201
|
Aguilan JT, Pedrosa E, Dolstra H, Baykara RN, Barnes J, Zhang J, Sidoli S, Lachman HM. Proteomics and phosphoproteomics profiling in glutamatergic neurons and microglia in an iPSC model of Jansen de Vries Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.08.548192. [PMID: 37461463 PMCID: PMC10350077 DOI: 10.1101/2023.07.08.548192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Jansen de Vries Syndrome (JdVS) is a rare neurodevelopmental disorder (NDD) caused by gain-of-function (GOF) truncating mutations in PPM1D exons 5 or 6. PPM1D is a serine/threonine phosphatase that plays an important role in the DNA damage response (DDR) by negatively regulating TP53 (P53). JdVS-associated mutations lead to the formation of a truncated PPM1D protein that retains catalytic activity and has a GOF effect because of reduced degradation. Somatic PPM1D exons 5 and 6 truncating mutations are well-established factors in a number of cancers, due to excessive dephosphorylation and reduced function of P53 and other substrates involved in DDR. Children with JdVS have a variety of neurodevelopmental, psychiatric, and physical problems. In addition, a small fraction has acute neuropsychiatric decompensation apparently triggered by infection or severe non-infectious environmental stress factors. Methods To understand the molecular basis of JdVS, we developed an induced pluripotent stem cell (iPSC) model system. iPSCs heterozygous for the truncating variant (PPM1D+/tr), were made from a patient, and control lines engineered using CRISPR-Cas9 gene editing. Proteomics and phosphoprotemics analyses were carried out on iPSC-derived glutamatergic neurons and microglia from three control and three PPM1D+/tr iPSC lines. We also analyzed the effect of the TLR4 agonist, lipopolysaccharide, to understand how activation of the innate immune system in microglia could account for acute behavioral decompensation. Results One of the major findings was the downregulation of POGZ in unstimulated microglia. Since loss-of-function variants in the POGZ gene are well-known causes of autism spectrum disorder, the decrease in PPM1D+/tr microglia suggests this plays a role in the neurodevelopmental aspects of JdVS. In addition, neurons, baseline, and LPS-stimulated microglia show marked alterations in the expression of several E3 ubiquitin ligases, most notably UBR4, and regulators of innate immunity, chromatin structure, ErbB signaling, and splicing. In addition, pathway analysis points to overlap with neurodegenerative disorders. Limitations Owing to the cost and labor-intensive nature of iPSC research, the sample size was small. Conclusions Our findings provide insight into the molecular basis of JdVS and can be extrapolated to understand neuropsychiatric decompensation that occurs in subgroups of patients with ASD and other NDDs.
Collapse
Affiliation(s)
- Jennifer T. Aguilan
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Hedwig Dolstra
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Refia Nur Baykara
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Jesse Barnes
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Jinghang Zhang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| |
Collapse
|
202
|
Teunissen MWA, Lewerissa E, van Hugte EJH, Wang S, Ockeloen CW, Koolen DA, Pfundt R, Marcelis CLM, Brilstra E, Howe JL, Scherer SW, Le Guillou X, Bilan F, Primiano M, Roohi J, Piton A, de Saint Martin A, Baer S, Seiffert S, Platzer K, Jamra RA, Syrbe S, Doering JH, Lakhani S, Nangia S, Gilissen C, Vermeulen RJ, Rouhl RPW, Brunner HG, Willemsen MH, Nadif Kasri N. ANK2 loss-of-function variants are associated with epilepsy, and lead to impaired axon initial segment plasticity and hyperactive network activity in hiPSC-derived neuronal networks. Hum Mol Genet 2023; 32:2373-2385. [PMID: 37195288 PMCID: PMC10321384 DOI: 10.1093/hmg/ddad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
PURPOSE To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.
Collapse
Affiliation(s)
- Maria W A Teunissen
- Department of Neurology, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze 5591 VE, The Netherlands
| | - Elly Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Shan Wang
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Carlo L M Marcelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Eva Brilstra
- Department of Human Genetics, University Medical Center Utrecht, Utrecht, CX 3584, The Netherlands
| | - Jennifer L Howe
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3H7, Canada
| | - Xavier Le Guillou
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers 86000, France
| | - Frédéric Bilan
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers 86000, France
- Laboratory of Experimental and Clinical Neurosciences University of Poitiers, INSERM U1084, Poitiers 86000, France
| | - Michelle Primiano
- Department of Clinical Genetics, Morgan Stanley Children’s Hospital of New York-Presbytarian, New York, NY, 10032, USA
| | - Jasmin Roohi
- Department of Clinical Genetics, Morgan Stanley Children’s Hospital of New York-Presbytarian, New York, NY, 10032, USA
- Clinical Genetics, Kaiser Permanente Mid-Atlantic Permanente Medical Group, Rockville, MD 20852, USA
| | - Amelie Piton
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d’Alsace (IGMA), Hôspitaux Universitaire de Strasbourg, Strasbourg, BP 426 67091, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
| | - Anne de Saint Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
- Department of Pediatric Neurology, Strasbourg University Hospital, Hôspital de Hautepierre, Strasbourg, BP 426 67091, France
| | - Sarah Baer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
- Department of Pediatric Neurology, Strasbourg University Hospital, Hôspital de Hautepierre, Strasbourg, BP 426 67091, France
| | - Simone Seiffert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tuebingen, 72076, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Jan H Doering
- Division of Paediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Shenela Lakhani
- Department of neurogenetics, Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY, 10065, USA
| | - Srishti Nangia
- Department of Pediatrics, Division of Child Neurology, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, 10032, USA
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze 5591 VE, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
| | - Han G Brunner
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze 5591 VE, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
- Department of Clinical Genetics and GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, MD 6299, the Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| |
Collapse
|
203
|
Gracia-Diaz C, Perdomo JE, Khan ME, Disanza B, Cajka GG, Lei S, Gagne A, Maguire JA, Roule T, Shalem O, Bhoj EJ, Ahrens-Nicklas RC, French D, Goldberg EM, Wang K, Glessner J, Akizu N. High density SNP array and reanalysis of genome sequencing uncovers CNVs associated with neurodevelopmental disorders in KOLF2.1J iPSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546614. [PMID: 37425875 PMCID: PMC10327134 DOI: 10.1101/2023.06.26.546614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The KOLF2.1J iPSC line was recently proposed as a reference iPSC to promote the standardization of research studies in the stem cell field. Due to overall good performance differentiating to neural cell lineages, high gene editing efficiency, and absence of genetic variants associated to neurological disorders KOLF2.1J iPSC line was particularly recommended for neurodegenerative disease modeling. However, our work uncovers that KOLF2.1J hPSCs carry heterozygous small copy number variants (CNVs) that cause DTNBP1, JARID2 and ASTN2 haploinsufficiencies, all of which are associated with neurological disorders. We further determine that these CNVs arose in vitro over the course of KOLF2.1J iPSC generation from a healthy donor-derived KOLF2 iPSC line and affect the expression of DNTBP1, JARID2 and ASTN2 proteins in KOLF2.1J iPSCs and neural progenitors. Therefore, our study suggests that KOLF2.1J iPSCs carry genetic variants that may be deleterious for neural cell lineages. This data is essential for a careful interpretation of neural cell studies derived from KOLF2.1J iPSCs and highlights the need for a catalogue of iPSC lines that includes a comprehensive genome characterization analysis.
Collapse
Affiliation(s)
- Carolina Gracia-Diaz
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan E. Perdomo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Munir E. Khan
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brianna Disanza
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory G. Cajka
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunyimeng Lei
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alyssa Gagne
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Ann Maguire
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ophir Shalem
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J. Bhoj
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca C. Ahrens-Nicklas
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah French
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M. Goldberg
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Departmen of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Glessner
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lead contact
| |
Collapse
|
204
|
Kilpatrick S, Irwin C, Singh KK. Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Transl Psychiatry 2023; 13:217. [PMID: 37344450 PMCID: PMC10284884 DOI: 10.1038/s41398-023-02510-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder caused by genetic or environmental perturbations during early development. Diagnoses are dependent on the identification of behavioral abnormalities that likely emerge well after the disorder is established, leaving critical developmental windows uncharacterized. This is further complicated by the incredible clinical and genetic heterogeneity of the disorder that is not captured in most mammalian models. In recent years, advancements in stem cell technology have created the opportunity to model ASD in a human context through the use of pluripotent stem cells (hPSCs), which can be used to generate 2D cellular models as well as 3D unguided- and region-specific neural organoids. These models produce profoundly intricate systems, capable of modeling the developing brain spatiotemporally to reproduce key developmental milestones throughout early development. When complemented with multi-omics, genome editing, and electrophysiology analysis, they can be used as a powerful tool to profile the neurobiological mechanisms underlying this complex disorder. In this review, we will explore the recent advancements in hPSC-based modeling, discuss present and future applications of the model to ASD research, and finally consider the limitations and future directions within the field to make this system more robust and broadly applicable.
Collapse
Affiliation(s)
- Savannah Kilpatrick
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, ON, Canada
| | - Courtney Irwin
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karun K Singh
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
205
|
Saffari A, Brechmann B, Boeger C, Saber WA, Jumo H, Whye D, Wood D, Wahlster L, Alecu J, Ziegler M, Scheffold M, Winden K, Hubbs J, Buttermore E, Barrett L, Borner G, Davies A, Sahin M, Ebrahimi-Fakhari D. High-Content Small Molecule Screen Identifies a Novel Compound That Restores AP-4-Dependent Protein Trafficking in Neuronal Models of AP-4-Associated Hereditary Spastic Paraplegia. RESEARCH SQUARE 2023:rs.3.rs-3036166. [PMID: 37398196 PMCID: PMC10312991 DOI: 10.21203/rs.3.rs-3036166/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect novel therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adaptor protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia, characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, C-01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate putative molecular targets of C-01 and potential mechanisms of action. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future Investigational New Drug (IND)-enabling studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Dosh Whye
- Boston Children's Hospital, Harvard Medical School
| | - Delaney Wood
- Boston Children's Hospital, Harvard Medical School
| | | | - Julian Alecu
- Boston Children's Hospital, Harvard Medical School
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Ayers KL, Eggers S, Rollo BN, Smith KR, Davidson NM, Siddall NA, Zhao L, Bowles J, Weiss K, Zanni G, Burglen L, Ben-Shachar S, Rosensaft J, Raas-Rothschild A, Jørgensen A, Schittenhelm RB, Huang C, Robevska G, van den Bergen J, Casagranda F, Cyza J, Pachernegg S, Wright DK, Bahlo M, Oshlack A, O'Brien TJ, Kwan P, Koopman P, Hime GR, Girard N, Hoffmann C, Shilon Y, Zung A, Bertini E, Milh M, Ben Rhouma B, Belguith N, Bashamboo A, McElreavey K, Banne E, Weintrob N, BenZeev B, Sinclair AH. Variants in SART3 cause a spliceosomopathy characterised by failure of testis development and neuronal defects. Nat Commun 2023; 14:3403. [PMID: 37296101 PMCID: PMC10256788 DOI: 10.1038/s41467-023-39040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition.
Collapse
Affiliation(s)
- Katie L Ayers
- The Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Stefanie Eggers
- The Victorian Clinical Genetics Services, Melbourne, Australia
| | - Ben N Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Katherine R Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Nadia M Davidson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- School of BioSciences, Faculty of Science, University of Melbourne, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Rappaport Faculty of Medicine, Institute of Technology, Haifa, Israel
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Et Laboratoire de Neurogénétique Moléculaire, Département de Génétique et Embryologie Médicale, APHP. Sorbonne Université, Hôpital Trousseau, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Shay Ben-Shachar
- Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jenny Rosensaft
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Annick Raas-Rothschild
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | | | - Franca Casagranda
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Justyna Cyza
- The Murdoch Children's Research Institute, Melbourne, Australia
| | - Svenja Pachernegg
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Melanie Bahlo
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Alicia Oshlack
- The Peter MacCallum Cancer Centre, Melbourne, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Terrence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Nadine Girard
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Chen Hoffmann
- Radiology Department, Sheba medical Centre, Tel Aviv, Israel
| | - Yuval Shilon
- Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Amnon Zung
- Pediatrics Department, Kaplan Medical Center, Rehovot, 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mathieu Milh
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Bochra Ben Rhouma
- Higher Institute of Nursing Sciences of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| | - Neila Belguith
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Ehud Banne
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon, 58100, Israel
| | - Naomi Weintrob
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology Unit, Dana-Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Andrew H Sinclair
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
207
|
Mei T, Li Y, Orduña Dolado A, Li Z, Andersson R, Berliocchi L, Rasmussen LJ. Pooled analysis of frontal lobe transcriptomic data identifies key mitophagy gene changes in Alzheimer's disease brain. Front Aging Neurosci 2023; 15:1101216. [PMID: 37358952 PMCID: PMC10288858 DOI: 10.3389/fnagi.2023.1101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background The growing prevalence of Alzheimer's disease (AD) is becoming a global health challenge without effective treatments. Defective mitochondrial function and mitophagy have recently been suggested as etiological factors in AD, in association with abnormalities in components of the autophagic machinery like lysosomes and phagosomes. Several large transcriptomic studies have been performed on different brain regions from AD and healthy patients, and their data represent a vast source of important information that can be utilized to understand this condition. However, large integration analyses of these publicly available data, such as AD RNA-Seq data, are still missing. In addition, large-scale focused analysis on mitophagy, which seems to be relevant for the aetiology of the disease, has not yet been performed. Methods In this study, publicly available raw RNA-Seq data generated from healthy control and sporadic AD post-mortem human samples of the brain frontal lobe were collected and integrated. Sex-specific differential expression analysis was performed on the combined data set after batch effect correction. From the resulting set of differentially expressed genes, candidate mitophagy-related genes were identified based on their known functional roles in mitophagy, the lysosome, or the phagosome, followed by Protein-Protein Interaction (PPI) and microRNA-mRNA network analysis. The expression changes of candidate genes were further validated in human skin fibroblast and induced pluripotent stem cells (iPSCs)-derived cortical neurons from AD patients and matching healthy controls. Results From a large dataset (AD: 589; control: 246) based on three different datasets (i.e., ROSMAP, MSBB, & GSE110731), we identified 299 candidate mitophagy-related differentially expressed genes (DEG) in sporadic AD patients (male: 195, female: 188). Among these, the AAA ATPase VCP, the GTPase ARF1, the autophagic vesicle forming protein GABARAPL1 and the cytoskeleton protein actin beta ACTB were selected based on network degrees and existing literature. Changes in their expression were further validated in AD-relevant human in vitro models, which confirmed their down-regulation in AD conditions. Conclusion Through the joint analysis of multiple publicly available data sets, we identify four differentially expressed key mitophagy-related genes potentially relevant for the pathogenesis of sporadic AD. Changes in expression of these four genes were validated using two AD-relevant human in vitro models, primary human fibroblasts and iPSC-derived neurons. Our results provide foundation for further investigation of these genes as potential biomarkers or disease-modifying pharmacological targets.
Collapse
Affiliation(s)
- Taoyu Mei
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Orduña Dolado
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Berliocchi
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
208
|
Gazestani V, Kamath T, Nadaf NM, Burris SJ, Rooney B, Junkkari A, Vanderburg C, Rauramaa T, Therrien M, Tegtmeyer M, Herukka SK, Abdulraouf A, Marsh S, Malm T, Hiltunen M, Nehme R, Stevens B, Leinonen V, Macosko EZ. Early Alzheimer's disease pathology in human cortex is associated with a transient phase of distinct cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543569. [PMID: 37333365 PMCID: PMC10274680 DOI: 10.1101/2023.06.03.543569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cellular perturbations underlying Alzheimer's disease are primarily studied in human postmortem samples and model organisms. Here we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of Alzheimer's disease pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the Early Cortical Amyloid Response-were prominent in neurons, wherein we identified a transient state of hyperactivity preceding loss of excitatory neurons, which correlated with the selective loss of layer 1 inhibitory neurons. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathological burden increased. Lastly, both oligodendrocytes and pyramidal neurons upregulated genes associated with amyloid beta production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.
Collapse
Affiliation(s)
| | - Tushar Kamath
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Harvard Graduate Program in Biophysics and Harvard/MIT MD-PhD Program, Harvard University, Cambridge, MA 02139 USA
| | - Naeem M. Nadaf
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - SJ Burris
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Brendan Rooney
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115 USA
| | - Antti Junkkari
- Institute of Clinical Medicine, Unit of Pathology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | | | - Tuomas Rauramaa
- Institute of Clinical Medicine, Unit of Pathology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine, Unit of Pathology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | - Samuel Marsh
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ralda Nehme
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115 USA
- Howard Hughes Medical Institute (HHMI), Boston, MA 02115 USA
| | - Ville Leinonen
- Institute of Clinical Medicine, Unit of Pathology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Evan Z. Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA 02114 USA
| |
Collapse
|
209
|
Zaghi M, Banfi F, Massimino L, Volpin M, Bellini E, Brusco S, Merelli I, Barone C, Bruni M, Bossini L, Lamparelli LA, Pintado L, D'Aliberti D, Spinelli S, Mologni L, Colasante G, Ungaro F, Cioni JM, Azzoni E, Piazza R, Montini E, Broccoli V, Sessa A. Balanced SET levels favor the correct enhancer repertoire during cell fate acquisition. Nat Commun 2023; 14:3212. [PMID: 37270547 DOI: 10.1038/s41467-023-39043-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Within the chromatin, distal elements interact with promoters to regulate specific transcriptional programs. Histone acetylation, interfering with the net charges of the nucleosomes, is a key player in this regulation. Here, we report that the oncoprotein SET is a critical determinant for the levels of histone acetylation within enhancers. We disclose that a condition in which SET is accumulated, the severe Schinzel-Giedion Syndrome (SGS), is characterized by a failure in the usage of the distal regulatory regions typically employed during fate commitment. This is accompanied by the usage of alternative enhancers leading to a massive rewiring of the distal control of the gene transcription. This represents a (mal)adaptive mechanism that, on one side, allows to achieve a certain degree of differentiation, while on the other affects the fine and corrected maturation of the cells. Thus, we propose the differential in cis-regulation as a contributing factor to the pathological basis of SGS and possibly other the SET-related disorders in humans.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Luca Massimino
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Monica Volpin
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget); IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Simone Brusco
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Ivan Merelli
- CNR Institute of Biomedical Technologies, 20090, Segrate, Italy
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Michela Bruni
- RNA biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Linda Bossini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luigi Antonio Lamparelli
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Laura Pintado
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Deborah D'Aliberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Silvia Spinelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Luca Mologni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federica Ungaro
- Esperimental Gastroenterology Unit, Division of Immunology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Jean-Michel Cioni
- RNA biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Rocco Piazza
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget); IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
210
|
Lee JC, Brien HJ, Walton BL, Eidman ZM, Toda S, Lim WA, Brunger JM. Instructional materials that control cellular activity through synthetic Notch receptors. Biomaterials 2023; 297:122099. [PMID: 37023529 PMCID: PMC10320837 DOI: 10.1016/j.biomaterials.2023.122099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
The field of regenerative engineering relies primarily on the dual technical platforms of cell selection/conditioning and biomaterial fabrication to support directed cell differentiation. As the field has matured, an appreciation for the influence of biomaterials on cell behaviors has resulted in engineered matrices that meet biomechanical and biochemical demands of target pathologies. Yet, despite advances in methods to produce designer matrices, regenerative engineers remain unable to reliably orchestrate behaviors of therapeutic cells in situ. Here, we present a platform named MATRIX whereby cellular responses to biomaterials can be custom defined by combining engineered materials with cells expressing cognate synthetic biology control modules. Such privileged channels of material-to-cell communication can activate synthetic Notch receptors and govern activities as diverse as transcriptome engineering, inflammation attenuation, and pluripotent stem cell differentiation, all in response to materials decorated with otherwise bioinert ligands. Further, we show that engineered cellular behaviors are confined to programmed biomaterial surfaces, highlighting the potential to use this platform to spatially organize cellular responses to bulk, soluble factors. This integrated approach of co-engineering cells and biomaterials for orthogonal interactions opens new avenues for reproducible control of cell-based therapies and tissue replacements.
Collapse
Affiliation(s)
- Joanne C Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Hannah J Brien
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Zachary M Eidman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Satoshi Toda
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Wendell A Lim
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, 37212, USA.
| |
Collapse
|
211
|
Arioka Y, Okumura H, Sakaguchi H, Ozaki N. Shedding light on latent pathogenesis and pathophysiology of mental disorders: The potential of iPS cell technology. Psychiatry Clin Neurosci 2023; 77:308-314. [PMID: 36929185 PMCID: PMC11488641 DOI: 10.1111/pcn.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Mental disorders are considered as one of the major healthcare issues worldwide owing to their significant impact on the quality of life of patients, causing serious social burdens. However, it is hard to examine the living brain-a source of psychiatric symptoms-at the cellular, subcellular, and molecular levels, which poses difficulty in determining the pathogenesis and pathophysiology of mental disorders. Recently, induced pluripotent stem cell (iPSC) technology has been used as a novel tool for research on mental disorders. We believe that the iPSC-based studies will address the limitations of other research approaches, such as human genome, postmortem brain study, brain imaging, and animal model analysis. Notably, studies using integrated iPSC technology with genetic information have provided significant novel findings to date. This review aimed to discuss the history, current trends, potential, and future of iPSC technology in the field of mental disorders. Although iPSC technology has several limitations, this technology can be used in combination with the other approaches to facilitate studies on mental disorders.
Collapse
Affiliation(s)
- Yuko Arioka
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Center for Advanced Medicine and Clinical ResearchNagoya University HospitalNagoyaJapan
| | - Hiroki Okumura
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Hospital PharmacyNagoya University HospitalNagoyaJapan
| | - Hideya Sakaguchi
- BDR‐Otsuka Pharmaceutical Collaboration Center, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Norio Ozaki
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityNagoyaJapan
| |
Collapse
|
212
|
Watson LA, Meharena HS. From neurodevelopment to neurodegeneration: utilizing human stem cell models to gain insight into Down syndrome. Front Genet 2023; 14:1198129. [PMID: 37323671 PMCID: PMC10267712 DOI: 10.3389/fgene.2023.1198129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Down syndrome (DS), caused by triplication of chromosome 21, is the most frequent aneuploidy observed in the human population and represents the most common genetic form of intellectual disability and early-onset Alzheimer's disease (AD). Individuals with DS exhibit a wide spectrum of clinical presentation, with a number of organs implicated including the neurological, immune, musculoskeletal, cardiac, and gastrointestinal systems. Decades of DS research have illuminated our understanding of the disorder, however many of the features that limit quality of life and independence of individuals with DS, including intellectual disability and early-onset dementia, remain poorly understood. This lack of knowledge of the cellular and molecular mechanisms leading to neurological features of DS has caused significant roadblocks in developing effective therapeutic strategies to improve quality of life for individuals with DS. Recent technological advances in human stem cell culture methods, genome editing approaches, and single-cell transcriptomics have provided paradigm-shifting insights into complex neurological diseases such as DS. Here, we review novel neurological disease modeling approaches, how they have been used to study DS, and what questions might be addressed in the future using these innovative tools.
Collapse
Affiliation(s)
- L. Ashley Watson
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Hiruy S. Meharena
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
213
|
Sun Z, Kwon JS, Ren Y, Chen S, Cates K, Lu X, Walker CK, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Endogenous recapitulation of Alzheimer's disease neuropathology through human 3D direct neuronal reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542155. [PMID: 37292658 PMCID: PMC10245934 DOI: 10.1101/2023.05.24.542155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily affects elderly individuals, and is characterized by hallmark neuronal pathologies including extracellular amyloid-β (Aβ) plaque deposition, intracellular tau tangles, and neuronal death. However, recapitulating these age-associated neuronal pathologies in patient-derived neurons has remained a significant challenge, especially for late-onset AD (LOAD), the most common form of the disorder. Here, we applied the high efficiency microRNA-mediated direct neuronal reprogramming of fibroblasts from AD patients to generate cortical neurons in three-dimensional (3D) Matrigel and self-assembled neuronal spheroids. Our findings indicate that neurons and spheroids reprogrammed from both autosomal dominant AD (ADAD) and LOAD patients exhibited AD-like phenotypes linked to neurons, including extracellular Aβ deposition, dystrophic neurites with hyperphosphorylated, K63-ubiquitin-positive, seed-competent tau, and spontaneous neuronal death in culture. Moreover, treatment with β- or γ-secretase inhibitors in LOAD patient-derived neurons and spheroids before Aβ deposit formation significantly lowered Aβ deposition, as well as tauopathy and neurodegeneration. However, the same treatment after the cells already formed Aβ deposits only had a mild effect. Additionally, inhibiting the synthesis of age-associated retrotransposable elements (RTEs) by treating LOAD neurons and spheroids with the reverse transcriptase inhibitor, lamivudine, alleviated AD neuropathology. Overall, our results demonstrate that direct neuronal reprogramming of AD patient fibroblasts in a 3D environment can capture age-related neuropathology and reflect the interplay between Aβ accumulation, tau dysregulation, and neuronal death. Moreover, miRNA-based 3D neuronal conversion provides a human-relevant AD model that can be used to identify compounds that can potentially ameliorate AD-associated pathologies and neurodegeneration.
Collapse
|
214
|
Hsu YHH, Pintacuda G, Liu R, Nacu E, Kim A, Tsafou K, Petrossian N, Crotty W, Suh JM, Riseman J, Martin JM, Biagini JC, Mena D, Ching JK, Malolepsza E, Li T, Singh T, Ge T, Egri SB, Tanenbaum B, Stanclift CR, Apffel AM, Carr SA, Schenone M, Jaffe J, Fornelos N, Huang H, Eggan KC, Lage K. Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia. iScience 2023; 26:106701. [PMID: 37207277 PMCID: PMC10189495 DOI: 10.1016/j.isci.2023.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders.
Collapse
Affiliation(s)
- Yu-Han H. Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Greta Pintacuda
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ruize Liu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eugeniu Nacu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - April Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kalliopi Tsafou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Natalie Petrossian
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William Crotty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jung Min Suh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jackson Riseman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacqueline M. Martin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julia C. Biagini
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daya Mena
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua K.T. Ching
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Edyta Malolepsza
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Taibo Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tian Ge
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shawn B. Egri
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Tanenbaum
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Annie M. Apffel
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A. Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monica Schenone
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jake Jaffe
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nadine Fornelos
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin C. Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark
| |
Collapse
|
215
|
Canals I, Comella-Bolla A, Cepeda-Prado E, Avaliani N, Crowe JA, Oburoglu L, Bruzelius A, King N, Pajares MA, Pérez-Sala D, Heuer A, Rylander Ottosson D, Soriano J, Ahlenius H. Astrocyte dysfunction and neuronal network hyperactivity in a CRISPR engineered pluripotent stem cell model of frontotemporal dementia. Brain Commun 2023; 5:fcad158. [PMID: 37274831 PMCID: PMC10233896 DOI: 10.1093/braincomms/fcad158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most prevalent type of early-onset dementia and up to 40% of cases are familial forms. One of the genes mutated in patients is CHMP2B, which encodes a protein found in a complex important for maturation of late endosomes, an essential process for recycling membrane proteins through the endolysosomal system. Here, we have generated a CHMP2B-mutated human embryonic stem cell line using genome editing with the purpose to create a human in vitro FTD disease model. To date, most studies have focused on neuronal alterations; however, we present a new co-culture system in which neurons and astrocytes are independently generated from human embryonic stem cells and combined in co-cultures. With this approach, we have identified alterations in the endolysosomal system of FTD astrocytes, a higher capacity of astrocytes to uptake and respond to glutamate, and a neuronal network hyperactivity as well as excessive synchronization. Overall, our data indicates that astrocyte alterations precede neuronal impairments and could potentially trigger neuronal network changes, indicating the important and specific role of astrocytes in disease development.
Collapse
Affiliation(s)
- Isaac Canals
- Correspondence to: Isaac Canals Department of Experimental Medical Science, Lund University Klinikgatan 26 BMC B10, 22184, Lund, Sweden E-mail:
| | | | | | | | - James A Crowe
- Lund Stem Cell Center, 22184, Lund, Sweden
- Glial and Neuronal Biology lab, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Leal Oburoglu
- Lund Stem Cell Center, 22184, Lund, Sweden
- Hematopoietic Stem Cell Development group, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Andreas Bruzelius
- Lund Stem Cell Center, 22184, Lund, Sweden
- Regenerative Neurophysiology group, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Naomi King
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Daniella Rylander Ottosson
- Lund Stem Cell Center, 22184, Lund, Sweden
- Regenerative Neurophysiology group, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Jordi Soriano
- The Neurophysics group, Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028, Barcelona, Spain
| | - Henrik Ahlenius
- Correspondence may also be addressed to: Henrik Ahlenius E-mail:
| |
Collapse
|
216
|
Merchant JP, Zhu K, Henrion MYR, Zaidi SSA, Lau B, Moein S, Alamprese ML, Pearse RV, Bennett DA, Ertekin-Taner N, Young-Pearse TL, Chang R. Predictive network analysis identifies JMJD6 and other potential key drivers in Alzheimer's disease. Commun Biol 2023; 6:503. [PMID: 37188718 PMCID: PMC10185548 DOI: 10.1038/s42003-023-04791-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Despite decades of genetic studies on late-onset Alzheimer's disease, the underlying molecular mechanisms remain unclear. To better comprehend its complex etiology, we use an integrative approach to build robust predictive (causal) network models using two large human multi-omics datasets. We delineate bulk-tissue gene expression into single cell-type gene expression and integrate clinical and pathologic traits, single nucleotide variation, and deconvoluted gene expression for the construction of cell type-specific predictive network models. Here, we focus on neuron-specific network models and prioritize 19 predicted key drivers modulating Alzheimer's pathology, which we then validate by knockdown in human induced pluripotent stem cell-derived neurons. We find that neuronal knockdown of 10 of the 19 targets significantly modulates levels of amyloid-beta and/or phosphorylated tau peptides, most notably JMJD6. We also confirm our network structure by RNA sequencing in the neurons following knockdown of each of the 10 targets, which additionally predicts that they are upstream regulators of REST and VGF. Our work thus identifies robust neuronal key drivers of the Alzheimer's-associated network state which may represent therapeutic targets with relevance to both amyloid and tau pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Julie P Merchant
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kuixi Zhu
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Marc Y R Henrion
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Pembroke Place, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Blantyre, Malawi
| | - Syed S A Zaidi
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Branden Lau
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
- Arizona Research Labs, Genetics Core, University of Arizona, Tucson, AZ, USA
| | - Sara Moein
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Melissa L Alamprese
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
| | - Rui Chang
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- INTelico Therapeutics LLC, Tucson, AZ, USA.
- PATH Biotech LLC, Tucson, AZ, USA.
| |
Collapse
|
217
|
Girardin S, Ihle SJ, Menghini A, Krubner M, Tognola L, Duru J, Fruh I, Müller M, Ruff T, Vörös J. Engineering circuits of human iPSC-derived neurons and rat primary glia. Front Neurosci 2023; 17:1103437. [PMID: 37250404 PMCID: PMC10213452 DOI: 10.3389/fnins.2023.1103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Novel in vitro platforms based on human neurons are needed to improve early drug testing and address the stalling drug discovery in neurological disorders. Topologically controlled circuits of human induced pluripotent stem cell (iPSC)-derived neurons have the potential to become such a testing system. In this work, we build in vitro co-cultured circuits of human iPSC-derived neurons and rat primary glial cells using microfabricated polydimethylsiloxane (PDMS) structures on microelectrode arrays (MEAs). Our PDMS microstructures are designed in the shape of a stomach, which guides axons in one direction and thereby facilitates the unidirectional flow of information. Such circuits are created by seeding either dissociated cells or pre-aggregated spheroids at different neuron-to-glia ratios. Furthermore, an antifouling coating is developed to prevent axonal overgrowth in undesired locations of the microstructure. We assess the electrophysiological properties of different types of circuits over more than 50 days, including their stimulation-induced neural activity. Finally, we demonstrate the inhibitory effect of magnesium chloride on the electrical activity of our iPSC circuits as a proof-of-concept for screening of neuroactive compounds.
Collapse
Affiliation(s)
- Sophie Girardin
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Stephan J. Ihle
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Arianna Menghini
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Magdalena Krubner
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Leonardo Tognola
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - Isabelle Fruh
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Matthias Müller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Department of Electrical Engineering and Information Technology, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
218
|
Wynne ME, Ogunbona O, Lane AR, Gokhale A, Zlatic SA, Xu C, Wen Z, Duong DM, Rayaprolu S, Ivanova A, Ortlund EA, Dammer EB, Seyfried NT, Roberts BR, Crocker A, Shanbhag V, Petris M, Senoo N, Kandasamy S, Claypool SM, Barrientos A, Wingo A, Wingo TS, Rangaraju S, Levey AI, Werner E, Faundez V. APOE expression and secretion are modulated by mitochondrial dysfunction. eLife 2023; 12:e85779. [PMID: 37171075 PMCID: PMC10231934 DOI: 10.7554/elife.85779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/11/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer's disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.
Collapse
Affiliation(s)
- Meghan E Wynne
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Oluwaseun Ogunbona
- Department of Cell Biology, Emory UniversityAtlantaUnited States
- Department of Pathology and Laboratory Medicine, Emory UniversityAtlantaUnited States
| | - Alicia R Lane
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Avanti Gokhale
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | | | - Chongchong Xu
- Department of Psychiatry and Behavioral Sciences, Emory UniversityAtlantaUnited States
| | - Zhexing Wen
- Department of Cell Biology, Emory UniversityAtlantaUnited States
- Department of Psychiatry and Behavioral Sciences, Emory UniversityAtlantaUnited States
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Duc M Duong
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Sruti Rayaprolu
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Anna Ivanova
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Eric A Ortlund
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Eric B Dammer
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | | | - Blaine R Roberts
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury CollegeMiddleburyUnited States
| | - Vinit Shanbhag
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Michael Petris
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins UniversityBaltimoreUnited States
| | | | | | - Antoni Barrientos
- Department of Neurology and Biochemistry & Molecular Biology, University of MiamiMiamiUnited States
| | - Aliza Wingo
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Thomas S Wingo
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Srikant Rangaraju
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Allan I Levey
- Department of Neurology and Human Genetics, Emory UniversityAtlantaUnited States
| | - Erica Werner
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Victor Faundez
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
219
|
Qu W, Canoll P, Hargus G. Molecular Insights into Cell Type-specific Roles in Alzheimer's Disease: Human Induced Pluripotent Stem Cell-based Disease Modelling. Neuroscience 2023; 518:10-26. [PMID: 35569647 PMCID: PMC9974106 DOI: 10.1016/j.neuroscience.2022.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia resulting in widespread degeneration of the central nervous system with severe cognitive impairment. Despite the devastating toll of AD, the incomplete understanding of the complex molecular mechanisms hinders the expeditious development of effective cures. Emerging evidence from animal studies has shown that different brain cell types play distinct roles in the pathogenesis of AD. Glutamatergic neurons are preferentially affected in AD and pronounced gliosis contributes to the progression of AD in both a cell-autonomous and a non-cell-autonomous manner. Much has been discovered through genetically modified animal models, yet frequently failed translational attempts to clinical applications call for better disease models. Emerging evidence supports the significance of human-induced pluripotent stem cell (iPSC) derived brain cells in modeling disease development and progression, opening new avenues for the discovery of molecular mechanisms. This review summarizes the function of different cell types in the pathogenesis of AD, such as neurons, microglia, and astrocytes, and recognizes the potential of utilizing the rapidly growing iPSC technology in modeling AD.
Collapse
Affiliation(s)
- Wenhui Qu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States.
| |
Collapse
|
220
|
Angiolillo S, Micheli S, Laterza C, Gagliano O. NGN2-based neuronal programming of hiPSCs in an automated microfluidic platform. Biochem Biophys Res Commun 2023; 666:52-60. [PMID: 37178505 DOI: 10.1016/j.bbrc.2023.04.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) via somatic cell reprogramming allowed to have an unlimited in vitro source of patient-specific cells. This achievement has introduced a new revolutionary way to create human in vitro models and to study human diseases starting from patient's own cells, especially important for inaccessible tissues like the brain. Recently, lab-on-a-chip technology has opened new reliable alternatives to conventional in vitro models able to replicate key aspects of human physiology, thanks to the intrinsic high surface-area-to-volume ratio, which allows fine control of the cellular microenvironment. The development of automated microfluidic platforms allowed the implementation of this technology to perform high-throughput, standardized and parallelized assays, suitable for drug screenings and developing new therapeutic approaches in a cost-effective way. However, the major challenges in the broad application of automated lab-on-a-chip in biological research are the lack of production robustness and ease of use of the devices. Here, we present an automated microfluidic platform able to host the rapid conversion of human iPSCs (hiPSCs) into neurons via viral-mediated overexpression of Neurogenin 2 (NGN2) in a user-friendly manner. The design of the platform, built with multilayer soft-lithography techniques, shows easiness in the fabrication and assembly thanks to the simple geometry and experimental reproducibility at the same time. All operations are managed automatically, from the cell seeding, medium change, doxycycline-mediated neuronal induction, selection of the genetically engineered cells, and analysis of the output of differentiation, including immunofluorescence assay. Our results show a high-throughput, efficient and homogenous conversion of hiPSCs into neurons in 10 days, characterized by the expression of the mature neuronal marker MAP2 and calcium signaling. The neurons-on-chip model here described represents a fully automated loop system able to address the challenges in the field of neurological diseases modelling in vitro and improve current preclinical models.
Collapse
Affiliation(s)
- S Angiolillo
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - S Micheli
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - C Laterza
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - O Gagliano
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy; Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK.
| |
Collapse
|
221
|
Happ HC, Schneider PN, Hong JH, Goes E, Bandouil M, Biar CG, Ramamurthy A, Reese F, Engel K, Weckhuysen S, Scheffer IE, Mefford HC, Calhoun JD, Carvill GL. Long-read sequencing and profiling of RNA-binding proteins reveals the pathogenic mechanism of aberrant splicing of an SCN1A poison exon in epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.538282. [PMID: 37205386 PMCID: PMC10187291 DOI: 10.1101/2023.05.04.538282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pathogenic loss-of-function SCN1A variants cause a spectrum of seizure disorders. We previously identified variants in individuals with SCN1A -related epilepsy that fall in or near a poison exon (PE) in SCN1A intron 20 (20N). We hypothesized these variants lead to increased PE inclusion, which introduces a premature stop codon, and, therefore, reduced abundance of the full-length SCN1A transcript and Na v 1.1 protein. We used a splicing reporter assay to interrogate PE inclusion in HEK293T cells. In addition, we used patient-specific induced pluripotent stem cells (iPSCs) differentiated into neurons to quantify 20N inclusion by long and short-read sequencing and Na v 1.1 abundance by western blot. We performed RNA-antisense purification with mass spectrometry to identify RNA-binding proteins (RBPs) that could account for the aberrant PE splicing. We demonstrate that variants in/near 20N lead to increased 20N inclusion by long-read sequencing or splicing reporter assay and decreased Na v 1.1 abundance. We also identified 28 RBPs that differentially interact with variant constructs compared to wild-type, including SRSF1 and HNRNPL. We propose a model whereby 20N variants disrupt RBP binding to splicing enhancers (SRSF1) and suppressors (HNRNPL), to favor PE inclusion. Overall, we demonstrate that SCN1A 20N variants cause haploinsufficiency and SCN1A -related epilepsies. This work provides insights into the complex control of RBP-mediated PE alternative splicing, with broader implications for PE discovery and identification of pathogenic PE variants in other genetic conditions.
Collapse
|
222
|
Wen J, Zellner A, Braun NC, Bajaj T, Gassen NC, Peitz M, Brüstle O. Loss of function of FIP200 in human pluripotent stem cell-derived neurons leads to axonal pathology and hyperactivity. Transl Psychiatry 2023; 13:143. [PMID: 37137886 PMCID: PMC10156752 DOI: 10.1038/s41398-023-02432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
FIP200 plays important roles in homeostatic processes such as autophagy and signaling pathways such as focal adhesion kinase (FAK) signaling. Furthermore, genetic studies suggest an association of FIP200 mutations with psychiatric disorders. However, its potential connections to psychiatric disorders and specific roles in human neurons are not clear. We set out to establish a human-specific model to study the functional consequences of neuronal FIP200 deficiency. To this end, we generated two independent sets of isogenic human pluripotent stem cell lines with homozygous FIP200KO alleles, which were then used for the derivation of glutamatergic neurons via forced expression of NGN2. FIP200KO neurons exhibited pathological axonal swellings, showed autophagy deficiency, and subsequently elevated p62 protein levels. Moreover, monitoring the electrophysiological activity of neuronal cultures on multi-electrode arrays revealed that FIP200KO resulted in a hyperactive network. This hyperactivity could be abolished by glutamatergic receptor antagonist CNQX, suggesting a strengthened glutamatergic synaptic activation in FIP200KO neurons. Furthermore, cell surface proteomic analysis revealed metabolic dysregulation and abnormal cell adhesion-related processes in FIP200KO neurons. Interestingly, an ULK1/2-specific autophagy inhibitor could recapitulate axonal swellings and hyperactivity in wild-type neurons, whereas inhibition of FAK signaling was able to normalize the hyperactivity of FIP200KO neurons. These results suggest that impaired autophagy and presumably also disinhibition of FAK can contribute to the hyperactivity of FIP200KO neuronal networks, whereas pathological axonal swellings are primarily due to autophagy deficiency. Taken together, our study reveals the consequences of FIP200 deficiency in induced human glutamatergic neurons, which might, in the end, help to understand cellular pathomechanisms contributing to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jianbin Wen
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas Zellner
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Braun
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Gassen
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany.
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
223
|
Sampognaro PJ, Arya S, Knudsen GM, Gunderson EL, Sandoval-Perez A, Hodul M, Bowles K, Craik CS, Jacobson MP, Kao AW. Mutations in α-synuclein, TDP-43 and tau prolong protein half-life through diminished degradation by lysosomal proteases. Mol Neurodegener 2023; 18:29. [PMID: 37131250 PMCID: PMC10155372 DOI: 10.1186/s13024-023-00621-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Autosomal dominant mutations in α-synuclein, TDP-43 and tau are thought to predispose to neurodegeneration by enhancing protein aggregation. While a subset of α-synuclein, TDP-43 and tau mutations has been shown to increase the structural propensity of these proteins toward self-association, rates of aggregation are also highly dependent on protein steady state concentrations, which are in large part regulated by their rates of lysosomal degradation. Previous studies have shown that lysosomal proteases operate precisely and not indiscriminately, cleaving their substrates at very specific linear amino acid sequences. With this knowledge, we hypothesized that certain coding mutations in α-synuclein, TDP-43 and tau may lead to increased protein steady state concentrations and eventual aggregation by an alternative mechanism, that is, through disrupting lysosomal protease cleavage recognition motifs and subsequently conferring protease resistance to these proteins. RESULTS To test this possibility, we first generated comprehensive proteolysis maps containing all of the potential lysosomal protease cleavage sites for α-synuclein, TDP-43 and tau. In silico analyses of these maps indicated that certain mutations would diminish cathepsin cleavage, a prediction we confirmed utilizing in vitro protease assays. We then validated these findings in cell models and induced neurons, demonstrating that mutant forms of α-synuclein, TDP-43 and tau are degraded less efficiently than wild type despite being imported into lysosomes at similar rates. CONCLUSIONS Together, this study provides evidence that pathogenic mutations in the N-terminal domain of α-synuclein (G51D, A53T), low complexity domain of TDP-43 (A315T, Q331K, M337V) and R1 and R2 domains of tau (K257T, N279K, S305N) directly impair their own lysosomal degradation, altering protein homeostasis and increasing cellular protein concentrations by extending the degradation half-lives of these proteins. These results also point to novel, shared, alternative mechanism by which different forms of neurodegeneration, including synucleinopathies, TDP-43 proteinopathies and tauopathies, may arise. Importantly, they also provide a roadmap for how the upregulation of particular lysosomal proteases could be targeted as potential therapeutics for human neurodegenerative disease.
Collapse
Affiliation(s)
- Paul J. Sampognaro
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
- Neuromuscular Division, Department of Neurology, University of California, San Francisco, CA USA
| | - Shruti Arya
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| | | | - Emma L. Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Molly Hodul
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| | - Kathryn Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, UK
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Aimee W. Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| |
Collapse
|
224
|
Weigel B, Tegethoff JF, Grieder SD, Lim B, Nagarajan B, Liu YC, Truberg J, Papageorgiou D, Adrian-Segarra JM, Schmidt LK, Kaspar J, Poisel E, Heinzelmann E, Saraswat M, Christ M, Arnold C, Ibarra IL, Campos J, Krijgsveld J, Monyer H, Zaugg JB, Acuna C, Mall M. MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention. Mol Psychiatry 2023; 28:2122-2135. [PMID: 36782060 PMCID: PMC10575775 DOI: 10.1038/s41380-023-01959-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023]
Abstract
MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiological defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.
Collapse
Affiliation(s)
- Bettina Weigel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Jana F Tegethoff
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Sarah D Grieder
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Bhuvaneswari Nagarajan
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology, University Hospital Heidelberg and DKFZ, Heidelberg, Germany
| | - Jule Truberg
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Dimitris Papageorgiou
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Juan M Adrian-Segarra
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Laura K Schmidt
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Janina Kaspar
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Eric Poisel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Elisa Heinzelmann
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Manu Saraswat
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Marleen Christ
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
| | - Ignacio L Ibarra
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, University Hospital Heidelberg and DKFZ, Heidelberg, Germany
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
225
|
Powell SK, O'Shea C, Townsley K, Prytkova I, Dobrindt K, Elahi R, Iskhakova M, Lambert T, Valada A, Liao W, Ho SM, Slesinger PA, Huckins LM, Akbarian S, Brennand KJ. Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk. Mol Psychiatry 2023; 28:1970-1982. [PMID: 34493831 PMCID: PMC8898985 DOI: 10.1038/s41380-021-01273-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Dopaminergic neurons are critical to movement, mood, addiction, and stress. Current techniques for generating dopaminergic neurons from human induced pluripotent stem cells (hiPSCs) yield heterogenous cell populations with variable purity and inconsistent reproducibility between donors, hiPSC clones, and experiments. Here, we report the rapid (5 weeks) and efficient (~90%) induction of induced dopaminergic neurons (iDANs) through transient overexpression of lineage-promoting transcription factors combined with stringent selection across five donors. We observe maturation-dependent increase in dopamine synthesis and electrophysiological properties consistent with midbrain dopaminergic neuron identity, such as slow-rising after- hyperpolarization potentials, an action potential duration of ~3 ms, tonic sub-threshold oscillatory activity, and spontaneous burst firing at a frequency of ~1.0-1.75 Hz. Transcriptome analysis reveals robust expression of genes involved in fetal midbrain dopaminergic neuron identity. Specifically expressed genes in iDANs, as well as those from isogenic induced GABAergic and glutamatergic neurons, were enriched in loci conferring heritability for cannabis use disorder, schizophrenia, and bipolar disorder; however, each neuronal subtype demonstrated subtype-specific heritability enrichments in biologically relevant pathways, and iDANs alone were uniquely enriched in autism spectrum disorder risk loci. Therefore, iDANs provide a critical tool for modeling midbrain dopaminergic neuron development and dysfunction in psychiatric disease.
Collapse
Affiliation(s)
- Samuel K Powell
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Callan O'Shea
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kayla Townsley
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iya Prytkova
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristina Dobrindt
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Rahat Elahi
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Iskhakova
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tova Lambert
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aditi Valada
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Will Liao
- New York Genome Center, New York, NY, USA
| | - Seok-Man Ho
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
226
|
Mamais A, Sanyal A, Fajfer A, Zykoski CG, Guldin M, Riley-DiPaolo A, Subrahmanian N, Gibbs W, Lin S, LaVoie MJ. The LRRK2 kinase substrates Rab8a and Rab10 contribute complementary but distinct disease-relevant phenotypes in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538317. [PMID: 37163109 PMCID: PMC10168414 DOI: 10.1101/2023.04.30.538317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge toward a pathogenic increase in LRRK2 kinase activity. A subset of small Rab GTPases have been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in Rab inactivation. We used CRISPR/Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well validated LRRK2 substrates, Rab8a and Rab10, from two independent, deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed divergent effects of Rab8a and Rab10 deficiency on lysosomal pH, LAMP1 association with Golgi, α-synuclein insolubility and tau phosphorylation, while parallel effects on lysosomal numbers and Golgi clustering were observed. Our data demonstrate largely antagonistic effects of genetic Rab8a or Rab10 inactivation which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation.
Collapse
Affiliation(s)
- Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Austin Fajfer
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Catherine G. Zykoski
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Michael Guldin
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Alexis Riley-DiPaolo
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Nitya Subrahmanian
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Whitney Gibbs
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Steven Lin
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Matthew J. LaVoie
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, Florida, USA
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
227
|
Breitmeyer R, Vogel S, Heider J, Hartmann SM, Wüst R, Keller AL, Binner A, Fitzgerald JC, Fallgatter AJ, Volkmer H. Regulation of synaptic connectivity in schizophrenia spectrum by mutual neuron-microglia interaction. Commun Biol 2023; 6:472. [PMID: 37117634 PMCID: PMC10147621 DOI: 10.1038/s42003-023-04852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
The examination of post-mortem brain tissue suggests synaptic loss as a central pathological hallmark of schizophrenia spectrum (SCZ), which is potentially related to activated microglia and increased inflammation. Induced pluripotent stem cells serve as a source for neurons and microglia-like cells to address neuron-microglia interactions. Here, we present a co-culture model of neurons and microglia, both of human origin, to show increased susceptibility of neurons to microglia-like cells derived from SCZ patients. Analysis of IBA-1 expression, NFκB signaling, transcription of inflammasome-related genes, and caspase-1 activation shows that enhanced, intrinsic inflammasome activation in patient-derived microglia exacerbates neuronal deficits such as synaptic loss in SCZ. Anti-inflammatory pretreatment of microglia with minocycline specifically rescued aberrant synapse loss in SCZ and reduced microglial activation. These findings open up possibilities for further research in larger cohorts, focused clinical work and longitudinal studies that could facilitate earlier therapeutic intervention.
Collapse
Affiliation(s)
- Ricarda Breitmeyer
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Sabrina Vogel
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Johanna Heider
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Sophia-Marie Hartmann
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Osianderstrasse 24, 72076, Tübingen, Germany
| | - Anna-Lena Keller
- Tumor Biology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Anna Binner
- Tumor Biology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Julia C Fitzgerald
- Hertie Institute for Clinical Brain Research, Otfried-Mueller-Strasse 27, 72076, Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Osianderstrasse 24, 72076, Tübingen, Germany
| | - Hansjürgen Volkmer
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany.
| |
Collapse
|
228
|
Alaverdian D, Corradi AM, Sterlini B, Benfenati F, Murru L, Passafaro M, Brunetti J, Meloni I, Mari F, Renieri A, Frullanti E. Modelling PCDH19 clustering epilepsy by Neurogenin 2 induction of patient-derived induced pluripotent stem cells. Epileptic Disord 2023. [PMID: 37186408 DOI: 10.1002/epd2.20065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Loss of function mutations in PCDH19 gene cause an X-linked, infant-onset clustering epilepsy, associated with intellectual disability and autistic features. The unique pattern of inheritance includes random X-chromosome inactivation, which leads to pathological tissue mosaicism. Females carrying PCDH19 mutations are affected, while males have normal phenotype. No cure is presently available for this disease. METHODS Fibroblasts from a female patient carrying frameshift mutation were reprogrammed into human induced pluripotent stem cells (hiPSC). To create a cell model of PCDH19-clustering epilepsy (PCDH19-CE) where both cell populations co-exist, we created mosaic neurons by mixing wild-type (WT) and mutated (mut) human iPSC clones, and differentiated them into mature neurons with overexpression of the transcriptional factor Neurogenin 2. RESULTS We generated functional neurons from patient-derived iPSC using a rapid and efficient method of differentiation through overexpression of Neurogenin 2. Was revealed an accelerated maturation and higher arborisation in the mutated neurons, while the mosaic neurons showed the highest frequency of action potential firing and hyperexcitability features, compared to mutated and WT neurons. CONCLUSIONS Our findings provide evidence that PCDH19 c.2133delG mutation affects proper metaphases with increased numbers of centrosomes in stem cells and accelerates neuronal maturation in premature cells. PCDH19 mosaic neurons showed an elevated excitability, representing the situation in PCDH19-CE brain. We suggest an Ngn-2 hiPSC-derived PCDH19 neurons as an informative experimental tool for understanding the pathogenesis of PCDH19-CE and a suitable approach for use in targeted drug screening strategies.
Collapse
Affiliation(s)
- Diana Alaverdian
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Margherita Corradi
- Department of Experimental Medicine, Section of Physiology, University of Genoa, Viale Benedetto XV, 3, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, Section of Physiology, University of Genoa, Viale Benedetto XV, 3, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Luca Murru
- Institute of Neuroscience, IN-CNR, 20129, Milan, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, IN-CNR, 20129, Milan, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Jlenia Brunetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100, Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
229
|
Li H, Guglielmetti C, Sei YJ, Zilberter M, Le Page LM, Shields L, Yang J, Nguyen K, Tiret B, Gao X, Bennett N, Lo I, Dayton TL, Kampmann M, Huang Y, Rathmell JC, Vander Heiden M, Chaumeil MM, Nakamura K. Neurons require glucose uptake and glycolysis in vivo. Cell Rep 2023; 42:112335. [PMID: 37027294 PMCID: PMC10556202 DOI: 10.1016/j.celrep.2023.112335] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Neurons require large amounts of energy, but whether they can perform glycolysis or require glycolysis to maintain energy remains unclear. Using metabolomics, we show that human neurons do metabolize glucose through glycolysis and can rely on glycolysis to supply tricarboxylic acid (TCA) cycle metabolites. To investigate the requirement for glycolysis, we generated mice with postnatal deletion of either the dominant neuronal glucose transporter (GLUT3cKO) or the neuronal-enriched pyruvate kinase isoform (PKM1cKO) in CA1 and other hippocampal neurons. GLUT3cKO and PKM1cKO mice show age-dependent learning and memory deficits. Hyperpolarized magnetic resonance spectroscopic (MRS) imaging shows that female PKM1cKO mice have increased pyruvate-to-lactate conversion, whereas female GLUT3cKO mice have decreased conversion, body weight, and brain volume. GLUT3KO neurons also have decreased cytosolic glucose and ATP at nerve terminals, with spatial genomics and metabolomics revealing compensatory changes in mitochondrial bioenergetics and galactose metabolism. Therefore, neurons metabolize glucose through glycolysis in vivo and require glycolysis for normal function.
Collapse
Affiliation(s)
- Huihui Li
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Yoshitaka J Sei
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Lauren Shields
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joyce Yang
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevin Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA
| | - Neal Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Talya L Dayton
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin Kampmann
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
230
|
Berryer MH, Rizki G, Nathanson A, Klein JA, Trendafilova D, Susco SG, Lam D, Messana A, Holton KM, Karhohs KW, Cimini BA, Pfaff K, Carpenter AE, Rubin LL, Barrett LE. High-content synaptic phenotyping in human cellular models reveals a role for BET proteins in synapse assembly. eLife 2023; 12:80168. [PMID: 37083703 PMCID: PMC10121225 DOI: 10.7554/elife.80168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Resolving fundamental molecular and functional processes underlying human synaptic development is crucial for understanding normal brain function as well as dysfunction in disease. Based upon increasing evidence of species-divergent features of brain cell types, coupled with emerging studies of complex human disease genetics, we developed the first automated and quantitative high-content synaptic phenotyping platform using human neurons and astrocytes. To establish the robustness of our platform, we screened the effects of 376 small molecules on presynaptic density, neurite outgrowth, and cell viability, validating six small molecules that specifically enhanced human presynaptic density in vitro. Astrocytes were essential for mediating the effects of all six small molecules, underscoring the relevance of non-cell-autonomous factors in synapse assembly and their importance in synaptic screening applications. Bromodomain and extraterminal (BET) inhibitors emerged as the most prominent hit class and global transcriptional analyses using multiple BET inhibitors confirmed upregulation of synaptic gene expression. Through these analyses, we demonstrate the robustness of our automated screening platform for identifying potent synaptic modulators, which can be further leveraged for scaled analyses of human synaptic mechanisms and drug discovery efforts.
Collapse
Affiliation(s)
- Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Gizem Rizki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Jenny A Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kristina M Holton
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Kyle W Karhohs
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kathleen Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Lee L Rubin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
231
|
Kostes WW, Brafman DA. The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells 2023; 12:1204. [PMID: 37190113 PMCID: PMC10136584 DOI: 10.3390/cells12081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
232
|
Neel DV, Basu H, Gunner G, Bergstresser MD, Giadone RM, Chung H, Miao R, Chou V, Brody E, Jiang X, Lee E, Watts ME, Marques C, Held A, Wainger B, Lagier-Tourenne C, Zhang YJ, Petrucelli L, Young-Pearse TL, Chen-Plotkin AS, Rubin LL, Lieberman J, Chiu IM. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron 2023; 111:1222-1240.e9. [PMID: 36917977 PMCID: PMC10121894 DOI: 10.1016/j.neuron.2023.02.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023]
Abstract
Mitochondrial dysfunction and axon loss are hallmarks of neurologic diseases. Gasdermin (GSDM) proteins are executioner pore-forming molecules that mediate cell death, yet their roles in the central nervous system (CNS) are not well understood. Here, we find that one GSDM family member, GSDME, is expressed by both mouse and human neurons. GSDME plays a role in mitochondrial damage and axon loss. Mitochondrial neurotoxins induced caspase-dependent GSDME cleavage and rapid localization to mitochondria in axons, where GSDME promoted mitochondrial depolarization, trafficking defects, and neurite retraction. Frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS)-associated proteins TDP-43 and PR-50 induced GSDME-mediated damage to mitochondria and neurite loss. GSDME knockdown protected against neurite loss in ALS patient iPSC-derived motor neurons. Knockout of GSDME in SOD1G93A ALS mice prolonged survival, ameliorated motor dysfunction, rescued motor neuron loss, and reduced neuroinflammation. We identify GSDME as an executioner of neuronal mitochondrial dysfunction that may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Dylan V Neel
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Georgia Gunner
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Richard M Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Haeji Chung
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Miao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Vicky Chou
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Eliza Brody
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xin Jiang
- Department of Neurology, Mass General Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle E Watts
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Christine Marques
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron Held
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Brian Wainger
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Mass General Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
233
|
Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry 2023; 13:129. [PMID: 37076454 PMCID: PMC10115809 DOI: 10.1038/s41398-023-02412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.
Collapse
Affiliation(s)
- Emily M Hicks
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Alanna Cote
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
234
|
Birnbaum R, Biswas J, Singer RH, Sharp DJ. mRNA Localization and Local Translation of the Microtubule Severing Enzyme, Fidgetin-Like 2, in Polarization, Migration and Outgrowth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537087. [PMID: 37131812 PMCID: PMC10153175 DOI: 10.1101/2023.04.17.537087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell motility requires strict spatiotemporal control of protein expression. During cell migration, mRNA localization and local translation in subcellular areas like the leading edge and protrusions are particularly advantageous for regulating the reorganization of the cytoskeleton. Fidgetin-Like 2 (FL2), a microtubule severing enzyme (MSE) that restricts migration and outgrowth, localizes to the leading edge of protrusions where it severs dynamic microtubules. FL2 is primarily expressed during development but in adulthood, is spatially upregulated at the leading edge minutes after injury. Here, we show mRNA localization and local translation in protrusions of polarized cells are responsible for FL2 leading edge expression after injury. The data suggests that the RNA binding protein IMP1 is involved in the translational regulation and stabilization of FL2 mRNA, in competition with the miRNA let-7. These data exemplify the role of local translation in microtubule network reorganization during migration and elucidate an unexplored MSE protein localization mechanism.
Collapse
Affiliation(s)
- Rayna Birnbaum
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeetayu Biswas
- Present address: Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H. Singer
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David J. Sharp
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Microcures, Inc., Research and Development, Bronx, NY, 10461, USA
| |
Collapse
|
235
|
Mauri S, Bernardo G, Martinez A, Favaro M, Trevisan M, Cobraiville G, Fillet M, Caicci F, Whitworth AJ, Ziviani E. USP8 Down-Regulation Promotes Parkin-Independent Mitophagy in the Drosophila Brain and in Human Neurons. Cells 2023; 12:cells12081143. [PMID: 37190052 DOI: 10.3390/cells12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Stress-induced mitophagy, a tightly regulated process that targets dysfunctional mitochondria for autophagy-dependent degradation, mainly relies on two proteins, PINK1 and Parkin, which genes are mutated in some forms of familiar Parkinson's Disease (PD). Upon mitochondrial damage, the protein kinase PINK1 accumulates on the organelle surface where it controls the recruitment of the E3-ubiquitin ligase Parkin. On mitochondria, Parkin ubiquitinates a subset of mitochondrial-resident proteins located on the outer mitochondrial membrane, leading to the recruitment of downstream cytosolic autophagic adaptors and subsequent autophagosome formation. Importantly, PINK1/Parkin-independent mitophagy pathways also exist that can be counteracted by specific deubiquitinating enzymes (DUBs). Down-regulation of these specific DUBs can presumably enhance basal mitophagy and be beneficial in models in which the accumulation of defective mitochondria is implicated. Among these DUBs, USP8 is an interesting target because of its role in the endosomal pathway and autophagy and its beneficial effects, when inhibited, in models of neurodegeneration. Based on this, we evaluated autophagy and mitophagy levels when USP8 activity is altered. We used genetic approaches in D. melanogaster to measure autophagy and mitophagy in vivo and complementary in vitro approaches to investigate the molecular pathway that regulates mitophagy via USP8. We found an inverse correlation between basal mitophagy and USP8 levels, in that down-regulation of USP8 correlates with increased Parkin-independent mitophagy. These results suggest the existence of a yet uncharacterized mitophagic pathway that is inhibited by USP8.
Collapse
Affiliation(s)
- Sofia Mauri
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Greta Bernardo
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Aitor Martinez
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Marta Trevisan
- Department of Molecular Medicine (DMM), University of Padova, 35121 Padova, Italy
| | - Gael Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Quartier Hopital, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Quartier Hopital, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Federico Caicci
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elena Ziviani
- Department of Biology, University of Padova, 35121 Padova, Italy
| |
Collapse
|
236
|
Ahmed M, Muffat J, Li Y. Understanding neural development and diseases using CRISPR screens in human pluripotent stem cell-derived cultures. Front Cell Dev Biol 2023; 11:1158373. [PMID: 37101616 PMCID: PMC10123288 DOI: 10.3389/fcell.2023.1158373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
The brain is arguably the most complex part of the human body in form and function. Much remains unclear about the molecular mechanisms that regulate its normal and pathological physiology. This lack of knowledge largely stems from the inaccessible nature of the human brain, and the limitation of animal models. As a result, brain disorders are difficult to understand and even more difficult to treat. Recent advances in generating human pluripotent stem cells (hPSCs)-derived 2-dimensional (2D) and 3-dimensional (3D) neural cultures have provided an accessible system to model the human brain. Breakthroughs in gene editing technologies such as CRISPR/Cas9 further elevate the hPSCs into a genetically tractable experimental system. Powerful genetic screens, previously reserved for model organisms and transformed cell lines, can now be performed in human neural cells. Combined with the rapidly expanding single-cell genomics toolkit, these technological advances culminate to create an unprecedented opportunity to study the human brain using functional genomics. This review will summarize the current progress of applying CRISPR-based genetic screens in hPSCs-derived 2D neural cultures and 3D brain organoids. We will also evaluate the key technologies involved and discuss their related experimental considerations and future applications.
Collapse
Affiliation(s)
- Mai Ahmed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
237
|
Geng J, Khaket TP, Pan J, Li W, Zhang Y, Ping Y, Cobos Sillero MI, Lu B. Deregulation of ER-mitochondria contact formation and mitochondrial calcium homeostasis mediated by VDAC in fragile X syndrome. Dev Cell 2023; 58:597-615.e10. [PMID: 37040696 PMCID: PMC10113018 DOI: 10.1016/j.devcel.2023.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/31/2022] [Accepted: 03/06/2023] [Indexed: 04/13/2023]
Abstract
Loss of fragile X messenger ribonucleoprotein (FMRP) causes fragile X syndrome (FXS), the most prevalent form of inherited intellectual disability. Here, we show that FMRP interacts with the voltage-dependent anion channel (VDAC) to regulate the formation and function of endoplasmic reticulum (ER)-mitochondria contact sites (ERMCSs), structures that are critical for mitochondrial calcium (mito-Ca2+) homeostasis. FMRP-deficient cells feature excessive ERMCS formation and ER-to-mitochondria Ca2+ transfer. Genetic and pharmacological inhibition of VDAC or other ERMCS components restored synaptic structure, function, and plasticity and rescued locomotion and cognitive deficits of the Drosophila dFmr1 mutant. Expressing FMRP C-terminal domain (FMRP-C), which confers FMRP-VDAC interaction, rescued the ERMCS formation and mito-Ca2+ homeostasis defects in FXS patient iPSC-derived neurons and locomotion and cognitive deficits in Fmr1 knockout mice. These results identify altered ERMCS formation and mito-Ca2+ homeostasis as contributors to FXS and offer potential therapeutic targets.
Collapse
Affiliation(s)
- Ji Geng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tejinder Pal Khaket
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wen Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
238
|
Kondo T, Ebinuma I, Tanaka H, Nishikawa Y, Komiya T, Ishikawa M, Okano H. Rapid and Robust Multi-Phenotypic Assay System for ALS Using Human iPS Cells with Mutations in Causative Genes. Int J Mol Sci 2023; 24:ijms24086987. [PMID: 37108151 PMCID: PMC10138792 DOI: 10.3390/ijms24086987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a major life-threatening disease caused by motor neuron degeneration. More effective treatments through drug discovery are urgently needed. Here, we established an effective high-throughput screening system using induced pluripotent stem cells (iPSCs). Using a Tet-On-dependent transcription factor expression system carried on the PiggyBac vector, motor neurons were efficiently and rapidly generated from iPSCs by a single-step induction method. Induced iPSC transcripts displayed characteristics similar to those of spinal cord neurons. iPSC-generated motor neurons carried a mutation in fused in sarcoma (FUS) and superoxide dismutase 1 (SOD1) genes and had abnormal protein accumulation corresponding to each mutation. Calcium imaging and multiple electrode array (MEA) recordings demonstrated that ALS neurons were abnormally hyperexcitable. Noticeably, protein accumulation and hyperexcitability were ameliorated by treatment with rapamycin (mTOR inhibitor) and retigabine (Kv7 channel activator), respectively. Furthermore, rapamycin suppressed ALS neuronal death and hyperexcitability, suggesting that protein aggregate clearance through the activation of autophagy effectively normalized activity and improved neuronal survival. Our culture system reproduced several ALS phenotypes, including protein accumulation, hyperexcitability, and neuronal death. This rapid and robust phenotypic screening system will likely facilitate the discovery of novel ALS therapeutics and stratified and personalized medicine for sporadic motor neuron diseases.
Collapse
Affiliation(s)
- Tosho Kondo
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Research Center of Neurology, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Ihori Ebinuma
- Research Center of Neurology, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Hirotaka Tanaka
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Research Center of Neurology, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Yukitoshi Nishikawa
- Research Center of Neurology, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Takaki Komiya
- Research Center of Neurology, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- International Center for Brain Science, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| |
Collapse
|
239
|
Muzzi L, Di Lisa D, Falappa M, Pepe S, Maccione A, Pastorino L, Martinoia S, Frega M. Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering (Basel) 2023; 10:bioengineering10040449. [PMID: 37106636 PMCID: PMC10136157 DOI: 10.3390/bioengineering10040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.
Collapse
Affiliation(s)
- Lorenzo Muzzi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Donatella Di Lisa
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Matteo Falappa
- 3Brain AG, 8808 Pfäffikon, Switzerland
- Corticale Srl., 16145 Genoa, Italy
| | - Sara Pepe
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
240
|
Rimal S, Tantray I, Li Y, Pal Khaket T, Li Y, Bhurtel S, Li W, Zeng C, Lu B. Reverse electron transfer is activated during aging and contributes to aging and age-related disease. EMBO Rep 2023; 24:e55548. [PMID: 36794623 PMCID: PMC10074108 DOI: 10.15252/embr.202255548] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Mechanisms underlying the depletion of NAD+ and accumulation of reactive oxygen species (ROS) in aging and age-related disorders remain poorly defined. We show that reverse electron transfer (RET) at mitochondrial complex I, which causes increased ROS production and NAD+ to NADH conversion and thus lowered NAD+ /NADH ratio, is active during aging. Genetic or pharmacological inhibition of RET decreases ROS production and increases NAD+ /NADH ratio, extending the lifespan of normal flies. The lifespan-extending effect of RET inhibition is dependent on NAD+ -dependent Sirtuin, highlighting the importance of NAD+ /NADH rebalance, and on longevity-associated Foxo and autophagy pathways. RET and RET-induced ROS and NAD+ /NADH ratio changes are prominent in human induced pluripotent stem cell (iPSC) model and fly models of Alzheimer's disease (AD). Genetic or pharmacological inhibition of RET prevents the accumulation of faulty translation products resulting from inadequate ribosome-mediated quality control, rescues relevant disease phenotypes, and extends the lifespan of Drosophila and mouse AD models. Deregulated RET is therefore a conserved feature of aging, and inhibition of RET may open new therapeutic opportunities in the context of aging and age-related diseases including AD.
Collapse
Affiliation(s)
- Suman Rimal
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Ishaq Tantray
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Yu Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | | | - Yanping Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Sunil Bhurtel
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Wen Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | | | - Bingwei Lu
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
241
|
Zhou C, Liu HB, Bakhsh FJ, Wu B, Ying M, Margolis RL, Li PP. Bidirectional transcription at the PPP2R2B gene locus in spinocerebellar ataxia type 12. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535298. [PMID: 37066173 PMCID: PMC10103964 DOI: 10.1101/2023.04.02.535298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene . Here we tested the hypothesis that the PPP2R2B antisense ( PPP2R2B-AS1 ) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific RT-PCR (SS-RT-PCR). The tendency of expanded PPP2R2B-AS1 ( expPPP2R2B-AS1 ) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The toxic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated (RAN) translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS The repeat region in PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts are toxic to SK-N-MC cells, and the toxicity may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the Alanine ORF via repeat-associated non-ATG (RAN) translation, which is diminished by single nucleotide interruptions within the CUG repeat, and MBNL1 overexpression. INTERPRETATION These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis, and may therefore provide a novel therapeutic target for the disease.
Collapse
|
242
|
Kapell H, Fazio L, Dyckow J, Schwarz S, Cruz-Herranz A, Mayer C, Campos J, D’Este E, Möbius W, Cordano C, Pröbstel AK, Gharagozloo M, Zulji A, Narayanan Naik V, Delank A, Cerina M, Müntefering T, Lerma-Martin C, Sonner JK, Sin JH, Disse P, Rychlik N, Sabeur K, Chavali M, Srivastava R, Heidenreich M, Fitzgerald KC, Seebohm G, Stadelmann C, Hemmer B, Platten M, Jentsch TJ, Engelhardt M, Budde T, Nave KA, Calabresi PA, Friese MA, Green AJ, Acuna C, Rowitch DH, Meuth SG, Schirmer L. Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination. J Clin Invest 2023; 133:e164223. [PMID: 36719741 PMCID: PMC10065072 DOI: 10.1172/jci164223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.
Collapse
Affiliation(s)
- Hannah Kapell
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Luca Fazio
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
- Department of Neurology, University of Düsseldorf, Dusseldorf, Germany
| | - Julia Dyckow
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sophia Schwarz
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Andrés Cruz-Herranz
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Elisa D’Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Cluster of Excellence, “Multiscale Bioimaging: from Molecular Machines to Network of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
| | - Anne-Katrin Pröbstel
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Marjan Gharagozloo
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amel Zulji
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Venu Narayanan Naik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
| | - Anna Delank
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
| | | | - Celia Lerma-Martin
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jana K. Sonner
- Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jung Hyung Sin
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Cellular Electrophysiology and Molecular Biology, UKM, Münster, Germany
- University of Münster, Chembion, Münster, Germany
| | - Nicole Rychlik
- University of Münster, Chembion, Münster, Germany
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Khalida Sabeur
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Manideep Chavali
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Rajneesh Srivastava
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Heidenreich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Kathryn C. Fitzgerald
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Cellular Electrophysiology and Molecular Biology, UKM, Münster, Germany
| | - Christine Stadelmann
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Bernhard Hemmer
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN) and
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Neurocure Cluster of Excellence, Charité University Medicine Berlin, Berlin, Germany
| | - Maren Engelhardt
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute of Anatomy and Cell Biology, Johannes Kepler University Linz, Linz, Austria
| | - Thomas Budde
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Klaus-Armin Nave
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Peter A. Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ari J. Green
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
- Department of Ophthalmology, UCSF, San Francisco, California, USA
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - David H. Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Wellcome Trust–Medical Research Council Stem Cell Institute and
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Sven G. Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
- Department of Neurology, University of Düsseldorf, Dusseldorf, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN) and
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
243
|
Hong Y, Yang Q, Song H, Ming GL. Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells. Mol Psychiatry 2023; 28:1430-1439. [PMID: 36782062 PMCID: PMC10213114 DOI: 10.1038/s41380-023-01990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Neuropsychiatric disorders affect a large proportion of the global population and there is an urgent need to understand the pathogenesis and to develop novel and improved treatments of these devastating disorders. However, the diverse symptomatology combined with complex polygenic etiology, and the limited access to disorder-relevant cell types in human brains represent a major obstacle for mechanistic disease research. Conventional animal models, such as rodents, are limited by inherent species differences in brain development, architecture, and function. Advances in human induced pluripotent stem cells (hiPSCs) technologies have provided platforms for new discoveries in neuropsychiatric disorders. First, hiPSC-based disease models enable unprecedented investigation of psychiatric disorders at the molecular, cellular, and structural levels. Second, hiPSCs derived from patients with known genetics, symptoms, and drug response profiles offer an opportunity to recapitulate pathogenesis in relevant cell types and provide novel approaches for understanding disease mechanisms and for developing effective treatments. Third, genome-editing technologies have extended the potential of hiPSCs for generating models to elucidate the genetic basis of rare monogenetic and complex polygenic psychiatric disorders and to establish the causality between genotype and phenotype. Here we review opportunities and limitations for studying psychiatric disorders using various hiPSC-derived model systems.
Collapse
Affiliation(s)
- Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
244
|
Seah C, Huckins LM, Brennand KJ. Stem Cell Models for Context-Specific Modeling in Psychiatric Disorders. Biol Psychiatry 2023; 93:642-650. [PMID: 36658083 DOI: 10.1016/j.biopsych.2022.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
Genome-wide association studies reveal the complex polygenic architecture underlying psychiatric disorder risk, but there is an unmet need to validate causal variants, resolve their target genes(s), and explore their functional impacts on disorder-related mechanisms. Disorder-associated loci regulate transcription of target genes in a cell type- and context-specific manner, which can be measured through expression quantitative trait loci. In this review, we discuss methods and insights from context-specific modeling of genetically and environmentally regulated expression. Human induced pluripotent stem cell-derived cell type and organoid models have uncovered context-specific psychiatric disorder associations by investigating tissue-, cell type-, sex-, age-, and stressor-specific genetic regulation of expression. Techniques such as massively parallel reporter assays and pooled CRISPR (clustered regularly interspaced short palindromic repeats) screens make it possible to functionally fine-map genome-wide association study loci and validate their target genes at scale. Integration of disorder-associated contexts with these patient-specific human induced pluripotent stem cell models makes it possible to uncover gene by environment interactions that mediate disorder risk, which will ultimately improve our ability to diagnose and treat psychiatric disorders.
Collapse
Affiliation(s)
- Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
245
|
Nadler MJS, Chang W, Ozkaynak E, Huo Y, Nong Y, Boillot M, Johnson M, Moreno A, Matthew P Anderson. Hominoid SVA-lncRNA AK057321 targets human-specific SVA retrotransposons in SCN8A and CDK5RAP2 to initiate neuronal maturation. Commun Biol 2023; 6:347. [PMID: 36997626 PMCID: PMC10063665 DOI: 10.1038/s42003-023-04683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons arose and expanded in the genome of hominoid primates concurrent with the slowing of brain maturation. We report genes with intronic SVA transposons are enriched for neurodevelopmental disease and transcribed into long non-coding SVA-lncRNAs. Human-specific SVAs in microcephaly CDK5RAP2 and epilepsy SCN8A gene introns repress their expression via transcription factor ZNF91 to delay neuronal maturation. Deleting the SVA in CDK5RAP2 initiates multi-dimensional and in SCN8A selective sodium current neuronal maturation by upregulating these genes. SVA-lncRNA AK057321 forms RNA:DNA heteroduplexes with the genomic SVAs and upregulates these genes to initiate neuronal maturation. SVA-lncRNA AK057321 also promotes species-specific cortex and cerebellum-enriched expression upregulating human genes with intronic SVAs (e.g., HTT, CHAF1B and KCNJ6) but not mouse orthologs. The diversity of neuronal genes with intronic SVAs suggest this hominoid-specific SVA transposon-based gene regulatory mechanism may act at multiple steps to specialize and achieve neoteny of the human brain.
Collapse
Affiliation(s)
- Monica J S Nadler
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
| | - Weipang Chang
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
| | - Ekim Ozkaynak
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
| | - Yuda Huo
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Neuroscience Therapeutic Focus Area, Regeneron, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yi Nong
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Neuroscience Therapeutic Focus Area, Regeneron, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Morgane Boillot
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
| | - Mark Johnson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
| | - Antonio Moreno
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA
| | - Matthew P Anderson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02115, USA.
- Boston Children's Hospital Intellectual and Developmental Disabilities Research Center, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Neuroscience Therapeutic Focus Area, Regeneron, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
246
|
Deans PJM, Seah C, Johnson J, Gonzalez JG, Townsley K, Cao E, Schrode N, Stahl E, O’Reilly P, Huckins LM, Brennand KJ. Non-additive effects of schizophrenia risk genes reflect convergent downstream function. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.20.23287497. [PMID: 36993466 PMCID: PMC10055596 DOI: 10.1101/2023.03.20.23287497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genetic studies of schizophrenia (SCZ) reveal a complex polygenic risk architecture comprised of hundreds of risk variants, the majority of which are common in the population at-large and confer only modest increases in disorder risk. Precisely how genetic variants with individually small predicted effects on gene expression combine to yield substantial clinical impacts in aggregate is unclear. Towards this, we previously reported that the combinatorial perturbation of four SCZ risk genes ("eGenes", whose expression is regulated by common variants) resulted in gene expression changes that were not predicted by individual perturbations, being most non-additive among genes associated with synaptic function and SCZ risk. Now, across fifteen SCZ eGenes, we demonstrate that non-additive effects are greatest within groups of functionally similar eGenes. Individual eGene perturbations reveal common downstream transcriptomic effects ("convergence"), while combinatorial eGene perturbations result in changes that are smaller than predicted by summing individual eGene effects ("sub-additive effects"). Unexpectedly, these convergent and sub-additive downstream transcriptomic effects overlap and constitute a large proportion of the genome-wide polygenic risk score, suggesting that functional redundancy of eGenes may be a major mechanism underlying non-additivity. Single eGene perturbations likewise fail to predict the magnitude or directionality of cellular phenotypes resulting from combinatorial perturbations. Overall, our results indicate that polygenic risk cannot be extrapolated from experiments testing one risk gene at a time and must instead be empirically measured. By unravelling the interactions between complex risk variants, it may be possible to improve the clinical utility of polygenic risk scores through more powerful prediction of symptom onset, clinical trajectory, and treatment response, or to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- PJ Michael Deans
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jessica Johnson
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Judit Garcia Gonzalez
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kayla Townsley
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Evan Cao
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Nadine Schrode
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Eli Stahl
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Paul O’Reilly
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kristen J. Brennand
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
247
|
Bai T, Duan H, Zhang B, Hao P, Zhao W, Gao Y, Yang Z, Li X. Neuronal differentiation and functional maturation of neurons from neural stem cells induced by bFGF-chitosan controlled release system. Drug Deliv Transl Res 2023:10.1007/s13346-023-01322-x. [PMID: 36943630 DOI: 10.1007/s13346-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Available methods for differentiating stem cells into neurons require a large number of cytokines and neurotrophic factors, with complex steps and slow processes, and are inefficient to produce functional neurons and form synaptic contacts, which is expensive and impractical in clinical application. Here, we demonstrated a bioactive material, basic fibroblast growth factor (bFGF)-chitosan controlled release system, for facilitating neuronal differentiation from NSCs and the functional maturation of the induced neurons with high efficiency. We illustrated by immunostaining that the neurons derived from NSCs expressed mature immunomarkers of interneurons and excitatory neurons. And we found by patch-clamp that the induced neurons exhibited diverse electrophysiological properties as well as formed functional synapses. In vivo, we implanted bFGF-chitosan into lesion area in traumatic brain injury (TBI) mice and similarly observed abundance of neuroblasts in SVZ and the presence of newborn functional neurons in injury area, which integrated into synaptic networks. Taken together, our efficient and rapid tissue engineering approach may be a potential method for the generation of functional neuronal lineage cells from stem cells and a therapy of brain injury and disease.
Collapse
Affiliation(s)
- Tianyu Bai
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Hongmei Duan
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Boya Zhang
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Peng Hao
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Wen Zhao
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Yudan Gao
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Zhaoyang Yang
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China.
| | - Xiaoguang Li
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China.
| |
Collapse
|
248
|
Wang Z, Jin M, Hong W, Liu W, Reczek D, Lagomarsino VN, Hu Y, Weeden T, Frosch MP, Young-Pearse TL, Pradier L, Selkoe D, Walsh DM. Learnings about Aβ from human brain recommend the use of a live-neuron bioassay for the discovery of next generation Alzheimer's disease immunotherapeutics. Acta Neuropathol Commun 2023; 11:39. [PMID: 36899414 PMCID: PMC10007750 DOI: 10.1186/s40478-023-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/10/2023] [Indexed: 03/12/2023] Open
Abstract
Despite ongoing debate, the amyloid β-protein (Aβ) remains the prime therapeutic target for the treatment of Alzheimer's disease (AD). However, rational drug design has been hampered by a lack of knowledge about neuroactive Aβ. To help address this deficit, we developed live-cell imaging of iPSC-derived human neurons (iNs) to study the effects of the most disease relevant form of Aβ-oligomeric assemblies (oAβ) extracted from AD brain. Of ten brains studied, extracts from nine caused neuritotoxicity, and in eight cases this was abrogated by Aβ immunodepletion. Here we show that activity in this bioassay agrees relatively well with disruption of hippocampal long-term potentiation, a correlate of learning and memory, and that measurement of neurotoxic oAβ can be obscured by more abundant non-toxic forms of Aβ. These findings indicate that the development of novel Aβ targeting therapeutics may benefit from unbiased activity-based discovery. To test this principle, we directly compared 5 clinical antibodies (aducanumab, bapineuzumab, BAN2401, gantenerumab, and SAR228810) together with an in-house aggregate-preferring antibody (1C22) and established relative EC50s in protecting human neurons from human Aβ. The results yielded objective numerical data on the potency of each antibody in neutralizing human oAβ neuritotoxicity. Their relative efficacies in this morphological assay were paralleled by their functional ability to rescue oAβ-induced inhibition of hippocampal synaptic plasticity. This novel paradigm provides an unbiased, all-human system for selecting candidate antibodies for advancement to human immunotherapy.
Collapse
Affiliation(s)
- Zemin Wang
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Ming Jin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - David Reczek
- Sanofi-Genzyme Corporation, Framingham, MA, 01701, USA
| | - Valentina N Lagomarsino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan Hu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Tim Weeden
- Sanofi-Genzyme Corporation, Framingham, MA, 01701, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
249
|
Ma F, Akolkar H, Xu J, Liu Y, Popova D, Xie J, Youssef MM, Benosman R, Hart RP, Herrup K. The Amyloid Precursor Protein Modulates the Position and Length of the Axon Initial Segment. J Neurosci 2023; 43:1830-1844. [PMID: 36717226 PMCID: PMC10010458 DOI: 10.1523/jneurosci.0172-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the β-amyloid (Aβ) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aβ are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase in App gene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+ reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown of App block the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aβ, either fibrillar or oligomeric, has no effect. In culture, APPSwe (a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and βIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS. In vivo as in vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD.SIGNIFICANCE STATEMENT While the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity. In vivo and in vitro, modest amounts of excess APP alter the properties of the axon initial segment. The β-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia.
Collapse
Affiliation(s)
- Fulin Ma
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Himanshu Akolkar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
| | - Jiaan Xie
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mark M Youssef
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ryad Benosman
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
250
|
Pintacuda G, Hsu YHH, Tsafou K, Li KW, Martín JM, Riseman J, Biagini JC, Ching JK, Mena D, Gonzalez-Lozano MA, Egri SB, Jaffe J, Smit AB, Fornelos N, Eggan KC, Lage K. Protein interaction studies in human induced neurons indicate convergent biology underlying autism spectrum disorders. CELL GENOMICS 2023; 3:100250. [PMID: 36950384 PMCID: PMC10025425 DOI: 10.1016/j.xgen.2022.100250] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/18/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023]
Abstract
Autism spectrum disorders (ASDs) have been linked to genes with enriched expression in the brain, but it is unclear how these genes converge into cell-type-specific networks. We built a protein-protein interaction network for 13 ASD-associated genes in human excitatory neurons derived from induced pluripotent stem cells (iPSCs). The network contains newly reported interactions and is enriched for genetic and transcriptional perturbations observed in individuals with ASDs. We leveraged the network data to show that the ASD-linked brain-specific isoform of ANK2 is important for its interactions with synaptic proteins and to characterize a PTEN-AKAP8L interaction that influences neuronal growth. The IGF2BP1-3 complex emerged as a convergent point in the network that may regulate a transcriptional circuit of ASD-associated genes. Our findings showcase cell-type-specific interactomes as a framework to complement genetic and transcriptomic data and illustrate how both individual and convergent interactions can lead to biological insights into ASDs.
Collapse
Affiliation(s)
- Greta Pintacuda
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Han H. Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kalliopi Tsafou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jacqueline M. Martín
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jackson Riseman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julia C. Biagini
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua K.T. Ching
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daya Mena
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Miguel A. Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Shawn B. Egri
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jake Jaffe
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Nadine Fornelos
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin C. Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark
| |
Collapse
|