201
|
Popova N, Deyev I, Petrenko A. Clathrin-mediated endocytosis and adaptor proteins. Acta Naturae 2013; 5:62-73. [PMID: 24307937 PMCID: PMC3848845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Macromolecules gain access to the cytoplasm of eukaryotic cells using one of several ways of which clathrin-dependent endocytosis is the most researched. Although the mechanism of clathrin-mediated endocytosis is well understood in general, novel adaptor proteins that play various roles in ensuring specific regulation of the mentioned process are being discovered all the time. This review provides a detailed account of the mechanism of clathrin-mediated internalization of activated G protein-coupled receptors, as well as a description of the major proteins involved in this process.
Collapse
Affiliation(s)
- N.V. Popova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, Russia, 117997
| | - I.E. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, Russia, 117997
| | - A.G. Petrenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow, Russia, 117997
| |
Collapse
|
202
|
Hierarchical organization of multi-site phosphorylation at the CXCR4 C terminus. PLoS One 2013; 8:e64975. [PMID: 23734232 PMCID: PMC3666969 DOI: 10.1371/journal.pone.0064975] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 04/23/2013] [Indexed: 01/07/2023] Open
Abstract
The chemokine receptor CXCR4 regulates cell migration during ontogenesis and disease states including cancer and inflammation. Upon stimulation by the endogenous ligand CXCL12, CXCR4 becomes phosphorylated at multiple sites in its C-terminal domain. Mutations in the CXCR4 gene affecting C-terminal phosphorylation sites are a hallmark of WHIM syndrome, a genetic disorder characterized by a gain-of-CXCR4-function. To better understand how multi-site phosphorylation of CXCR4 is organized and how perturbed phosphorylation might affect CXCR4 function, we developed novel phosphosite-specific CXCR4 antibodies and studied the differential regulation and interaction of three C-terminal phosphorylation sites in human embryonic kidney cells (HEK293). CXCL12 promoted a robust phosphorylation at S346/347 which preceded phosphorylation at S324/325 and S338/339. After CXCL12 washout, the phosphosites S338/339 and S324/325 were rapidly dephosphorylated whereas phosphorylation at S346/347 was long-lasting. CXCL12-induced phosphorylation at S346/347 was staurosporine-insensitive and mediated by GRK2/3. WHIM syndrome-associated CXCR4 truncation mutants lacking the S346/347 phosphosite and the recently identified E343K WHIM mutant displayed strongly impaired phosphorylation at S324/325 and S338/339 as well as reduced CXCL12-induced receptor internalization. Relevance of the S346-S348 site was confirmed by a S346-348A mutant showing strongly impaired CXCL12-promoted phosphorylation at S324/325 and S338/339, defective internalization, gain of calcium mobilization, and reduced desensitization. Thus, the triple serine motif S346-S348 contains a major initial CXCR4 phosphorylation site and is required for efficient subsequent multi-site phosphorylation and receptor regulation. Hierarchical organization of CXCR4 phosphorylation explains why small deletions at the extreme CXCR4 C terminus typically associated with WHIM syndrome severely alter CXCR4 function.
Collapse
|
203
|
Li S, Jin M, Zhang D, Yang T, Koeglsperger T, Fu H, Selkoe DJ. Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. Neuron 2013; 77:929-41. [PMID: 23473322 DOI: 10.1016/j.neuron.2012.12.040] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2012] [Indexed: 01/11/2023]
Abstract
A central question about human brain aging is whether cognitive enrichment slows the development of Alzheimer changes. Here, we show that prolonged exposure to an enriched environment (EE) facilitated signaling in the hippocampus of wild-type mice that promoted long-term potentiation. A key feature of the EE effect was activation of β2-adrenergic receptors and downstream cAMP/PKA signaling. This EE pathway prevented LTP inhibition by soluble oligomers of amyloid β-protein (Aβ) isolated from AD cortex. Protection by EE occurred in both young and middle-aged wild-type mice. Exposure to novelty afforded greater protection than did aerobic exercise. Mice chronically fed a β-adrenergic agonist without EE were protected from hippocampal impairment by Aβ oligomers. Thus, EE enhances hippocampal synaptic plasticity by activating β-adrenoceptor signaling and mitigating synaptotoxicity of human Aβ oligomers. These mechanistic insights support using prolonged exposure to cognitive novelty and/or oral β-adrenergic agonists to lessen the effects of Aβ accumulation during aging.
Collapse
Affiliation(s)
- Shaomin Li
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
204
|
Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 2013; 497:137-41. [PMID: 23604254 PMCID: PMC3654799 DOI: 10.1038/nature12120] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/28/2013] [Indexed: 01/04/2023]
Abstract
The functions of G-protein-coupled receptors (GPCRs) are primarily mediated and modulated by three families of proteins: the heterotrimeric G proteins, the G-protein-coupled receptor kinases (GRKs) and the arrestins. G proteins mediate activation of second-messenger-generating enzymes and other effectors, GRKs phosphorylate activated receptors, and arrestins subsequently bind phosphorylated receptors and cause receptor desensitization. Arrestins activated by interaction with phosphorylated receptors can also mediate G-protein-independent signalling by serving as adaptors to link receptors to numerous signalling pathways. Despite their central role in regulation and signalling of GPCRs, a structural understanding of β-arrestin activation and interaction with GPCRs is still lacking. Here we report the crystal structure of β-arrestin-1 (also called arrestin-2) in complex with a fully phosphorylated 29-amino-acid carboxy-terminal peptide derived from the human V2 vasopressin receptor (V2Rpp). This peptide has previously been shown to functionally and conformationally activate β-arrestin-1 (ref. 5). To capture this active conformation, we used a conformationally selective synthetic antibody fragment (Fab30) that recognizes the phosphopeptide-activated state of β-arrestin-1. The structure of the β-arrestin-1-V2Rpp-Fab30 complex shows marked conformational differences in β-arrestin-1 compared to its inactive conformation. These include rotation of the amino- and carboxy-terminal domains relative to each other, and a major reorientation of the 'lariat loop' implicated in maintaining the inactive state of β-arrestin-1. These results reveal, at high resolution, a receptor-interacting interface on β-arrestin, and they indicate a potentially general molecular mechanism for activation of these multifunctional signalling and regulatory proteins.
Collapse
|
205
|
Wu N, Song L, Yang X, Yuan W, Liu Z. NMDA receptor regulation of levodopa-induced behavior and changes in striatal G protein-coupled receptor kinase 6 and β-arrestin-1 expression in parkinsonian rats. Clin Interv Aging 2013; 8:347-52. [PMID: 23569367 PMCID: PMC3615843 DOI: 10.2147/cia.s41464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Parkinson's disease is a neurodegenerative disorder caused by loss of dopaminergic neurons in the substantia nigra. The dopamine precursor, levodopa, remains the most effective and common treatment for this disorder. However, long-term administration of levodopa is known to induce characteristic dyskinesia, and molecular mechanisms underlying dyskinesia are poorly understood. METHODS In this study, we investigated the effect of 6-hydroxydopamine lesions in dopaminergic neurons and chronic treatment with levodopa on expression of G protein-coupled receptor kinase 6 and β-arrestin-1, two key regulators of G protein-coupled receptors, in the rat striatum. RESULTS We found that a unilateral 6-hydroxydopamine lesion reduced expression of G protein-coupled receptor kinase 6 and β-arrestin-1 protein in the lesioned striatum. Reduction of these two proteins persisted in 6-hydroxydopamine-lesioned rats on chronic levodopa treatment for 23 days. In addition, coadministration of the N-methyl-D-aspartate receptor antagonist, MK-801, and levodopa reversed the reduction of G protein-coupled receptor kinase 6 and β-arrestin-1 in the striatum. MK-801 also attenuated levodopa-induced dyskinetic behavior. CONCLUSION These data indicate that G protein-coupled receptor kinase 6 and β-arrestin-1 in striatal neurons are sensitive to dopamine depletion and are downregulated in rats with Parkinson's disease and in levodopa-treated rats with the disease. This downregulation seems to require activation of N-methyl-D-aspartate glutamate receptors.
Collapse
Affiliation(s)
- Na Wu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
206
|
Gehret AU, Hinkle PM. siRNA screen identifies the phosphatase acting on the G protein-coupled thyrotropin-releasing hormone receptor. ACS Chem Biol 2013; 8:588-98. [PMID: 23215350 DOI: 10.1021/cb3004513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are an ubiquitously expressed class of transmembrane proteins involved in the signal transduction of neurotransmitters, hormones and various other ligands. Their signaling output is desensitized by mechanisms involving phosphorylation, internalization, and dissociation from G proteins and resensitized by mechanisms involving dephosphorylation, but details about the phosphatases responsible are generally lacking. We describe here the use of an siRNA-based library to knock down expression of specific phosphatase subunits to identify protein phosphatase 1-α (PP1α) as important for the thyrotropin-releasing hormone (TRH) receptor. Inhibition of PP1α synthesis and overexpression of dominant negative PP1α preserved receptor phosphorylation under conditions favoring dephosphorylation, whereas overexpression of PP1α accelerated dephosphorylation. Knockdown of all three PP1 catalytic subunits inhibited TRH receptor phosphorylation much more powerfully than knockdown of PP1α alone, suggesting that different PP1 isoforms function redundantly. Knockdown of a structural subunit of PP2A, a second potential hit in the library screen, was ineffective. Calyculin A, a potent inhibitor of PP1 family phosphatases, strongly inhibited dephosphorylation of transfected TRH receptors and endogenous receptors in pituitary cells, but fostriecin, which is selective for PP2A family phosphatases, did not. We conclude that the PP1 class of phosphatases is essential for TRH receptor dephosphorylation.
Collapse
Affiliation(s)
- Austin U. Gehret
- Department of Science and Mathematics,
National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York 14623,
United States
| | - Patricia M. Hinkle
- Department
of Pharmacology and
Physiology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
207
|
Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV. Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 2013; 288:11741-50. [PMID: 23476014 DOI: 10.1074/jbc.m113.450031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arrestin-1 selectively binds active phosphorylated rhodopsin (P-Rh*), demonstrating much lower affinity for inactive phosphorylated (P-Rh) and unphosphorylated active (Rh*) forms. Receptor interaction induces significant conformational changes in arrestin-1, which include large movement of the previously neglected 139-loop in the center of the receptor binding surface, away from the incoming receptor. To elucidate the functional role of this loop, in mouse arrestin-1 we introduced deletions of variable lengths and made several substitutions of Lys-142 in it and Asp-72 in the adjacent loop. Several mutants with perturbations in the 139-loop demonstrate increased binding to P-Rh*, dark P-Rh, Rh*, and phospho-opsin. Enhanced binding of arrestin-1 mutants to non-preferred forms of rhodopsin correlates with decreased thermal stability. The 139-loop perturbations increase P-Rh* binding of arrestin-1 at low temperatures and further change its binding profile on the background of 3A mutant, where the C-tail is detached from the body of the molecule by triple alanine substitution. Thus, the 139-loop stabilizes basal conformation of arrestin-1 and acts as a brake, preventing its binding to non-preferred forms of rhodopsin. Conservation of this loop in other subtypes suggests that it has the same function in all members of the arrestin family.
Collapse
|
208
|
Albertelli M, Arvigo M, Boschetti M, Ferone D, Gatto F, Minuto F. Somatostatin receptor pathophysiology in the neuroendocrine system. Expert Rev Endocrinol Metab 2013; 8:149-157. [PMID: 30736175 DOI: 10.1586/eem.13.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The actions of somatostatin (SRIF) are mediated by specific G protein-coupled receptors, named SRIF receptor (SSTR) subtypes 1, 2, 3 and 5. SRIF binding to SSTR activates a series of second messenger systems, resulting in the inhibition of calcium channels and adenylate cyclase activity, ultimately leading to inhibition of hormone secretion, while stimulation of other second messengers, such as phosphotyrosine phosphatases play a role in the control of cell growth. The SSTR and dopamine receptor families share a 30% sequence homology and appear to be structurally related. The knowledge on the pathophysiology of these two families of G protein-coupled receptors in neuroendocrine tumors has progressively increased due to the new insights in receptor dimerization, internalization and trafficking. Depending on the expression of different SSTRs in tissues, their combinations and interactions affect the functionality of the subtypes expressed and the influence of the microenvironment, the response to ligands and, by consequence, the response to treatment can be very different.
Collapse
Affiliation(s)
| | - Marica Arvigo
- a Department of Internal Medicine, University of Genova, Genova, Italy
| | - Mara Boschetti
- a Department of Internal Medicine, University of Genova, Genova, Italy
- b IRCSS AOU San Martino - IST, Genova, Italy
| | - Diego Ferone
- a Department of Internal Medicine, University of Genova, Genova, Italy
- b IRCSS AOU San Martino - IST, Genova, Italy
| | - Federico Gatto
- a Department of Internal Medicine, University of Genova, Genova, Italy
| | - Francesco Minuto
- a Department of Internal Medicine, University of Genova, Genova, Italy
- b IRCSS AOU San Martino - IST, Genova, Italy
- c Department of Internal Medicine, University of Genova, Genova, Italy.
| |
Collapse
|
209
|
Polekhina G, Ascher DB, Kok SF, Beckham S, Wilce M, Waltham M. Structure of the N-terminal domain of human thioredoxin-interacting protein. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:333-44. [PMID: 23519408 DOI: 10.1107/s0907444912047099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/15/2012] [Indexed: 11/10/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is one of the six known α-arrestins and has recently received considerable attention owing to its involvement in redox signalling and metabolism. Various stress stimuli such as high glucose, heat shock, UV, H2O2 and mechanical stress among others robustly induce the expression of TXNIP, resulting in the sequestration and inactivation of thioredoxin, which in turn leads to cellular oxidative stress. While TXNIP is the only α-arrestin known to bind thioredoxin, TXNIP and two other α-arrestins, Arrdc4 and Arrdc3, have been implicated in metabolism. Furthermore, owing to its roles in the pathologies of diabetes and cardiovascular disease, TXNIP is considered to be a promising drug target. Based on their amino-acid sequences, TXNIP and the other α-arrestins are remotely related to β-arrestins. Here, the crystal structure of the N-terminal domain of TXNIP is reported. It provides the first structural information on any of the α-arrestins and reveals that although TXNIP adopts a β-arrestin fold as predicted, it is structurally more similar to Vps26 proteins than to β-arrestins, while sharing below 15% pairwise sequence identity with either.
Collapse
Affiliation(s)
- Galina Polekhina
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, VIC 3168, Australia.
| | | | | | | | | | | |
Collapse
|
210
|
Magnan R, Escrieut C, Gigoux V, De K, Clerc P, Niu F, Azema J, Masri B, Cordomi A, Baltas M, Tikhonova IG, Fourmy D. Distinct CCK-2 receptor conformations associated with β-arrestin-2 recruitment or phospholipase-C activation revealed by a biased antagonist. J Am Chem Soc 2013; 135:2560-73. [PMID: 23323542 DOI: 10.1021/ja308784w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Seven-transmembrane receptors (7TMRs), also termed G protein-coupled receptors (GPCRs), form the largest class of cell surface membrane receptors, involving several hundred members in the human genome. Nearly 30% of marketed pharmacological agents target 7TMRs. 7TMRs adopt multiple conformations upon agonist binding. Biased agonists, in contrast to non-biased agonists, are believed to stabilize conformations preferentially activating either G-protein- or β-arrestin-dependent signaling pathways. However, proof that cognate conformations of receptors display structural differences within their binding site where biased agonism initiates, are still lacking. Here, we show that a non-biased agonist, cholecystokinin (CCK) induces conformational states of the CCK2R activating Gq-protein-dependent pathway (CCK2R(G)) or recruiting β-arrestin2 (CCK2R(β)) that are pharmacologically and structurally distinct. Two structurally unrelated antagonists competitively inhibited both pathways. A third ligand (GV150013X) acted as a high affinity competitive antagonist on CCK2R(G) but was nearly inefficient as inhibitor of CCK2R(β). Several structural elements on both GV150013X and in CCK2R binding cavity, which hinder binding of GV150013X only to the CCK2R(β) were identified. At last, proximity between two conserved amino acids from transmembrane helices 3 and 7 interacting through sulfur-aromatic interaction was shown to be crucial for selective stabilization of the CCK2R(β) state. These data establish structural evidence for distinct conformations of a 7TMR associated with β-arrestin-2 recruitment or G-protein coupling and validate relevance of the design of biased ligands able to selectively target each functional conformation of 7TMRs.
Collapse
Affiliation(s)
- Rémi Magnan
- EA 4552, Université de Toulouse 3, 31432 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
212
|
Bianco SDC, Kaiser UB. Molecular biology of the kisspeptin receptor: signaling, function, and mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:133-58. [PMID: 23550005 DOI: 10.1007/978-1-4614-6199-9_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kisspeptin receptor (KISS1R) signaling is essential for the hallmark increase in pulsatile GnRH secretion characteristic of the onset of puberty in humans and experimental animals. Loss-of-function mutations in KISS1R are associated with idiopathic hypogonadotropic hypogonadism in humans. Also, mutations with confirmed association with idiopathic central precocious puberty were identified in kisspeptin and KISS1R. These observations underscore the role of KISS1R signaling for normal pubertal development. Moreover, investigation of the mechanisms underlying the gain-of-function mutation in KISS1R indicates that the duration of KISS1R signaling is critical for the role of this receptor in timing the onset of puberty in humans. These findings further endorse the need to uncover the mechanisms, as well as yet-unknown proteins, involved in each step of KISS1R signaling. This knowledge is expected to advance our understanding of normal and abnormal pubertal development, as well as to help uncover the role of KISS1R signaling in non-hypothalamic tissues such as the placenta. This chapter discusses recent advances in the investigation of KISS1R signaling and function, as well as potential pathophysiological implications of naturally occurring mutations in this receptor identified in humans with reproductive disorders.
Collapse
|
213
|
Abrisqueta M, Herraiz C, Pérez Oliva AB, Sanchez-Laorden BL, Olivares C, Jiménez-Cervantes C, García-Borrón JC. Differential and competitive regulation of human melanocortin 1 receptor signaling by β-arrestin isoforms. J Cell Sci 2013; 126:3724-37. [DOI: 10.1242/jcs.128322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The melanocortin 1 receptor (MC1R) is a G protein-coupled receptor (GPCR) crucial for the regulation of melanocyte proliferation and differentiation. MC1R activation by melanocortin hormones triggers the cAMP pathway and stimulates the extracellular signal-regulated protein kinases ERK1 and ERK2 to promote synthesis of photoprotective eumelanin pigments among other effects. Signaling from most GPCRs is regulated by the β-arrestin (ARRB) family of cytosolic multifunctional adaptor proteins which mediate signal termination and endocytosis of GPCR-agonist complexes. The ubiquitously expressed non-visual β-arrestin1 (ARRB1) and β-arrestin2 (ARRB2) are highly homologous but not functionally equivalent. Their role in the regulation of MC1R is unknown. Using a combination of co-immunoprecipitation, gel filtration chromatography, confocal microscopy, siRNA-mediated knockdown and functional assays, we demonstrated agonist-independent competitive interactions of ARRB1 and ARRB2 with MC1R, which might also be independent of phosphorylation of MC1R C-terminal Ser/Thr residues. The effects of ARRBs were isoform-specific. ARRB2 inhibited MC1R agonist-dependent cAMP production but not ERK activation, stimulated internalization and showed prolonged co-localization with the receptor in endocytic vesicles. Conversely, ARRB1 had no effect on internalization or functional coupling, but competed with ARRB2 for binding MC1R, which might increase signaling by displacement of inhibitory ARRB2. These data suggest a novel mechanism of MC1R functional regulation based on the relative expression of ARRB isoforms, with possible activatory ARRB1-dependent effects arising from partial relief of inhibitory ARRB2-MC1R interactions. Thus, competitive displacement of inhibitory ARRBs by functionally neutral ARRB isoforms might exert a paradigm-shifting signal-promoting effect to fine-tune signaling downstream of certain GPCRs.
Collapse
|
214
|
Zheng H, Loh HH, Law PY. Posttranslation modification of G protein-coupled receptor in relationship to biased agonism. Methods Enzymol 2013; 522:391-408. [PMID: 23374194 DOI: 10.1016/b978-0-12-407865-9.00018-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biased signaling has been reported with a series of G protein-coupled receptors (GPCRs), including β(2)-adrenergic receptor and μ-opioid receptor (OPRM1). The concept of biased signaling suggests that the agonists of one particular receptor may activate the downstream signaling pathways with different efficacies. Thus in an extreme case, agonists might activate different sets of signaling pathways, which provide a new route to develop drugs with increased efficacies and decreased side effects. Among the many factors, posttranslation modifications of receptor proteins have major roles in influencing the biased signaling. Take OPRM1, for example, the phosphorylation and palmitoylation of receptor can regulate the biased signaling induced by agonists. Thus, by modulating these posttranslation modifications, the biased signaling of GPCRs can be regulated. In addition, although it is not considered as posttranslation modification normally, the distribution of GPCRs on cell membrane, especially the distribution between lipid-raft and non-raft microdomains, also contributes to the biased signaling. Thus in this chapter, we described the methods used in our laboratory to study receptor phosphorylation, receptor palmitoylation, and membrane distribution of receptor by using OPRM1 as a model. A functional model was also provided on these posttranslational modifications at the last section of this chapter.
Collapse
Affiliation(s)
- Hui Zheng
- Stem Cell and Cancer Biology Group, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | | | | |
Collapse
|
215
|
Gurevich VV, Gurevich EV. Structural determinants of arrestin functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:57-92. [PMID: 23764050 PMCID: PMC4514030 DOI: 10.1016/b978-0-12-394440-5.00003-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arrestins are a small protein family with only four members in mammals. Arrestins demonstrate an amazing versatility, interacting with hundreds of different G protein-coupled receptor (GPCR) subtypes, numerous nonreceptor signaling proteins, and components of the internalization machinery, as well as cytoskeletal elements, including regular microtubules and centrosomes. Here, we focus on the structural determinants that mediate various arrestin functions. The receptor-binding elements in arrestins were mapped fairly comprehensively, which set the stage for the construction of mutants targeting particular GPCRs. The elements engaged by other binding partners are only now being elucidated and in most cases we have more questions than answers. Interestingly, even very limited and imprecise identification of structural requirements for the interaction with very few other proteins has enabled the development of signaling-biased arrestin mutants. More comprehensive understanding of the structural underpinning of different arrestin functions will pave the way for the construction of arrestins that can link the receptor we want to the signaling pathway of our choosing.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
216
|
Aubry L, Klein G. True arrestins and arrestin-fold proteins: a structure-based appraisal. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:21-56. [PMID: 23764049 DOI: 10.1016/b978-0-12-394440-5.00002-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Arrestin-clan proteins are folded alike, a feature responsible for their recent grouping in a single clan. In human, it includes the well-characterized visual and β-arrestins, the arrestin domain-containing proteins (ARRDCs), isoforms of the retromer subunit VPS26, and DSCR3, a protein involved in Down syndrome. A new arrestin-fold-predicted protein, RGP1, described here may join the clan. Unicellular organisms like the yeast Saccharomyces cerevisiae or the amoeba Dictyostelium discoideum harbor VPS26, DSCR3, and RGP1 isoforms as well as arrestin-related trafficking adaptors or ADCs, but true arrestins are missing. Functionally, members of the arrestin clan have generally a scaffolding role in various membrane protein trafficking events. Despite their similar structure, the mechanism of cargo recognition and internalization and the nature of recruited partners differ for the different members. Based on the recent literature, true arrestins (visual and β-arrestins), ARRDCs, and yeast ARTS are the closest from a functional point of view.
Collapse
Affiliation(s)
- Laurence Aubry
- CEA, IRTSV, Laboratoire Biologie à Grande Echelle, F-38054, Grenoble, France
| | | |
Collapse
|
217
|
Lefkowitz RJ. Arrestins Come of Age. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:3-18. [DOI: 10.1016/b978-0-12-394440-5.00001-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
218
|
Walther C, Ferguson SSG. Arrestins: role in the desensitization, sequestration, and vesicular trafficking of G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:93-113. [PMID: 23764051 DOI: 10.1016/b978-0-12-394440-5.00004-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the years, β-arrestins have emerged as multifunctional molecular scaffolding proteins regulating almost every imaginable G protein-coupled receptor (GPCR) function. Originally discovered as GPCR-desensitizing molecules, they have been shown to also serve as important regulators of GPCR signaling, sequestration, and vesicular trafficking. This broad functional role implicates β-arrestins as key regulatory proteins for cellular function. Hence, this chapter summarizes the current understanding of the β-arrestin family's unique ability to control the kinetics as well as the extent of GPCR activity at the level of desensitization, sequestration, and subsequent intracellular trafficking.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, Western University Canada, London, Ontario, Canada
| | | |
Collapse
|
219
|
Vishnivetskiy SA, Chen Q, Palazzo MC, Brooks EK, Altenbach C, Iverson TM, Hubbell WL, Gurevich VV. Engineering visual arrestin-1 with special functional characteristics. J Biol Chem 2012; 288:3394-405. [PMID: 23250748 DOI: 10.1074/jbc.m112.445437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Arrestin-1 preferentially binds active phosphorylated rhodopsin. Previously, a mutant with enhanced binding to unphosphorylated active rhodopsin (Rh*) was shown to partially compensate for lack of rhodopsin phosphorylation in vivo. Here we showed that reengineering of the receptor binding surface of arrestin-1 further improves the binding to Rh* while preserving protein stability. In mammals, arrestin-1 readily self-associates at physiological concentrations. The biological role of this phenomenon can only be elucidated by replacing wild type arrestin-1 in living animals with a non-oligomerizing mutant retaining all other functions. We demonstrate that constitutively monomeric forms of arrestin-1 are sufficiently stable for in vivo expression. We also tested the idea that individual functions of arrestin-1 can be independently manipulated to generate mutants with the desired combinations of functional characteristics. Here we showed that this approach is feasible; stable forms of arrestin-1 with high Rh* binding can be generated with or without the ability to self-associate. These novel molecular tools open the possibility of testing of the biological role of arrestin-1 self-association and pave the way to elucidation of full potential of compensational approach to gene therapy of gain-of-function receptor mutations.
Collapse
|
220
|
Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci 2012; 6:180. [PMID: 23248581 PMCID: PMC3521152 DOI: 10.3389/fnins.2012.00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/26/2012] [Indexed: 01/08/2023] Open
Abstract
The pituitary receptor for thyrotropin-releasing hormone (TRH) is a calcium-mobilizing G protein-coupled receptor (GPCR) that signals through Gq/11, elevating calcium, and activating protein kinase C. TRH receptor signaling is quickly desensitized as a consequence of receptor phosphorylation, arrestin binding, and internalization. Following activation, TRH receptors are phosphorylated at multiple Ser/Thr residues in the cytoplasmic tail. Phosphorylation catalyzed by GPCR kinase 2 (GRK2) takes place rapidly, reaching a maximum within seconds. Arrestins bind to two phosphorylated regions, but only arrestin bound to the proximal region causes desensitization and internalization. Phosphorylation at Thr365 is critical for these responses. TRH receptors internalize in clathrin-coated vesicles with bound arrestin. Following endocytosis, vesicles containing phosphorylated TRH receptors soon merge with rab5-positive vesicles. Over approximately 20 min these form larger endosomes rich in rab4 and rab5, early sorting endosomes. After TRH is removed from the medium, dephosphorylated receptors start to accumulate in rab4-positive, rab5-negative recycling endosomes. The mechanisms responsible for sorting dephosphorylated receptors to recycling endosomes are unknown. TRH receptors from internal pools help repopulate the plasma membrane. Dephosphorylation of TRH receptors begins when TRH is removed from the medium regardless of receptor localization, although dephosphorylation is fastest when the receptor is on the plasma membrane. Protein phosphatase 1 is involved in dephosphorylation but the details of how the enzyme is targeted to the receptor remain obscure. It is likely that future studies will identify biased ligands for the TRH receptor, novel arrestin-dependent signaling pathways, mechanisms responsible for targeting kinases and phosphatases to the receptor, and principles governing receptor trafficking.
Collapse
Affiliation(s)
- Patricia M Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, NY, USA
| | | | | |
Collapse
|
221
|
Chen YJ, Oldfield S, Butcher AJ, Tobin AB, Saxena K, Gurevich VV, Benovic JL, Henderson G, Kelly E. Identification of phosphorylation sites in the COOH-terminal tail of the μ-opioid receptor. J Neurochem 2012; 124:189-99. [PMID: 23106126 DOI: 10.1111/jnc.12071] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/10/2012] [Accepted: 10/18/2012] [Indexed: 12/01/2022]
Abstract
Phosphorylation is considered a key event in the signalling and regulation of the μ opioid receptor (MOPr). Here, we used mass spectroscopy to determine the phosphorylation status of the C-terminal tail of the rat MOPr expressed in human embryonic kidney 293 (HEK-293) cells. Under basal conditions, MOPr is phosphorylated on Ser(363) and Thr(370), while in the presence of morphine or [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO), the COOH terminus is phosphorylated at three additional residues, Ser(356) , Thr(357) and Ser(375). Using N-terminal glutathione S transferase (GST) fusion proteins of the cytoplasmic, C-terminal tail of MOPr and point mutations of the same, we show that, in vitro, purified G protein-coupled receptor kinase 2 (GRK2) phosphorylates Ser(375), protein kinase C (PKC) phosphorylates Ser(363), while CaMKII phosphorylates Thr(370). Phosphorylation of the GST fusion protein of the C-terminal tail of MOPr enhanced its ability to bind arrestin-2 and -3. Hence, our study identifies both the basal and agonist-stimulated phospho-acceptor sites in the C-terminal tail of MOPr, and suggests that the receptor is subject to phosphorylation and hence regulation by multiple protein kinases.
Collapse
Affiliation(s)
- Ying-Ju Chen
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Bychkov E, Zurkovsky L, Garret MB, Ahmed MR, Gurevich EV. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum. PLoS One 2012; 7:e48912. [PMID: 23139825 PMCID: PMC3490921 DOI: 10.1371/journal.pone.0048912] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.
Collapse
Affiliation(s)
| | | | | | | | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
223
|
Abstract
Arrestin-1 (visual arrestin) binds to light-activated phosphorylated rhodopsin (P-Rh*) to terminate G-protein signaling. To map conformational changes upon binding to the receptor, pairs of spin labels were introduced in arrestin-1 and double electron-electron resonance was used to monitor interspin distance changes upon P-Rh* binding. The results indicate that the relative position of the N and C domains remains largely unchanged, contrary to expectations of a "clam-shell" model. A loop implicated in P-Rh* binding that connects β-strands V and VI (the "finger loop," residues 67-79) moves toward the expected location of P-Rh* in the complex, but does not assume a fully extended conformation. A striking and unexpected movement of a loop containing residue 139 away from the adjacent finger loop is observed, which appears to facilitate P-Rh* binding. This change is accompanied by smaller movements of distal loops containing residues 157 and 344 at the tips of the N and C domains, which correspond to "plastic" regions of arrestin-1 that have distinct conformations in monomers of the crystal tetramer. Remarkably, the loops containing residues 139, 157, and 344 appear to have high flexibility in both free arrestin-1 and the P-Rh*complex.
Collapse
|
224
|
Schattauer SS, Miyatake M, Shankar H, Zietz C, Levin JR, Liu-Chen LY, Gurevich VV, Rieder MJ, Chavkin C. Ligand directed signaling differences between rodent and human κ-opioid receptors. J Biol Chem 2012; 287:41595-607. [PMID: 23086943 DOI: 10.1074/jbc.m112.381368] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KOR activation of Gβγ dependent signaling results in analgesia, whereas the dysphoric effects of KOR agonists are mediated by a different pathway involving G protein receptor kinase and non-visual arrestin. Based on this distinction, a partial KOR agonist that does not efficiently activate arrestin-dependent biased signaling may produce analgesia without dysphoria. No KOR-selective partial agonists are currently available, and preclinical assessment is complicated by sequence differences between rodent (r) and human (h) KOR. In this study, we compared the signaling initiated by the available partial agonists. Pentazocine was significantly more potent at activating p38 MAPK in hKOR than rKOR expressed in HEK293 cells but equally potent at arrestin-independent activation of ERK1/2 in hKOR and rKOR. Similarly, butorphanol increased phospho-p38-ir in hKOR-expressing cells but did not activate p38 in rKOR-HEK293. Like pentazocine, butorphanol was equally efficacious at activating ERK1/2 in rKOR and hKOR. In contrast, levorphanol, nalorphine, and U50,488 did not distinguish between hKOR and rKOR in p38 MAPK activation. Consistent with its low potency at p38 activation, pentazocine did not produce conditioned place aversion in mice. hKOR lacks the Ser-369 phosphorylation site in rKOR required for G protein receptor kinase/arrestin-dependent p38 activation, but mutation of the Ser-358 to asparagine in hKOR blocked p38 activation without affecting the acute arrestin-independent activation of ERK1/2. This study shows that hKOR activates p38 MAPK through a phosphorylation and arrestin-dependent mechanism; however, activation differs between hKOR and rKOR for some ligands. These functional selectivity differences have important implications for preclinical screening of partial KOR agonists.
Collapse
Affiliation(s)
- Selena S Schattauer
- Department of Pharmacology, University of Washington, Seattle, Washington98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Gurevich VV, Gurevich EV. Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 2012; 24:1899-908. [PMID: 22664341 PMCID: PMC3404258 DOI: 10.1016/j.cellsig.2012.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 01/14/2023]
Abstract
The complexity of living systems exceeds everything else studied by natural sciences. Sophisticated networks of intimately intertwined signaling pathways coordinate cellular functions. Clear understanding how the integration of multiple inputs produces coherent behavior is one of the major challenges of cell biology. Integration via perfectly timed highly regulated protein-protein interactions and precise targeting of the "output" proteins to particular substrates is emerging as a common theme of signaling regulation. This often involves specialized scaffolding proteins, whose key function is to ensure that correct partners come together in an appropriate place at the right time. Defective or faulty signaling underlies many congenital and acquired human disorders. Several pioneering studies showed that ectopic expression of existing proteins or their elements can restore functions destroyed by mutations or normalize the signaling pushed out of balance by disease and/or current small molecule-based therapy. Several recent studies show that proteins with new functional modalities can be generated by mixing and matching existing domains, or via functional recalibration and fine-tuning of existing proteins by precisely targeted mutations. Using arrestins as an example, we describe how manipulation of individual functions yields signaling-biased proteins. Creative protein redesign generates novel tools valuable for unraveling the intricacies of cell biology. Engineered proteins with specific functional changes also have huge therapeutic potential in disorders associated with inherited or acquired signaling errors.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
226
|
Cotecchia S, Stanasila L, Diviani D. Protein-protein interactions at the adrenergic receptors. Curr Drug Targets 2012; 13:15-27. [PMID: 21777184 PMCID: PMC3290771 DOI: 10.2174/138945012798868489] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 02/12/2011] [Accepted: 02/16/2011] [Indexed: 01/07/2023]
Abstract
The adrenergic receptors are among the best characterized G protein-coupled receptors (GPCRs) and knowledge on this receptor family has provided several important paradigms about GPCR function and regulation. One of the most recent paradigms initially supported by studies on adrenergic receptors is that both βarrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. In this review we will briefly summarize the main features of βarrestin binding to the adrenergic receptor subtypes and we will review more in detail the main proteins found to selectively interact with distinct AR subtype. At the end, we will review the main findings on oligomerization of the AR subtypes.
Collapse
Affiliation(s)
- Susanna Cotecchia
- Départment de Pharmacologie et de Toxicologie, Université de Lausanne, Switzerland.
| | | | | |
Collapse
|
227
|
Wu N. Effects of Chinese herbal medicine Tianqi Pingchan Granule on G protein-coupled receptor kinase 6 involved in the prevention of levodopa-induced dyskinesia in rats with Parkinson disease. ACTA ACUST UNITED AC 2012; 10:1018-24. [DOI: 10.3736/jcim20120911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
228
|
Lymperopoulos A, Bathgate A. Pharmacogenomics of the heptahelical receptor regulators G-protein-coupled receptor kinases and arrestins: the known and the unknown. Pharmacogenomics 2012; 13:323-41. [PMID: 22304582 DOI: 10.2217/pgs.11.178] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heptahelical G-protein-coupled receptors are the most diverse and therapeutically important family of receptors, playing major roles in the physiology of various organs and tissues. They couple their ligand binding to G-protein activation, which then transmits intracellular signals. G-protein signaling is terminated by phosphorylation of the receptor by the family of G-protein-coupled receptor kinases (GRKs), followed by arrestin (Arr) binding, which uncouples the phosphorylated receptor from the G-protein and subsequently targets the receptor for internalization. Moreover, Arrs can transmit signals in their own right during receptor internalization. Genetic polymorphisms in receptors, as well as in GRK and Arr family members per se, which affect regulation of receptor signaling and function, have just started being identified and characterized. The present review will discuss what is known so far in this evolving field of GRK/Arr pharmacogenomics, as well as highlight important areas likely to produce invaluable information in the future.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328, USA.
| | | |
Collapse
|
229
|
Feng XT, Wang TZ, Chen Y, Liu JB, Liu Y, Wang WJ. Pollen Typhae total flavone improves insulin-induced glucose uptake through the β-arrestin-2-mediated signaling in C2C12 myotubes. Int J Mol Med 2012; 30:914-22. [PMID: 22825681 DOI: 10.3892/ijmm.2012.1061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/11/2012] [Indexed: 11/06/2022] Open
Abstract
Defects in insulin-stimulated glucose uptake in skeletal muscle result from the dysfunction of insulin signaling including the phosphatidylinositol-3 kinase (PI3K) pathway and a novel β-arrestin-2-mediated signaling, which leads to insulin resistance (IR). Pollen Typhae, a Chinese herb, has been used for thousands of years in traditional Chinese medicine, and has the potential to inhibit the development of IR. We have previously reported that Pollen Typhae total flavone (PTF), the extract from Pollen Typhae, ameliorates high-glucose- and high-insulin-induced impairment of glucose uptake in 3T3-L1 adipocytes, but the mechanisms remain unclear. The objective of this study was to investigate the effects of PTF on glucose uptake, and to explore the underlying mechanisms in C2C12 myotubes. PTF improved insulin-stimulated glucose uptake in a dose- and time-dependent manner in C2C12 myotubes, and prevented palmitate-induced IR. Furthermore, PTF enhanced the basal gene expression of Src and Akt2, elevated the protein expression of β-arrestin-2, Src and Akt, increased the phosphorylation of insulin receptor-β at Tyr1150/1151 and Akt at Thr308/Ser473 in an insulin-dependent manner, but had no effects on the protein expression of PI3K-p85 or the activity of PI3K. Inhibition of Src but not PI3K restrained PTF-induced phosphorylation of Akt and glucose uptake. Our findings indicate that PTF improves insulin-induced glucose uptake via the β-arrestin-2-mediated signaling in C2C12 myotubes.
Collapse
Affiliation(s)
- Xiao-Tao Feng
- Institute of Chinese Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
230
|
Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 2012; 287:29495-505. [PMID: 22787152 DOI: 10.1074/jbc.m112.366674] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.
Collapse
Affiliation(s)
- Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
231
|
Korenbrot JI. Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. ACTA ACUST UNITED AC 2012; 139:31-56. [PMID: 22200947 PMCID: PMC3250101 DOI: 10.1085/jgp.201110654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide–gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca2+. As part of the control process, Ca2+ regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca2+ causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
232
|
Patwari P, Lee RT. An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab 2012; 23:216-22. [PMID: 22520962 PMCID: PMC3348262 DOI: 10.1016/j.tem.2012.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 11/24/2022]
Abstract
The classical visual and β-arrestins belong to a larger family of proteins that likely share structural similarity. Humans have an additional six related proteins sometimes termed the α-arrestins, whose functions are now emerging. Surprisingly, several α-arrestins play prominent roles in the regulation of metabolism and obesity. One α-arrestin, thioredoxin-interacting protein (Txnip), has crucial functions in regulating glucose uptake and glycolytic flux through the mitochondria. Another α-arrestin, Arrdc3, is linked to obesity in men and was recently identified in mice as a regulator of body mass, adiposity, and energy expenditure. Here we discuss recent evidence suggesting potential common themes for all arrestins, including physiological roles for classical arrestins in metabolism and the functions of α-arrestins in receptor signaling and endocytosis.
Collapse
Affiliation(s)
- Parth Patwari
- Harvard Stem Cell Institute and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | | |
Collapse
|
233
|
Kanamarlapudi V, Thompson A, Kelly E, López Bernal A. ARF6 activated by the LHCG receptor through the cytohesin family of guanine nucleotide exchange factors mediates the receptor internalization and signaling. J Biol Chem 2012; 287:20443-55. [PMID: 22523074 DOI: 10.1074/jbc.m112.362087] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The luteinizing hormone chorionic gonadotropin receptor (LHCGR) is a G(s)-coupled GPCR that is essential for the maturation and function of the ovary and testis. LHCGR is internalized following its activation, which regulates the biological responsiveness of the receptor. Previous studies indicated that ADP-ribosylation factor (ARF)6 and its GTP-exchange factor (GEF) cytohesin 2 regulate LHCGR internalization in follicular membranes. However, the mechanisms by which ARF6 and cytohesin 2 regulate LHCGR internalization remain incompletely understood. Here we investigated the role of the ARF6 signaling pathway in the internalization of heterologously expressed human LHCGR (HLHCGR) in intact cells using a combination of pharmacological inhibitors, siRNA and the expression of mutant proteins. We found that human CG (HCG)-induced HLHCGR internalization, cAMP accumulation and ARF6 activation were inhibited by Gallein (βγ inhibitor), Wortmannin (PI 3-kinase inhibitor), SecinH3 (cytohesin ARF GEF inhibitor), QS11 (an ARF GAP inhibitor), an ARF6 inhibitory peptide and ARF6 siRNA. However, Dynasore (dynamin inhibitor), the dominant negative mutants of NM23-H1 (dynamin activator) and clathrin, and PBP10 (PtdIns 4,5-P2-binding peptide) inhibited agonist-induced HLHCGR and cAMP accumulation but not ARF6 activation. These results indicate that heterotrimeric G-protein, phosphatidylinositol (PI) 3-kinase (PI3K), cytohesin ARF GEF and ARF GAP function upstream of ARF6 whereas dynamin and clathrin act downstream of ARF6 in the regulation of HCG-induced HLHCGR internalization and signaling. In conclusion, we have identified the components and molecular details of the ARF6 signaling pathway required for agonist-induced HLHCGR internalization.
Collapse
Affiliation(s)
- Venkateswarlu Kanamarlapudi
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom.
| | | | | | | |
Collapse
|
234
|
Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV. Silent scaffolds: inhibition OF c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant. J Biol Chem 2012; 287:19653-64. [PMID: 22523077 DOI: 10.1074/jbc.m112.358192] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We established a new in vivo arrestin-3-JNK3 interaction assay based on bioluminescence resonance energy transfer (BRET) between JNK3-luciferase and Venus-arrestins. We tested the ability of WT arrestin-3 and its 3A mutant that readily binds β2-adrenergic receptors as well as two mutants impaired in receptor binding, Δ7 and KNC, to directly bind JNK3 and to promote JNK3 phosphorylation in cells. Both receptor binding-deficient mutants interact with JNK3 significantly better than WT and 3A arrestin-3. WT arrestin-3 and Δ7 mutant robustly promoted JNK3 activation, whereas 3A and KNC mutants did not. Thus, receptor binding, JNK3 interaction, and JNK3 activation are three distinct arrestin functions. We found that the KNC mutant, which tightly binds ASK1, MKK4, and JNK3 without facilitating JNK3 phosphorylation, has a dominant-negative effect, competitively decreasing JNK activation by WT arrestin-3. Thus, KNC is a silent scaffold, a novel type of molecular tool for the suppression of MAPK signaling in living cells.
Collapse
Affiliation(s)
- Maya Breitman
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
235
|
Moulédous L, Froment C, Dauvillier S, Burlet-Schiltz O, Zajac JM, Mollereau C. GRK2 protein-mediated transphosphorylation contributes to loss of function of μ-opioid receptors induced by neuropeptide FF (NPFF2) receptors. J Biol Chem 2012; 287:12736-49. [PMID: 22375000 PMCID: PMC3339982 DOI: 10.1074/jbc.m111.314617] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/13/2012] [Indexed: 01/25/2023] Open
Abstract
Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of μ-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF(2) receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF(2) receptor by [D-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of G(i/o) proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-D-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF(2) receptor activation was sufficient to recruit β-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex.
Collapse
Affiliation(s)
- Lionel Moulédous
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Carine Froment
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Stéphanie Dauvillier
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Jean-Marie Zajac
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Catherine Mollereau
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| |
Collapse
|
236
|
Mushegian A, Gurevich VV, Gurevich EV. The origin and evolution of G protein-coupled receptor kinases. PLoS One 2012; 7:e33806. [PMID: 22442725 PMCID: PMC3307776 DOI: 10.1371/journal.pone.0033806] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/22/2012] [Indexed: 01/25/2023] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) play key role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors, promoting high affinity binding of arrestins, which precludes G protein coupling. Direct binding to active GPCRs activates GRKs, so that they selectively phosphorylate only the activated form of the receptor regardless of the accessibility of the substrate peptides within it and their Ser/Thr-containing sequence. Mammalian GRKs were classified into three main lineages, but earlier GRK evolution has not been studied. Here we show that GRKs emerged at the early stages of eukaryotic evolution via an insertion of a kinase similar to ribosomal protein S6 kinase into a loop in RGS domain. GRKs in Metazoa fall into two clades, one including GRK2 and GRK3, and the other consisting of all remaining GRKs, split into GRK1-GRK7 lineage and GRK4-GRK5-GRK6 lineage in vertebrates. One representative of each of the two ancient clades is found as early as placozoan Trichoplax adhaerens. Several protists, two oomycetes and unicellular brown algae have one GRK-like protein, suggesting that the insertion of a kinase domain into the RGS domain preceded the origin of Metazoa. The two GRK families acquired distinct structural units in the N- and C-termini responsible for membrane recruitment and receptor association. Thus, GRKs apparently emerged before animals and rapidly expanded in true Metazoa, most likely due to the need for rapid signalling adjustments in fast-moving animals.
Collapse
Affiliation(s)
- Arcady Mushegian
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Microbiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
237
|
Kilpatrick LE, Briddon SJ, Holliday ND. Fluorescence correlation spectroscopy, combined with bimolecular fluorescence complementation, reveals the effects of β-arrestin complexes and endocytic targeting on the membrane mobility of neuropeptide Y receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1068-81. [PMID: 22487268 PMCID: PMC3793875 DOI: 10.1016/j.bbamcr.2012.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/22/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis are powerful ways to study mobility and stoichiometry of G protein coupled receptor complexes, within microdomains of single living cells. However, relating these properties to molecular mechanisms can be challenging. We investigated the influence of β-arrestin adaptors and endocytosis mechanisms on plasma membrane diffusion and particle brightness of GFP-tagged neuropeptide Y (NPY) receptors. A novel GFP-based bimolecular fluorescence complementation (BiFC) system also identified Y1 receptor-β-arrestin complexes. Diffusion co-efficients (D) for Y1 and Y2-GFP receptors in HEK293 cell plasma membranes were 2.22 and 2.15 × 10− 9 cm2 s− 1 respectively. At a concentration which promoted only Y1 receptor endocytosis, NPY treatment reduced Y1-GFP motility (D 1.48 × 10− 9 cm2 s− 1), but did not alter diffusion characteristics of the Y2-GFP receptor. Agonist induced changes in Y1 receptor motility were inhibited by mutations (6A) which prevented β-arrestin recruitment and internalisation; conversely they became apparent in a Y2 receptor mutant with increased β-arrestin affinity. NPY treatment also increased Y1 receptor-GFP particle brightness, changes which indicated receptor clustering, and which were abolished by the 6A mutation. The importance of β-arrestin recruitment for these effects was illustrated by reduced lateral mobility (D 1.20–1.33 × 10− 9 cm2 s− 1) of Y1 receptor-β-arrestin BiFC complexes. Thus NPY-induced changes in Y receptor motility and brightness reflect early events surrounding arrestin dependent endocytosis at the plasma membrane, results supported by a novel combined BiFC/FCS approach to detect the underlying receptor-β-arrestin signalling complex.
Collapse
Affiliation(s)
- Laura E Kilpatrick
- Cell Signaling Research Group, School of Biomedical Sciences, University of Nottingham, the Medical School, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
238
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
239
|
Granzin J, Cousin A, Weirauch M, Schlesinger R, Büldt G, Batra-Safferling R. Crystal structure of p44, a constitutively active splice variant of visual arrestin. J Mol Biol 2012; 416:611-8. [PMID: 22306737 DOI: 10.1016/j.jmb.2012.01.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/22/2011] [Accepted: 01/17/2012] [Indexed: 11/26/2022]
Abstract
Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V-VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the 'constitutive activity' found in arrestin variants.
Collapse
Affiliation(s)
- Joachim Granzin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
240
|
Watson SJ, Brown AJH, Holliday ND. Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 2012; 81:631-42. [PMID: 22282525 DOI: 10.1124/mol.111.077388] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
GPR120 is a long-chain fatty acid receptor that stimulates incretin hormone release from colonic endocrine cells and is implicated in macrophage and adipocyte function. The functional consequences of long (L) and short (S) human GPR120 splice variants, which differ by insertion of 16 amino acids in the third intracellular loop, are currently unknown. Here we compare signaling and intracellular trafficking of GPR120S and GPR120L receptors, using calcium mobilization and dynamic mass redistribution (DMR) assays, together with quantitative imaging measurements of β-arrestin2 association and receptor internalization. FLAG- or SNAP-tagged GPR120S receptors elicited both intracellular calcium mobilization and DMR responses in human embryonic kidney 293 cells, when stimulated with oleic acid, myristic acid, or the agonist 4-[[(3-phenoxyphenyl)methyl]amino]benzenepropanoic acid (GW9508). Responses were insensitive to pertussis toxin, but increases in intracellular calcium were attenuated by 2-aminoethoxydiphenyl borate, an inhibitor of store inositol trisphosphate receptors. Despite equivalent cell surface expression of SNAP-tagged GPR120L receptors, no specific calcium or DMR responses were observed in cells transfected with this isoform. However, agonist-stimulated GPR120S and GPR120L receptors both recruited β-arrestin2 and underwent robust internalization, with similar agonist potencies in each case. After oleic acid-induced internalization, neither GPR120 isoform recycled rapidly to the cell surface. In both cases, confocal microscopy indicated receptor targeting to lysosomal compartments. Thus, the third intracellular loop insertion in GPR120L prevents G protein-dependent intracellular calcium and DMR responses, but this receptor isoform remains functionally coupled to the β-arrestin pathway, providing one of the first examples of a native β-arrestin-biased receptor.
Collapse
Affiliation(s)
- Sarah-Jane Watson
- Cell Signalling Research Group, School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
241
|
Gimenez LE, Kook S, Vishnivetskiy SA, Ahmed MR, Gurevich EV, Gurevich VV. Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J Biol Chem 2012; 287:9028-40. [PMID: 22275358 DOI: 10.1074/jbc.m111.311803] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Arrestins are a small family of proteins that regulate G protein-coupled receptors (GPCRs). Arrestins specifically bind to phosphorylated active receptors, terminating G protein coupling, targeting receptors to endocytic vesicles, and initiating G protein-independent signaling. The interaction of rhodopsin-attached phosphates with Lys-14 and Lys-15 in β-strand I was shown to disrupt the interaction of α-helix I, β-strand I, and the C-tail of visual arrestin-1, facilitating its transition into an active receptor-binding state. Here we tested the role of conserved lysines in homologous positions of non-visual arrestins by generating K2A mutants in which both lysines were replaced with alanines. K2A mutations in arrestin-1, -2, and -3 significantly reduced their binding to active phosphorhodopsin in vitro. The interaction of arrestins with several GPCRs in intact cells was monitored by a bioluminescence resonance energy transfer (BRET)-based assay. BRET data confirmed the role of Lys-14 and Lys-15 in arrestin-1 binding to non-cognate receptors. However, this was not the case for non-visual arrestins in which the K2A mutations had little effect on net BRET(max) values for the M2 muscarinic acetylcholine (M2R), β(2)-adrenergic (β(2)AR), or D2 dopamine receptors. Moreover, a phosphorylation-deficient mutant of M2R interacted with wild type non-visual arrestins normally, whereas phosphorylation-deficient β(2)AR mutants bound arrestins at 20-50% of the level of wild type β(2)AR. Thus, the contribution of receptor-attached phosphates to arrestin binding varies depending on the receptor-arrestin pair. Although arrestin-1 always depends on receptor phosphorylation, its role in the recruitment of arrestin-2 and -3 is much greater in the case of β(2)AR than M2R and D2 dopamine receptor.
Collapse
Affiliation(s)
- Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
242
|
Butcher AJ, Kong KC, Prihandoko R, Tobin AB. Physiological role of G-protein coupled receptor phosphorylation. Handb Exp Pharmacol 2012:79-94. [PMID: 22222696 DOI: 10.1007/978-3-642-23274-9_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now well established that G-protein coupled receptors (GPCRs) are hyper-phosphorylated following agonist occupation usually at serine and threonine residues contained on the third intracellular loop and C-terminal tail. After some 2 decades of intensive research, the nature of protein kinases involved in this process together with the signalling consequences of receptor phosphorylation has been firmly established. The major challenge that the field currently faces is placing all this information within a physiological context and determining to what extent does phosphoregulation of GPCRs impact on whole animal responses. In this chapter, we address this issue by describing how GPCR phosphorylation might vary depending on the cell type in which the receptor is expressed and how this might be employed to drive selective regulation of physiological responses.
Collapse
Affiliation(s)
- Adrian J Butcher
- Department of Cell Physiology and Pharmacology, University of Leicester, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | | | | | | |
Collapse
|
243
|
Coffa S, Breitman M, Hanson SM, Callaway K, Kook S, Dalby KN, Gurevich VV. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation. PLoS One 2011; 6:e28723. [PMID: 22174878 PMCID: PMC3236217 DOI: 10.1371/journal.pone.0028723] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/14/2011] [Indexed: 01/27/2023] Open
Abstract
Arrestins are multifunctional signaling adaptors originally discovered as proteins that “arrest” G protein activation by G protein-coupled receptors (GPCRs). Recently GPCR complexes with arrestins have been proposed to activate G protein-independent signaling pathways. In particular, arrestin-dependent activation of extracellular signal-regulated kinase 1/2 (ERK1/2) has been demonstrated. Here we have performed in vitro binding assays with pure proteins to demonstrate for the first time that ERK2 directly binds free arrestin-2 and -3, as well as receptor-associated arrestins-1, -2, and -3. In addition, we showed that in COS-7 cells arrestin-2 and -3 association with β2-adrenergic receptor (β2AR) significantly enhanced ERK2 binding, but showed little effect on arrestin interactions with the upstream kinases c-Raf1 and MEK1. Arrestins exist in three conformational states: free, receptor-bound, and microtubule-associated. Using conformationally biased arrestin mutants we found that ERK2 preferentially binds two of these: the “constitutively inactive” arrestin-Δ7 mimicking microtubule-bound state and arrestin-3A, a mimic of the receptor-bound conformation. Both rescue arrestin-mediated ERK1/2/activation in arrestin-2/3 double knockout fibroblasts. We also found that arrestin-2-c-Raf1 interaction is enhanced by receptor binding, whereas arrestin-3-c-Raf1 interaction is not.
Collapse
Affiliation(s)
- Sergio Coffa
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Maya Breitman
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Susan M. Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kari Callaway
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas, United States of America
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
244
|
Abstract
Somatostatin (SS) and dopamine (DA) receptors have been highlighted as two critical regulators in the negative control of hormonal secretion in a wide group of human endocrine tumors. Both families of receptors belong to the superfamily of G protein-coupled receptors and share a number of structural and functional characteristics. Because of the generally reported high expression of somatostatin receptors (SSTRs) in neuroendocrine tumors (NET), somatostatin analogs (SSA) have a pronounced role in the medical therapy for this class of tumors, especially pituitary adenomas and well-differentiated gastroenteropancreatic NET (GEP NET). Moreover, NET express not only SSTR but also frequently dopamine receptors (DRs), and DA agonists targeting the D(2) receptor (D(2)) have been demonstrated to be effective in controlling hormone secretion and cell proliferation in in vivo and in vitro studies. The treatment with SSAs combined with DA agonists has already been demonstrated efficacious in a subgroup of patients with GH-secreting pituitary adenomas and few reported cases of carcinoids. The recent availability of new selective and universal SSA and DA agonists, as well as the chimeric SS/DA compounds, may shed new light on the potential role of SSTR and D(2) as combined targets for biotherapy in NET. This review provides an overview of the latest studies evaluating the expression of SSTR and DR in NET, focusing on their co-expression and the possible clinical implications of such co-expression. Moreover, the most recent insights in SSTR and D(2) pathophysiology and the future perspectives for treatment with SSA, DA agonists, and SS/DA chimeric compounds are discussed.
Collapse
Affiliation(s)
- Federico Gatto
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Room Ee530b, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | |
Collapse
|
245
|
Arttamangkul S, Lau EK, Lu HW, Williams JT. Desensitization and trafficking of μ-opioid receptors in locus ceruleus neurons: modulation by kinases. Mol Pharmacol 2011; 81:348-55. [PMID: 22113080 DOI: 10.1124/mol.111.076208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phosphorylation of μ-opioid receptors (MOPRs) by G protein-coupled receptor kinases (GRKs), followed by arrestin binding, is thought to be a key pathway leading to desensitization and internalization. The present study used the combination of intracellular and whole-cell recordings from rats and mice, as well as live cell imaging of Flag-tagged MOPRs from mouse locus ceruleus neurons, to examine the role of protein kinases in acute desensitization and receptor trafficking. Inhibition of GRKs by using heparin or GRK2-mutant mice did not block desensitization or alter the rate of recovery from desensitization. The nonselective kinase inhibitor staurosporine did not reduce the extent of [Met(5)]enkephalin (ME)-induced desensitization but increased the rate of recovery from desensitization. In the presence of staurosporine, ME-activated FlagMOPRs were internalized but did not traffic away from the plasma membrane. The increased rate of recovery from desensitization correlated with the enhancement in the recycling of receptors to the plasma membrane. ME-induced MOPR desensitization persisted and the trafficking of receptors was modified after inhibition of protein kinases. The results suggest that desensitization of MOPRs may be an early step after agonist binding that is modulated by but is not dependent on kinase activity.
Collapse
|
246
|
One-step purification of a functional, constitutively activated form of visual arrestin. Protein Expr Purif 2011; 82:55-60. [PMID: 22133714 DOI: 10.1016/j.pep.2011.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/06/2011] [Accepted: 11/07/2011] [Indexed: 01/24/2023]
Abstract
Desensitization of agonist-activated G protein-coupled receptors (GPCRs) requires phosphorylation followed by the binding of arrestin, a ~48 kDa soluble protein. While crystal structures for the inactive, 'basal' state of various arrestins are available, the conformation of 'activated' arrestin adopted upon interaction with activated GPCRs remains unknown. As a first step towards applying high-resolution structural methods to study arrestin conformation and dynamics, we have utilized the subtilisin prodomain/Profinity eXact™ fusion-tag system for the high-level bacterial expression and one-step purification of wild-type visual arrestin (arrestin 1) as well as a mutant form (R175E) of the protein that binds to non-phosphorylated, light-activated rhodopsin (Rho∗). The results show that both prodomain/Profinity eXact™ fusion-tagged wild-type and R175E arrestins can be expressed to levels approaching 2-3 mg/l in Luria-Bertani media, and that the processed, tag-free mature forms can be purified to near homogeneity using a Bio-Scale™ Mini Profinity eXact™ cartridge on the Profinia™ purification system. Functional analysis of R175E arrestin generated using this approach shows that it binds to non-phosphorylated rhodopsin in a light-dependent manner. These findings should facilitate the structure determination of this 'constitutively activated' state of arrestin 1 as well as the monitoring of conformational changes upon interaction with Rho∗.
Collapse
|
247
|
Zhan X, Kaoud TS, Dalby KN, Gurevich VV. Nonvisual arrestins function as simple scaffolds assembling the MKK4-JNK3α2 signaling complex. Biochemistry 2011; 50:10520-9. [PMID: 22047447 DOI: 10.1021/bi201506g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Arrestins make up a small family of proteins with four mammalian members that play key roles in the regulation of multiple G protein-coupled receptor-dependent and -independent signaling pathways. Although arrestins were reported to serve as scaffolds for MAP kinase cascades, promoting the activation of JNK3, ERK1/2, and p38, the molecular mechanisms involved were not elucidated, and even the direct binding of arrestins with MAP kinases was never demonstrated. Here, using purified proteins, we show that both nonvisual arrestins directly bind JNK3α2 and its upstream activator MKK4, and that the affinity of arrestin-3 for these kinases is higher than that of arrestin-2. Reconstitution of the MKK4-JNK3α2 signaling module from pure proteins in the presence of different arrestin-3 concentrations showed that arrestin-3 acts as a "true" scaffold, facilitating JNK3α2 phosphorylation by bringing the two kinases together. Both the level of JNK3α2 phosphorylation by MKK4 and JNK3α2 activity toward its substrate ATF2 increase at low and then decrease at high arrestin-3 levels, yielding a bell-shaped concentration dependence expected with true scaffolds that do not activate the upstream kinase or its substrate. Thus, direct binding of both kinases and true scaffolding is the molecular mechanism of action of arrestin-3 on the MKK4-JNK3α2 signaling module.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | | | | | |
Collapse
|
248
|
ßarrestin1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands. Cell Signal 2011; 24:699-707. [PMID: 22101011 DOI: 10.1016/j.cellsig.2011.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/14/2011] [Accepted: 10/27/2011] [Indexed: 01/14/2023]
Abstract
We have previously reported on the differential regulation of the human δ-opioid receptor (hDOR) by alkaloid (etorphine) and peptidic (DPDPE and deltorphin I) ligands, in terms of both receptor desensitization and post-endocytic sorting. Since ßarrestins are well known to regulate G protein-coupled receptors (GPCRs) signaling and trafficking, we therefore investigated the role of ßarrestin1 (the only isoform expressed in our cellular model) in the context of the hDOR. We established clonal cell lines of SK-N-BE cells over-expressing ßarrestin1, its dominant negative mutant (ßarrestin1(319-418)), and shRNA directed against endogenous ßarrestin1. Interestingly, both binding and confocal microscopy approaches demonstrated that ßarrestin1 is required for hDOR endocytosis only when activated by etorphine. Conversely, functional experiments revealed that ßarrestin1 is exclusively involved in hDOR desensitization promoted by the peptides. Taken together, these results provide substantial evidence for a ßarrestin1-biased agonism at hDOR, where ßarrestin1 is differentially involved during receptor desensitization and endocytosis depending on the ligand.
Collapse
|
249
|
Bennett LD, Fox JM, Signoret N. Mechanisms regulating chemokine receptor activity. Immunology 2011; 134:246-56. [PMID: 21977995 PMCID: PMC3209565 DOI: 10.1111/j.1365-2567.2011.03485.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/04/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022] Open
Abstract
Co-ordinated movement and controlled positioning of leucocytes is key to the development, maintenance and proper functioning of the immune system. Chemokines and their receptors play an essential role in these events by mediating directed cell migration, often referred to as chemotaxis. The chemotactic property of these molecules is also thought to contribute to an array of pathologies where inappropriate recruitment of specific chemokine receptor-expressing leucocytes is observed, including cancer and inflammatory diseases. As a result, chemokine receptors have become major targets for therapeutic intervention, and during the past 15 years much research has been devoted to understanding the regulation of their biological activity. From these studies, processes which govern the availability of functional chemokine receptors at the cell surface have emerged as playing a central role. In this review, we summarize and discuss current knowledge on the molecular mechanisms contributing to the regulation of chemokine receptor surface expression, from gene transcription and protein degradation to post-translational modifications, multimerization, intracellular transport and cross-talk.
Collapse
Affiliation(s)
- Laura D Bennett
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | | | | |
Collapse
|
250
|
Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc Natl Acad Sci U S A 2011; 108:18690-5. [PMID: 22039220 DOI: 10.1073/pnas.1015461108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins.
Collapse
|