents can change over time outside of the normal developmental changes taking place in rats as they age.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States of America
- Department of Anesthesia, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Lindsay Holland
- University of Michigan, College of Medicine, Ann Arbor, Michigan, United States of America
| | - Robert Fong
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States of America
| | - Suhail Khokhar
- University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Aaron P. Fox
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Zheng Xie
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
204
|
Leem YH, Park JS, Chang H, Park J, Kim HS. Exercise Prevents Memory Consolidation Defects Via Enhancing Prolactin Responsiveness of CA1 Neurons in Mice Under Chronic Stress. Mol Neurobiol 2019; 56:6609-6625. [DOI: 10.1007/s12035-019-1560-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
|
205
|
Zimmermann KS, Richardson R, Baker KD. Maturational Changes in Prefrontal and Amygdala Circuits in Adolescence: Implications for Understanding Fear Inhibition during a Vulnerable Period of Development. Brain Sci 2019; 9:E65. [PMID: 30889864 PMCID: PMC6468701 DOI: 10.3390/brainsci9030065] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
Anxiety disorders that develop in adolescence represent a significant burden and are particularly challenging to treat, due in no small part to the high occurrence of relapse in this age group following exposure therapy. This pattern of persistent fear is preserved across species; relative to those younger and older, adolescents consistently show poorer extinction, a key process underpinning exposure therapy. This suggests that the neural processes underlying fear extinction are temporarily but profoundly compromised during adolescence. The formation, retrieval, and modification of fear- and extinction-associated memories are regulated by a forebrain network consisting of the prefrontal cortex (PFC), the amygdala, and the hippocampus. These regions undergo robust maturational changes in early life, with unique alterations in structure and function occurring throughout adolescence. In this review, we focus primarily on two of these regions-the PFC and the amygdala-and discuss how changes in plasticity, synaptic transmission, inhibition/excitation, and connectivity (including modulation by hippocampal afferents to the PFC) may contribute to transient deficits in extinction retention. We end with a brief consideration of how exposure to stress during this adolescent window of vulnerability can permanently disrupt neurodevelopment, leading to lasting impairments in pathways of emotional regulation.
Collapse
Affiliation(s)
- Kelsey S Zimmermann
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Rick Richardson
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Kathryn D Baker
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
206
|
The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology. Biol Psychiatry 2019; 85:443-453. [PMID: 30470559 PMCID: PMC6380948 DOI: 10.1016/j.biopsych.2018.09.031] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Volumetric reductions in the hippocampus and medial prefrontal cortex (mPFC) are among the most well-documented neural abnormalities in major depressive disorder (MDD). Hippocampal and mPFC structural reductions have been specifically tied to MDD illness progression markers, including greater number of major depressive episodes (MDEs), longer illness duration, and nonremission/treatment resistance. Chronic stress plays a critical role in the development of hippocampal and mPFC deficits, with some studies suggesting that these deficits occur irrespective of MDE occurrence. However, preclinical and human research also points to other stress-mediated neurotoxic processes, including enhanced inflammation and neurotransmitter disturbances, which may require the presence of an MDE and contribute to further brain structural decline as the illness advances. Specifically, hypothalamic-pituitary-adrenal axis dysfunction, enhanced inflammation and oxidative stress, and neurotransmitter abnormalities (e.g., serotonin, glutamate, gamma-aminobutyric acid) likely interact to facilitate illness progression in MDD. Congruent with stress sensitization models of MDD, with each consecutive MDE it may take lower levels of stress to trigger these neurotoxic pathways, leading to more pronounced brain volumetric reductions. Given that stress and MDD have overlapping and distinct influences on neurobiological pathways implicated in hippocampal and mPFC structural decline, further work is needed to clarify which precise mechanisms ultimately contribute to MDD development and maintenance.
Collapse
|
207
|
Paredes D, Morilak DA. A Rodent Model of Exposure Therapy: The Use of Fear Extinction as a Therapeutic Intervention for PTSD. Front Behav Neurosci 2019; 13:46. [PMID: 30914932 PMCID: PMC6421316 DOI: 10.3389/fnbeh.2019.00046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
The symptoms of post-traumatic stress disorder (PTSD) include cognitive impairment related to medial prefrontal cortical dysfunction. Indeed, a deficit of cognitive flexibility, i.e., an inability to modify previously learned thoughts and behaviors based on changes in the environment, may underlie many of the other symptoms of PTSD, such as changes in mood, hyper-arousal, intrusive thoughts, exaggerated and over-generalized fear, and avoidance behavior. Cognitive-behavioral therapies target the cognitive dysfunction observed in PTSD patients, training them to recalibrate stress-related perceptions, interpretations and responses. Preclinically, the extinction of conditioned fear bears resemblance to one form of cognitive therapy, exposure therapy, whereby an individual learns, through repeated exposure to a fear-provoking stimulus in a safe environment, that the stimulus no longer signals imminent threat, and their fear response is suppressed. In this review article, we highlight recent findings from our lab using fear extinction as a preclinical model of exposure therapy in rodents exposed to chronic unpredictable stress (CUS). We specifically focus on the therapeutic effects of extinction on stress-compromised set-shifting as a measure of cognitive flexibility, and active vs. passive coping behavior as a measure of avoidance. Finally, we discuss mechanisms involving activity and plasticity in the medial prefrontal cortex (mPFC) necessary for the therapeutic effects of extinction on cognitive flexibility and active coping.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, San Antonio, TX, United States
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, San Antonio, TX, United States.,South Texas Veterans Health Care System (STVHCS), San Antonio, TX, United States
| |
Collapse
|
208
|
Chronic unpredictable stress promotes cell-specific plasticity in prefrontal cortex D1 and D2 pyramidal neurons. Neurobiol Stress 2019; 10:100152. [PMID: 30937357 PMCID: PMC6430618 DOI: 10.1016/j.ynstr.2019.100152] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 11/24/2022] Open
Abstract
Exposure to unpredictable environmental stress is widely recognized as a major determinant for risk and severity in neuropsychiatric disorders such as major depressive disorder, anxiety, schizophrenia, and PTSD. The ability of ostensibly unrelated disorders to give rise to seemingly similar psychiatric phenotypes highlights a need to identify circuit-level concepts that could unify diverse factors under a common pathophysiology. Although difficult to disentangle a causative effect of stress from other factors on medial prefrontal cortex (PFC) dysfunction, a wealth of data from humans and rodents demonstrates that the PFC is a key target of stress. The present study sought to identify a model of chronic unpredictable stress (CUS) which induces affective behaviors in C57BL6J mice and once established, measure stress-related alterations in intrinsic excitability and synaptic regulation of mPFC layer 5/6 pyramidal neurons. Adult male mice received 2 weeks of 'less intense' stress or 2 or 4 weeks of 'more intense' CUS followed by sucrose preference for assessment of anhedonia, elevated plus maze for assessment of anxiety and forced swim test for assessment of depressive-like behaviors. Our findings indicate that more intense CUS exposure results in increased anhedonia, anxiety, and depressive behaviors, while the less intense stress results in no measured behavioral phenotypes. Once a behavioral model was established, mice were euthanized approximately 21 days post-stress for whole-cell patch clamp recordings from layer 5/6 pyramidal neurons in the prelimbic (PrL) and infralimbic (IL) cortices. No significant differences were initially observed in intrinsic cell excitability in either region. However, post-hoc analysis and subsequent confirmation using transgenic mice expressing tdtomato or eGFP under control of dopamine D1-or D2-type receptor showed that D1-expressing pyramidal neurons (D1-PYR) in the PrL exhibit reduced thresholds to fire an action potential (increased excitability) but impaired firing capacity at more depolarized potentials, whereas D2-expressing pyramidal neurons (D2-PYR) showed an overall reduction in excitability and spike firing frequency. Examination of synaptic transmission showed that D1-and D2-PYR exhibit differences in basal excitatory and inhibitory signaling under naïve conditions. In CUS mice, D1-PYR showed increased frequency of both miniature excitatory and inhibitory postsynaptic currents, whereas D2-PYR only showed a reduction in excitatory currents. These findings demonstrate that D1-and D2-PYR subpopulations differentially undergo stress-induced intrinsic and synaptic plasticity that may have functional implications for stress-related pathology, and that these adaptations may reflect unique differences in basal properties regulating output of these cells.
Collapse
|
209
|
Zheng Y, Liu A, Wang ZJ, Cao Q, Wang W, Lin L, Ma K, Zhang F, Wei J, Matas E, Cheng J, Chen GJ, Wang X, Yan Z. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain 2019; 142:787-807. [PMID: 30668640 PMCID: PMC6391616 DOI: 10.1093/brain/awy354] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/01/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Epigenetic dysregulation, which leads to the alteration of gene expression in the brain, is suggested as one of the key pathophysiological bases of ageing and neurodegeneration. Here we found that, in the late-stage familial Alzheimer's disease (FAD) mouse model, repressive histone H3 dimethylation at lysine 9 (H3K9me2) and euchromatic histone methyltransferases EHMT1 and EHMT2 were significantly elevated in the prefrontal cortex, a key cognitive region affected in Alzheimer's disease. Elevated levels of H3K9me2 were also detected in the prefrontal cortex region of post-mortem tissues from human patients with Alzheimer's disease. Concomitantly, H3K9me2 at glutamate receptors was increased in prefrontal cortex of aged FAD mice, which was linked to the diminished transcription, expression and function of AMPA and NMDA receptors. Treatment of FAD mice with specific EHMT1/2 inhibitors reversed histone hyper-methylation and led to the recovery of glutamate receptor expression and excitatory synaptic function in prefrontal cortex and hippocampus. Chromatin immunoprecipitation-sequencing (ChIP-seq) data indicated that FAD mice exhibited genome-wide increase of H3K9me2 enrichment at genes involved in neuronal signalling (including glutamate receptors), which was reversed by EHMT1/2 inhibition. Moreover, the impaired recognition memory, working memory, and spatial memory in aged FAD mice were rescued by the treatment with EHMT1/2 inhibitors. These results suggest that disrupted epigenetic regulation of glutamate receptor transcription underlies the synaptic and cognitive deficits in Alzheimer's disease, and targeting histone methylation enzymes may represent a novel therapeutic strategy for this prevalent neurodegenerative disorder.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, P.R.China
| | - Aiyi Liu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, P.R.China
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| | - Qing Cao
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lin Lin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| | - Freddy Zhang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Wei
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| | - Emmanuel Matas
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jia Cheng
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, P.R.China
| | - Xiaomin Wang
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, P.R.China
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- VA Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
210
|
Chronic histamine 3 receptor antagonism alleviates depression like conditions in mice via modulation of brain-derived neurotrophic factor and hypothalamus-pituitary adrenal axis. Psychoneuroendocrinology 2019; 101:128-137. [PMID: 30458370 DOI: 10.1016/j.psyneuen.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023]
Abstract
The last two decades of research has established histamine (HA) as a neurotransmitter. Since H3R antagonists are known to modulate several neurotransmitters besides HA, H3R antagonists have shown potential for the treatment of different central nervous system disorders, including depression. However, molecular mechanisms underlying the beneficial effects of H3R antagonism in depression are not clear, yet. In the present study, we investigated the antidepressant potential of ciproxifan, a selective H3R antagonist, in chronic unpredictable stress (CUS) model of depression in C57BL/6 J mice. We observed that chronic treatment of CUS mice with ciproxifan (3 mg/kg i.p.; for three weeks) alleviates depression-like symptoms such as helplessness measured by forced swim and tail suspension test (FST and TST), anhedonia measured by sucrose preference test (SPT) and social deficit measured in social behavior test. Chronic ciproxifan treatment restored CUS induced BDNF expression in the prefrontal cortex (PFC) and hippocampus. We also observed that ciproxifan modulates CUS induced NUCB2/nesfatin-1 and CRH expression in the hypothalamus and plasma corticosterone. We also determined the direct effect of HA on BDNF expression in neurons by western blotting and immunocytochemistry, and found that HA significantly induced BDNF expression, which was blocked by the H4R selective antagonist, but not by other HA receptor selective antagonists. Furthermore, ciproxifan significantly modulated NMDA glutamate receptor subunits NR2B and NR2A. Thus, these results suggest that increased HA signaling in the brain produces antidepressant-like effects in mice and modulates BDNF expression and HPA-axis.
Collapse
|
211
|
Crowley NA, Magee SN, Feng M, Jefferson SJ, Morris CJ, Dao NC, Brockway DF, Luscher B. Ketamine normalizes binge drinking-induced defects in glutamatergic synaptic transmission and ethanol drinking behavior in female but not male mice. Neuropharmacology 2019; 149:35-44. [PMID: 30731135 DOI: 10.1016/j.neuropharm.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 01/06/2023]
Abstract
Ketamine is a fast acting experimental antidepressant with significant therapeutic potential for emotional disorders such as major depressive disorder and alcohol use disorders. Of particular interest is binge alcohol use, which during intermittent withdrawal from drinking involves depressive-like symptoms reminiscent of major depressive disorder. Binge drinking has been successfully modeled in mice with the Drinking in the Dark (DID) paradigm, which involves daily access to 20% ethanol, for a limited duration and selectively during the dark phase of the circadian light cycle. Here we demonstrate that DID exposure reduces the cell surface expression of NMDA- and AMPA-type glutamate receptors in the prelimbic cortex (PLC) of female but not male mice, along with reduced activity of the mammalian target of rapamycin (mTOR) signaling pathway. Pretreatment with an acute subanesthetic dose of ketamine suppresses binge-like ethanol consumption in female but not male mice. Lastly, DID-exposure reduces spontaneous glutamatergic synaptic transmission in the PLC of both sexes, but synaptic transmission is rescued by ketamine selectively in female mice. Thus, ketamine may have therapeutic potential as an ethanol binge suppressing agent selectively in female subjects.
Collapse
Affiliation(s)
- Nicole A Crowley
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah N Magee
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mengyang Feng
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah J Jefferson
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Christian J Morris
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nigel C Dao
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dakota F Brockway
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA; Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
212
|
Orlandi C, Sutton LP, Muntean BS, Song C, Martemyanov KA. Homeostatic cAMP regulation by the RGS7 complex controls depression-related behaviors. Neuropsychopharmacology 2019; 44:642-653. [PMID: 30546127 PMCID: PMC6333837 DOI: 10.1038/s41386-018-0238-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 01/27/2023]
Abstract
Affective disorders arise from abnormal responses of the brain to prolonged exposure to challenging environmental stimuli. Recent work identified the orphan receptor GPR158 as a molecular link between chronic stress and depression. Here we reveal a non-canonical mechanism by which GPR158 exerts its effects on stress-induced depression by the complex formation with Regulator of G protein Signaling 7 (RGS7). Chronic stress promotes membrane recruitment of RGS7 via GPR158 in the medial prefrontal cortex (mPFC). The resultant complex suppresses homeostatic regulation of cAMP by inhibitory GPCRs in the region. Accordingly, RGS7 loss in mice induces an antidepressant-like phenotype and resiliency to stress, whereas its restoration within the mPFC is sufficient to rescue this phenotype in a GPR158-dependent way. These findings mechanistically link the unusual orphan receptor-RGS complex to a major stress mediator, the cAMP system and suggest new avenues for pharmacological interventions in affective disorders.
Collapse
Affiliation(s)
- Cesare Orlandi
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Laurie P. Sutton
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Brian S. Muntean
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Chenghui Song
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Kirill A. Martemyanov
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
213
|
Taslimi Z, Komaki A, Sarihi A, Haghparast A. Effect of acute and chronic restraint stress on electrical activity of prefrontal cortex neurons in the reinstatement of extinguished methamphetamine-induced conditioned place preference: An electrophysiological study. Brain Res Bull 2019; 146:237-243. [PMID: 30660715 DOI: 10.1016/j.brainresbull.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022]
Abstract
Increased vulnerability to drug abuse has been observed after exposure to stress and the prefrontal cortex (PFC) plays a major role in the control of the stress response and reward pathway. The current study was conducted to clarify the effects of acute and chronic restraint stress on PFC neural activity during the reinstatement of methamphetamine (METH)-induced conditioned place preference (CPP) in rats. Following the establishment of CPP (METH 0.5 mg/kg; s.c. for 3 days) and the extinction phase, male Wistar rats were divided into threshold (0.25 mg/kg; s.c.) and sub-threshold (0.125 mg/kg; s.c.) METH-treated super groups to induce reinstatement. Each super group contained control (non-stressed), acute restraint stress (ARS) and chronic restraint stress (CRS) groups. in vivo single unit recordings were performed on the urethane-anesthetized rats in these groups. After baseline recordings (10-min period) of the neurons in the PFC, their firing activity was recorded for 50 min during the reinstatement phase after injection of METH. The results showed that the threshold dose, but not the sub-threshold dose, of METH significantly increased PFC neural activity in the non-stressed animals. The sub-threshold dose of METH notably changed this activity in both the ARS and CRS groups. These changes in the excited neurons after the sub-threshold dose in the ARS and CRS groups were significantly higher than those in the non-stressed group. It appears that the PFC is implicated in the associated reward pathway and stress functions. METH affected the firing rate of PFC neurons and stress amplified the effect of METH on changes in the neuronal firing rate in the PFC.
Collapse
Affiliation(s)
- Zahra Taslimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, 19615-1178, Tehran, Iran.
| |
Collapse
|
214
|
Sillivan SE, Jones ME, Jamieson S, Rumbaugh G, Miller CA. Bioinformatic analysis of long-lasting transcriptional and translational changes in the basolateral amygdala following acute stress. PLoS One 2019; 14:e0209846. [PMID: 30629705 PMCID: PMC6328204 DOI: 10.1371/journal.pone.0209846] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
Stress profoundly impacts the brain and increases the risk of developing a psychiatric disorder. The brain’s response to stress is mediated by a number of pathways that affect gene expression and protein function throughout the cell. Understanding how stress achieves such dramatic effects on the brain requires an understanding of the brain’s stress response pathways. The majority of studies focused on molecular changes have employed repeated or chronic stress paradigms to assess the long-term consequences of stress and have not taken an integrative genomic and/or proteomic approach. Here, we determined the lasting impact of a single stressful event (restraint) on the broad molecular profile of the basolateral amygdala complex (BLC), a key brain region mediating emotion, memory and stress. Molecular profiling performed thirty days post-restraint consisted of small RNA sequencing, RNA sequencing and quantitative mass spectrometry and identified long-lasting changes in microRNA (miRNA), messenger RNA (mRNA) and proteins. Alignment of the three datasets further delineated the regulation of stress-specific pathways which were validated by qPCR and Western Blot analysis. From this analysis, mir-29a-5p was identified as a putative regulator of stress-induced adaptations in the BLC. Further, a number of predicted mir-29a-5p targets are regulated at the mRNA and protein level. The concerted and long-lasting disruption of multiple molecular pathways in the amygdala by a single stress event is expected to be sufficient to alter behavioral responses to a wide array of future experiences, including exposure to additional stressors.
Collapse
Affiliation(s)
- Stephanie E. Sillivan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Meghan E. Jones
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Sarah Jamieson
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Courtney A. Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
215
|
Tripathi SJ, Chakraborty S, Srikumar BN, Raju TR, Shankaranarayana Rao BS. Basolateral amygdalar inactivation blocks chronic stress-induced lamina-specific reduction in prefrontal cortex volume and associated anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:194-207. [PMID: 30036565 DOI: 10.1016/j.pnpbp.2018.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022]
Abstract
Chronic exposure to stress causes cognitive deficits, anxiety and depression. Earlier studies have suggested that the prefrontal cortex (PFC) and basolateral amygdala (BLA) can differentially modulate the stress-induced alterations either by their action on HPA axis or via direct reciprocal connections between them. The PFC dysfunction and BLA hypertrophy following stress are known to cause anxiety and affective symptoms. Recent studies indicate that inactivation of BLA projections to PFC remarkably decreases anxiety. However, the effect of BLA inactivation on stress-induced anxiety and associated volume loss in prelimbic (PrL) and anterior cingulate (ACC) subregions of PFC is not known. Accordingly, we evaluated the effect of BLA lesion or inactivation during chronic immobilization stress (CIS) on an approach-avoidance task and associated volume loss in the PFC. The stressed rats showed a significant volumetric reduction in layer I and II of the PrL and ACC. Interestingly, BLA lesion prior to stress prevented the volume loss in PrL and ACC. Further, BLA lesion blocked the anxiety-like behavior in stressed rats. However, in the absence of stress, BLA lesion increased the number of shocks as compared to controls. As BLA lesion produced an anticonflict effect, we performed temporary inactivation of BLA specifically during stress. Similar to BLA lesion, lidocaine-induced inactivation prevented the stress-induced volume loss and anxiety-like behavior. We demonstrate that inactivation of BLA during stress prevents CIS-induced anxiety and associated structural correlates in the PFC. The present study extends the hypothesis of amygdalar silencing as a possible management strategy for stress and associated disorders.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
216
|
Abdallah CG, Averill LA, Akiki TJ, Raza M, Averill CL, Gomaa H, Adikey A, Krystal JH. The Neurobiology and Pharmacotherapy of Posttraumatic Stress Disorder. Annu Rev Pharmacol Toxicol 2019; 59:171-189. [PMID: 30216745 PMCID: PMC6326888 DOI: 10.1146/annurev-pharmtox-010818-021701] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New approaches to the neurobiology of posttraumatic stress disorder (PTSD) are needed to address the reported crisis in PTSD drug development. These new approaches may require the field to move beyond a narrow fear-based perspective, as fear-based medications have not yet demonstrated compelling efficacy. Antidepressants, particularly recent rapid-acting antidepressants, exert complex effects on brain function and structure that build on novel aspects of the biology of PTSD, including a role for stress-related synaptic dysconnectivity in the neurobiology and treatment of PTSD. Here, we integrate this perspective within a broader framework-in other words, a dual pathology model of ( a) stress-related synaptic loss arising from amino acid-based pathology and ( b) stress-related synaptic gain related to monoamine-based pathology. Then, we summarize the standard and experimental (e.g., ketamine) pharmacotherapeutic options for PTSD and discuss their putative mechanism of action and clinical efficacy.
Collapse
Affiliation(s)
- Chadi G Abdallah
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, USA;
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Lynnette A Averill
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, USA;
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Teddy J Akiki
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, USA;
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Mohsin Raza
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, USA;
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Christopher L Averill
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, USA;
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Hassaan Gomaa
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, USA;
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Archana Adikey
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, USA;
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - John H Krystal
- Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, USA;
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| |
Collapse
|
217
|
Abstract
For decades, symptoms of depression have been treated primarily with medications that directly target the monoaminergic brain systems, which typically take weeks to exert measurable effects and months to exert remission of symptoms. Low, subanesthetic doses of ( R,S)-ketamine (ketamine) result in the rapid improvement of core depressive symptoms, including mood, anhedonia, and suicidal ideation, occurring within hours following a single administration, with relief from symptoms typically lasting up to a week. The discovery of these actions of ketamine has resulted in a reconceptualization of how depression could be more effectively treated in the future. In this review, we discuss clinical data pertaining to ketamine and other rapid-acting antidepressant drugs, as well as the current state of pharmacological knowledge regarding their mechanism of action. Additionally, we discuss the neurobiological circuits that are engaged by this drug class and that may be targeted by a future generation of medications, for example, hydroxynorketamine; metabotropic glutamate receptor 2/3 antagonists; and N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and γ-aminobutyric acid receptor modulators.
Collapse
Affiliation(s)
- Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Departments of Pharmacology and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
218
|
Al-Alawi M, Al-Sinawi H, Al-Qubtan A, Al-Lawati J, Al-Habsi A, Al-Shuraiqi M, Al-Adawi S, Panchatcharam SM. Prevalence and determinants of burnout Syndrome and Depression among medical students at Sultan Qaboos University: A cross-sectional analytical study from Oman. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2019; 74:130-139. [PMID: 29116906 DOI: 10.1080/19338244.2017.1400941] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study investigated the prevalence and determinants of Burnout Syndrome and Depressive Symptoms among medical students in Oman. Then, it explored whether the three-dimensional aspects of Burnout Syndrome (High Emotional Exhaustion, High Cynicism and Low Academic Efficacy) would predict the presence of Depressive Symptoms in a logistic regression model. A cross-sectional study was conducted among a random sample of medical students of Sultan Qaboos University. 662 students participated in the study with a response rate of 98%. The prevalence of Burnout Syndrome and Depressive Symptoms were; 7.4% and 24.5% respectively. Preclinical students reported high levels of both Burnout Syndrome (Odds Ratio-OR 2.83, 95% Confidence Interval CI 1.45-5.54) and Depressive Symptoms (OR 2. 72, 95% CI 1.07-6.89). The three-dimensional aspects of Burnout Syndrome(High Emotional Exhaustion, High Cynicism, low Professional efficacy) were statistically significant predictors of the presence of Depressive Symptoms; OR 3.52 (95% CI: 2.21-5.60), OR 3.33 (95% CI:2.10-5.28) and OR 2.07(95%CI:1.32-3.24) respectively. This study indicates that Burnout Syndrome and Depressive Symptoms are common among medical students, particularly in preclinical grade. Furthermore, the presence of high occupational burnout elevates the risk of depression.
Collapse
Affiliation(s)
- Mohammed Al-Alawi
- a Psychiatry Residency Training Program, Oman Medical Specialty Board , Muscat , Oman
- b Department of Behavioral Medicine , Sultan Qaboos University Hospital , Muscat , Oman
| | - Hamed Al-Sinawi
- a Psychiatry Residency Training Program, Oman Medical Specialty Board , Muscat , Oman
- b Department of Behavioral Medicine , Sultan Qaboos University Hospital , Muscat , Oman
| | - Ali Al-Qubtan
- c Department of Behavioral Medicine , College of Medicine and Health Science, Sultan Qaboos University , Muscat , Oman
| | - Jaber Al-Lawati
- c Department of Behavioral Medicine , College of Medicine and Health Science, Sultan Qaboos University , Muscat , Oman
| | - Assad Al-Habsi
- c Department of Behavioral Medicine , College of Medicine and Health Science, Sultan Qaboos University , Muscat , Oman
| | - Mohammed Al-Shuraiqi
- c Department of Behavioral Medicine , College of Medicine and Health Science, Sultan Qaboos University , Muscat , Oman
| | - Samir Al-Adawi
- c Department of Behavioral Medicine , College of Medicine and Health Science, Sultan Qaboos University , Muscat , Oman
| | - Sathiya Murthi Panchatcharam
- d Department of Behavioral Medicine , Studies and Research Section, Oman Medical Specialty Board , Muscat , Oman
| |
Collapse
|
219
|
King G, Baker KD, Bisby MA, Chan D, Cowan CSM, Stylianakis AA, Zimmermann KS, Richardson R. A precision medicine approach to pharmacological adjuncts to extinction: a call to broaden research. Psychopharmacology (Berl) 2019; 236:143-161. [PMID: 30116858 DOI: 10.1007/s00213-018-4999-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022]
Abstract
There is a pressing need to improve treatments for anxiety. Although exposure-based therapy is currently the gold-standard treatment, many people either do not respond to this therapy or experience a relapse of symptoms after treatment has ceased. In recent years, there have been many novel pharmacological agents identified in preclinical research that have potential as adjuncts for exposure therapy, yet very few of these are regularly integrated into clinical practice. Unfortunately, the robust effects observed in the laboratory animal often do not translate to a clinical population. In this review, we discuss how age, sex, genetics, stress, medications, diet, alcohol, and the microbiome can vary across a clinical population and yet are rarely considered in drug development. While not an exhaustive list, we have focused on these factors because they have been shown to influence an individual's vulnerability to anxiety and alter the neurotransmitter systems often targeted by pharmacological adjuncts to therapy. We argue that for potential adjuncts to be successfully translated from the lab to the clinic empirical research must be broadened to consider how individual difference factors will influence drug efficacy.
Collapse
Affiliation(s)
- Gabrielle King
- School of Psychology, The University of New South Wales, Sydney, Australia.
| | - Kathryn D Baker
- School of Psychology, The University of New South Wales, Sydney, Australia
| | - Madelyne A Bisby
- School of Psychology, The University of New South Wales, Sydney, Australia
| | - Diana Chan
- School of Psychology, The University of New South Wales, Sydney, Australia
| | | | | | | | - Rick Richardson
- School of Psychology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
220
|
LeGates TA, Kvarta MD, Thompson SM. Sex differences in antidepressant efficacy. Neuropsychopharmacology 2019; 44:140-154. [PMID: 30082889 PMCID: PMC6235879 DOI: 10.1038/s41386-018-0156-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/06/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
Abstract
Sex differences have been observed across many psychiatric diseases, especially mood disorders. For major depression, the most prevalent psychiatric disorder, females show a roughly two-fold greater risk as compared to males. Depression is sexually dimorphic with males and females exhibiting differences in clinical presentation, course, and response to antidepressant treatment. In this review, we first discuss sex differences observed in depressed patients, as well as animal models that reveal potential underlying mechanisms. We then discuss antidepressant treatments including their proposed mechanism of action and sex differences observed in treatment response. We include possible mechanisms underlying these sex differences with particular focus on synaptic transmission.
Collapse
Affiliation(s)
- Tara A. LeGates
- 0000 0001 2175 4264grid.411024.2Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Mark D. Kvarta
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Scott M. Thompson
- 0000 0001 2175 4264grid.411024.2Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA ,0000 0001 2175 4264grid.411024.2Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
221
|
Wellman CL, Moench KM. Preclinical studies of stress, extinction, and prefrontal cortex: intriguing leads and pressing questions. Psychopharmacology (Berl) 2019; 236:59-72. [PMID: 30225660 PMCID: PMC6374178 DOI: 10.1007/s00213-018-5023-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Stress is associated with cognitive and emotional dysfunction, and increases risk for a variety of psychological disorders, including depression and posttraumatic stress disorder. Prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Extinction of conditioned fear provides an excellent model system for examining how stress-induced changes in corticolimbic structure and function are related to stress-induced changes in neural function and behavior, as the neural circuitry underlying this behavior is well characterized. OBJECTIVES This review examines how acute and chronic stress influences extinction and describes how stress alters the structure and function of the medial prefrontal cortex, a potential neural substrate for these effects. In addition, we identify important unanswered questions about how stress-induced change in prefrontal cortex may mediate extinction deficits and avenues for future research. KEY FINDINGS A substantial body of work demonstrates deficits in extinction after either acute or chronic stress. A separate and substantial literature demonstrates stress-induced neuronal remodeling in medial prefrontal cortex, along with several key neurohormonal contributors to this remodeling, and there is substantial overlap in prefrontal mechanisms underlying extinction and the mechanisms implicated in stress-induced dysfunction of-and neuronal remodeling in-medial prefrontal cortex. However, data directly examining the contribution of changes in prefrontal structure and function to stress-induced extinction deficits is currently lacking. CONCLUSIONS Understanding how stress influences extinction and its neural substrates as well as individual differences in this effect will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in extinction.
Collapse
Affiliation(s)
- Cara L. Wellman
- Department of Psychological & Brain Sciences, Indiana University,Department of Psychological, Center for the Integrative Study of Animal Behavior, Indiana University,Department of Psychological, Program in Neuroscience, Indiana University
| | - Kelly M. Moench
- Department of Psychological & Brain Sciences, Indiana University,Department of Psychological, Center for the Integrative Study of Animal Behavior, Indiana University,Department of Psychological, Program in Neuroscience, Indiana University
| |
Collapse
|
222
|
Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S, Plitman E, Sano Y, Tarumi R, ElSalhy M, Katayama N, Ogyu K, Miyazaki T, Kishimoto T, Graff-Guerrero A, Meyer JH, Blumberger DM, Daskalakis ZJ, Mimura M, Nakajima S. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry 2019; 24:952-964. [PMID: 30315224 PMCID: PMC6755980 DOI: 10.1038/s41380-018-0252-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/13/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Alterations in glutamatergic neurotransmission are implicated in the pathophysiology of depression, and the glutamatergic system represents a treatment target for depression. To summarize the nature of glutamatergic alterations in patients with depression, we conducted a meta-analysis of proton magnetic resonance (1H-MRS) spectroscopy studies examining levels of glutamate. We used the search terms: depress* AND (MRS OR "magnetic resonance spectroscopy"). The search was performed with MEDLINE, Embase, and PsycINFO. The inclusion criteria were 1H-MRS studies comparing levels of glutamate + glutamine (Glx), glutamate, or glutamine between patients with depression and healthy controls. Standardized mean differences (SMD) were calculated to assess group differences in the levels of glutamatergic neurometabolites. Forty-nine studies met the eligibility criteria, which included 1180 patients and 1066 healthy controls. There were significant decreases in Glx within the medial frontal cortex (SMD = -0.38; 95% CI, -0.69 to -0.07) in patients with depression compared with controls. Subanalyses revealed that there was a significant decrease in Glx in the medial frontal cortex in medicated patients with depression (SMD = -0.50; 95% CI, -0.80 to -0.20), but not in unmedicated patients (SMD = -0.27; 95% CI, -0.76 to 0.21) compared with controls. Overall, decreased levels of glutamatergic metabolites in the medial frontal cortex are linked with the pathophysiology of depression. These findings are in line with the hypothesis that depression may be associated with abnormal glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Sho Moriguchi
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Akihiro Takamiya
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Nobuyuki Horita
- 0000 0001 1033 6139grid.268441.dDepartment of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masataka Wada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sakiko Tsugawa
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Eric Plitman
- 0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Yasunori Sano
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Muhammad ElSalhy
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Nariko Katayama
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Miyazaki
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ariel Graff-Guerrero
- 0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Jeffrey H. Meyer
- 0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Daniel M. Blumberger
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Zafiris J. Daskalakis
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Masaru Mimura
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| |
Collapse
|
223
|
Tripathi SJ, Chakraborty S, Srikumar B, Raju T, Shankaranarayana Rao B. Prevention of chronic immobilization stress-induced enhanced expression of glucocorticoid receptors in the prefrontal cortex by inactivation of basolateral amygdala. J Chem Neuroanat 2019; 95:134-145. [DOI: 10.1016/j.jchemneu.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
224
|
Mendoza C, Perez-Urrutia N, Alvarez-Ricartes N, Barreto GE, Pérez-Ordás R, Iarkov A, Echeverria V. Cotinine Plus Krill Oil Decreased Depressive Behavior, and Increased Astrocytes Survival in the Hippocampus of Mice Subjected to Restraint Stress. Front Neurosci 2018; 12:952. [PMID: 30618579 PMCID: PMC6305112 DOI: 10.3389/fnins.2018.00952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Restraint stress (RS) is a condition affecting millions of people worldwide. The investigation of new therapies to alleviate the consequences of prolonged RS is much needed. Cotinine, a nicotine-derivative, has shown to prevent the decrease in cerebral synaptic density, working memory deficits, anxiety, and depressive-like behavior after prolonged restraint stress (RS) in mice. Furthermore, post-treatment with cotinine reduced the adverse effects of chronic RS on astrocyte survival and architecture. On the other hand, the nutritional supplement krill oil (KO), has shown to be beneficial in decreasing depressive-like behavior and oxidative stress. In this study, in the search for effective preventative treatments to be used in people subjected to reduced mobility, the effect of co-treatment with cotinine plus KO in mice subjected to prolonged RS was investigated. The results show that cotinine plus KO prevented the loss of astrocytes, the appearance of depressive-like behavior and cognitive impairment induced by RS. The use of the combination of cotinine plus KO was more effective than cotinine alone in preventing the depressive-like behavior in the restrained mice. The potential use of this combination to alleviate the psychological effects of reduced mobility is discussed.
Collapse
Affiliation(s)
| | | | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas Universidad Autónoma de Chile, Santiago, Chile
| | - Raquel Pérez-Ordás
- Facultad de Ciencias de la Actividad física y el deporte Universidad Pablo de Olavide, Sevilla, Spain
| | - Alex Iarkov
- Universidad San Sebastián Fac. Cs de la Salud, Concepción, Chile
| | - Valentina Echeverria
- Universidad San Sebastián Fac. Cs de la Salud, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System Bay Pines, FL, United States
| |
Collapse
|
225
|
Trofimiuk E, Wielgat P, Braszko JJ, Car H. Stress and Ketamine, Bimodal Influence on Cognitive Functions. Behav Brain Res 2018; 360:354-364. [PMID: 30562568 DOI: 10.1016/j.bbr.2018.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
The glutamate N-methyl-D-aspartate receptor (NMDAR) non-selective antagonist, ketamine, has been recently repurposed as a rapidly acting antidepressant, catalyzing the vigorous investigation of glutamate-signaling modulators as novel therapeutic agents for depressive disorders. Beneficial effects of this drug in the quick-acting treatment of depression are recognized. The long-term effects of ketamine have not been known, including the cognitive sphere. It is well acknowledged that prolonged exposure to stress induces depression and cognitive impairment. It seemed reasonable to ask how the long-term ketamine administration would affect stressed animals in the aspect of cognitive functions. In the current study we tested whether it is possible for ketamine, used in prolonged-regimen in rats, to alleviate stress-evoked memory deficits? Stressed (restraint 2 h daily for 21 days) and non-stressed rats (6-weeks-old) were treated with ketamine for 21 days and next subjected to a battery of behavioral tests: for the assessment of working and reference spatial memory (Morris water maze (MWM) and Barnes maze (BM)), stereotypy (stereotypy test - ST), locomotor functions (Open field - OF) and anxiety behavior (Elevated plus maze - EPM). Ketamine administration resulted in a significant stereotype behaviour in rats tested in ST. Stressed rats displayed a significant decline in the spatial working and reference memory. The effect of chronic ketamine administration depended on the type of test and differed between control rats and animals simultaneously exposed to chronic stress. However, in the MWM the impact was quite unequivocal, as we observed an improvement in spatial memory in stressed animals and a deterioration in non-stressed animals after ketamine administration. In the BM, the effect of ketamine changed in successive attempts, from favorable in the initial period to negative at the end of the test in the group of stressed animals and without a significant impact on control animals. We found no significant effects of ketamine on locomotor performance and on the level of anxiety. Taken together, these findings demonstrate that ketamine potently abolishes or prevents some kinds of stress-induced memory impairments and cognitive decline in rats, although in some circumstances, it could even increase damage to memory, especially in unstressed animals. It seems that the prolonged use of ketamine in the prevention of stress-induced memory declines can fulfill its role.
Collapse
Affiliation(s)
- Emil Trofimiuk
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland.
| | - Przemysław Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland
| | - Jan J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland
| |
Collapse
|
226
|
Vaden JH, Tian T, Golf S, McLean JW, Wilson JA, Wilson SM. Chronic over‐expression of ubiquitin impairs learning, reduces synaptic plasticity, and enhancesGRIAreceptor turnover in mice. J Neurochem 2018; 148:386-399. [DOI: 10.1111/jnc.14630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jada H. Vaden
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - Tina Tian
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - Samantha Golf
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - John W. McLean
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - Julie A. Wilson
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - Scott M. Wilson
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
227
|
Miguel-Hidalgo JJ, Moulana M, Deloach PH, Rajkowska G. Chronic Unpredictable Stress Reduces Immunostaining for Connexins 43 and 30 and Myelin Basic Protein in the Rat Prelimbic and Orbitofrontal Cortices. ACTA ACUST UNITED AC 2018; 2. [PMID: 30775650 PMCID: PMC6375503 DOI: 10.1177/2470547018814186] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Astrocytes and oligodendrocytes are pathologically altered in dorsolateral
prefrontal and orbitofrontal cortices in major depressive disorder. In rat
models of stress (major depressive disorder risk factor) astrocyte gap
junction protein connexin 43 (Cx43) is reduced in the prelimbic cortex.
Astrocyte connexins are recognized to strongly influence myelin maintenance
in the central nervous system. However, it is unknown whether stress-related
changes in Cx43 and the other major astrocyte connexin, Cx30, occur in the
orbitofrontal cortex, or whether connexin changes are concurrent with
disturbances in myelination. Methods Frozen sections containing prelimbic cortex and orbitofrontal cortex of rats
subjected to 35 days of chronic unpredictable stress and controls
(n = 6/group) were immunolabeled for Cx43, Cx30, and myelin basic protein.
Density of Cx43 or Cx30 immunoreactive puncta and area fraction of myelin
basic protein immunoreactivity were measured in prelimbic cortex and
orbitofrontal cortex and results analyzed with t test or
Pearson correlations. Results Density of Cx43- and Cx30-positive puncta in both prelimbic cortex and
orbitofrontal cortex was lower in chronic unpredictable stress-treated than
in control rats. In both regions, the area fraction of myelin basic protein
immunoreactivity was also lower in chronic unpredictable stress animals.
Myelin basic protein area fraction was positively correlated with the
density of Cx43-positive puncta in orbitofrontal cortex, and with Cx30
puncta in prelimbic cortex. Conclusion Low Cx43 and Cx30 after chronic unpredictable stress in rat prelimbic cortex
and orbitofrontal cortex suggests that reduced astrocytic gap junction
density may generalize to the entire prefrontal cortex. Concurrent reduction
of Cx43-, Cx30-, and myelin basic protein-immunolabeled structures is
consistent with a mechanism linking changes in astrocyte gap junction
proteins and disturbed myelin morphology in depression.
Collapse
|
228
|
Harnett NG, Ference EW, Wood KH, Wheelock MD, Knight AJ, Knight DC. Trauma exposure acutely alters neural function during Pavlovian fear conditioning. Cortex 2018; 109:1-13. [PMID: 30265859 PMCID: PMC6261786 DOI: 10.1016/j.cortex.2018.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/29/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is associated with dysfunction of the neural circuitry that supports fear learning and memory processes. However, much of what is known about neural dysfunction in PTSD is based on research in chronic PTSD populations. Less is known about neural function that supports fear learning acutely following trauma exposure. Determining the acute effects of trauma exposure on brain function would provide new insight into the neural processes that mediate the cognitive-affective dysfunction associated with PTSD. Therefore, the present study investigated neural activity that supports fear learning and memory processes in recently Trauma-Exposed (TE) and Non-Trauma-Exposed (NTE) participants. Participants completed a Pavlovian fear conditioning procedure during functional magnetic resonance imaging (fMRI). During fMRI, participants' threat expectancy was continuously monitored. NTE participants showed greater threat expectancy during warning than safety cues, while no difference was observed in the TE group. This finding suggests TE participants overgeneralized the fear association to the safety cue. Further, only the TE group showed a negative relationship between fMRI signal responses within dorsomedial prefrontal cortex (PFC) and threat expectancy during safety cues. These results suggest the dorsomedial PFC mediates overgeneralization of learned fear as an acute result of trauma exposure. Finally, neural activity within the PFC and inferior parietal lobule showed a negative relationship with PTSD symptom severity assessed three months posttrauma. Thus, neural activity measured acutely following trauma exposure predicted future PTSD symptom severity. The present findings elucidate the acute effects of trauma exposure on cognitive-affective function and provide new insight into the neural mechanisms of PTSD.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward W Ference
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kimberly H Wood
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Muriah D Wheelock
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy J Knight
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
229
|
Cifu G, Power MC, Shomstein S, Arem H. Mindfulness-based interventions and cognitive function among breast cancer survivors: a systematic review. BMC Cancer 2018; 18:1163. [PMID: 30477450 PMCID: PMC6260900 DOI: 10.1186/s12885-018-5065-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Breast cancer survivors have an elevated risk of cognitive impairment compared to age-matched women without cancer. Causes of this impairment are complex, including both treatment and psychological factors. Mindfulness-based interventions, which have been shown to improve cognitive function in the general population, may be one approach to mitigate cognitive impairment in this survivor population. Our objective was to conduct a systematic literature review of studies on the effect of mindfulness-based interventions on cognition among breast cancer survivors. Methods We conducted searches of three electronic databases (Scopus, PubMed and Cochrane Database of Systematic Reviews) in September 2017 for studies pertaining mindfulness and cognitive function among breast cancer survivors. Abstracts were manually searched by two reviewers and additional articles were identified through reference lists. Results A total of 226 articles were identified through our systematic search and six met inclusion criteria for this review. The reviewed studies lacked consistency in terms of the cognition domains studied (e.g. executive function, recent memory, etc) and in the measures used to assess cognition. Of the included studies, two found no association between mindfulness interventions and cognitive function, two found improvement that was not sustained at the follow-up, and another two found sustained improvement at 2- or 6-months. Conclusions Mindfulness-based interventions have shown some evidence for improving cognition among breast cancer survivors, but further research using validated and comprehensive cognitive assessments is needed. More research is also needed related to the timing, duration and content of mindfulness interventions. Electronic supplementary material The online version of this article (10.1186/s12885-018-5065-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriella Cifu
- Department of Epidemiology and Biostatistics, George Washington University, Milken Institute School of Public Health, Washington DC, USA
| | - Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University, Milken Institute School of Public Health, Washington DC, USA
| | - Sarah Shomstein
- Department of Psychology, George Washington University, Columbian College of Arts and Sciences, Washington DC, USA
| | - Hannah Arem
- Department of Epidemiology and Biostatistics, George Washington University, Milken Institute School of Public Health, Washington DC, USA. .,GW Cancer Center, 950 New Hampshire Avenue NW, Office 514, Washington DC, 20052, USA.
| |
Collapse
|
230
|
Hisler GC, Krizan Z, DeHart T. Does Stress Explain the Effect of Sleep on Self-Control Difficulties? A Month-Long Daily Diary Study. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2018; 45:864-877. [DOI: 10.1177/0146167218798823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insufficient sleep is linked to increased stress and suboptimal self-control; however, no studies have examined stress as a reason for why sleep affects self-control. Moreover, it is unknown if there are individual differences that make people vulnerable to this dynamic. Daily diary entries from 212 university students across 30 days were used in a multilevel path model examining if stress explained how prior night sleep affected next-day self-control difficulties and exploring if individual differences in sleep duration, stress, or self-control qualified this effect. Increased stress partially mediated of the effect of reduced sleep duration on increased next-day self-control difficulty. Moreover, short sleep increased next-day stress more for individuals with higher typical stress. Daytime stress especially amplified self-control difficulty for individuals with shorter typical sleep duration. Findings implicate stress as a substantial factor in how sleep loss undermines self-control and identify individuals particularly susceptible to this effect.
Collapse
|
231
|
Yang Y, Ju W, Zhang H, Sun L. Effect of Ketamine on LTP and NMDAR EPSC in Hippocampus of the Chronic Social Defeat Stress Mice Model of Depression. Front Behav Neurosci 2018; 12:229. [PMID: 30356718 PMCID: PMC6189398 DOI: 10.3389/fnbeh.2018.00229] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Depression is a common mental disorder that is associated with memory dysfunction. Ketamine has recently been demonstrated to be a rapid antidepressant. The mechanisms underlying how depression induces memory dysfunction and how ketamine relieves depressive symptoms remain poorly understood. This work compared three groups of male C57BL/6J mice: mice exposed to chronic social defeat stress (CSDS) to induce a depression-like phenotype, depression-like mice treated with ketamine, and control mice that were not exposed to CSDS or treated with ketamine. Spatial working memory and long term memory were assessed by spontaneous alternation Y-maze and fear conditioning tests, respectively. We used western blot to analyze the density of N-methyl-D-aspartate receptor (NMDAR) subunits in the hippocampus. We recorded long term potentiation (LTP) and NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal slices. We observed that compared with control mice, depression-like mice had significant reductions in spatial working memory and contextual fear memory. The level of NR2B, LTP and NMDA receptor-mediated EPSCs of depression-like mice were decreased. Ketamine treatment attenuated the memory impairment, and increased the density of NR2B and the amplitude of LTP and NMDA receptor-mediated EPSCs in the hippocampus of depression-like mice. In conclusion, depression-like mice have deficits in working memory and contextual fear memory. The decrease of NR2B, LTP induction and NMDA receptor-mediated EPSCs in the hippocampus may be involved in this process. Ketamine can improve expression of NR2B, LTP induction and NMDA receptor-mediated EPSCs in the hippocampus of depression-like mice, which might be part of the reason why ketamine can alleviate the memory dysfunction induced by depression.
Collapse
Affiliation(s)
- Yu Yang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Weina Ju
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Haining Zhang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
232
|
Magalhães R, Barrière DA, Novais A, Marques F, Marques P, Cerqueira J, Sousa JC, Cachia A, Boumezbeur F, Bottlaender M, Jay TM, Mériaux S, Sousa N. The dynamics of stress: a longitudinal MRI study of rat brain structure and connectome. Mol Psychiatry 2018; 23:1998-2006. [PMID: 29203852 DOI: 10.1038/mp.2017.244] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
Stress is a well-established trigger for a number of neuropsychiatric disorders, as it alters both structure and function of several brain regions and its networks. Herein, we conduct a longitudinal neuroimaging study to assess how a chronic unpredictable stress protocol impacts the structure of the rat brain and its functional connectome in both high and low responders to stress. Our results reveal the changes that stress triggers in the brain, with structural atrophy affecting key regions such as the prelimbic, cingulate, insular and retrosplenial, somatosensory, motor, auditory and perirhinal/entorhinal cortices, the hippocampus, the dorsomedial striatum, nucleus accumbens, the septum, the bed nucleus of the stria terminalis, the thalamus and several brain stem nuclei. These structural changes are associated with increasing functional connectivity within a network composed by these regions. Moreover, using a clustering based on endocrine and behavioural outcomes, animals were classified as high and low responders to stress. We reveal that susceptible animals (high responders) develop local atrophy of the ventral tegmental area and an increase in functional connectivity between this area and the thalamus, further spreading to other areas that link the cognitive system with the fight-or-flight system. Through a longitudinal approach we were able to establish two distinct patterns, with functional changes occurring during the exposure to stress, but with an inflection point after the first week of stress when more prominent changes were seen. Finally, our study revealed differences in functional connectivity in a brainstem-limbic network that distinguishes resistant and susceptible responders before any exposure to stress, providing the first potential imaging-based predictive biomarkers of an individual's resilience/vulnerability to stressful conditions.
Collapse
Affiliation(s)
- R Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - D A Barrière
- Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France
| | - A Novais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - F Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - P Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A Cachia
- Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire de Psychologie du développement et de l'Education de l'Enfant, CNRS UMR, Paris, France.,Institut Universitaire de France, Paris, France
| | - F Boumezbeur
- Neurospin, JOLIOT, CEA, Gif/Yvette, Paris, France
| | | | - T M Jay
- Physiopathologie des Maladies Psychiatriques, UMR_S 894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | - S Mériaux
- Neurospin, JOLIOT, CEA, Gif/Yvette, Paris, France
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
233
|
Abdallah CG, Sanacora G, Duman RS, Krystal JH. The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacol Ther 2018; 190:148-158. [PMID: 29803629 PMCID: PMC6165688 DOI: 10.1016/j.pharmthera.2018.05.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of the antidepressant effects of ketamine has opened a breakthrough opportunity to develop a truly novel class of safe, effective, and rapid-acting antidepressants (RAADs). In addition, the rapid and robust biological and behavioral effects of ketamine offered a unique opportunity to utilize the drug as a tool to thoroughly investigate the neurobiology of stress and depression in animals, and to develop sensitive and reproducible biomarkers in humans. The ketamine literature over the past two decades has considerably enriched our understanding of the mechanisms underlying chronic stress, depression, and RAADs. However, considering the complexity of the pharmacokinetics and in vivo pharmacodynamics of ketamine, several questions remain unanswered and, at times, even answered questions continue to be considered controversial or at least not fully understood. The current perspective paper summarizes our understanding of the neurobiology of depression, and the mechanisms of action of ketamine and other RAADs. The review focuses on the role of glutamate neurotransmission - reviewing the history of the "glutamate inhibition" and "glutamate activation" hypotheses, proposing a synaptic connectivity model of chronic stress pathology, and describing the mechanism of action of ketamine. It will also summarize the clinical efficacy findings of putative RAADs, present relevant human biomarker findings, and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Chadi G Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA; Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, USA.
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA; Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA; Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, USA
| |
Collapse
|
234
|
De Berardis D, Fornaro M, Valchera A, Cavuto M, Perna G, Di Nicola M, Serafini G, Carano A, Pompili M, Vellante F, Orsolini L, Fiengo A, Ventriglio A, Yong-Ku K, Martinotti G, Di Giannantonio M, Tomasetti C. Eradicating Suicide at Its Roots: Preclinical Bases and Clinical Evidence of the Efficacy of Ketamine in the Treatment of Suicidal Behaviors. Int J Mol Sci 2018; 19:E2888. [PMID: 30249029 PMCID: PMC6213585 DOI: 10.3390/ijms19102888] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the continuous advancement in neurosciences as well as in the knowledge of human behaviors pathophysiology, currently suicide represents a puzzling challenge. The World Health Organization (WHO) has established that one million people die by suicide every year, with the impressive daily rate of a suicide every 40 s. The weightiest concern about suicidal behavior is how difficult it is for healthcare professionals to predict. However, recent evidence in genomic studies has pointed out the essential role that genetics could play in influencing person's suicide risk. Combining genomic and clinical risk assessment approaches, some studies have identified a number of biomarkers for suicidal ideation, which are involved in neural connectivity, neural activity, mood, as well as in immune and inflammatory response, such as the mammalian target of rapamycin (mTOR) signaling. This interesting discovery provides the neurobiological bases for the use of drugs that impact these specific signaling pathways in the treatment of suicidality, such as ketamine. Ketamine, an N-methyl-d-aspartate glutamate (NMDA) antagonist agent, has recently hit the headlines because of its rapid antidepressant and concurrent anti-suicidal action. Here we review the preclinical and clinical evidence that lay the foundations of the efficacy of ketamine in the treatment of suicidal ideation in mood disorders, thereby also approaching the essential question of the understanding of neurobiological processes of suicide and the potential therapeutics.
Collapse
Affiliation(s)
- Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, "G. Mazzini" Hospital, p.zza Italia 1, 64100 Teramo, Italy.
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Villa S. Giuseppe Hospital, Hermanas Hospitalarias, 63100 Ascoli Piceno, Italy.
| | - Marilde Cavuto
- Department of Theory, Analysis and Composition, Music Conservatory "L. Canepa", 07100 Sassari, Italy.
| | - Giampaolo Perna
- Hermanas Hospitalarias, FoRiPsi, Department of Clinical Neurosciences, Villa San Benedetto Menni, Albese con Cassano, 22032 Como, Italy.
- Department of Psychiatry and Neuropsychology, University of Maastricht, 6221 Maastricht, The Netherlands.
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, Coral Gables, FL 33114, USA.
| | - Marco Di Nicola
- Institute of Psychiatry and Psychology, Catholic University of Sacred Heart, 00118 Rome, Italy.
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy.
| | - Alessandro Carano
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "Madonna Del Soccorso", A.S.U.R. 12, 63074 San Benedetto del Tronto, Italy.
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, 00118 Rome, Italy.
| | - Federica Vellante
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield SG141LZ, UK.
| | - Annastasia Fiengo
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASUR Marche AV5, Mental Health Unit, 63100 Ascoli Piceno, Italy.
| | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy.
| | - Kim Yong-Ku
- Department of Psychiatry, Korea University College of Medicine, Seoul 08826, Korea.
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Carmine Tomasetti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| |
Collapse
|
235
|
Chou D, Peng HY, Lin TB, Lai CY, Hsieh MC, Wen YC, Lee AS, Wang HH, Yang PS, Chen GD, Ho YC. (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray. Neuropharmacology 2018; 139:1-12. [DOI: 10.1016/j.neuropharm.2018.06.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/04/2018] [Accepted: 06/24/2018] [Indexed: 12/28/2022]
|
236
|
Protein kinase Mζ in medial prefrontal cortex mediates depressive-like behavior and antidepressant response. Mol Psychiatry 2018; 23:1878-1891. [PMID: 29180675 DOI: 10.1038/mp.2017.219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022]
Abstract
Neuronal atrophy and alterations of synaptic structure and function in the medial prefrontal cortex (mPFC) have been implicated in the pathogenesis of depression, but the underlying molecular mechanisms are largely unknown. The protein kinase Mζ (PKMζ), a brain-specific atypical protein kinase C isoform, is important for maintaining long-term potentiation and storing memory. In the present study, we explored the role of PKMζ in mPFC in two rat models of depression, chronic unpredictable stress (CUS) and learned helplessness. The involvement of PKMζ in the antidepressant effects of conventional antidepressants and ketamine were also investigated. We found that chronic stress decreased the expression of PKMζ in the mPFC and hippocampus but not in the orbitofrontal cortex. Overexpression of PKMζ in mPFC prevented the depressive-like and anxiety-like behaviors induced by CUS, and reversed helplessness behaviors. Inhibition of PKMζ in mPFC by expressing a PKMζ dominant-negative mutant induced depressive-like behaviors after subthreshold unpredictable stress and increased learned helplessness behavior. Furthermore, stress-induced deficits in synaptic proteins and decreases in dendritic density and the frequency of miniature excitatory postsynaptic currents in the mPFC were prevented by PKMζ overexpression and potentiated by PKMζ inhibition in subthreshold stress rats. The antidepressants fluoxetine, desipramine and ketamine increased PKMζ expression in mPFC and PKMζ mediated the antidepressant effects of ketamine. These findings identify PKMζ in mPFC as a critical mediator of depressive-like behavior and antidepressant response, providing a potential therapeutic target in developing novel antidepressants.
Collapse
|
237
|
Hidisoglu E, Kantar-Gok D, Ozen S, Yargicoglu P. Short-term 2.1 GHz radiofrequency radiation treatment induces significant changes on the auditory evoked potentials in adult rats. Int J Radiat Biol 2018; 94:858-871. [DOI: 10.1080/09553002.2018.1492166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Enis Hidisoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar-Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Sukru Ozen
- Engineering Faculty, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
238
|
McReynolds JR, Doncheck EM, Li Y, Vranjkovic O, Graf EN, Ogasawara D, Cravatt BF, Baker DA, Liu QS, Hillard CJ, Mantsch JR. Stress Promotes Drug Seeking Through Glucocorticoid-Dependent Endocannabinoid Mobilization in the Prelimbic Cortex. Biol Psychiatry 2018; 84:85-94. [PMID: 29100630 PMCID: PMC5889367 DOI: 10.1016/j.biopsych.2017.09.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Clinical reports suggest that rather than directly driving cocaine use, stress may create a biological context within which other triggers for drug use become more potent. We hypothesize that stress-induced increases in corticosterone "set the stage" for relapse by promoting endocannabinoid-induced attenuation of inhibitory transmission in the prelimbic cortex (PL). METHODS We have established a rat model for these stage-setting effects of stress. In this model, neither a stressor (electric footshock) nor stress-level corticosterone treatment alone reinstates cocaine seeking following self-administration and extinction, but each treatment potentiates reinstatement in response to an otherwise subthreshold cocaine priming dose (2.5 mg/kg, intraperitoneal). The contributions of endocannabinoid signaling in the PL to the effects of stress-level corticosterone on PL neurotransmission and cocaine seeking were determined using intra-PL microinfusions. Endocannabinoid-dependent effects of corticosterone on inhibitory synaptic transmission in the rat PL were determined using whole-cell recordings in layer V pyramidal neurons. RESULTS Corticosterone application attenuated inhibitory synaptic transmission in the PL via cannabinoid receptor type 1 (CB1R)- and 2-arachidonoylglycerol-dependent inhibition of gamma-aminobutyric acid release without altering postsynaptic responses. The ability of systemic stress-level corticosterone treatment to potentiate cocaine-primed reinstatement was recapitulated by intra-PL injection of corticosterone, the CB1R agonist WIN 55,212-2, or the monoacylglycerol lipase inhibitor URB602. Corticosterone effects on reinstatement were attenuated by intra-PL injections of either the CB1R antagonist, AM251, or the diacylglycerol lipase inhibitor, DO34. CONCLUSIONS These findings suggest that stress-induced increases in corticosterone promote cocaine seeking by mobilizing 2-arachidonoylglycerol in the PL, resulting in CB1R-mediated attenuation of inhibitory transmission in this brain region.
Collapse
Affiliation(s)
- Jayme R. McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | | | - Yan Li
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Evan N. Graf
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Daisuke Ogasawara
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Qing-song Liu
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| |
Collapse
|
239
|
Reinwald JR, Becker R, Mallien AS, Falfan-Melgoza C, Sack M, Clemm von Hohenberg C, Braun U, Cosa Linan A, Gass N, Vasilescu AN, Tollens F, Lebhardt P, Pfeiffer N, Inta D, Meyer-Lindenberg A, Gass P, Sartorius A, Weber-Fahr W. Neural Mechanisms of Early-Life Social Stress as a Developmental Risk Factor for Severe Psychiatric Disorders. Biol Psychiatry 2018; 84:116-128. [PMID: 29397900 DOI: 10.1016/j.biopsych.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/21/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND To explore the domain-general risk factor of early-life social stress in mental illness, rearing rodents in persistent postweaning social isolation has been established as a widely used animal model with translational relevance for neurodevelopmental psychiatric disorders such as schizophrenia. Although changes in resting-state brain connectivity are a transdiagnostic key finding in neurodevelopmental diseases, a characterization of imaging correlates elicited by early-life social stress is lacking. METHODS We performed resting-state functional magnetic resonance imaging of postweaning social isolation rats (N = 23) 9 weeks after isolation. Addressing well-established transdiagnostic connectivity changes of psychiatric disorders, we focused on altered frontal and posterior connectivity using a seed-based approach. Then, we examined changes in regional network architecture and global topology using graph theoretical analysis. RESULTS Seed-based analyses demonstrated reduced functional connectivity in frontal brain regions and increased functional connectivity in posterior brain regions of postweaning social isolation rats. Graph analyses revealed a shift of the regional architecture, characterized by loss of dominance of frontal regions and emergence of nonfrontal regions, correlating to our behavioral results, and a reduced modularity in isolation-reared rats. CONCLUSIONS Our result of functional connectivity alterations in the frontal brain supports previous investigations postulating social neural circuits, including prefrontal brain regions, as key pathways for risk for mental disorders arising through social stressors. We extend this knowledge by demonstrating more widespread changes of brain network organization elicited by early-life social stress, namely a shift of hubness and dysmodularity. Our results highly resemble core alterations in neurodevelopmental psychiatric disorders such as schizophrenia, autism, and attention-deficit/hyperactivity disorder in humans.
Collapse
Affiliation(s)
- Jonathan Rochus Reinwald
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Robert Becker
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anne Stephanie Mallien
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Claudia Falfan-Melgoza
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Markus Sack
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christian Clemm von Hohenberg
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alejandro Cosa Linan
- Research Group In Silico Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fabian Tollens
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Philipp Lebhardt
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Natascha Pfeiffer
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
240
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
241
|
Musazzi L, Tornese P, Sala N, Popoli M. What Acute Stress Protocols Can Tell Us About PTSD and Stress-Related Neuropsychiatric Disorders. Front Pharmacol 2018; 9:758. [PMID: 30050444 PMCID: PMC6052084 DOI: 10.3389/fphar.2018.00758] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
Posttraumatic stress disorder (PTSD), the fifth most prevalent mental disorder in the United States, is a chronic, debilitating mental illness with as yet limited options for treatment. Hallmark symptoms of PTSD include intrusive memory of trauma, avoidance of reminders of the event, hyperarousal and hypervigilance, emotional numbing, and anhedonia. PTSD is often triggered by exposure to a single traumatic experience, such as a traffic accident, a natural catastrophe, or an episode of violence. This suggests that stressful events have a primary role in the pathogenesis of the disorder, although genetic background and previous life events are likely involved. However, pathophysiology of this mental disorder, as for major depression and anxiety disorders, is still poorly understood. In particular, it is unknown how can a single traumatic, stressful event induce a disease that can last for years or decades. A major shift in the conceptual framework investigating neuropsychiatric disorders has occurred in recent years, from a monoamine-oriented hypothesis (which dominated pharmacological research for over half a century) to a neuroplasticity hypothesis, which posits that structural and functional changes in brain circuitry (largely in the glutamate system) mediate psychopathology and also therapeutic action. Rodent stress models are very useful to understand pathophysiology of PTSD. Recent studies with acute or subacute stress models have shown that exposure to short-time stressors (from several minutes to a few hours) can induce not only rapid, but also sustained changes in synaptic function (glutamate release, synaptic transmission/plasticity), neuroarchitecture (dendritic morphology, synaptic spines), and behavior (cognitive functions). Some of these changes, e.g., stress-induced increased glutamate release and dendrite retraction, are likely connected and occur more rapidly than previously thought. We propose here to use a modified version of a simple and validated protocol of footshock stress to explore different trajectories in the individual response to acute stress. This new conceptual framework may enable us to identify determinants of resilient versus vulnerable response as well as new targets for treatment, in particular for rapid-acting antidepressants. It will be interesting to investigate the putative prophylactic action of ketamine toward the maladaptive effects of acute stress in this new protocol.
Collapse
Affiliation(s)
- Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Nathalie Sala
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| |
Collapse
|
242
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
243
|
Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 2018; 43:1779-1788. [PMID: 29760409 PMCID: PMC6006368 DOI: 10.1038/s41386-018-0073-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by social deficits and repetitive behaviors. Genetic screening has identified synaptic, transcriptional, and chromatin genes disrupted in autistic patients. Haploinsufficiency of Shank3, which encodes a scaffold protein at glutamatergic synapses, is causally linked to autism. Using a Shank3-deficient mouse model that exhibits prominent autism-like phenotypes, we have found that histone acetylation in the prefrontal cortex (PFC) is abnormally low, which can be reversed by MS-275 (also known as Entinostat, SNDX-275), a class I histone deacetylase (HDAC) inhibitor that is selectively potent in PFC. A brief (3-day) treatment with MS-275 (i.p.) led to the sustained (11 days) rescue of autistic social preference deficits in Shank3-deficient mice, without altering locomotion, motor coordination, anxiety, or the increased grooming. MS-275 treatment also rescued the diminished NMDAR surface expression and NMDAR function induced by Shank3 deficiency. Moreover, F-actin at synapses was restored and the transcription of actin regulators was elevated by MS-275 treatment of Shank3-deficient mice, which may contribute to the recovery of actin-based NMDAR synaptic delivery. Taken together, these results suggest that MS-275 treatment could normalize the aberrant epigenetic regulation of genes, leading to the amelioration of synaptic and social deficits associated with autism.
Collapse
|
244
|
Bernhardt LK, Bairy KL, Madhyastha S. Neuroprotective Role of N-acetylcysteine against Learning Deficits and Altered Brain Neurotransmitters in Rat Pups Subjected to Prenatal Stress. Brain Sci 2018; 8:E120. [PMID: 29958412 PMCID: PMC6071106 DOI: 10.3390/brainsci8070120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Prenatal adversaries like stress are known to harm the progeny and oxidative stress, which is known to be one of the causative factors. N-acetyl cysteine (NAC), which is a potent antioxidant, has been shown to play a neuroprotective role in humans and experimental animals. This study examines the benefits of NAC on the prenatal stress-induced learning and memory deficits and alteration in brain neurotransmitter in rat pups. Pregnant dams were restrained (45 min; 3 times/day) during the early or late gestational period. Other groups received early or late gestational restrain stress combined with NAC treatment throughout the gestational period. At postnatal day (PND) 28, offspring were tested in a shuttle box for assessing learning and memory, which was followed by a brain neurotransmitter (dopamine, norepinephrine, and serotonin) estimation on PND 36. Late gestational stress resulted in learning deficits, the inability to retain the memory, and reduced brain dopamine content while not affecting norepinephrine and serotonin. NAC treatment in prenatally stressed rats reversed learning and memory deficits as well as brain dopamine content in offspring. These findings suggest that NAC protect the progeny from an undesirable cognitive sequel associated with prenatal stress.
Collapse
Affiliation(s)
- Liegelin Kavitha Bernhardt
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education; Manipal 576104, India.
| | - K Lakshminarayana Bairy
- Pharmacology, RAL College of Medical Sciences, Ras al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah 11172, UAE.
| | - Sampath Madhyastha
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13060, Kuwait.
| |
Collapse
|
245
|
Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System. Neural Plast 2018; 2018:1892570. [PMID: 30008741 PMCID: PMC6020552 DOI: 10.1155/2018/1892570] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022] Open
Abstract
Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
Collapse
|
246
|
Chiappelli J, Shi Q, Wijtenburg SA, Quiton R, Wisner K, Gaston F, Kodi P, Gaudiot C, Kochunov P, Rowland LM, Hong LE. Glutamatergic Response to Heat Pain Stress in Schizophrenia. Schizophr Bull 2018; 44:886-895. [PMID: 29036718 PMCID: PMC6007227 DOI: 10.1093/schbul/sbx133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulation of stress response involves top-down mechanisms of the frontal-limbic glutamatergic system. As schizophrenia is associated with glutamatergic abnormalities, we hypothesized that schizophrenia patients may have abnormal glutamatergic reactivity within the dorsal anterior cingulate cortex (dACC), a key region involved in perception of and reaction to stress. To test this, we developed a somatic stress paradigm involving pseudorandom application of safe but painfully hot stimuli to the forearm of participants while they were undergoing serial proton magnetic resonance spectroscopy to measure changes in glutamate and glutamine levels in the dACC. This paradigm was tested in a sample of 21 healthy controls and 23 patients with schizophrenia. Across groups, glutamate levels significantly decreased following exposure to thermal pain, while ratio of glutamine to glutamate significantly increased. However, schizophrenia patients exhibited an initial increase in glutamate levels during challenge that was significantly different from controls, after controlling for heat pain tolerance. Furthermore, in patients, the acute glutamate response was positively correlated with childhood trauma (r = .41, P = .050) and inversely correlated with working memory (r = -.49, P = .023). These results provide preliminary evidence for abnormal glutamatergic response to stress in schizophrenia patients, which may point toward novel approaches to understanding how stress contributes to the illness.
Collapse
Affiliation(s)
- Joshua Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD,To whom correspondence should be addressed; tel: 410-402-6827, fax: 410-402-6023, e-mail:
| | - Qiaoyun Shi
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Sarah Andrea Wijtenburg
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Raimi Quiton
- Department of Psychology, University of Maryland Baltimore County, Baltimore, MD
| | - Krista Wisner
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Frank Gaston
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Priyadurga Kodi
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Christopher Gaudiot
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD,Department of Psychology, University of Maryland Baltimore County, Baltimore, MD
| | - Liyi Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
247
|
Wei J, Zhong P, Qin L, Tan T, Yan Z. Chemicogenetic Restoration of the Prefrontal Cortex to Amygdala Pathway Ameliorates Stress-Induced Deficits. Cereb Cortex 2018; 28:1980-1990. [PMID: 28498919 PMCID: PMC6018994 DOI: 10.1093/cercor/bhx104] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/27/2017] [Indexed: 01/11/2023] Open
Abstract
Corticosteroid stress hormones exert a profound impact on cognitive and emotional processes. Understanding the neuronal circuits that are altered by chronic stress is important for counteracting the detrimental effects of stress in a brain region- and cell type-specific manner. Using the chemogenetic tool, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), which enables the remote, noninvasive and long-lasting modulation of cellular activity and signal transduction in discrete neuronal populations in vivo, we sought to identify the specific pathways that play an essential role in stress responses. We found that prolonged severe stress induced the diminished glutamatergic projection from pyramidal neurons in prefrontal cortex (PFC) to GABAergic interneurons in basolateral amygdala (BLA), leading to the loss of feedforward inhibition and ensuing hyperexcitability of BLA principal neurons, which caused a variety of behavioral abnormalities. Activating PFC pyramidal neurons with hM3D(Gq) DREADD restored the functional connection between PFC and BLA in stressed animals, resulting in the rescue of recognition memory, normalization of locomotor activity and reduction of aggressive behaviors. Inhibiting BLA principal neurons directly with hM4D(Gi) DREADD also blocked BLA hyperactivity and aggressive behaviors in stressed animals. These results have offered an effective avenue to counteract the stress-induced disruption of circuitry homeostasis.
Collapse
Affiliation(s)
- Jing Wei
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
- Medical Research, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
- Medical Research, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Luye Qin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Tao Tan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
- Medical Research, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
248
|
Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci 2018; 38:5939-5948. [PMID: 29853627 DOI: 10.1523/jneurosci.0149-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/21/2018] [Indexed: 01/27/2023] Open
Abstract
Microdeletion of the human 16p11.2 gene locus has been linked to autism spectrum disorder (ASD) and intellectual disability and confers risk for a number of other neurodevelopmental deficits. Transgenic mice carrying 16p11.2 deletion (16p11+/-) display phenotypes reminiscent of those in human patients with 16p11.2 deletion syndrome, but the molecular mechanisms and treatment strategies for these phenotypes remain unknown. In this study, we have found that both male and female 16p11+/- mice exhibit deficient NMDA receptor (NMDAR) function in the medial prefrontal cortex (mPFC), a brain region critical for high-level "executive" functions. Elevating the activity of mPFC pyramidal neurons with a CaMKII-driven Gq-DREADD (Gq-coupled designer receptors exclusively activated by designer drugs) led to the significant increase of NR2B subunit phosphorylation and the restoration of NMDAR function, as well as the amelioration of cognitive and social impairments in 16p11+/- mice. These results suggest that NMDAR hypofunction in PFC may contribute to the pathophysiology of 16p11.2 deletion syndrome and that restoring PFC activity is sufficient to rescue the behavioral deficits.SIGNIFICANCE STATEMENT The 16p11.2 deletion syndrome is strongly associated with autism spectrum disorder and intellectual disability. Using a mouse model carrying the 16p11.2 deletion, 16p11+/-, we identified NMDA receptor hypofunction in the prefrontal cortex (PFC). Elevating the activity of PFC pyramidal neurons with a chemogenetic tool, Gq-DREADD, led to the restoration of NMDA receptor function and the amelioration of cognitive and social impairments in 16p11+/- mice. These results have revealed a novel route for potential therapeutic intervention of 16p11.2 deletion syndrome.
Collapse
|
249
|
Ashokan A, Lim JWH, Hang N, Mitra R. Complex housing causes a robust increase in dendritic complexity and spine density of medial prefrontal cortical neurons. Sci Rep 2018; 8:7308. [PMID: 29743496 PMCID: PMC5943332 DOI: 10.1038/s41598-018-25399-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Prelimbic cortex and infralimbic cortex, parts of the ventromedial prefrontal cortex, are critical brain regions for generating a flexible behavioral response to changing environmental contingencies. This includes the role of these brain structures in the extinction of learned fear, decision making and retrieval of remote memories. Dendritic structure of medial prefrontal cortex neurons retains significant structural plasticity in adulthood. This has been mainly demonstrated as dendritic atrophy and loss of dendritic spines due to chronic stress. It remains unknown if housing condition of the animals itself can cause opposing changes in the dendritic organization. In that backdrop, here we report that short-term increase in complexity of the housing causes a robust increase in complexity of dendritic architecture of prelimbic and infralimbic neurons. This is reflected in the dendritic expansion of prelimbic neurons and increase in spine density of prelimbic and infralimbic neurons. These results suggest that non-invasive changes in the housing environment can be harnessed to study brain reserves for the flexible and species-typical behaviors.
Collapse
Affiliation(s)
- Archana Ashokan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jamien Wee Han Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Nicholas Hang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
250
|
Recent insights into antidepressant therapy: Distinct pathways and potential common mechanisms in the treatment of depressive syndromes. Neurosci Biobehav Rev 2018; 88:63-72. [DOI: 10.1016/j.neubiorev.2018.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/07/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
|