201
|
Aslam M, Fakher B, Jakada BH, Cao S, Qin Y. SWR1 Chromatin Remodeling Complex: A Key Transcriptional Regulator in Plants. Cells 2019; 8:cells8121621. [PMID: 31842357 PMCID: PMC6952815 DOI: 10.3390/cells8121621] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
The nucleosome is the structural and fundamental unit of eukaryotic chromatin. The chromatin remodeling complexes change nucleosome composition, packaging and positioning to regulate DNA accessibility for cellular machinery. SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) belongs to the INO80 chromatin remodeling family and mainly catalyzes the exchange of H2A-H2B with the H2A.Z-H2B dimer. The replacement of H2A.Z into nucleosomes affects nucleosome stability and chromatin structure. Incorporation of H2A.Z into the chromatin and its physiochemical properties play a key role in transcriptional regulation during developmental and environmental responses. In Arabidopsis, various studies have uncovered several pivotal roles of SWR1-C. Recently, notable progress has been achieved in understanding the role of SWR1-C in plant developmental and physiological processes such as DNA damage repair, stress tolerance, and flowering time. The present article introduces the SWR1-C and comprehensively reviews recent discoveries made in understanding the function of the SWR1 complex in plants.
Collapse
Affiliation(s)
- Mohammad Aslam
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| | - Beenish Fakher
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| |
Collapse
|
202
|
Amosova AV, Zoshchuk SA, Rodionov AV, Ghukasyan L, Samatadze TE, Punina EO, Loskutov IG, Yurkevich OY, Muravenko OV. Molecular cytogenetics of valuable Arctic and sub-Arctic pasture grass species from the Aveneae/Poeae tribe complex (Poaceae). BMC Genet 2019; 20:92. [PMID: 31801460 PMCID: PMC6894191 DOI: 10.1186/s12863-019-0792-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/22/2019] [Indexed: 12/25/2022] Open
Abstract
Abstract Background Grasslands in the Arctic tundra undergo irreversible degradation due to climatic changes and also over-exploitation and depletion of scarce resources. Comprehensive investigations of cytogenomic structures of valuable Arctic and sub-Arctic grassland species is essential for clarifying their genetic peculiarities and phylogenetic relationships, and also successful developing new forage grass cultivars with high levels of adaptation, stable productivity and longevity. We performed molecular cytogenetic characterization of insufficiently studied pasture grass species (Poaceae) from related genera representing two neighboring clades: 1) Deschampsia and Holcus; 2) Alopecurus, Arctagrostis and Beckmannia, which are the primary fodder resources in the Arctic tundra. Results We constructed the integrated schematic maps of distribution of these species in the northern, central and eastern parts of Eurasia based on the currently available data as only scattered data on their occurrence is currently available. The species karyotypes were examined with the use of DAPI-banding, multicolour FISH with 35S rDNA, 5S rDNA and the (GTT)9 microsatellite motif and also sequential rapid multocolour GISH with genomic DNAs of Deschampsia sukatschewii, Deschampsia flexuosa and Holcus lanatus belonging to one of the studied clades. Cytogenomic structures of the species were specified; peculiarities and common features of their genomes were revealed. Different chromosomal rearrangements were detected in Beckmannia syzigachne, Deschampsia cespitosa and D. flexuosa; B chromosomes with distinct DAPI-bands were observed in karyotypes of D. cespitosa and H. lanatus. Conclusions The peculiarities of distribution patterns of the examined chromosomal markers and also presence of common homologous DNA repeats in karyotypes of the studies species allowed us to verify their relationships. The obtained unique data on distribution areas and cytogenomic structures of the valuable Arctic and sub-Arctic pasture species are important for further genetic and biotechnological studies and also plant breeding progress.
Collapse
Affiliation(s)
- Alexandra V Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Svyatoslav A Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander V Rodionov
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Lilit Ghukasyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana E Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elizaveta O Punina
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Igor G Loskutov
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Olga Yu Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga V Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
203
|
Newbold LK, Robinson A, Rasnaca I, Lahive E, Soon GH, Lapied E, Oughton D, Gashchak S, Beresford NA, Spurgeon DJ. Genetic, epigenetic and microbiome characterisation of an earthworm species (Octolasion lacteum) along a radiation exposure gradient at Chernobyl. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113238. [PMID: 31655460 DOI: 10.1016/j.envpol.2019.113238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The effects of exposure to different levels of ionising radiation were assessed on the genetic, epigenetic and microbiome characteristics of the "hologenome" of earthworms collected at sites within the Chernobyl exclusion zone (CEZ). The earthworms Aporrectodea caliginosa (Savigny, 1826) and Octolasion lacteum (Örley, 1881) were the two species that were most frequently found at visited sites, however, only O. lacteum was present at sufficient number across different exposure levels to enable comparative hologenome analysis. The identification of morphotype O. lacteum as a probable single clade was established using a combination of mitochondrial (cytochrome oxidase I) and nuclear genome (Amplified Fragment Length Polymorphism (AFLP) using MspI loci). No clear site associated differences in population genetic structure was found between populations using the AFLP marker loci. Further, no relationship between ionising radiation exposure levels and the percentage of methylated loci or pattern of distribution of DNA methylation marks was found. Microbiome structure was clearly site dependent, with gut microbiome community structure and diversity being systematically associated with calculated site-specific earthworm dose rates. There was, however, also co-correlation between earthworm dose rates and other soil properties, notably soil pH; a property known to affect soil bacterial community structure. Such co-correlation means that it is not possible to attribute microbiome changes unequivocally to radionuclide exposure. A better understanding of the relationship between radionuclide exposure soil properties and their interactions on bacterial microbiome community response is, therefore, needed to establish whether these the observed microbiome changes are attributed directly to radiation exposure, other soil properties or to an interaction between multiple variables at sites within the CEZ.
Collapse
Affiliation(s)
- Lindsay K Newbold
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Alex Robinson
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - I Rasnaca
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Elma Lahive
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Gweon H Soon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK; School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AH, UK
| | - Emmanuel Lapied
- Centre for Environmental Radioactivity, Norwegian University of Life Science, 1430 As, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity, Norwegian University of Life Science, 1430 As, Norway
| | - Sergey Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, Slavutych, Kiev Region, Ukraine
| | - Nicholas A Beresford
- NERC Centre for Ecology & Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA14AP, UK
| | - David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK.
| |
Collapse
|
204
|
Xie H, Han Y, Li X, Dai W, Song X, Olsen KM, Qiang S. Climate‐dependent variation in cold tolerance of weedy rice and rice mediated by
OsICE1
promoter methylation. Mol Ecol 2019; 29:121-137. [DOI: 10.1111/mec.15305] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hongjie Xie
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Yihao Han
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Xinyue Li
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Weimin Dai
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Xiaoling Song
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| | - Kenneth M. Olsen
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | - Sheng Qiang
- Weed Research Laboratory Nanjing Agricultural University Nanjing China
| |
Collapse
|
205
|
Transgenerational Response to Nitrogen Deprivation in Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20225587. [PMID: 31717351 PMCID: PMC6888700 DOI: 10.3390/ijms20225587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
Nitrogen (N) deficiency is one of the major stresses that crops are exposed to. It is plausible to suppose that a stress condition can induce a memory in plants that might prime the following generations. Here, an experimental setup that considered four successive generations of N-sufficient and N-limited Arabidopsis was used to evaluate the existence of a transgenerational memory. The results demonstrated that the ability to take up high amounts of nitrate is induced more quickly as a result of multigenerational stress exposure. This behavior was paralleled by changes in the expression of nitrate responsive genes. RNAseq analyses revealed the enduring modulation of genes in downstream generations, despite the lack of stress stimulus in these plants. The modulation of signaling and transcription factors, such as NIGTs, NFYA and CIPK23 might indicate that there is a complex network operating to maintain the expression of N-responsive genes, such as NRT2.1, NIA1 and NIR. This behavior indicates a rapid acclimation of plants to changes in N availability. Indeed, when fourth generation plants were exposed to N limitation, they showed a rapid induction of N-deficiency responses. This suggests the possible involvement of a transgenerational memory in Arabidopsis that allows plants to adapt efficiently to the environment and this gives an edge to the next generation that presumably will grow in similar stressful conditions.
Collapse
|
206
|
Yuan L, Xie S, Nie L, Zheng Y, Wang J, Huang J, Zhao M, Zhu S, Hou J, Chen G, Wang C. Comparative Proteomics Reveals Cold Acclimation Machinery Through Enhanced Carbohydrate and Amino Acid Metabolism in Wucai ( Brassica Campestris L.). PLANTS (BASEL, SWITZERLAND) 2019; 8:E474. [PMID: 31698739 PMCID: PMC6918420 DOI: 10.3390/plants8110474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 05/30/2023]
Abstract
Limited information is available on the cold acclimation of non-heading Chinese cabbage (NHCC) under low temperatures. In this study, the isobaric tags for relative and absolute quantification (iTRAQ) were used to illustrate the molecular machinery of cold acclimation. Compared to the control (Cont), altogether, 89 differentially expressed proteins (DEPs) were identified in wucai leaves responding to low temperatures (LT). Among these proteins, 35 proteins were up-regulated ((and 54 were down-regulated). These differentially expressed proteins were categorized as having roles in carbohydrate metabolism, photosynthesis and energy metabolism, oxidative defense, amino acid metabolism, metabolic progress, cold regulation, methylation progress, and signal transduction. The fructose, glucose, and sucrose were dramatically increased in response to cold acclimation. It was firstly reported that aspartate, serine, glutamate, proline, and threonine were significantly accumulated under low temperatures. Results of quantitative real-time PCR analysis of nine DEPs displayed that the transcriptional expression patterns of six genes were consistent with their protein expression abundance. Our results demonstrated that wucai acclimated to low temperatures through regulating the expression of several crucial proteins. Additionally, carbohydrate and amino acid conversion played indispensable and vital roles in improving cold assimilation in wucai.
Collapse
Affiliation(s)
- Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Shilei Xie
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
| | - Libing Nie
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
| | - Yushan Zheng
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
| | - Jie Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
| | - Ju Huang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
| | - Mengru Zhao
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (L.Y.); (S.X.); (L.N.); (Y.Z.); (J.W.); (J.H.); (M.Z.); (S.Z.); (J.H.); (G.C.)
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| |
Collapse
|
207
|
Li H, Wang J, Lin L, Liao M, Lv X, Tang Y, Wang X, Xia H, Liang D, Ren W, Jiang W. Effects of mutual grafting on cadmium accumulation characteristics of first post-generations of Bidens pilosa L. and Galinsoga parviflora Cav. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33228-33235. [PMID: 31520390 DOI: 10.1007/s11356-019-06498-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
We studied the effects of mutual grafting on cadmium (Cd) accumulation characteristics on the first post-generations of the Cd-hyperaccumulator plants Bidens pilosa L. and Galinsoga parviflora Cav. The seeds from scions and rootstocks of B. pilosa and G. parviflora were collected and planted in Cd-contaminated soil in pot and field experiments. In the pot experiment, rootstock treatment increased the shoot biomass of B. pilosa post-grafting generations, compared with ungrafted B. pilosa, but decreased the Cd content in shoots and Cd extraction by shoots of post-grafting generations; scion treatment decreased or had no significant effect. Mutual grafting resulted in no significant differences to the photosynthetic pigment contents in B. pilosa post-grafting generations. Compared with ungrafted G. parviflora, scion treatment increased the shoot biomass, photosynthetic pigment content, and Cd extraction by shoots of G. parviflora post-grafting generations, but rootstock treatment did not lead to significant differences. Mutual grafting resulted in no significant differences to the Cd contents in shoots of G. parviflora post-grafting generations. In the field experiment, only rootstock treatment increased the shoot biomass of B. pilosa post-grafting generations, and only scion treatment increased the shoot biomass and the Cd extraction by shoots of G. parviflora post-grafting generations. Therefore, mutual grafting of scions may enhance the phytoremediation ability of G. parviflora first post-grafting generations.
Collapse
Affiliation(s)
- Hongyan Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Ming'an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Ren
- Maize Research Institute, Neijiang Academy of Agricultural Sciences, Neijiang, 641000, China
| | - Wei Jiang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, Sichuan, China
| |
Collapse
|
208
|
Liu J, Sherif SM. Combating Spring Frost With Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:1408. [PMID: 31737021 PMCID: PMC6831720 DOI: 10.3389/fpls.2019.01408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/10/2019] [Indexed: 05/23/2023]
Abstract
The sustainable fruit production in temperate and boreal regions is often imperiled by spring frosts. The risk of frost damage and the resulting economic losses have been increasing in the recent years as a result of the global climate change. Among the many approaches in mitigating frost damages, an ethylene-based compound, ethephon has proven to be effective in delaying bloom time in many fruit species and, thereby, avoid frost damage. However, effective concentrations of ethephon are often associated with harmful effects on fruit trees, which largely limit its use. Relatively, limited research attention has been given to understand the mechanisms underlying this ethylene-mediated bloom delay, thus hindering the progress in exploring its potential in frost protection. Recent advances in omics and bioinformatics have facilitated the identification of critical molecular and biochemical pathways that govern the progression of bud dormancy in deciduous woody perennials. In this review, we summarized our current understanding of the function of ethylene and its interaction with other networks in modulating dormancy and blooming in temperate fruit trees. Some possible mechanisms are also proposed that might potentially guide future studies attempting to decipher the dormancy regulation or searching for methods to alleviate frost damages.
Collapse
|
209
|
Moglia A, Gianoglio S, Acquadro A, Valentino D, Milani AM, Lanteri S, Comino C. Identification of DNA methyltransferases and demethylases in Solanum melongena L., and their transcription dynamics during fruit development and after salt and drought stresses. PLoS One 2019; 14:e0223581. [PMID: 31596886 PMCID: PMC6785084 DOI: 10.1371/journal.pone.0223581] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
DNA methylation through the activity of cytosine-5-methyltransferases (C5-MTases) and DNA demethylases plays important roles in genome protection as well as in regulating gene expression during plant development and plant response to environmental stresses. In this study, we report on a genome-wide identification of six C5-MTases (SmelMET1, SmelCMT2, SmelCMT3a, SmelCMT3b, SmelDRM2, SmelDRM3) and five demethylases (SmelDemethylase_1, SmelDemethylase_2, SmelDemethylase_3, SmelDemethylase_4, SmelDemethylase_5) in eggplant. Gene structural characteristics, chromosomal localization and phylogenetic analyses are also described. The transcript profiling of both C5-MTases and demethylases was assessed at three stages of fruit development in three eggplant commercial F1 hybrids: i.e. 'Clara', 'Nite Lady' and 'Bella Roma', representative of the eggplant berry phenotypic variation. The trend of activation of C5-MTases and demethylase genes varied in function of the stage of fruit development and was genotype dependent. The transcription pattern of C5MTAses and demethylases was also assessed in leaves of the F1 hybrid 'Nite Lady' subjected to salt and drought stresses. A marked up-regulation and down-regulation of some C5-MTases and demethylases was detected, while others did not vary in their expression profile. Our results suggest a role for both C5-MTases and demethylases during fruit development, as well as in response to abiotic stresses in eggplant, and provide a starting framework for supporting future epigenetic studies in the species.
Collapse
Affiliation(s)
- Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | - Silvia Gianoglio
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | - Danila Valentino
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | - Anna Maria Milani
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | - Sergio Lanteri
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| | - Cinzia Comino
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco, Italy
| |
Collapse
|
210
|
Ma LY, Zhang N, Liu JT, Zhai XY, Lv Y, Lu FF, Yang H. Uptake of atrazine in a paddy crop activates an epigenetic mechanism for degrading the pesticide in plants and environment. ENVIRONMENT INTERNATIONAL 2019; 131:105014. [PMID: 31351384 DOI: 10.1016/j.envint.2019.105014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
There is a rising public concern on accumulation of harmful pesticides in environment and crops. Epigenetic alteration caused by environmental contaminants is one of the key factors in the etiology of environmentally-associated diseases. Growing evidence shows that harmful pesticide atrazine (ATZ) has a profound effect on DNA methylation in human genome, however, little is known about the epigenetic mechanism underlying ATZ accumulation and degradation in plants, particularly in edible plants growing in the ATZ-contaminated areas. This study investigated the atrazine elimination that was mediated by DNA methylation and histone modification in the food crop rice. Studies with two mutant Osmet1-1/2 defective in the genomic CG DNA methylation show significantly lower accumulation of atrazine than its wild-types. Profiling methylome and transcriptome of ATZ-exposed Osmet1 and wild-type identified many differentially methylated loci (≥2 fold change, p < 0.05), which were associated with activation of genes responsible for atrazine degradation in plants. Three demethylated loci OsGTF, OsHPL1 and OsGLH were expressed in eukaryotic yeast cells and found to eliminate a marked proportion of ATZ in growth environments by 48%, 43% and 32%, respectively, whereas the increased ATZ-degraded products were characterized using UPLC/Q-TOF-MS/MS. These results suggest that activation of the loci mediated by ATZ-induced hypomethylation could be responsible for the removal of ATZ in rice. Our work helps understand a new regulatory mechanism underlying the atrazine degradation in crops which may potentially reduce the environmental risks to human health through food chain.
Collapse
Affiliation(s)
- Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Tong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lv
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
211
|
Weighill D, Tschaplinski TJ, Tuskan GA, Jacobson D. Data Integration in Poplar: 'Omics Layers and Integration Strategies. Front Genet 2019; 10:874. [PMID: 31608114 PMCID: PMC6773870 DOI: 10.3389/fgene.2019.00874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
Populus trichocarpa is an important biofuel feedstock that has been the target of extensive research and is emerging as a model organism for plants, especially woody perennials. This research has generated several large ‘omics datasets. However, only few studies in Populus have attempted to integrate various data types. This review will summarize various ‘omics data layers, focusing on their application in Populus species. Subsequently, network and signal processing techniques for the integration and analysis of these data types will be discussed, with particular reference to examples in Populus.
Collapse
Affiliation(s)
- Deborah Weighill
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J Tschaplinski
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel Jacobson
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
212
|
Müller M, Gailing O. Abiotic genetic adaptation in the Fagaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:783-795. [PMID: 31081234 DOI: 10.1111/plb.13008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Fagaceae can be found in tropical and temperate regions and contain species of major ecological and economic importance. In times of global climate change, tree populations need to adapt to rapidly changing environmental conditions. The predicted warmer and drier conditions will potentially result in locally maladapted populations. There is evidence that major genera of the Fagaceae are already negatively affected by climate change-related factors such as drought and associated biotic stressors. Therefore, knowledge of the mechanisms underlying adaptation is of great interest. In this review, we summarise current literature related to genetic adaptation to abiotic environmental conditions. We begin with an overview of genetic diversity in Fagaceae species and then summarise current knowledge related to drought stress tolerance, bud burst timing and frost tolerance in the Fagaceae. Finally, we discuss the role of hybridisation, epigenetics and phenotypic plasticity in adaptation.
Collapse
Affiliation(s)
- M Müller
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
| | - O Gailing
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| |
Collapse
|
213
|
Hou H, Zhao L, Zheng X, Gautam M, Yue M, Hou J, Chen Z, Wang P, Li L. Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings. PROTOPLASMA 2019; 256:1245-1256. [PMID: 31030267 DOI: 10.1007/s00709-019-01364-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Histone modification plays a significant role in plant responses to abiotic stress. However, there are little scientific studies available on the involvement of dynamic changes in histone modification in the heat stress response in maize. The present investigation was aimed to analyze the epigenetic mechanisms involved in regulating the physiological and biochemical alterations in maize seedlings under heat stress. Our results and observations indicated an increase in electrolyte leakage and hydrolytic activity of the plasma membrane H+-ATPase as well as the high pigment content and reactive oxygen species (ROS) content under high temperature. Furthermore, decondensation of ribosomal DNA (rDNA) chromatin and a simultaneous increase in rRNA gene expression were observed during heat stress, accompanied by a genome-wide increase in the levels of histone H3K4me2 and H3K9ac. Additionally, chromatin immunoprecipitation (ChIP) analysis revealed that alterations in H3K4me2 and H3K9ac levels occurred in promoter regions, which were found to be associated with the upregulation of heat stress factor (Hsf) and rRNA genes. In conclusion, short-term heat stress induces dynamic histone alterations which are associated with Hsf and rRNA gene transcription, accompanied by perturbations of cell membranes and an increase in ROS during acclimation in maize seedlings.
Collapse
Affiliation(s)
- Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- School of electrical engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Institute of Food and Agriculture Standardization, China National Institute of Standardization, Beijing, 100191, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mayank Gautam
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
214
|
Kim JH. Chromatin Remodeling and Epigenetic Regulation in Plant DNA Damage Repair. Int J Mol Sci 2019; 20:ijms20174093. [PMID: 31443358 PMCID: PMC6747262 DOI: 10.3390/ijms20174093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
DNA damage response (DDR) in eukaryotic cells is initiated in the chromatin context. DNA damage and repair depend on or have influence on the chromatin dynamics associated with genome stability. Epigenetic modifiers, such as chromatin remodelers, histone modifiers, DNA (de-)methylation enzymes, and noncoding RNAs regulate DDR signaling and DNA repair by affecting chromatin dynamics. In recent years, significant progress has been made in the understanding of plant DDR and DNA repair. SUPPRESSOR OF GAMMA RESPONSE1, RETINOBLASTOMA RELATED1 (RBR1)/E2FA, and NAC103 have been proven to be key players in the mediation of DDR signaling in plants, while plant-specific chromatin remodelers, such as DECREASED DNA METHYLATION1, contribute to chromatin dynamics for DNA repair. There is accumulating evidence that plant epigenetic modifiers are involved in DDR and DNA repair. In this review, I examine how DDR and DNA repair machineries are concertedly regulated in Arabidopsis thaliana by a variety of epigenetic modifiers directing chromatin remodeling and epigenetic modification. This review will aid in updating our knowledge on DDR and DNA repair in plants.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Korea.
| |
Collapse
|
215
|
Rey O, Eizaguirre C, Angers B, Baltazar‐Soares M, Sagonas K, Prunier JG, Blanchet S. Linking epigenetics and biological conservation: Towards a
conservation epigenetics
perspective. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13429] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Olivier Rey
- CNRS UMR 5244, Interactions Hôtes‐Pathogènes‐Environnements (IHPE) Université de Perpignan Via Domitia Perpignan France
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Bernard Angers
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| | | | - Kostas Sagonas
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Jérôme G. Prunier
- Evolution et Diversité Biologique, École Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA), CNRS, UPS, UMR5174 Institut de Recherche pour le Développement (IRD) Toulouse France
| | - Simon Blanchet
- Evolution et Diversité Biologique, École Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA), CNRS, UPS, UMR5174 Institut de Recherche pour le Développement (IRD) Toulouse France
- Station d'Ecologie Théorique et Expérimentale, UMR5321, CNRS Université Paul Sabatier (UP) Moulis France
| |
Collapse
|
216
|
Guo X, Xie Q, Li B, Su H. Molecular characterization and transcription analysis of DNA methyltransferase genes in tomato (Solanum lycopersicum). Genet Mol Biol 2019; 43:e20180295. [PMID: 31429858 PMCID: PMC7197986 DOI: 10.1590/1678-4685-gmb-2018-0295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/08/2019] [Indexed: 11/22/2022] Open
Abstract
DNA methylation plays an important role in plant growth and development, gene expression regulation, and maintenance of genome stability. However, only little information regarding stress-related DNA methyltransferases (MTases) genes is available in tomato. Here, we report the analysis of nine tomato MTases, which were categorized into four known subfamilies. Structural analysis suggested their DNA methylase domains are highly conserved, whereas the N-terminals are divergent. Tissue-specific analysis of these MTase genes revealed that SlCMT2, SlCMT3, and SlDRM5 were expressed higher in young leaves, while SlMET1, SlCMT4, SlDRM7, and SlDRM8 were highly expressed in immature green fruit, and their expression declined continuously with further fruit development. In contrast, SlMETL was highly expressed in ripening fruit and displayed an up-regulated tendency during fruit development. In addition, the expression of SlMET1 in the ripening of mutant rin and Nr tomatoes is significantly higher compared to wild-type tomato, suggesting that SlMET1 was negatively regulated by the ethylene signal and ripening regulator MADS-RIN. Furthermore, expression analysis under abiotic stresses revealed that these MTase genes were stress-responsive and may function diversely in different stress conditions. Overall, our results provide valuable information for exploring the regulation of tomato fruit ripening and response to abiotic stress through DNA methylation.
Collapse
Affiliation(s)
- Xuhu Guo
- Shanxi Datong University, School of Life Sciences, Datong, China.,Shanxi Datong University, Applied Biotechnology Institute, Datong, China
| | - Qian Xie
- Shanxi Datong University, School of Life Sciences, Datong, China.,Shanxi Datong University, Applied Biotechnology Institute, Datong, China
| | - Baoyuan Li
- Shanxi Datong University, School of Life Sciences, Datong, China.,Shanxi Datong University, Applied Biotechnology Institute, Datong, China
| | - Huanzhen Su
- Shanxi Datong University, School of Life Sciences, Datong, China
| |
Collapse
|
217
|
Liu JG, Han X, Yang T, Cui WH, Wu AM, Fu CX, Wang BC, Liu LJ. Genome-wide transcriptional adaptation to salt stress in Populus. BMC PLANT BIOLOGY 2019; 19:367. [PMID: 31429697 PMCID: PMC6701017 DOI: 10.1186/s12870-019-1952-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/29/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Adaptation to abiotic stresses is crucial for the survival of perennial plants in a natural environment. However, very little is known about the underlying mechanisms. Here, we adopted a liquid culture system to investigate plant adaptation to repeated salt stress in Populus trees. RESULTS We first evaluated phenotypic responses and found that plants exhibit better stress tolerance after pre-treatment of salt stress. Time-course RNA sequencing (RNA-seq) was then performed to profile changes in gene expression over 12 h of salt treatments. Analysis of differentially expressed genes (DEGs) indicated that significant transcriptional reprogramming and adaptation to repeated salt treatment occurred. Clustering analysis identified two modules of co-expressed genes that were potentially critical for repeated salt stress adaptation, and one key module for salt stress response in general. Gene Ontology (GO) enrichment analysis identified pathways including hormone signaling, cell wall biosynthesis and modification, negative regulation of growth, and epigenetic regulation to be highly enriched in these gene modules. CONCLUSIONS This study illustrates phenotypic and transcriptional adaptation of Populus trees to salt stress, revealing novel gene modules which are potentially critical for responding and adapting to salt stress.
Collapse
Affiliation(s)
- Jin-Gui Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Tong Yang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| | - Wen-Hui Cui
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Chun-Xiang Fu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| |
Collapse
|
218
|
Huang XY, Li M, Luo R, Zhao FJ, Salt DE. Epigenetic regulation of sulfur homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4171-4182. [PMID: 31087073 DOI: 10.1093/jxb/erz218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved sophisticated mechanisms for adaptation to fluctuating availability of nutrients in soil. Such mechanisms are of importance for plants to maintain homeostasis of nutrient elements for their development and growth. The molecular mechanisms controlling the homeostasis of nutrient elements at the genetic level have been gradually revealed, including the identification of regulatory factors and transporters responding to nutrient stresses. Recent studies have suggested that such responses are controlled not only by genetic regulation but also by epigenetic regulation. In this review, we present recent studies on the involvement of DNA methylation, histone modifications, and non-coding RNA-mediated gene silencing in the regulation of sulfur homeostasis and the response to sulfur deficiency. We also discuss the potential effect of sulfur-containing metabolites such as S-adenosylmethionine on the maintenance of DNA and histone methylation.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengzhen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rongjian Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
219
|
Banerjee AK, Guo W, Huang Y. Genetic and epigenetic regulation of phenotypic variation in invasive plants – linking research trends towards a unified framework. NEOBIOTA 2019. [DOI: 10.3897/neobiota.49.33723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phenotypic variation in the introduced range of an invasive species can be modified by genetic variation, environmental conditions and their interaction, as well as stochastic events like genetic drift. Recent studies found that epigenetic modifications may also contribute to phenotypic variation being independent of genetic changes. Despite gaining profound ecological insights from empirical studies, understanding the relative contributions of these molecular mechanisms behind phenotypic variation has received little attention for invasive plant species in particular.
This review therefore aimed at summarizing and synthesizing information on the genetic and epigenetic basis of phenotypic variation of alien invasive plants in the introduced range and their evolutionary consequences. Transgenerational inheritance of epigenetic modifications was highlighted focusing on its influence on microevolution of the invasive plant species. We presented a comprehensive account of epigenetic regulation of phenotypic variation and its role in plant invasion in the presence of reduced standing genetic variation, inbreeding depression and associated genomic events which have often been observed during introduction and range expansion of an invasive alien species. Finally, taking clues from the studies conducted so far, we proposed a unified framework of future experimental approaches to understand ecological and evolutionary aspects of phenotypic variation. This holistic approach, being aligned to the invasion process in particular (introduction-establishment-spread), was intended to understand the molecular mechanisms of phenotypic variation of an invasive species in its introduced range and to disentangle the effects of standing genetic variation and epigenetic regulation of phenotypic variation.
Collapse
|
220
|
Quirk J, Bellasio C, Johnson DA, Beerling DJ. Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2. ANNALS OF BOTANY 2019; 124:77-90. [PMID: 31008510 PMCID: PMC6676382 DOI: 10.1093/aob/mcz048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/08/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS By the year 2100, atmospheric CO2 concentration ([CO2]a) could reach 800 ppm, having risen from ~200 ppm since the Neogene, beginning ~24 Myr ago. Changing [CO2]a affects plant carbon-water balance, with implications for growth, drought tolerance and vegetation shifts. The evolution of C4 photosynthesis improved plant hydraulic function under low [CO2]a and preluded the establishment of savannahs, characterized by rapid transitions between open C4-dominated grassland with scattered trees and closed forest. Understanding directional vegetation trends in response to environmental change will require modelling. But models are often parameterized with characteristics observed in plants under current climatic conditions, necessitating experimental quantification of the mechanistic underpinnings of plant acclimation to [CO2]a. METHODS We measured growth, photosynthesis and plant-water relations, within wetting-drying cycles, of a C3 tree (Vachellia karroo, an acacia) and a C4 grass (Eragrostis curvula) grown at 200, 400 or 800 ppm [CO2]a. We investigated the mechanistic linkages between trait responses to [CO2]a under moderate soil drying, and photosynthetic characteristics. KEY RESULTS For V. karroo, higher [CO2]a increased assimilation, foliar carbon:nitrogen, biomass and leaf starch, but decreased stomatal conductance and root starch. For Eragrostis, higher [CO2]a decreased C:N, did not affect assimilation, biomass or starch, and markedly decreased stomatal conductance. Together, this meant that C4 advantages in efficient water-use over the tree were maintained with rising [CO2]a. CONCLUSIONS Acacia and Eragrostis acclimated differently to [CO2]a, with implications for their respective responses to water limitation and environmental change. Our findings question the carbon-centric focus on factors limiting assimilation with changing [CO2]a, how they are predicted and their role in determining productivity. We emphasize the continuing importance of water-conserving strategies in the assimilation response of savannah plants to rising [CO2]a.
Collapse
Affiliation(s)
- Joe Quirk
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- University of the Balearic Islands, Palma, Illes Balears, Spain
- Research School of Biology, Australian National University, Acton, ACT, Australia
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino, Florence, Italy
| | - David A Johnson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
221
|
Zheng D, Wang L, Chen L, Pan X, Lin K, Fang Y, Wang XE, Zhang W. Salt-Responsive Genes are Differentially Regulated at the Chromatin Levels Between Seedlings and Roots in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:1790-1803. [PMID: 31111914 DOI: 10.1093/pcp/pcz095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
The elucidation of epigenetic responses of salt-responsive genes facilitates understanding of the underlying mechanisms that confer salt tolerance in rice. However, it is still largely unknown how epigenetic mechanisms are associated with the expression of salt-responsive genes in rice and other crops. In this study, we reported tissue-specific gene expression and tissue-specific changes in chromatin modifications or signatures between seedlings and roots in response to salt treatment. Our study indicated that among six of individual mark examined (H3K4me3, H3K27me3, H4K12ac, H3K9ac, H3K27ac and H3K36me3), a positive association between salt-related changes in histone marks and the expression of differentially expressed genes (DEGs) was observed only for H3K9ac and H4K12ac in seedlings and H3K36me3 in roots. In contrast, chromatin states (CSs) with combinations of six histone modification marks played crucial roles in the differential expression of salt-responsive genes between seedlings and roots. Most importantly, CS7 containing the bivalent marks H3K4me3 and H3K27me3, with a mutual exclusion of functions with each other, displayed distinct functions in the expression of DEGs in both tissues. Specifically, H3K27me3 in CS7 mainly suppressed the expression of DEGs in roots, while H3K4me3 affected the expression of down- and up-regulated genes, possibly by antagonizing the repressive role of H3K27me3 in seedlings. Our findings indicate distinct impacts of the CSs on the differential expression of salt-responsive genes between seedlings and roots in rice, which provides an important background for understanding chromatin-based epigenetic mechanisms that might confer salt tolerance in plants.
Collapse
Affiliation(s)
- Dongyang Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Kande Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Xiu-E Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
222
|
Xing L, Li Y, Qi S, Zhang C, Ma W, Zuo X, Liang J, Gao C, Jia P, Shah K, Zhang D, An N, Zhao C, Han M, Zhao J. Comparative RNA-Sequencing and DNA Methylation Analyses of Apple (Malus domestica Borkh.) Buds with Diverse Flowering Capabilities Reveal Novel Insights into the Regulatory Mechanisms of Flower Bud Formation. PLANT & CELL PHYSIOLOGY 2019; 60:1702-1721. [PMID: 31077318 DOI: 10.1093/pcp/pcz080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In plants, DNA methylation (i.e. chromatin modification) is important for various biological processes, including growth, development and flowering. Because 'Fuji' apple trees are alternate bearing and have a long ripening period and poor-quality flower buds, we used bud types with diverse flowering capabilities to investigate the epigenetic regulatory mechanisms influencing flower bud formation. We examined the DNA methylation changes and the transcriptional responses in the selected apple bud types. We observed that in the apple genome, approximately 79.5%, 67.4% and 23.7% of the CG, CHG and CHH sequences are methylated, respectively. For each sequence context, differentially methylated regions exhibited distinct methylation patterns among the analyzed apple bud types. Global methylation and transcriptional analyses revealed that nonexpressed genes or genes expressed at low levels were highly methylated in the gene-body regions, suggesting that gene-body methylation is negatively correlated with gene expression. Moreover, genes with methylated promoters were more highly expressed than genes with unmethylated promoters, implying promoter methylation and gene expression are positively correlated. Additionally, flowering-related genes (e.g. SOC1, AP1 and SPLs) and some transcription factor genes (e.g. GATA, bHLH, bZIP and WOX) were highly expressed in spur buds (highest flowering rate), but were associated with low methylation levels in the gene-body regions. Our findings indicate a potential correlation between DNA methylation and gene expression in apple buds with diverse flowering capabilities, suggesting an epigenetic regulatory mechanism influences apple flower bud formation.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
- Ministry of Agriculture Rural Affairs, Key Laboratory of Agricultural Internet of Things, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, Yangling, Shaanxi, P. R. China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Chenguang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiya Zuo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Pen Jia
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Juan Zhao
- Ministry of Agriculture Rural Affairs, Key Laboratory of Agricultural Internet of Things, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, Yangling, Shaanxi, P. R. China
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
223
|
Huang S, Zhang A, Jin JB, Zhao B, Wang TJ, Wu Y, Wang S, Liu Y, Wang J, Guo P, Ahmad R, Liu B, Xu ZY. Arabidopsis histone H3K4 demethylase JMJ17 functions in dehydration stress response. THE NEW PHYTOLOGIST 2019; 223:1372-1387. [PMID: 31038749 DOI: 10.1111/nph.15874] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Under dehydration in plants, antagonistic activities of histone 3 lysine 4 (H3K4) methyltransferase and histone demethylase maintain a dynamic and homeostatic state of gene expression by orientating transcriptional reprogramming toward growth or stress tolerance. However, the histone demethylase that specifically controls histone methylation homeostasis under dehydration stress remains unknown. Here, we document that a histone demethylase, JMJ17, belonging to the KDM5/JARID1 family, plays crucial roles in response to dehydration stress and abscisic acid (ABA) in Arabidopsis thaliana. jmj17 loss-of-function mutants displayed dehydration stress tolerance and ABA hypersensitivity in terms of stomatal closure. JMJ17 specifically demethylated H3K4me1/2/3 via conserved iron-binding amino acids in vitro and in vivo. Moreover, H3K4 demethylase activity of JMJ17 was required for dehydration stress response. Systematic combination of genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and RNA-sequencing (RNA-seq) analyses revealed that a loss-of-function mutation in JMJ17 caused an ectopic increase in genome-wide H3K4me3 levels and activated a plethora of dehydration stress-responsive genes. Importantly, JMJ17 bound directly to the chromatin of OPEN STOMATA 1 (OST1) and demethylated H3K4me3 for the regulation of OST1 mRNA abundance, thereby modulating the dehydration stress response. Our results demonstrate a new function of a histone demethylase under dehydration stress in plants.
Collapse
Affiliation(s)
- Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jing Bo Jin
- Key Laboratory of Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Bo Zhao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yifan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
224
|
Vuković R, Liber Z, Ježić M, Sotirovski K, Ćurković-Perica M. Link between epigenetic diversity and invasive status of south-eastern European populations of phytopathogenic fungus Cryphonectria parasitica. Environ Microbiol 2019; 21:4521-4536. [PMID: 31314941 DOI: 10.1111/1462-2920.14742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Epigenetic modifications may play an important role in invasion and adaptation of clonal and invasive populations to different environments. The aim of this study was to analyse epigenetic diversity and structure within and among populations of invasive pathogenic fungus Cryphonectria parasitica from south-eastern Europe, where one haplotype S12 dominates. The highest level of epigenetic diversity was found in haplotype S1, followed by S2, while the lowest level of epigenetic diversity was found in haplotype S12. Similar pattern of epigenetic diversity was detected in the control, genetically diverse Croatian population where S1 haplotype dominates. In four south-eastern European populations, the highest level of epigenetic diversity was observed in the Italian population, the oldest population in the studied area, while the lowest diversity was found in most recently established Bulgarian population. This relationship between epigenetic diversity and population age implies the important role of epigenetic modifications on the process of invasion. Our data suggest that epigenetic differences might affect the success of expansion of certain haplotype into new regions. Understanding the role of epigenetic processes in expansion and (pre)adaptation of fungal plant pathogens, besides fundamental knowledge, can contribute to development of strategies for control of fungal spread and pathogenesis.
Collapse
Affiliation(s)
- Rosemary Vuković
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Zlatko Liber
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Kiril Sotirovski
- Faculty of Forestry, Ss. Cyril and Methodius University of Skopje, Skopje, North Macedonia
| | | |
Collapse
|
225
|
Polosoro A, Enggarini W, Ohmido N. Global epigenetic changes of histone modification under environmental stresses in rice root. Chromosome Res 2019; 27:287-298. [PMID: 31280458 DOI: 10.1007/s10577-019-09611-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 01/11/2023]
Abstract
Abiotic stresses are non-living factors with negative morphological and physiological effects on living organisms. Substantial evidence exists that gene expression changes during plant cell growth are regulated by chromatin reconfiguration and histone modification. Several types of histone modifications are dramatically transformed in stress-responsive gene regions under drought stress conditions. Environmental stresses also cause the root apical meristem (RAM) region to decelerate root growth. In this study, we investigated how quantitative changes in epigenetic markers in this region influence rice morphology and physiology. Both iron and salinity treatments changed the epigenetic landscape from euchromatic to heterochromatic according to heterochromatin (H3K9me2) and euchromatin (H3K4me) markers, especially in the proximal meristem region. Moreover, supplementation with external abscisic acid (ABA) was able to mimic the effect of environmental stresses on global epigenetic changes. In contrast, the addition of external auxin (IAA) to rice under saline conditions affected heterochromatin formation without influencing euchromatin transformation. Chromatin dynamics is therefore believed to be directly connected to plant growth regulator signaling. We discuss insights into the role of plant growth regulators: ABA and IAA, peroxide signaling, and their effects on the global epigenetic change of histone modification under abiotic stresses.
Collapse
Affiliation(s)
- Aqwin Polosoro
- Indonesian Center for Agricultural Biotechnology and Genetic Resource Research and Development (ICABIOGRD), Bogor, Indonesia.,Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Wening Enggarini
- Indonesian Center for Agricultural Biotechnology and Genetic Resource Research and Development (ICABIOGRD), Bogor, Indonesia
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| |
Collapse
|
226
|
Pavia I, Roque J, Rocha L, Ferreira H, Castro C, Carvalho A, Silva E, Brito C, Gonçalves A, Lima-Brito J, Correia C. Zinc priming and foliar application enhances photoprotection mechanisms in drought-stressed wheat plants during anthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:27-42. [PMID: 31078782 DOI: 10.1016/j.plaphy.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 04/21/2019] [Indexed: 05/24/2023]
Abstract
Drought is one of most important limiting factors in wheat productivity worldwide. The need to increase drought tolerance during anthesis is of the utmost importance for high yield potentials and yield stability. Photosynthesis is one of the major physiological processes affected by drought. Damages in the photosynthetic apparatus may also arise due to non-regulated dissipation of excessive energy. Zinc (Zn) is an indispensable micronutrient for plants and is required for a wide range of physiological and biochemical processes. In this work we evaluated the stress mitigation effects of Zn seed priming alone and coupled with Zn foliar application in wheat plants submitted to severe drought during anthesis, followed by a recovery period. Under such severe drought stress, photosynthesis was constrained by both stomatal and non-stomatal limitation. Severe drought also induced an increase in non-regulated energy dissipation and hindered a full recovery of the plant's photosynthetic processes after rewatering. We also report possible activation of transposable elements due to drought stress and Zn application. Yield was severely decreased by drought and Zn treatments were unable to counteract this effect. Although unable to oppose the reduction of net photosynthesis, Zn treatments positively enhance photoprotection. At the end of drought period, Zn priming alone and coupled with Zn foliar application increased, respectively, over 2- and 3- fold the regulated dissipation of excess energy. Zn treatments lessened the non-regulated energy dissipation caused by drought, protected the plants against irreversible damages to the photosynthetic apparatus and enabled a better recovery of wheat plants after stress relief.
Collapse
Affiliation(s)
- Ivo Pavia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - João Roque
- BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Luís Rocha
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Helena Ferreira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cláudia Castro
- BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Carvalho
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ermelinda Silva
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cátia Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Alexandre Gonçalves
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Lima-Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Carlos Correia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
227
|
Bulgakov VP, Wu HC, Jinn TL. Coordination of ABA and Chaperone Signaling in Plant Stress Responses. TRENDS IN PLANT SCIENCE 2019; 24:636-651. [PMID: 31085125 DOI: 10.1016/j.tplants.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 05/14/2023]
Abstract
The abscisic acid (ABA) and chaperone signaling pathways are the central regulators of plant stress defense. Despite their significance and potential overlap, these systems have been described separately. In this review, we summarize information about mechanisms by which the ABA and chaperone signaling pathways might be coregulated. The central factors that join the ABA and chaperone signaling systems are the SWI/SNF chromatin-remodeling proteins, which are involved in stress memory. A benefit from coordination is that the signals sensed through both the ABA and chaperone signaling systems are perceived and stored via chromatin-remodeling factors. For improving plant stress resistance, we propose new bioengineering strategies, which we term 'bioengineering memory'.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950, Vladivostok, Russia.
| | - Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan
| | - Tsung-Luo Jinn
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
228
|
Song J, Henry HAL, Tian L. Brachypodium histone deacetylase BdHD1 positively regulates ABA and drought stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:355-365. [PMID: 31128706 DOI: 10.1016/j.plantsci.2019.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Despite recent evidence that HDACs are involved in the environmental stress responses of plants, their roles in the abiotic stress responses of monocot plants remain largely unexplored. We investigated a HDAC gene, Bradi3g08060 (BdHD1), in Brachypodium distachyon. The Brachypodium BdHD1-overexpression plants displayed a hypersensitive phenotype to ABA and exhibited better survival under drought conditions. On the other hand, the RNA-interference plants were insensitive to ABA and showed low survival under drought stress. At the genome-wide level, overexpression of BdHD1 led to lower H3K9 acetylation at the transcriptional start sites of 230 genes than in the wild type plants under the drought treatment. We validated our ChIP-Seq data on 10 selected transcription factor genes from the 230 drought-specific genes. These genes exhibited much lower expression in the BdHD1-overexpression plants compared to the wild type plants under drought stress. We further identified an ABA-inducible transcription factor gene BdWRKY24 that was repressed in BdHD1-OE plants, but highly expressed in RNA-interference plants under drought stress. These results indicate that BdHD1 plays a positive role in ABA sensitivity and drought stress tolerance and they provide a link between the role of BdHD1 and the drought stress response at a genome-wide level in Brachypodium.
Collapse
Affiliation(s)
- Jingpu Song
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada; London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Hugh A L Henry
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Lining Tian
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada; London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada.
| |
Collapse
|
229
|
Amraee L, Rahmani F, Abdollahi Mandoulakani B. 24-Epibrassinolide alters DNA cytosine methylation of Linum usitatissimum L. under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:478-484. [PMID: 31005823 DOI: 10.1016/j.plaphy.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Salinity is a common environmental challenge limiting worldwide agricultural crop yield. Plants employ epigenetic regulatory strategies, such as DNA methylation which relatively allows rapid adaptation to new conditions in response to environmental stresses. Brassinosteroids (BRs) are a novel group of phytohormones recognized as transcription and translation regulators which are able to mitigate the impact of environmental stresses on the plants. In the current investigation, the influence of salinity and 24-epibrassinolide (24-epiBL) was investigated on the extent and pattern of cytosine DNA methylation using methylation-sensitive amplified polymorphisms (MSAP) technique in flax. Upon NaCl (150 mM) exposure, total methylation of CCGG sequences was decreased in comparison to control plants, while 24-epiBL (10-8 M) induced total methylation under salinity stress. Sequencing and analysis of six randomly selected MSAP fragments detected genes involved in various biological and molecular processes such as vitamine B1 biosynthesis, protein targeting and localization, post-translational modification and gene regulation. In conclusion, 24-epiBL seed priming could play critical role in regulation of cellular and biological processes in response to salt stress by epigenetic modification and induction of methylation.
Collapse
Affiliation(s)
- Leila Amraee
- Department of Biology, Faculty and Sciences, Urmia University, Urmia, Iran; Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Fatemeh Rahmani
- Department of Biology, Faculty and Sciences, Urmia University, Urmia, Iran; Institute of Biotechnology, Urmia University, Urmia, Iran.
| | - Babak Abdollahi Mandoulakani
- Institute of Biotechnology, Urmia University, Urmia, Iran; Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
230
|
The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Biochem Biophys Res Commun 2019; 512:742-749. [DOI: 10.1016/j.bbrc.2019.03.150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 11/19/2022]
|
231
|
Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO 2 -induced seawater acidification. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:87-97. [PMID: 31022521 DOI: 10.1016/j.cbpa.2019.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
Sea urchin larvae reduce developmental rates accompanied by changes in their energy budget when exposed to acidified conditions. The necessity to maintain highly alkaline conditions in their digestive systems led to the hypothesis that gastric pH homeostasis is a key trait affecting larval energy budgets leading to distinct tipping points for growth and survival. To test this hypothesis, sea urchin (Strongylocentrotus purpuratus) larvae were reared for 10 days in different pH conditions ranging from pH 7.0 to pH 8.2. Survival, development and growth rates were determined demonstrating severe impacts < pH 7.2. To test the effects of pH on midgut alkalization we measured midgut pH and monitored the expression of acid-base transporters. While larvae were able to maintain their midgut pH at 8.9-9.1 up to an acidification level of pH 7.2, midgut pH was decreased in the lower pH treatments. The maintenance of midgut pH under low pH conditions was accompanied by dynamic changes in the expression level of midgut acid-base transporters. Metabolic rates of the larvae increased with decreasing pH and reached a threshold between pH 7.0 and pH 7.3 where metabolic rates decreased again. Methylation analyses on promoter CpG islands were performed for midgut acid-base transporter genes to test for possible epigenetic modifications after 10-day exposure to different pH conditions. This analysis demonstrated no correlation between methylation level and pH treatments suggesting low potential for epigenetic modification of acid-base transporters upon short-term exposure. Since a clear tipping point was identified at pH 7.2, which is much lower than near-future ocean acidification (OA) scenarios, this study suggests that the early development of the purple sea urchin larva has a comparatively high tolerance to seawater acidification with substantial acclimation capacity and plasticity in a key physiological trait under near-future OA conditions.
Collapse
|
232
|
Lee HG, Seo PJ. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat Commun 2019. [PMID: 30979883 DOI: 10.1038/s41467-019-09417-9411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Unlike activation of target genes in response to abscisic acid (ABA), how MYB96 transcription factor represses ABA-repressible genes to further enhance ABA responses remains unknown. Here, we show MYB96 interacts with the histone modifier HDA15 to suppress negative regulators of early ABA signaling. The MYB96-HDA15 complex co-binds to the promoters of a subset of RHO GTPASE OF PLANTS (ROP) genes, ROP6, ROP10, and ROP11, and represses their expression by removing acetyl groups of histone H3 and H4 from the cognate regions, particularly in the presence of ABA. In support, HDA15-deficient mutants display reduced ABA sensitivity and are susceptible to drought stress with derepression of the ROP genes, as observed in the myb96-1 mutant. Biochemical and genetic analyses show that MYB96 and HDA15 are interdependent in the regulation of ROP suppression. Thus, MYB96 confers maximal ABA sensitivity by regulating both positive and negative regulators of ABA signaling through distinctive molecular mechanisms.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
233
|
Lee HG, Seo PJ. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat Commun 2019; 10:1713. [PMID: 30979883 PMCID: PMC6461653 DOI: 10.1038/s41467-019-09417-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Unlike activation of target genes in response to abscisic acid (ABA), how MYB96 transcription factor represses ABA-repressible genes to further enhance ABA responses remains unknown. Here, we show MYB96 interacts with the histone modifier HDA15 to suppress negative regulators of early ABA signaling. The MYB96-HDA15 complex co-binds to the promoters of a subset of RHO GTPASE OF PLANTS (ROP) genes, ROP6, ROP10, and ROP11, and represses their expression by removing acetyl groups of histone H3 and H4 from the cognate regions, particularly in the presence of ABA. In support, HDA15-deficient mutants display reduced ABA sensitivity and are susceptible to drought stress with derepression of the ROP genes, as observed in the myb96-1 mutant. Biochemical and genetic analyses show that MYB96 and HDA15 are interdependent in the regulation of ROP suppression. Thus, MYB96 confers maximal ABA sensitivity by regulating both positive and negative regulators of ABA signaling through distinctive molecular mechanisms. MYB96 can regulate both positive and negative regulators of ABA signaling to maximize plant drought tolerance. Here, the authors show that MYB96 represses expression of ABA negative regulators in Arabidopsis by interacting with HDA15 and promoting histone deacetylation at the cognate regions.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea. .,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
234
|
The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L. PLoS One 2019; 14:e0215096. [PMID: 30964932 PMCID: PMC6456200 DOI: 10.1371/journal.pone.0215096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
Among the most widespread plant species with clonal reproduction Arundo donax L. represents one of most studied one characterized by very low genetic biodiversity. Although it is a perennial rhizomatous tall grass native to eastern and southern Asia, it spreads only asexually in the invaded range all over the world thriving very well in a large array of pedo-climatic conditions. This ability to morphologically or physiologically adapt to a broad array of conditions could be attributed to epigenetic mechanisms. To shade light on this relevant issue, 96 stems of A. donax from spontaneous populations distributed across the Italian invaded range (island of Sardinia, Northern and Southern Italy) were analysed. Leaf DNAs were extracted and processed through AFLPs and MSAPs for defining either genetic and epigenetic profiles. Both analyses clearly showed that the A. donax populations of Sardinia island are genetically distinct from those of Italian mainland; AFLPs showed an extremely low genetic biodiversity due to vegetative reproduction, whilst, epi-biodiversity, estimated through MSAP marker, increased within the analyzed populations. These results suggest that the capability of A. donax to invade and thrive in diverse environmental conditions can be, at least, partially attributed to a higher epigenetic variability. Therefore, the different DNA methylation status may have significant and important biological meaning, in particular, in the case of invasive clonal plants such as A. donax, also for the biodiversity definition, and MSAP marker can be considered an useful and cost effective marker to reveal it.
Collapse
|
235
|
Kim JS, Lim JY, Shin H, Kim BG, Yoo SD, Kim WT, Huh JH. ROS1-Dependent DNA Demethylation Is Required for ABA-Inducible NIC3 Expression. PLANT PHYSIOLOGY 2019; 179:1810-1821. [PMID: 30692220 PMCID: PMC6446795 DOI: 10.1104/pp.18.01471] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/14/2019] [Indexed: 05/15/2023]
Abstract
DNA methylation plays an important role in diverse developmental processes in many eukaryotes, including the response to environmental stress. Abscisic acid (ABA) is a plant hormone that is up-regulated under stress. The involvement of DNA methylation in the ABA response has been reported but is poorly understood. DNA demethylation is a reverse process of DNA methylation and often induces structural changes of chromatin leading to transcriptional activation. In Arabidopsis (Arabidopsis thaliana), active DNA demethylation depends on the activity of REPRESSOR OF SILENCING 1 (ROS1), which directly excises 5-methylcytosine from DNA. Here we showed that ros1 mutants were hypersensitive to ABA during early seedling development and root elongation. Expression levels of some ABA-inducible genes were decreased in ros1 mutants, and more than 60% of their proximal regions became hypermethylated, indicating that a subset of ABA-inducible genes are under the regulation of ROS1-dependent DNA demethylation. Notable among them is NICOTINAMIDASE 3 (NIC3) that encodes an enzyme that converts nicotinamide to nicotinic acid in the NAD+ salvage pathway. Many enzymes in this pathway are known to be involved in stress responses. The nic3 mutants display hypersensitivity to ABA, whereas overexpression of NIC3 restores normal ABA responses. Our data suggest that NIC3 is responsive to ABA but requires ROS1-mediated DNA demethylation at the promoter as a prerequisite to transcriptional activation. These findings suggest that ROS1-induced active DNA demethylation maintains the active state of NIC3 transcription in response to ABA.
Collapse
Affiliation(s)
- June-Sik Kim
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Joo Young Lim
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hosub Shin
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Beom-Gi Kim
- Molecular Breeding Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54875, Korea
| | - Sang-Dong Yoo
- Division of Life Sciences, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jin Hoe Huh
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
236
|
Liu X, Challabathula D, Quan W, Bartels D. Transcriptional and metabolic changes in the desiccation tolerant plant Craterostigma plantagineum during recurrent exposures to dehydration. PLANTA 2019; 249:1017-1035. [PMID: 30498957 DOI: 10.1007/s00425-018-3058-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/22/2018] [Indexed: 05/22/2023]
Abstract
Multiple dehydration/rehydration treatments improve the adaptation of Craterostigma plantagineum to desiccation by accumulating stress-inducible transcripts, proteins and metabolites. These molecules serve as stress imprints or memory and can lead to increased stress tolerance. It has been reported that repeated exposure to dehydration may generate stronger reactions during a subsequent dehydration treatment in plants. This stimulated us to address the question whether the desiccation tolerant resurrection plant Craterostigma plantagineum has a stress memory. The expression of four representative stress-related genes gradually increased during four repeated dehydration/rehydration treatments in C. plantagineum. These genes reflect a transcriptional memory and are trainable genes. In contrast, abundance of chlorophyll synthesis/degradation-related transcripts did not change during dehydration and remained at a similar level as in the untreated tissues during the recovery phase. During the four dehydration/rehydration treatments the level of ROS pathway-related transcripts, superoxide dismutase (SOD) activity, proline, and sucrose increased, whereas H2O2 content and electrolyte leakage decreased. Malondialdehyde (MDA) content did not change during the dehydration, which indicates a gain of stress tolerance. At the protein level, increased expression of four representative stress-related proteins showed that the activated stress memory can persist over several days. The phenomenon described here could be a general feature of dehydration stress memory responses in resurrection plants.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dinakar Challabathula
- Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Wenli Quan
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, Hubei, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
237
|
Gourcilleau D, Mousset M, Latutrie M, Marin S, Delaunay A, Maury S, Pujol B. Assessing Global DNA Methylation Changes Associated with Plasticity in Seven Highly Inbred Lines of Snapdragon Plants ( Antirrhinum majus). Genes (Basel) 2019; 10:E256. [PMID: 30925802 PMCID: PMC6523709 DOI: 10.3390/genes10040256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 11/16/2022] Open
Abstract
Genetic and epigenetic variations are commonly known to underlie phenotypic plastic responses to environmental cues. However, the role of epigenetic variation in plastic responses harboring ecological significance in nature remains to be assessed. The shade avoidance response (SAR) of plants is one of the most prevalent examples of phenotypic plasticity. It is a phenotypic syndrome including stem elongation and multiple other traits. Its ecological significance is widely acknowledged, and it can be adaptive in the presence of competition for light. Underlying genes and pathways were identified, but evidence for its epigenetic basis remains scarce. We used a proven and accessible approach at the population level and compared global DNA methylation between plants exposed to regular light and three different magnitudes of shade in seven highly inbred lines of snapdragon plants (Antirrhinum majus) grown in a greenhouse. Our results brought evidence of a strong SAR syndrome for which magnitude did not vary between lines. They also brought evidence that its magnitude was not associated with the global DNA methylation percentage for five of the six traits under study. The magnitude of stem elongation was significantly associated with global DNA demethylation. We discuss the limits of this approach and why caution must be taken with such results. In-depth approaches at the DNA sequence level will be necessary to better understand the molecular basis of the SAR syndrome.
Collapse
Affiliation(s)
- Delphine Gourcilleau
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
| | - Mathilde Mousset
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
| | - Mathieu Latutrie
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France.
| | - Sara Marin
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France.
| | - Alain Delaunay
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC, EA 1207 USC 1328 INRA), Université Orléans, 45067 Orléans, France.
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC, EA 1207 USC 1328 INRA), Université Orléans, 45067 Orléans, France.
| | - Benoît Pujol
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France.
| |
Collapse
|
238
|
Liu X, Zhao J, Guo HS. IBM1-dependent H3K9 demethylation enables self-silencing of an exogenous silencer for the non-cell autonomous silencing of an endogenous target gene. J Genet Genomics 2019; 46:149-153. [PMID: 30935857 DOI: 10.1016/j.jgg.2019.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Xiaolan Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
239
|
Chun HJ, Baek D, Cho HM, Jung HS, Jeong MS, Jung WH, Choi CW, Lee SH, Jin BJ, Park MS, Kim HJ, Chung WS, Lee SY, Bohnert HJ, Bressan RA, Yun DJ, Hong YS, Kim MC. Metabolic Adjustment of Arabidopsis Root Suspension Cells During Adaptation to Salt Stress and Mitotic Stress Memory. PLANT & CELL PHYSIOLOGY 2019; 60:612-625. [PMID: 30496500 DOI: 10.1093/pcp/pcy231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/22/2018] [Indexed: 05/14/2023]
Abstract
Sessile plants reprogram their metabolic and developmental processes during adaptation to prolonged environmental stresses. To understand the molecular mechanisms underlying adaptation of plant cells to saline stress, we established callus suspension cell cultures from Arabidopsis roots adapted to high salt for an extended period of time. Adapted cells exhibit enhanced salt tolerance compared with control cells. Moreover, acquired salt tolerance is maintained even after the stress is relieved, indicating the existence of a memory of acquired salt tolerance during mitotic cell divisions, known as mitotic stress memory. Metabolite profiling using 1H-nuclear magnetic resonance (NMR) spectroscopy revealed metabolic discrimination between control, salt-adapted and stress-memory cells. Compared with control cells, salt-adapted cells accumulated higher levels of sugars, amino acids and intermediary metabolites in the shikimate pathway, such as coniferin. Moreover, adapted cells acquired thicker cell walls with higher lignin contents, suggesting the importance of adjustments of physical properties during adaptation to elevated saline conditions. When stress-memory cells were reverted to normal growth conditions, the levels of metabolites again readjusted. Whereas most of the metabolic changes reverted to levels intermediate between salt-adapted and control cells, the amounts of sugars, alanine, γ-aminobutyric acid and acetate further increased in stress-memory cells, supporting a view of their roles in mitotic stress memory. Our results provide insights into the metabolic adjustment of plant root cells during adaptation to saline conditions as well as pointing to the function of mitotic memory in acquired salt tolerance.
Collapse
Affiliation(s)
- Hyun Jin Chun
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Korea
| | - Dongwon Baek
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Hyun Min Cho
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Korea
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, Korea
| | - Wook-Hun Jung
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Cheol Woo Choi
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Su Hyeon Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Byung Jun Jin
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Mi Suk Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Hans J Bohnert
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Korea
| | - Young-Shick Hong
- Department of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Min Chul Kim
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Korea
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
240
|
Zhang S, Feng M, Chen W, Zhou X, Lu J, Wang Y, Li Y, Jiang CZ, Gan SS, Ma N, Gao J. In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin. NATURE PLANTS 2019; 5:290-299. [PMID: 30833710 DOI: 10.1038/s41477-019-0376-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/25/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved sophisticated systems in response to environmental changes, and growth arrest is a common strategy used to enhance stress tolerance. Despite the growth-survival trade-off being essential to the shaping of plant productivity, the mechanisms balancing growth and survival remain largely unknown. Aquaporins play a crucial role in growth and stress responses by controlling water transport across membranes. Here, we show that RhPIP2;1, an aquaporin from rose (Rosa sp.), interacts with a membrane-tethered MYB protein, RhPTM. Water deficiency triggers nuclear translocation of the RhPTM C terminus. Silencing of RhPTM causes continuous growth under drought stress and a consequent decrease in survival rate. RNA sequencing (RNA-seq) indicated that RhPTM influences the expression of genes related to carbohydrate metabolism. Water deficiency induces phosphorylation of RhPIP2;1 at Ser 273, which is sufficient to promote nuclear translocation of the RhPTM C terminus. These results indicate that the RhPIP2;1-RhPTM module serves as a key player in orchestrating the trade-off between growth and stress survival in Rosa.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ming Feng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Lin'an, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jingyun Lu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yaru Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, China
| | - Cai-Zhong Jiang
- Crop Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, USA
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
241
|
Radosavljević I, Bogdanović S, Celep F, Filipović M, Satovic Z, Surina B, Liber Z. Morphological, genetic and epigenetic aspects of homoploid hybridization between Salvia officinalis L. and Salvia fruticosa Mill. Sci Rep 2019; 9:3276. [PMID: 30824783 PMCID: PMC6397195 DOI: 10.1038/s41598-019-40080-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/04/2019] [Indexed: 12/23/2022] Open
Abstract
The inheritance of phenotypic, genetic and epigenetic traits in hybridization events is difficult to predict, as numerous evolutionary, ecological, and genetic factors can play a crucial role in the process of hybridization. In the middle Adriatic island of Vis, we investigated hybridization between Salvia officinalis and S. fruticosa at morphological, genetic and epigenetic levels. SSR results revealed that hybrid individuals were characterized by diploid set of chromosomes suggesting homoploid hybridization. A well-defined group that mostly comprised of F1 generation individuals was detected. For the majority of analysed morphological characteristics, hybrids were placed in-between parental taxa, while at the same time, values of different genetic parameters were mostly higher in hybrids than in parental species. The results revealed a high contrast in the levels of phenotypic variability and epigenetic excitation between parental taxa. Environmental niche modelling confirmed that in the studied location S. officinalis experiences optimal climatological conditions, while S. fruticosa struggles with unsuitable conditions. Very low levels of gene flow between the parental species were detected. In addition, contrasting levels of epigenetic excitation in the studied groups clearly demonstrated the importance of an epigenetic response to an altered environment and confirmed the trans-generational nature of the epigenetic changes.
Collapse
Affiliation(s)
- Ivan Radosavljević
- University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Marulićev trg 9A, HR, 10000, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
| | - Sandro Bogdanović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
- University of Zagreb, Faculty of Agriculture, Department of Agricultural Botany, Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
| | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Kırıkkale, Turkey
| | - Maja Filipović
- University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Marulićev trg 9A, HR, 10000, Zagreb, Croatia
| | - Zlatko Satovic
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
- University of Zagreb, Faculty of Agriculture, Department of Seed Science and Technology, Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia
| | - Boštjan Surina
- Natural History Museum Rijeka, Lorenzov prolaz 1, HR, 51000, Rijeka, Croatia
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, SI, 6000, Koper, Slovenia
| | - Zlatko Liber
- University of Zagreb, Faculty of Science, Department of Biology, Division of Botany, Marulićev trg 9A, HR, 10000, Zagreb, Croatia.
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, HR, 10000, Zagreb, Croatia.
| |
Collapse
|
242
|
Lu X, Yin Z, Wang J, Chen X, Wang D, Wang S, Guo L, Fan W, Chen C, Wang X, Cui R, Zhang B, Han M, Yang X, Ye W. Identification and function analysis of drought-specific small RNAs in Gossypium hirsutum L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:187-196. [PMID: 30823997 DOI: 10.1016/j.plantsci.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 05/24/2023]
Abstract
Cotton production is severely constrained by drought, especially if encountered during the seedling stage or the fiber initiation and elongation stage, but the regulatory mechanisms underlying the effects of drought remain unclear. Therefore, characterization and functional analysis of microRNA-mediated stress regulatory networks are critical to deciphering plant drought response. In this study, 357, 379 and 377 miRNAs with annotations were obtained using the drought-resistant cotton variety ZhongH177 under three treatments, CK, drought and re-watering, and divided into 73 miRNA families with varying copy numbers from 1 to 24. 136 differential expressed genes (DEGs) with significant expression changes were found, of which only 33 DEGs were upregulated, while 103 DEGs were downregulated under drought stress. However, most DEGs recovered their initial expression states when the plants were re-watered. In total, 2657 targets were identified and found to be mainly enriched in the pathways plant-pathogen interaction, plant hormone signal transduction and biosynthesis of amino acids. Drought tolerance was significantly enhanced in 2 transgenic Arabidopsis lines, showing that miRNAs were involved in cotton drought response. Analysis of the expression patterns of 2 miRNA precursors and methylation alterations of 2 targets suggested that these miRNAs or miRNA precursors may be involved in the regulation of target methylation states. Our study provides evidence of transcriptional responses to drought stress, which will be helpful for the research of drought-resistance mechanisms in the future.
Collapse
Affiliation(s)
- Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Zujun Yin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Shuai Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Lixue Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Weili Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Chao Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Xiaoge Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Ruifeng Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Binglei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Mingge Han
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Xiaomin Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China.
| |
Collapse
|
243
|
Vangelisti A, Zambrano LS, Caruso G, Macheda D, Bernardi R, Usai G, Mascagni F, Giordani T, Gucci R, Cavallini A, Natali L. How an ancient, salt-tolerant fruit crop, Ficus carica L., copes with salinity: a transcriptome analysis. Sci Rep 2019; 9:2561. [PMID: 30796285 PMCID: PMC6385202 DOI: 10.1038/s41598-019-39114-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
Although Ficus carica L. (fig) is one of the most resistant fruit tree species to salinity, no comprehensive studies are currently available on its molecular responses to salinity. Here we report a transcriptome analysis of F. carica cv. Dottato exposed to 100 mM sodium chloride for 7 weeks, where RNA-seq analysis was performed on leaf samples at 24 and 48 days after the beginning of salinization; a genome-derived fig transcriptome was used as a reference. At day 24, 224 transcripts were significantly up-regulated and 585 were down-regulated, while at day 48, 409 genes were activated and 285 genes were repressed. Relatively small transcriptome changes were observed after 24 days of salt treatment, showing that fig plants initially tolerate salt stress. However, after an early down-regulation of some cell functions, major transcriptome changes were observed after 48 days of salinity. Seven weeks of 100 mM NaCl dramatically changed the repertoire of expressed genes, leading to activation or reactivation of many cell functions. We also identified salt-regulated genes, some of which had not been previously reported to be involved in plant salinity responses. These genes could be potential targets for the selection of favourable genotypes, through breeding or biotechnology, to improve salt tolerance in fig or other crops.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Liceth Solorzano Zambrano
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Giovanni Caruso
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Desiré Macheda
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Riccardo Gucci
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy.
| |
Collapse
|
244
|
Liang X, Hou X, Li J, Han Y, Zhang Y, Feng N, Du J, Zhang W, Zheng D, Fang S. High-resolution DNA methylome reveals that demethylation enhances adaptability to continuous cropping comprehensive stress in soybean. BMC PLANT BIOLOGY 2019; 19:79. [PMID: 30777019 PMCID: PMC6380062 DOI: 10.1186/s12870-019-1670-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/01/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Continuous cropping stress involves such factors as biological barriers, allelopathic autotoxicity, deterioration of soil physicochemical properties, and soil fertility imbalance and is regarded as a kind of comprehensive stress limiting soybean yield and quality. Genomic DNA methylation is an important regulatory mechanism for plants to resist various environmental stresses. Therefore, it is especially worthwhile to reveal genomic methylation characteristics under stress and clarify the relationship between DNA methylation status and continuous cropping stress adaptability in soybean. RESULTS We generated a genome-wide map of cytosine methylation induced by this kind of comprehensive stress in a tolerant soybean variety (Kang Xian 2, KX2) and a sensitive variety (He Feng, HF55) using whole-genome bisulfite sequencing (WGBS) technology. The expression of DNA demethylase genes was detected using real-time quantitative PCR (qRT-PCR). The functions of differentially methylated genes (DMGs) involved in stress response in biochemical metabolism and genetic information transmission were further assessed based on Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results showed that genomic DNA demethylation was closely related to continuous cropping comprehensive stress adaptability in soybean, which was further verified by the increasing expression of DNA demethylases ROS1 and DML. The demethylation of mCpG and mCpHpG (mCpApG preferred) contexts was more critical, which mainly occurred in gene-regulatory regions at the whole-chromosome scale. Moreover, this kind of stress adaptability may be related to various stress responders generated through strengthened glucose catabolism and amino acid and fatty acid anabolism, as well as fidelity transmission of genetic information. CONCLUSIONS Genomic DNA demethylation was closely associated with continuous cropping comprehensive stress adaptability, highlighting the promising potential of screening continuous cropping-tolerant cultivars by DNA methylation index and further exploring the application of DNA demethylases in soybean breeding.
Collapse
Affiliation(s)
- Xilong Liang
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Xue Hou
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Jianying Li
- Daqing Branch of Heilongjiang Academy of Agriculture Science, Daqing, 163316 China
| | - Yiqiang Han
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Naijie Feng
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Jidao Du
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Wenhui Zhang
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Dianfeng Zheng
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Shumei Fang
- Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| |
Collapse
|
245
|
Marfil C, Ibañez V, Alonso R, Varela A, Bottini R, Masuelli R, Fontana A, Berli F. Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:287-294. [PMID: 30599305 DOI: 10.1016/j.plaphy.2018.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 05/21/2023]
Abstract
Environment and crop management shape plant's phenotype. Argentinean high-altitude vineyards are characterized by elevated solar ultraviolet-B radiation (UVB) and water deficit (D) that enhance enological quality for red winemaking. These signals promote phenolics accumulation in leaves and berries, being the responses mediated by abscisic acid (ABA). DNA methylation is an epigenetic mechanism that regulates gene expression and may affect grapevine growth, development and acclimation, since methylation patterns are mitotically heritable. Berry skins low molecular weight polyphenols (LMWP) were characterized in field grown Vitis vinifera L. cv. Malbec plants exposed to contrasting UV-B, D, and ABA treatments during one season. The next season early fruit shoots were epigenetically (methylation-sensitive amplification polymorphism; MSAP) and biochemically (LMWP) characterized. Unstable epigenetic patterns and/or stochastic stress-induced methylation changes were observed. UV-B and D were the treatments that induced greater number of DNA methylation changes respect to Control; and UV-B promoted global hypermethylation of MSAP epiloci. Sequenced MSAP fragments associated with UV-B and ABA showed similarities with transcriptional regulators and ubiquitin ligases proteins activated by light. UV-B was associated with flavonols accumulation in berries and with hydroxycinnamic acids in the next season fruit shoots, suggesting that DNA methylation could regulate the LMWP accumulation and participate in acclimation mechanisms.
Collapse
Affiliation(s)
- Carlos Marfil
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Verónica Ibañez
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Rodrigo Alonso
- Catena Institute of Wine (CIW), Bodega Catena Zapata, Cobos S/n, M5509, Agrelo, Mendoza, Argentina
| | - Anabella Varela
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Rubén Bottini
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Ricardo Masuelli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Federico Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
246
|
Kumazaki A, Suzuki N. Enhanced tolerance to a combination of heat stress and drought in Arabidopsis plants deficient in ICS1 is associated with modulation of photosynthetic reaction center proteins. PHYSIOLOGIA PLANTARUM 2019; 165:232-246. [PMID: 30051471 DOI: 10.1111/ppl.12809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Plants are exposed to multiple abiotic stresses that simultaneously occur under natural environmental conditions. Studies deciphering acclimation of plants to stress combinations are, however, still scarce. ISOCHORISMATE SYNTHASE 1 (ICS1) is known as a crucial enzyme required for synthesis of salicylic acid and phylloquinone, one of the components of the photosystem I complex. Although the significance of ICS1 in the regulation of abiotic stress response and pathogen defense in plants has been evidenced in previous studies, the role of this enzyme in the acclimation of plants to stress combinations is still largely unknown. In this study, we demonstrated the enhanced tolerance of Arabidopsis salicylic acid induction deficient 2-1(sid2-1) mutant deficient in ICS1 to a combination of heat stress and drought. H2 O2 -dependent stomatal closure and accumulation of total soluble sugars are associated with the enhanced tolerance of sid2-1 plants to this stress combination. In addition, sid2-1 plants showed higher accumulation of reaction center proteins (D1 and D2) in photosystem II accompanied by enhanced expression of transcripts involved in repair of these reaction center proteins. Furthermore, investigation of chlorophyll fluorescence indicated that mechanisms for dissipating the excess energy might be activated in sid2-1 plants specifically under a combination of heat stress and drought. Taken together, our findings suggest that maintenance of photosynthetic apparatus as well as prevention of excess water loss might enhance the tolerance of sid2-1 plants deficient in ICS1 to a combination of heat stress and drought.
Collapse
Affiliation(s)
- Ayana Kumazaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 102-8554 Tokyo, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 102-8554 Tokyo, Japan
| |
Collapse
|
247
|
Sun L, Song G, Guo W, Wang W, Zhao H, Gao T, Lv Q, Yang X, Xu F, Dong Y, Pu L. Dynamic Changes in Genome-Wide Histone3 Lysine27 Trimethylation and Gene Expression of Soybean Roots in Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1031. [PMID: 31552061 PMCID: PMC6746917 DOI: 10.3389/fpls.2019.01031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/23/2019] [Indexed: 05/14/2023]
Abstract
Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. Eight thousand seven hundred ninety eight soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.
Collapse
Affiliation(s)
- Lei Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tingting Gao
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Qingxue Lv
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xue Yang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingshan Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| |
Collapse
|
248
|
Xie H, Sun Y, Cheng B, Xue S, Cheng D, Liu L, Meng L, Qiang S. Variation in ICE1 Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:152-165. [PMID: 30295898 DOI: 10.1093/pcp/pcy197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 05/26/2023]
Abstract
Cold stress is a major abiotic factor plants face during their life cycle. Although plants often exhibit phenotypic variation in cold tolerance, the underlying mechanism remains poorly understood. In the present study, the 50% lethal temperature (LT50) values of 37 Arabidopsis thaliana accessions at latitudes from 15° to 58° ranged from -13.2°C to -4.9°C and were closely correlated with the cold climates of the collection sites. According to a methylation analysis of all C-repeat (CRT)-binding factor (CBF) pathway genes, the coding and promoter regions of AtICE1, a regulator of CBF genes, exhibited the greatest variability in methylation levels among the accessions and included 5-122 methylated cytosine residues. In contrast, unmethylated or only slightly methylated genes in the CBF pathway showed little variation among the accessions. According to a gene expression analysis of four selected A. thaliana populations with distinct methylation patterns, except for the down-regulated gene AtCBF2, the expression levels of all members of the CBF pathway were negatively correlated with AtICE1 gene methylation levels. Treatment of the four A. thaliana populations with the DNA methylation inhibitory reagent 5-azacytidine resulted in a 30.0-78.3% enhancement of freezing tolerance and decreases in LT50 values of approximately 1.9-3.6°C. Similar effects were observed in drm2 mutants, including 30.0-48.3% increases in freezing tolerance and decreases in LT50 values of approximately 0.7-3.4°C. Thus, the AtICE1 methylation-regulated transcription of CBF pathway genes is responsible for the phenotypic variation in the freezing tolerance observed in A. thaliana.
Collapse
Affiliation(s)
- Hongjie Xie
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Yuli Sun
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Biao Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Siming Xue
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Dan Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Linli Liu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Lingchao Meng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
249
|
Kim JH, Ryu TH, Lee SS, Lee S, Chung BY. Ionizing radiation manifesting DNA damage response in plants: An overview of DNA damage signaling and repair mechanisms in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 278:44-53. [PMID: 30471728 DOI: 10.1016/j.plantsci.2018.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 05/23/2023]
Abstract
Plants orchestrate various DNA damage responses (DDRs) to overcome the deleterious impacts of genotoxic agents on genetic materials. Ionizing radiation (IR) is widely used as a potent genotoxic agent in plant DDR research as well as plant breeding and quarantine services for commercial uses. This review aimed to highlight the recent advances in cellular and phenotypic DDRs, especially those induced by IR. Various physicochemical genotoxic agents damage DNA directly or indirectly by inhibiting DNA replication. Among them, IR-induced DDRs are considerably more complicated. Many aspects of such DDRs and their initial transcriptomes are closely related to oxidative stress response. Although many key components of DDR signaling have been characterized in plants, DDRs in plant cells are not understood in detail to allow comparison with those in yeast and mammalian cells. Recent studies have revealed plant DDR signaling pathways including the key regulator SOG1. The SOG1 and its upstream key components ATM and ATR could be functionally characterized by analyzing their knockout DDR phenotypes after exposure to IR. Considering the potent genotoxicity of IR and its various DDR phenotypes, IR-induced DDR studies should help to establish an integrated model for plant DDR signaling pathways by revealing the unknown key components of various DDRs in plants.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Tae Ho Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sungbeom Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| |
Collapse
|
250
|
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved mechanisms which allow them to adapt to abiotic stresses through alterations in gene expression and metabolism. In recent years, studies have investigated the role of long noncoding RNA (lncRNA) in regulating gene expression in plants and characterized their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications, and RNA-RNA interactions. Genome-wide transcriptome analyses have identified various types of noncoding RNAs (ncRNAs) that respond to abiotic stress. These ncRNAs are in addition to the well-known housekeeping ncRNAs, such as rRNAs, tRNAs, snoRNAs, and snRNAs. In this review, recent research pertaining to the role of lncRNAs in the response of plants to abiotic stress is summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Saitama, Japan.
| |
Collapse
|