201
|
Development of integrated membrane bioreactor and numerical modeling to mitigate fouling and reduced energy consumption in pharmaceutical wastewater treatment. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
202
|
Hou J, Li T, Miao L, You G, Xu Y, Liu S. Effects of titanium dioxide nanoparticles on algal and bacterial communities in periphytic biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:407-414. [PMID: 31103000 DOI: 10.1016/j.envpol.2019.04.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The widespread application of commercial TiO2 NPs inevitably leads to their release into environmental waters through various ways. TiO2 NPs released into water might be absorbed by and react with periphytic biofilms, which are a kind of aquatic environmental media of important ecological significance, and influence the physiological activity and ecological function of periphytic biofilms. This study investigated the effects of exposure to 1 mg/L and 5 mg/L of TiO2 NPs on periphytic biofilms cultured indoors. After a 10-day exposure to TiO2 NPs, the growth (measured by chlorophyll-a content) of microalgal community was inhibited greatly (more than 60%); however, the primary production (indicated by quantum yield) of periphytic biofilms maintained changeless. As for bacteria, TiO2 NP-exposure increased the bacterial diversity and altered the composition structure. Significant changes were observed in the bacterial communities at the class level, mainly including Alphaproteobacteria, Gammaproteobacteria, Cytophagia, Flavobacteriia, Sphingobacteriia, Synechococcophycideae and Oscillatoriophycideae. The enhancement of metabolic activities (the production of extracellular polymeric substances, especially proteins content increased by 48.51%) of periphytic biofilms was a resistance mechanism to toxicity of NPs. As for extracellular enzyme activities of periphytic biofilms, alkaline phosphatase activity was inhibited (22.43%) after exposed to 5 mg/L of TiO2 NPs, which posed a threat to phosphorus metabolism of periphytic biofilms. Overall, this study demonstrated that 1 mg/L and 5 mg/L of TiO2 NPs negatively influenced physiological activities and ecological functions of periphytic biofilms, highlighting that the ecological risks of TiO2 NPs should be paid attention to.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Tengfei Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Gouxiang You
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
203
|
Peng L, Ngo HH, Song S, Xu Y, Guo W, Liu Y, Wei W, Chen X, Wang D, Ni BJ. Heterotrophic denitrifiers growing on soluble microbial products contribute to nitrous oxide production in anammox biofilm: Model evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:309-314. [PMID: 31054395 DOI: 10.1016/j.jenvman.2019.04.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In this work, a model framework was constructed to assess and predict nitrous oxide (N2O) production, substrate and microbe interactions in an anammox biofilm bioreactor. The anammox kinetics were extended by including kinetics of autotrophic soluble microbial products (SMP) formation, which consisted of utilization-associated products (UAP) and biomass-associated products (BAP). Heterotrophic bacteria growing on UAP, BAP and decay released substance (SS) were modelled to perform four-step sequential reductions from nitrate to dinitrogen gas. N2O was modelled as an intermidiate of heterotrophic denitrification via three pathways with UAP, BAP and SS as the electron donors. The developed model framework was evaluated using long-term operational data from an anammox biofilm reactor and satisfactorily reproduced effluent nitrogen and SMP as well as N2O emission factors under different operational conditions. The modeling results revealed that N2O was mainly produced with UAP as the electron donor while BAP and SS play minor roles. Heterotrophic denitrifiers growing on UAP would significantly contribute to N2O emission from anammox biofilm reactor even though heterotrophs only account for a relatively small fraction of active biomass in the anammox biofilm. Comprehensive simulations were conducted to investigate the effects of N loading rate and biofilm thickness, which indicated that maintaining a low N loading rate and a thick biofilm thickness were essential for high total nitrogen removal efficiency and low N2O emission.
Collapse
Affiliation(s)
- Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yifeng Xu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xueming Chen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Dongbo Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
204
|
Yang Y, Qiao S, Zheng M, Zhou J, Quan X. Enhanced permeability, contaminants removal and antifouling ability of CNTs-based hollow fiber membranes under electrochemical assistance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
205
|
Effects of packing carriers and ultrasonication on membrane fouling and sludge properties of anaerobic side-stream reactor coupled membrane reactors for sludge reduction. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
206
|
Huang J, Wu X, Cai D, Chen G, Li D, Yu Y, Petrik LF, Liu G. Linking solids retention time to the composition, structure, and hydraulic resistance of biofilms developed on support materials in dynamic membrane bioreactors. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
207
|
Perujo N, Romaní AM, Sanchez-Vila X. A bilayer coarse-fine infiltration system minimizes bioclogging: The relevance of depth-dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:559-569. [PMID: 30889445 DOI: 10.1016/j.scitotenv.2019.03.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Bioclogging is a main concern in infiltration systems as it may significantly shorten the service life of these low-technology water treatment methods. In porous media, biofilms grow to clog partially or totally the pore network. Dynamics of biofilm accumulation (e.g., by attachment, detachment, advective transport in depth) and their impact on both surface and deep bioclogging are still not yet fully understood. To address this concern, a 104 day-long outdoor infiltration experiment in sand tanks was performed, using secondary treated wastewater and two grain size distributions (GSDs): a monolayer system filled with fine sand, and a bilayer one composed by a layer of coarse sand placed on top of a layer of fine sand. Biofilm dynamics as a function of GSD and depth were studied through cross-correlations and multivariate statistical analyses using different parameters from biofilm biomass and activity indices, plus hydraulic parameters measured at different depths. Bioclogging (both surface and deep) was found more significant in the monolayer fine system than in the bilayer coarse-fine one, possibly due to an early low-cohesive biofilm formation in the former, driven by lower porosity and lower fluxes; under such conditions biomass is favorably detached from the top layer, transported and accumulated in depth, so that new biomass might colonize the surface. On the other hand, in the bilayer system, fluxes are highest, and the biofilm is still in a growing phase, with low biofilm detachment capability from the top sand layer and high microbial activity in depth, resulting in low bioclogging. Overall, the bilayer coarse-fine system allows infiltrating higher volume of water per unit of surface area than the monolayer fine one, minimizing surface and deep bioclogging, and thus increasing the longevity and efficiency of infiltration systems.
Collapse
Affiliation(s)
- N Perujo
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain; Hydrogeology Group (UPC-CSIC), Barcelona, Spain; GRECO - Institute of Aquatic Ecology, Universitat de Girona, 17003 Girona, Spain.
| | - A M Romaní
- GRECO - Institute of Aquatic Ecology, Universitat de Girona, 17003 Girona, Spain
| | - X Sanchez-Vila
- Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain; Hydrogeology Group (UPC-CSIC), Barcelona, Spain
| |
Collapse
|
208
|
Giwa A, Dindi A, Kujawa J. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments. JOURNAL OF HAZARDOUS MATERIALS 2019; 370:172-195. [PMID: 29958700 DOI: 10.1016/j.jhazmat.2018.06.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 05/26/2023]
Abstract
Research and development activities on standalone systems of membrane bioreactors and electrochemical reactors for wastewater treatment have been intensified recently. However, several challenges are still being faced during the operation of these reactors. The current challenges associated with the operation of standalone MBR and electrochemical reactors include: membrane fouling in MBR, set-backs from operational errors and conditions, energy consumption in electrochemical systems, high cost requirement, and the need for simplified models. The advantage of this review is to present the most critical challenges and opportunities. These challenges have necessitated the design of MBR derivatives such as anaerobic MBR (AnMBR), osmotic MBR (OMBR), biofilm MBR (BF-MBR), membrane aerated biofilm reactor (MABR), and magnetically-enhanced systems. Likewise, electrochemical reactors with different configurations such as parallel, cylindrical, rotating impeller-electrode, packed bed, and moving particle configurations have emerged. One of the most effective approaches towards reducing energy consumption and membrane fouling rate is the integration of MBR with low-voltage electrochemical processes in an electrically-enhanced membrane bioreactor (eMBR). Meanwhile, research on eMBR modeling and sludge reuse is limited. Future trends should focus on novel/fresh concepts such as electrically-enhanced AnMBRs, electrically-enhanced OMBRs, and coupled systems with microbial fuel cells to further improve energy efficiency and effluent quality.
Collapse
Affiliation(s)
- Adewale Giwa
- Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Abdallah Dindi
- Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland
| |
Collapse
|
209
|
Ye JX, Lin TH, Hu JT, Poudel R, Cheng ZW, Zhang SH, Chen JM, Chen DZ. Enhancing Chlorobenzene Biodegradation by Delftia tsuruhatensis Using a Water-Silicone Oil Biphasic System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1629. [PMID: 31083278 PMCID: PMC6539085 DOI: 10.3390/ijerph16091629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
In this study, a water-silicone oil biphasic system was developed to enhance the biodegradation of monochlorobenzene (CB) by Delftia tsuruhatensis LW26. Compared to the single phase, the biphasic system with a suitable silicone oil fraction (v/v) of 20% allowed a 2.5-fold increase in the maximum tolerated CB concentration. The CB inhibition on D. tsuruhatensis LW26 was reduced in the presence of silicone oil, and the electron transport system activity was maintained at high levels even under high CB stress. Adhesion of cells to the water-oil interface at the water side was observed using confocal laser scanning microscopy. Nearly 75% of cells accumulated on the interface, implying that another interfacial substrate uptake pathway prevailed besides that initiated by cells in the aqueous phase. The 8-fold increase in cell surface hydrophobicity upon the addition of 20% (v/v) silicone oil showed that silicone oil modified the surface characteristics of D. tsuruhatensis LW26. The protein/polysaccharide ratio of extracellular polymeric substances (EPS) from D. tsuruhatensis LW26 presented a 3-fold enhancement. These results suggested that silicone oil induced the increase in the protein content of EPS and rendered cells hydrophobic. The resulting hydrophobic cells could adhere on the water-oil interface, improving the mass transfer by direct CB uptake from silicone oil.
Collapse
Affiliation(s)
- Jie-Xu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Tong-Hui Lin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Jing-Tao Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Rabin Poudel
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Zhuo-Wei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shi-Han Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jian-Meng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Dong-Zhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
210
|
Campbell K, Wang J, Daniels M. Assessing activated sludge morphology and oxygen transfer performance using image analysis. CHEMOSPHERE 2019; 223:694-703. [PMID: 30802835 DOI: 10.1016/j.chemosphere.2019.02.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The morphology of the microbial communities can have dramatic impacts on not only the treatment performance, but also the energy use performance of an activated sludge process. In this research, we developed and calibrated an image analysis technique to determine key morphological parameters such as the floc diameter and the specific filament length (SFL) and discovered that the SFL has significant impacts on sludge floc size, the specific extracellular polymeric substances production, the settleability, mixed liquor viscosity, and oxygen transfer efficiency. When the SFL increased from 2.5 × 109 μm g-1 to 6.0 × 1010 μm g-1, the apparent viscosity normalized by the mixed liquor suspended solids concentration increased by 67%, and the oxygen transfer efficiency decreased by 29%. A long solids retention time (SRT) of 40 day reduced SFL, improved sludge settling performance, and improved oxygen transfer efficiency as compared to shorter SRTs of 10 and 20 day. The findings underscore the need to assess microbial morphology when quantifying the treatment performance and energy performance of activated sludge processes.
Collapse
Affiliation(s)
- Ken Campbell
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Jianmin Wang
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, USA.
| | - Margo Daniels
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
211
|
Kong Z, Li L, Kurihara R, Zhang T, Li YY. Anaerobic treatment of N,N-dimethylformamide-containing high-strength wastewater by submerged anaerobic membrane bioreactor with a co-cultured inoculum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:696-708. [PMID: 30731415 DOI: 10.1016/j.scitotenv.2019.01.358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The anaerobic treatment of wastewater containing approximately 2000 mg L-1N,N-dimethylformamide (DMF) was conducted by a lab-scale submerged anaerobic membrane bioreactor (SAnMBR). The inoculum consisted of aerobic DMF-hydrolyzing activated sludge (DAS) and anaerobic digested sludge (ADS). A rapid start-up was achieved with thorough DMF methanogenic degradation on the first day. The results of a 250-day long-term experiment demonstrated that under a low organic loading rate (OLR) of 3.14-4.16 g COD L-1 d-1, SAnMBR maintained excellent DMF removal efficiency along with high methane conversion. However, the elevation of OLR significantly limited DMF hydrolysis. When OLR exceeded 6.54 g COD L-1 d-1, both removal efficiency and methane production dramatically dropped. The DMF-hydrolyzing bacteria originating from the DAS gradually decayed under the anaerobic condition, resulting in the weak hydrolysis of DMF. The shortening of hydraulic retention time (HRT) is not recommended for the SAnMBR because severe membrane fouling occurred when HRT was shortened to 8 h. To handle high OLRs, an appropriate solution is to maintain a low F/M ratio by increasing both the influent DMF concentration and sludge concentration. The high CH4 content in the biogas, exceeding 85%, was shown to be the reason for the suitability of anaerobic treatment to DMF. Some improvements which would help to maintain the effective hydrolysis are proposed: a side-stream system to replenish DAS to the SAnMBR is helpful; slight dosage of nitrate could also help to enrich the DMF-hydrolyzing bacteria; and the co-digestion of DMF and other organics might be convenient to establish a stable DMF-degrading consortium.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Rei Kurihara
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tao Zhang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
212
|
Zhang HL, Jiang WL, Liu R, Zhou Y, Zhang Y. Organic degradation and extracellular products of pure oxygen aerated activated sludge under different F/M conditions. BIORESOURCE TECHNOLOGY 2019; 279:189-194. [PMID: 30735927 DOI: 10.1016/j.biortech.2019.01.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the effect of food to microorganisms rate (F/M) on organic removal, extracellular polymeric substances (EPS) and soluble microbial products (SMP) of the pure oxygen aerated activated sludge running in batch mode. The F/M rates were controlled by adjusting the MLSS concentrations (2000, 5000, 8000 mg/L) and/or the initial TOC concentrations (100, 500 mg/L). Results showed that at high F/M rate (0.25 kg TOC/kg MLSS), the substrate degradation rate in the oxygen aerated reactor could reach 1.347 mg TOC/(L·min)), much higher than that in the air aerated reactor (0.640 mg TOC/(L·min)). The SMP concentrations with oxygen aeration were also higher than those with air aeration under high F/M conditions. The total EPS contents in the pure oxygen aerated sludge were significantly lower regardless of the different F/M rates. High F/M condition would lead to more amount of polysaccharides synthesis rather than proteins synthesis in EPS.
Collapse
Affiliation(s)
- Hong-Ling Zhang
- Nanjing Institute of Environmental Science, MEP, Nanjing 210000, China; Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210000, China
| | - Wei-Li Jiang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210000, China
| | - Rong Liu
- School of the Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
| | - Ying Zhou
- School of the Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yong Zhang
- School of the Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
213
|
Phosphate depletion controls lipid content and accumulation of heterotrophic bacteria during growth of Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 2019; 103:5007-5014. [DOI: 10.1007/s00253-019-09817-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 10/26/2022]
|
214
|
The Effects of Aluminium- and Ferric-Based Chemical Phosphorus Removal on Activated Sludge Digestibility and Dewaterability. Processes (Basel) 2019. [DOI: 10.3390/pr7040228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The uses of Al3+ and Fe3+ salts in chemical phosphorus removal (CPR) in activated sludge plants have increased considerably in recent years and their full impacts on downstream processes such as dewaterability and digestibility are not fully understood. In this research, the effects of CPR on sludge digestibility and dewaterability were investigated in laboratory-scale experiments using sludge samples from a full-scale wastewater treatment plant. The results of the digestibility tests showed a 21% and 36% reduction in the biogas volume generated during anaerobic digestion of surplus activated sludge at 0.1 g/L doses of Al3+ and Fe3+ salts, respectively. This demonstrates that Al3+ dosing for CPR has less of a reduction effect compared with Fe3+ salts on biogas generation during anaerobic digestion of sludge. The dewaterability tests showed that primary sludge dewaterability was improved by up to 25% by Fe3+ and 16% by Al3+, while that of surplus activated sludge was reduced by 64% and 73%, respectively, at a metal salt dose of 50 mg/L. Consequently, a pre-precipitation process during CPR where phosphorus is removed in the primary tank would, therefore, enhance sludge dewaterability.
Collapse
|
215
|
Li K, Qian J, Wang P, Wang C, Fan X, Lu B, Tian X, Jin W, He X, Guo W. Toxicity of Three Crystalline TiO 2 Nanoparticles in Activated Sludge: Bacterial Cell Death Modes Differentially Weaken Sludge Dewaterability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4542-4555. [PMID: 30888807 DOI: 10.1021/acs.est.8b04991] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The eco-toxicities of different crystalline phases of TiO2-NPs are controversial, and the effects and mechanisms on activated sludge are unclear. Therefore, we assessed the acute-toxicities (8-h exposure) of P25, anatase, and rutile TiO2-NPs in activated sludge using flow cytometry under simulated sunlight (hereafter-sun) and evaluated the relationship between sludge dewatering and bacterial cell death modes using Pearson's correlation coefficients ( r). Additionally, the response of the microbial community structure was examined by high throughput sequencing. Bacterial survival and death were observed by confocal laser scanning microscopy. Toxicity indicators (e.g., lactate dehydrogenase (LDH) and reactive oxygen species (ROS)) were determined. Overall, TiO2-NPs toxicity was concentration-dependent and crystalline-phase-dependent. The responses of bacterial communities to crystalline phases were more obvious than that of dosage. P25-sun and anatase-sun caused necrosis-like cell death via strong photo-oxidation confirmed by 131%/123% (1 mg/L) and 301%/254% (50 mg/L) LDH released by the control, while rutile-sun induced apoptosis-like death via intracellular ROS production increased to 165% (1 mg/L) and 420% (50 mg/L) of the control. P25 and anatase NPs had higher protein and polysaccharide affinities, while rutile NPs exhibited stronger attachment onto phospholipids. TiO2-NPs-sun reduced activated sludge dewaterability. Specific resistance to filtration (SRF) showed the strongest positive correlation with tightly bound extracellular polymeric substances (EPS) and total soluble microbial byproducts ( r = 0.974, p < 0.01) and was closely related to EPS content and composition, especially the increased bound water (BW) content and sludge protein concentrations. High Pearson correlation coefficients were observed between early apoptotic cells and BW content ( r = 0.952, p < 0.01) resulting from massive polysaccharides and between necrotic (including late apoptotic) cells and SRF ( r = 0.959, p < 0.01) resulting from high protein and EPS concentrations. Thus, in response to TiO2-NPs, bacterial cell death modes differentially weakened sludge dewatering.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education , Hohai University , Nanjing , People's Republic of China , 210098
- College of Environment , Hohai University , Nanjing , People's Republic of China , 210098
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education , Hohai University , Nanjing , People's Republic of China , 210098
- College of Environment , Hohai University , Nanjing , People's Republic of China , 210098
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education , Hohai University , Nanjing , People's Republic of China , 210098
- College of Environment , Hohai University , Nanjing , People's Republic of China , 210098
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education , Hohai University , Nanjing , People's Republic of China , 210098
- College of Environment , Hohai University , Nanjing , People's Republic of China , 210098
| | - Xiulei Fan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education , Hohai University , Nanjing , People's Republic of China , 210098
- College of Environment , Hohai University , Nanjing , People's Republic of China , 210098
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education , Hohai University , Nanjing , People's Republic of China , 210098
- College of Environment , Hohai University , Nanjing , People's Republic of China , 210098
| | - Xin Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education , Hohai University , Nanjing , People's Republic of China , 210098
- College of Environment , Hohai University , Nanjing , People's Republic of China , 210098
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education , Hohai University , Nanjing , People's Republic of China , 210098
- College of Environment , Hohai University , Nanjing , People's Republic of China , 210098
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education , Hohai University , Nanjing , People's Republic of China , 210098
- College of Environment , Hohai University , Nanjing , People's Republic of China , 210098
| | - Wenzhou Guo
- College of Science , Hohai University , Nanjing , People's Republic of China , 210098
| |
Collapse
|
216
|
A novel method: using an adenosine triphosphate (ATP) luminescence-based assay to rapidly assess the biological stability of drinking water. Appl Microbiol Biotechnol 2019; 103:4269-4277. [PMID: 30972459 DOI: 10.1007/s00253-019-09774-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
The rapid and credible evaluations of the microbial stability of a drinking water distribution system (DWDS) are of great significance for ensuring the safety of drinking water and predicting microbial pollution. Conventional biostability assessment methods mainly focus on bacterial regrowth or evaluation of the level of nutrients that support bacterial regrowth. However, such methods are time-consuming and have many limitations. An adenosine triphosphate (ATP) assay can rapidly measure all active microorganisms and is known to be a useful method to assess the microbial activity of drinking water. The measurement of ATP has been used for more than a decade in the field of drinking water research. This article reviews the application of an ATP luminescence-based method to assess the biostability of drinking water and discusses the feasibility of ATP measurement as a parameter for quickly evaluating this criterion. ATP measurement will help researchers and water managers better monitor the biological stability of drinking water from the source to the consumer's tap. This review covers the: (1) principle and application of the ATP measurement in drinking water quality assessment; (2) comparison of the merits and demerits of several methods for evaluating the biostability of drinking water; (3) discussions on using ATP measurement in evaluating biostability; and (4) improvements in the use of ATP measurement in evaluating biostability. At the end of this review, recommendations were given for better application of the ATP measurement as a parameter for monitoring the microbial quality of drinking water.
Collapse
|
217
|
Qian J, Zhou J, Pei X, Zhang M, Liu Y. Bioactivities and formation/utilization of soluble microbial products (SMP) in the biological sulfate reduction under different conditions. CHEMOSPHERE 2019; 221:37-44. [PMID: 30634147 DOI: 10.1016/j.chemosphere.2018.12.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
The biological sulfate reduction (BSR) plays a critical role in the organic compound removal in the sulfur bioconversion-associated sewage treatment process. The soluble microbial products (SMP) are the major components of residual organic compounds in the secondary treatment effluent and its presence directly affects treatment capacity. In addition, the SMP could be one of the available organic substrates and be utilized as an electron donor in the bioreactions. However, the SMP formation and utilization in the BSR are poorly understood. Herein, the BSR activities and SMP generation/utilization were simultaneously investigated under different conditions, i.e. pH, temperature and ratio of organic carbon (C) to sulfur (S). The role of SMP as the electron donor for BSR was also identified. The higher BSR activities and rapid SMP synthesis were found under neutral and alkaline conditions, but the SMP utilization as the electron donor is not favorable at pH 7.0. The BSR activity became higher and more SMP was synthesized by raising the temperature. The ratio of C to S rarely affected the sulfidogenic activity but has an effect on the net SMP generation (total SMP generation - SMP consumption by SBR as the electron donor). The lower ratio of C/S could result in the low residual SMP level in the reactor. And the SMP-induced BSR activity was higher under the acid and alkaline conditions compared with the neutral condition.
Collapse
Affiliation(s)
- Jin Qian
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, China; Research and Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China.
| | - Junmei Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, China
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, China.
| | - Mingkuan Zhang
- Research and Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
218
|
Yang Y, Qiao S, Jin R, Zhou J, Quan X. A novel aerobic electrochemical membrane bioreactor with CNTs hollow fiber membrane by electrochemical oxidation to improve water quality and mitigate membrane fouling. WATER RESEARCH 2019; 151:54-63. [PMID: 30594090 DOI: 10.1016/j.watres.2018.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
A novel electro-assisted membrane bioreactor (EMBR) was constructed by integrating conductive carbon nanotubes hollow fiber membranes (CNTs-HFMs) into an aerobic activated sludge system. Herein, the CNTs-HFMs served as anode and filtration core simultaneously. Contrasted with the other two MBRs (PVDF-HFMs and CNTs-HFMs without electro-assistance), the effluent COD and NH4+N were lower than 40 mg/L and 3 mg/L at +1.0 V even HRT as short as 4 h. However, they were mostly over 50 mg/L (COD) and 5 mg/L (NH4+N) under the same conditions in the other two MBRs. The hydraulic cleaning for electro-assisted CNTs-HFMs was carried out only once during 60-day operation, and the permeate flux recovered to 100% of the original status. While four and five times hydraulic cleaning were executed for other two MBRs (PVDF-HFMs and CNTs-HFMs), respectively. Furthermore, merely 50 min continuous electrochemical oxidation was enough to resume flux of the heavily fouled CNTs-HFMs, i.e. flux recovered to 2020.87 L/(bar•m2•h) from 394.68 L/(bar•m2•h) (pure water flux, ∼2200 L/(bar·m2·h)). Simpson and Shannon indexes indicated enhanced microbial community stability in EMBR. Thus, electro-assisted CNTs-HFMs endow EMBR excellent anti-fouling ability and good effluent quality.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
219
|
Zhou JH, Wu CH, Cheng GF, Hong QK, Li YZ, Wang HY. Impact of poly dimethyldiallylammonium chloride on membrane fouling mitigation in a membrane bioreactor. ENVIRONMENTAL TECHNOLOGY 2019; 40:1043-1049. [PMID: 29235931 DOI: 10.1080/09593330.2017.1417489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Poly dimethyldiallylammonium chloride (PDMDAAC) was applied in a membrane bioreactor (MBR) to study its effects on mitigation of MBR membrane fouling. Floc size, zeta potential, soluble microbial substances (SMP) and extracellular polymeric substances (EPS) secretion were studied with respect to PDMMAAC-dosing operations. Results demonstrated that a sustainable filtration cycle extended 3.3 times with the optimal PDMDAAC dosage of 90 mg L-1. The addition of PDMDAAC could increase zeta potential of sludge floc, which led to the decrease in repulsive electrostatic interactions between flocs, as well as the facilitation of flocs-to-flocs aggregation. With the optimal dosage of PDMDAAC, the mean size of sludge was 3.23 ± 0.55 times higher than the control group, resulting in higher impact resistance and better adaptive capacity to the changing environment, which led to less SMP secretion. Moreover, a high contaminants removal rate was achieved in the reactor that was dosed with PDMDAAC. The average effluent concentrations of chemical oxygen demand and total nitrogen were less than 45.6 ± 2.85 and 5.23 ± 0.61 mg L-1, respectively, and the corresponding removal rates were 93.1 ± 5.81% and 89.1 ± 9.61%.
Collapse
Affiliation(s)
- Jia-Heng Zhou
- a College of Civil Engineering and Architecture , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Chang-Hua Wu
- a College of Civil Engineering and Architecture , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Gao-Feng Cheng
- a College of Civil Engineering and Architecture , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Qian-Kun Hong
- a College of Civil Engineering and Architecture , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Yao-Zhong Li
- b Kemira Chemicals Co., Ltd. , Shanghai , People's Republic of China
| | - Hong-Yu Wang
- a College of Civil Engineering and Architecture , Zhejiang University of Technology , Hangzhou , People's Republic of China
| |
Collapse
|
220
|
Zhang X, Chen Z, Ma Y, Chen T, Zhang J, Zhang H, Zheng S, Jia J. Impacts of erythromycin antibiotic on Anammox process: Performance and microbial community structure. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
221
|
Xie J, Duan X, Feng L, Yan Y, Wang F, Dong H, Jia R, Zhou Q. Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses. CHEMOSPHERE 2019; 219:305-312. [PMID: 30543966 DOI: 10.1016/j.chemosphere.2018.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/10/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Extensive studies on anaerobic fermentation of waste activated sludge (WAS) for volatile fatty acids (VFAs) production focused on the effects of operating parameters and pretreatment methods, and little information is available for those of organic pollutants which were absorbed on sludge. The influence of sulfadiazine (SDZ), a typical antibiotic pollutant in WAS, on VFAs production during anaerobic fermentation was investigated in this study. The accumulation of VFAs was remarkably affected in the presence of SDZ. When the content of SDZ was 50 mg per kilogram dry sludge the concentration of VFAs from sludge was 2032.8 mg COD/L, much higher than that of control (1540.2 mg COD/L). Mechanism investigation revealed that the content of extracellular polymeric substances (EPS) from sludge was increased due to the presence of SDZ, which provided more substrates, i.e., protein and carbohydrate, and created a favorable environment for anaerobes. The hydrolysis and acidification of WAS were stimulated by SDZ, and the functional microorganisms were advantageous to VFAs production. The activities of protease, α-glucosidase and acetate kinase were promoted when SDZ occurred, which were beneficial for hydrolysis and acidification. The effect of SDZ on pure strains further confirmed that the formation of VFAs during anaerobic fermentation was stimulated by SDZ.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yuanyuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haiqing Dong
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Renyong Jia
- Shanghai Urban Construction Design & Research Institute (Group) Co., Ltd., 3447 Dongfang Road, Shanghai, 200125, China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
222
|
Zhou Y, Marcus AK, Straka L, Eustance E, Lai YS, Xia S, Rittmann BE. Uptake of phosphate by Synechocystis sp. PCC 6803 in dark conditions: Removal driving force and modeling. CHEMOSPHERE 2019; 218:147-156. [PMID: 30471495 DOI: 10.1016/j.chemosphere.2018.11.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Rapid uptake of inorganic phosphate (Pi) by microalgae should occur through two processes operating in parallel: onto extracellular polymeric substances (EPS) and intracellular polymeric substances (IPS). Most previous studies focused only on overall Pi uptake and ignored the roles of EPS. We investigated the two-step removal of Pi by Synechocystis sp. PCC 6803 in dark conditions (i.e., without incorporation of Pi into newly synthesized biomass). We also developed a model to simulate both steps. Experimental results with Synechocystis confirmed that Pi in the bulk solution was removed by the two uptake mechanisms operating in parallel, but with different kinetics. All uptake rates decreased with time, and the Pi uptake rate by IPS was much higher than that by EPS at all times, but EPS had a larger maximum Pi-storage capacity -- 33-48 mgP/gCODEPS versus 15-17 mgP/gCODIPS. Synechocystis had a maximum Pi-storage capacity in the range of 22-28 mgP/g dry biomass. Protein in EPS and IPS played the key role for binding Pi, and biomass with higher protein content had greater Pi-storage capacity. Furthermore, biomass with low initial stored Pi had faster Pi-uptake kinetics, leading to more Pi removed from the bulk solution. This work lays the foundation for using microalgae as a means to remove Pi from polluted water and for understanding competition for Pi in microbial communities.
Collapse
Affiliation(s)
- Yun Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| | - Levi Straka
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| | - Everett Eustance
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA.
| |
Collapse
|
223
|
Huangfu X, Xu Y, Liu C, He Q, Ma J, Ma C, Huang R. A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates. CHEMOSPHERE 2019; 219:766-783. [PMID: 30572231 DOI: 10.1016/j.chemosphere.2018.12.044] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/18/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Engineered nanoparticles (ENPs) will inevitably enter wastewater treatment plants (WWTPs) due to their widespread application; thus, it is necessary to study the migration and transformation of nanoparticles in sewage treatment systems. Extracellular polymeric substances (EPSs) such as polysaccharides, proteins, nucleic acids, humic acids and other polymers are polymers released by microorganisms under certain conditions. Intracellular polymeric substances (IPSs) are microbial substances contained in the body with compositions similar to those of extracellular polymers. In this review, we summarize the characteristics of EPSs and IPSs from sewage-collecting microbial aggregates containing pure bacteria, activated sludge, granular sludge and biofilms. We also further investigate the dissolution, adsorption, aggregation, deposition, oxidation and other chemical transformation processes of nanoparticles, such as metals, metal oxides, and nonmetallic oxides. In particular, the review deeply analyzes the migration and transformation mechanisms of nanoparticles in EPS and IPS matrices, including physical, chemical, biological interactions mechanisms. Moreover, various factors, such as ionic strength, ionic valence, pH, light, oxidation-reduction potential and dissolved oxygen, influencing the interaction mechanisms are discussed. In recent years, studies on the interactions between EPSs/IPSs and nanoparticles have gradually increased, but the mechanisms of these interactions are seldom explored. Therefore, developing a systematic understanding of the migration and transformation mechanisms of ENPs is significant.
Collapse
Affiliation(s)
- Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China.
| | - Yanghui Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, China
| | - Chengxue Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| | - Ruixing Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| |
Collapse
|
224
|
Cahill B, Straka L, Maldonado Ortiz J, Krajmalnik-Brown R, Rittmann BE. Effects of light intensity on soluble microbial products produced by Synechocystis sp. PCC 6803 and associated heterotrophic communities. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
225
|
Zhang F, Yang H, Guo D, Zhang S, Chen H, Shao J. Effects of biomass pyrolysis derived wood vinegar (WVG) on extracellular polymeric substances and performances of activated sludge. BIORESOURCE TECHNOLOGY 2019; 274:25-32. [PMID: 30500760 DOI: 10.1016/j.biortech.2018.11.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
The effects of wood vinegar (WVG) on extracellular polymeric substances (EPS), and flocculation, sedimentation and dewatering performances of activated sludge were investigated in sequencing batch reactor (SBR) process. Results showed that polysaccharide (PS) and DNA were accounted for the largest and smallest proportion of EPS, respectively. With WVG injection, productions of soluble EPS (S-EPS), loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS), protein (PN), PS, and DNA were significantly increased. The optimal WVG concentration was found as 4 μl/l. The effects of WVG on different types of EPS followed an order of LB-EPS > TB-EPS > S-EPS. According to batch and long-term SBR operations, WVG could increase the biomass amount of activated sludge, which was beneficial to improve sewage treatment efficiencies. However, WVG showed negative impact on flocculation, sedimentation, and dewatering performance of activated sludge.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dabin Guo
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Shihong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing'ai Shao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
226
|
Wang H, Li X, Wang X, Ren Y. Insight into the distribution of metallic elements in membrane bioreactor: Influence of operational temperature and role of extracellular polymeric substances. J Environ Sci (China) 2019; 76:111-120. [PMID: 30528002 DOI: 10.1016/j.jes.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 06/09/2023]
Abstract
The distribution of metallic elements in a submerged membrane bioreactor (MBR) was revealed at different temperatures using inductively coupled plasma-optical emission spectrometry (ICP-OES), and the role of extracellular polymeric substances (EPS) was probed by integrating scanning electron microscopy (SEM) with confocal laser scanning microscopy (CLSM) over long-term operation. More metallic elements in the influent were captured by suspended sludge and built up in the fouling layer at lower temperature. The concentration of metallic elements in the effluent was 5.60mg/L at 10°C operational temperature, far lower than that in the influent (51.35mg/L). The total contents of metallic elements in suspended sludge and the membrane fouling layer increased to 40.20 and 52.19mg/g at 10°C compared to 35.14 and 32.45mg/g at 30°C, and were dominated by the organically bound fraction. The EPS contents in suspended sludge and membrane fouling layer sharply increased to 37.88 and 101.51mg/g at 10°C, compared to 16.87 and 30.03mg/g at 30°C. The increase in EPS content at lower temperature was responsible for the deposition of more metallic ions. The strong bridging between EPS and metallic elements at lower temperature enhanced the compactness of the fouling layer and further decreased membrane flux. This was helpful for understanding the mechanism of membrane fouling at different operational temperatures and the role of EPS, and also of significance for the design of cleaning strategies for fouled membranes after long-term operation.
Collapse
Affiliation(s)
- He Wang
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China.
| | - Xinhua Wang
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Yueping Ren
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| |
Collapse
|
227
|
Du R, Cao S, Li B, Zhang H, Wang S, Peng Y. Synergy of partial-denitrification and anammox in continuously fed upflow sludge blanket reactor for simultaneous nitrate and ammonia removal at room temperature. BIORESOURCE TECHNOLOGY 2019; 274:386-394. [PMID: 30551041 DOI: 10.1016/j.biortech.2018.11.101] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
In this study, the synergy of high nitrite (NO2--N) accumulated partial-denitrification (PD) and anammox in a continuously fed upflow anaerobic sludge blanket (UASB) reactor was verified for simultaneous nitrate (NO3--N) and ammonia (NH4+-N) removal. A 225-days operation demonstrated that the relatively low total nitrogen (TN) concentration of 6.56 mg/L in effluent could be achieved with influent NH4+-N and NO3--N both of 30 mg/L, resulting in a high TN removal of 89.1% at 17.5 °C. Batch tests revealed that the NO3--N-to-NO2--N transformation ratio (NTR) of PD stabilized at 90% during the whole operation, which played a crucial role in the desirable performance. However, the PD and anammox activity was negatively impacted by the limited mass transfer with serious sludge flotation. Significantly, hydrodynamic mixing optimization by adjusting liquid recirculation ratio effectively enhanced the nitrogen removal. Moreover, protein composition and tightly-bound structure of EPS played an important role in the sludge stability.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baikun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Hanyu Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
228
|
Kong Z, Li L, Li YY. Long-term performance of UASB in treating N, N-dimethylformamide-containing wastewater with a rapid start-up by inoculating mixed sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1141-1150. [PMID: 30340260 DOI: 10.1016/j.scitotenv.2018.08.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Wastewater containing N, N-dimethylformamide (DMF) was treated by artificially mixing the anaerobic granular sludge (AGS) with DMF-degrading activated sludge (DAS) in this study. An up-flow anaerobic sludge blanket (UASB) successfully treated wastewater containing approximately 2000 mg L-1 DMF during an operation period of 215 days. An inoculation of DAS brought about remarkable results: a rapid start-up with effective DMF methanogenic degradation on the first day, and under a low organic loading rate (OLR) of 1.63-4.22 g COD L-1 day-1, the UASB maintained excellent DMF removal efficiency at over 96% along with the high methane production rate (MPR). However, when the OLR increased to 9.24 g COD L-1 day-1, DMF removal efficiency and MPR dropped to 47.36% and 1.05 L L-1 day-1. A further increase in the OLR to 13.25 g COD L-1 day-1 resulted in a sharp deterioration in the DMF-degrading ability, at merely 19.19% and a low MPR of 0.38 L L-1 day-1. The excessive elevation of OLR resulted in the insufficient hydrolysis of the DMF, and the further weakening of the conversion from DMF to intermediates and an acceleration the decaying of DMF-hydrolyzing bacteria. Methane-producing archaea was starved of intermediates when hydrolysis was inadequate. Since the DAS can be massively domesticated, and the OLR should be kept lower than 6.17 g COD L-1 day-1, the timely replenishing of the DAS to the UASB may be a solution to maintain a stable and effective DMF hydrolysis for long-term operation. The results of this study provide insight for the development of a new concept and an improved method for the effective treatment of wastewater containing degradation-resistant organics.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
229
|
Yang Y, Qiao S, Jin R, Zhou J, Quan X. Novel Anaerobic Electrochemical Membrane Bioreactor with a CNTs Hollow Fiber Membrane Cathode to Mitigate Membrane Fouling and Enhance Energy Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1014-1021. [PMID: 30540452 DOI: 10.1021/acs.est.8b05186] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel anaerobic treatment system that combines the impact of applied voltage with membrane filtration over carbon nanotubes hollow fiber membranes (CNTs-HFMs) was developed at low temperature (15-20 °C) to mitigate membrane fouling, treat wastewater, and recover energy (CH4). Herein, electro-assisted CNTs-HFMs served a dual function as the cathode and membrane filtration. In contrast with other two anaerobic membrane bioreactors (AnMBRs; polyvinylidene fluoride hollow fiber membranes and CNTs-HFMs without electro-assistance), the CNTs-HFMs with electro-assistance (-1.2 V applied voltage) had slower transmembrane pressure (TMP) increasing rates and better TMP recovery with a more than 95% effluent chemical oxygen demand (COD) removal rate during an almost 100-day operation period. This result can be attributed to the presence of an electrostatic repulsion force pushing pollutants (mainly extracellular polymeric substances, EPS) away from the membrane surface, thereby hindering the formation of a gel layer and mitigating membrane pore blocking in the anaerobic electro-assisted membrane bioreactor (AnEMBR). Due to the almost two-times higher Methanomicrobia content and more H2-utilizing methanogens than the other two AnMBRs, approximately more than 111.12 mL/gVSS d of CH4 was obtained in the AnEMBR with electro-assistance. This work provides an efficient strategy for mitigating membrane fouling, improving water quality, and enhancing CH4 yield.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , P.R. China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , P.R. China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , P.R. China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , P.R. China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , P.R. China
| |
Collapse
|
230
|
Vachoud L, Ruiz E, Delalonde M, Wisniewski C. How the nature of the compounds present in solid and liquid compartments of activated sludge impact its rheological characteristics. ENVIRONMENTAL TECHNOLOGY 2019; 40:60-71. [PMID: 28893149 DOI: 10.1080/09593330.2017.1378729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Although the role of the solids concentration on the rheological characteristics of sludge is greatly documented in the literature, few studies focused on the impact of the nature of these solids. How the nature of solutes can modify the solid-liquid interactions and thus the rheological properties of the sludge are also slightly explored. Thus, the objective of this study is to investigate the rheological characteristics of activated sludge in relation with the nature of the compounds present in the solid and liquid phases. Rheological measurements were carried out on raw sludge and on sludge modified by mechanical actions and/or addition of solids or solutes. The rheological properties of raw and modified sludges were measured according to flow and dynamic measurements. Results demonstrated that if suspended solid concentration affected sludge rheological parameters, the nature of the solids was quite of importance. The key role of nature and molecular weight of solutes was also highlighted. The results contribute to a better knowledge of the relationship between sludge composition and its rheological properties, which is useful for the optimization of sludge mixing, pumping or aeration and also for the improvement of sludge dewatering, notably by a relevant choice of adjuvant.
Collapse
Affiliation(s)
- L Vachoud
- a UMR QualiSud, UFR des Sciences Pharmaceutiques et Biologiques , Université de Montpellier , Montpellier Cedex 5 , France
| | - E Ruiz
- a UMR QualiSud, UFR des Sciences Pharmaceutiques et Biologiques , Université de Montpellier , Montpellier Cedex 5 , France
| | - M Delalonde
- a UMR QualiSud, UFR des Sciences Pharmaceutiques et Biologiques , Université de Montpellier , Montpellier Cedex 5 , France
| | - C Wisniewski
- a UMR QualiSud, UFR des Sciences Pharmaceutiques et Biologiques , Université de Montpellier , Montpellier Cedex 5 , France
| |
Collapse
|
231
|
Ferrer-Polonio E, White K, Mendoza-Roca JA, Bes-Piá A. The role of the operating parameters of SBR systems on the SMP production and on membrane fouling reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:205-212. [PMID: 30223179 DOI: 10.1016/j.jenvman.2018.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
In this work, six identical laboratory SBRs treating simulated wastewater were operated in parallel studying the effect of three food-to-microorganisms ratio (F/M ratio; 0.20, 0.35 and 0.50 kg COD·kg MLSS-1·d-1), two hydraulic retention times (HRT; 24 and 16 h) and two values of number of cycles per day (3 and 6). Influence of these operational parameters on the SMPs production and reactor performance, were studied. Results indicated that the highest F/M ratio, HRT and cycles/day produced 72.7% more of SMP. In a second experimental series, biological process yielding the maximal and the minimal SMPs production were replicated and both mixed liquors (ML) and treated effluents were ultrafiltrated. The flux decay in the conditions of minimum and maximum SMPs production were 52% and 72%, when the SBRs effluents were ultrafiltrated while no significant differences in the ultrafiltration of ML were found. In terms of permeability recovery, this was lower for the case of the ML (73% and 49% of initial permeability recovered for effluent and ML ultrafiltration, respectively).
Collapse
Affiliation(s)
- E Ferrer-Polonio
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain.
| | - K White
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain
| | - J A Mendoza-Roca
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain
| | - A Bes-Piá
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain
| |
Collapse
|
232
|
Petrovich ML, Rosenthal AF, Griffin JS, Wells GF. Spatially resolved abundances of antibiotic resistance genes and intI1 in wastewater treatment biofilms. Biotechnol Bioeng 2018; 116:543-554. [PMID: 30512194 DOI: 10.1002/bit.26887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022]
Abstract
Attached growth bioprocesses that use biofilms to remove organic matter or nutrients from wastewater are known to harbor antibiotic resistance genes (ARGs). Biofilms in these processes are spatially heterogeneous, but little is known about depth stratification of ARGs in complex, mixed culture biofilms. To address this knowledge gap, we used an experimental approach combining cryosectioning and quantitative polymerase chain reaction to quantify the spatial distribution of three ARGs (sul1, ermB, and qnrS) and the class 1 integron-integrase gene intI1 in biofilms from a lab-scale rotating annular reactor fed with synthetic wastewater. We also used high throughput 16S ribosomal RNA (rRNA) gene sequencing to characterize community structure with depth in biofilms. The ARG sul1 and the integron-integrase gene intI1 were found in higher abundances in upper layers of biofilm near the fluid-biofilm interface than in lower layers and exhibited significant correlations between the distance from substratum and gene abundances. The genes ermB and qnrS were present in comparatively low relative abundances. Microbial community structure varied significantly by date of sampling and distance from the substratum. These findings highlight the genetic and taxonomic heterogeneity with distance from substratum in wastewater treatment biofilms and show that sul1 and intI1 are particularly abundant near fluid-biofilm interfaces where cells are most likely to detach and flow into downstream portions of treatment systems and can ultimately be released into the environment through effluent.
Collapse
Affiliation(s)
- Morgan L Petrovich
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois
| | - Alex F Rosenthal
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois
| | - James S Griffin
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|
233
|
Han F, Wei D, Ngo HH, Guo W, Xu W, Du B, Wei Q. Performance, microbial community and fluorescent characteristic of microbial products in a solid-phase denitrification biofilm reactor for WWTP effluent treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 227:375-385. [PMID: 30212684 DOI: 10.1016/j.jenvman.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/24/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Microbial products, i.e. extracellular polymeric substance (EPS) and soluble microbial product (SMP), have a significant correlation with microbial activity of biologically based systems. In present study, the spectral characteristics of two kinds of microbial products were comprehensively evaluated in a solid-phase denitrification biofilm reactor for WWTP effluent treatment by using poly (butylene succinate) (PBS) as carbon source. After the achievement of PBS-biofilm, nitrate and total nitrogen removal efficiencies were high of 97.39 ± 1.24% and 96.38 ± 1.1%, respectively. The contents of protein and polysaccharide were changed different degrees in both LB-EPS and TB-EPS. Excitation-emission matrix (EEM) implied that protein-like substances played a significant role in the formation of PBS-biofilm. High-throughput sequencing result implied that the proportion of denitrifying bacteria, including Simplicispira, Dechloromonas, Diaphorobacter, Desulfovibrio, increased to 9.2%, 7.4%, 4.8% and 3.6% in PBS-biofilm system, respectively. According to EEM-PARAFAC, two components were identified from SMP samples, including protein-like substances for component 1 and humic-like and fulvic acid-like substances for component 2, respectively. Moreover, the fluorescent scores of two components expressed significant different trends to reaction time. Gas chromatography-mass spectrometer (GC-MS) implied that some new organic matters were produced in the effluent of SP-DBR due to biopolymer degradation and denitrification processes. The results could provide a new insight about the formation and stability of solid-phase denitrification PBS-biofilm via the point of microbial products.
Collapse
Affiliation(s)
- Fei Han
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
234
|
Wei D, Ngo HH, Guo W, Xu W, Du B, Wei Q. Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (Anammox): Achievement, performance and microbial community. BIORESOURCE TECHNOLOGY 2018; 269:25-31. [PMID: 30149251 DOI: 10.1016/j.biortech.2018.08.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Partial nitrification granular sludge was successfully cultivated in a sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation (Anammox) through shortening settling time. After 250-days operation, the effluent NH4+-N and NO2--N concentrations were average at 277.5 and 280.5 mg/L with nitrite accumulation rate of 87.8%, making it as an ideal influent for Anammox. Simultaneous free ammonia (FA) and free nitrous acid (FNA) played major inhibitory roles on the activity of nitrite oxidizing bacteria (NOB). The MLSS and SVI30 of partial nitrification reactor were 14.6 g/L and 25.0 mL/g, respectively. Polysaccharide (PS) and protein (PN) amounts in extracellular polymeric substances (EPS) from granular sludge were about 1.3 and 2.8 times higher than from seed sludge. High-throughput pyrosequencing results indicated that Nitrosomonas affiliated to the ammonia oxidizing bacteria (AOB) was the predominant group with a proportion of 24.1% in the partial nitrification system.
Collapse
Affiliation(s)
- Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
235
|
Chen Z, Xu J, Hu D, Cui Y, Wu P, Ge H, Jia F, Xiao T, Li X, Su H, Wang H, Zhang Y. Performance and kinetic model of degradation on treating pharmaceutical solvent wastewater at psychrophilic condition by a pilot-scale anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2018; 269:319-328. [PMID: 30195224 DOI: 10.1016/j.biortech.2018.08.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
A pilot-scale anaerobic membrane bioreactor (AnMBR) was operated for 435 days in this study, aiming to treat pharmaceutical solvent wastewater containing m-Cresol (MC), isopropanol (IPA) and N,N-Dimethylformamide (DMF) pollutants at different temperatures of 35 ± 3 °C, 25 ± 3 °C, 15 ± 3 °C and 25 ± 3 °C, respectively. The reactor reached average total removal efficiencies of about 96%, 97.2% and 98% of MC, IPA and DMF at psychrophilic condition (15 ± 3 °C). Higher physical removal rate was obtained at 15 ± 3 °C due to the important contribution of membrane filtration. At this stage, the biogas production, methane content and specific methanogenic activity and extracellular polymeric substances of suspended sludge were observed with the lowest level. Moreover, the kinetic models for solvent degradation were established at different temperatures, results showed the smaller maximum specific substrate degradation rate of MC and IPA, besides, the lowest degradation rate of three solvents were obtained at 15 ± 3 °C.
Collapse
Affiliation(s)
- Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; School of Environmental and Municipal Engineering, Jilin Jianzhu University, Xincheng Street 5088, ChangChun 130118, China
| | - Jiao Xu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Dongxue Hu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Pan Wu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Hui Ge
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Fuquan Jia
- School of Environmental and Municipal Engineering, Jilin Jianzhu University, Xincheng Street 5088, ChangChun 130118, China
| | - Tingting Xiao
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Xue Li
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Haiyan Su
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Haixu Wang
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Ying Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, 59 Mucai Street, HarBin 150030, China
| |
Collapse
|
236
|
Lai H, Fang H, Huang L, He G, Reible D. A review on sediment bioflocculation: Dynamics, influencing factors and modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1184-1200. [PMID: 30045500 DOI: 10.1016/j.scitotenv.2018.06.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
Sediment in a water column provides excellent substratum for microorganism colonization, and biological processes would alter the physical and chemical of sediment, resulting in substantial changes in sediment dynamics. The flocculation of sediment with biological processes are defined as sediment bioflocculation, which has been ubiquitously observed across aquatic ecosystems, activated sludge plants and bioflocculant applications, as a result of various processes involving particle aggregation and breakage under the complex effects of microorganisms and their metabolic products (e.g., extracellular polymeric substances EPS). EPS are complex high-molecular-weight mixtures of polymers, which are the primary components that hold microbial aggregates together by acting as a biological glue. Several mechanistic aggregation theories such as the alginate theory, adsorption bridging theory, divalent cation bridging theory, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and a number of influencing factors (e.g., sediment properties, microbial activity, EPS quantities and components, and external environment conditions) have been proposed to elucidate the role of microorganisms and EPS in sediment aggregation, promoting the investigation of the sediment bioflocculation evolution and kinetics models. However, due to the complex interrelationships of multiple physical, chemical, and biological processes and the incomprehensive knowledge of microorganisms and EPS, considerable research should be further conducted to fully understand their precise roles in the sediment bioflocculation process. In this study, a review of dynamic characterizations, mechanism, influencing factors and models of sediment bioflocculation are given to obtain a more comprehensive understanding of sediment bioflocculation dynamics.
Collapse
Affiliation(s)
- Haojie Lai
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Hongwei Fang
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
| | - Lei Huang
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
| | - Guojian He
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Danny Reible
- Department of Civil & Environmental Engineering, Texas Tech University, Lubbock, TX 79409-1023, USA
| |
Collapse
|
237
|
Bobade V, Evans G, Baudez JC, Eshtiaghi N. Impact of gas injection on physicochemical properties of waste activated sludge: A linear relationship between the change of viscoelastic properties and the change of other physiochemical properties. WATER RESEARCH 2018; 144:246-253. [PMID: 30032021 DOI: 10.1016/j.watres.2018.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Aeration process in the waste activated sludge treatment accounts for 75% of total energy consumption of the treatment plant. The main purpose of the aeration process is to enhance the biodegradation of the liquid waste. Gas bubbles, rising through the liquid, improves mixing, reduces inhomogeneities in the treatment tank and enhances biological reactions. Thus aeration intensity and several physicochemical properties of feed such as viscosity, total suspended solids, and surface charge play a significant role in the biological reaction. This paper examines the impact of the gas injection rate on some physicochemical properties of waste activated sludge namely rheological properties, suspended solids, soluble COD (sCOD), surface tension, and zeta potential. The impact of four different gas flow rates on four different concentrations of waste activated sludge properties was analysed. The results showed that in linear viscoelastic regime the viscous and elastic modulus decreases linearly with an increase in gas flow rate. The amount of stress imposed by gas injection also showed a direct relationship with gas velocity. Gas injection also showed a substantial impact on soluble COD, suspended solids, and zeta potential. Additionally, a linear relationship was observed between the percentage change in the above mentioned physical properties and stress imposed by gas injection. These results confirm that gas injection produces additional shear impacting sludge physicochemical properties and therefore changes its rheological behaviour. The extra stress induced by gas injection can be predicted using a simple model based on sludge concentration and gas velocity.
Collapse
Affiliation(s)
- Veena Bobade
- RMIT University, School of Civil, Environmental and Chemical Engineering, 124 La Trobe St, Melbourne, Vic 3000, Australia
| | - Geoffery Evans
- School of Chemical Engineering, The University of Newcastle, Australia
| | - Jean Christophe Baudez
- LIST, Environmental Research and Innovation Department (ERIN), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nicky Eshtiaghi
- RMIT University, School of Civil, Environmental and Chemical Engineering, 124 La Trobe St, Melbourne, Vic 3000, Australia.
| |
Collapse
|
238
|
Bordoloi A, Gostomski PA. Fate of degraded pollutants in waste gas biofiltration: An overview of carbon end-points. Biotechnol Adv 2018; 37:579-588. [PMID: 30308222 DOI: 10.1016/j.biotechadv.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
The fate of the carbon from degraded pollutants in biofiltration is not well understood. The issue of missing carbon needs to be addressed quantitatively to better understand and model biofilter performance. Elucidating the various carbon end-points in various phases should contribute to the fundamental understanding of the degradation kinetics and metabolic pathways as a function of various environmental parameters. This article reviews the implications of key environmental parameters on the carbon end-points. Various studies are evaluated reporting carbon recovery over a multitude of parameters and operational conditions with respect to the analytical measurements and reported distribution of the carbon end-points.
Collapse
Affiliation(s)
- Achinta Bordoloi
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand
| | - Peter A Gostomski
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand.
| |
Collapse
|
239
|
Assessment of microbial products in the biosorption process of Cu(II) onto aerobic granular sludge: Extracellular polymeric substances contribution and soluble microbial products release. J Colloid Interface Sci 2018; 527:87-94. [DOI: 10.1016/j.jcis.2018.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
|
240
|
Liu W, Jia H, Wang J, Zhang H, Xin C, Zhang Y. Microbial fuel cell and membrane bioreactor coupling system: recent trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23631-23644. [PMID: 29971742 DOI: 10.1007/s11356-018-2656-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Membrane bioreactor (MBR) and microbial fuel cell (MFC) are new technologies based on microbial process. MBR takes separation process as the core to achieve the high efficient separation and enrichment the beneficiation of microbes during the biological treatment. MFC is a novel technology based on electrochemical process to realize the mutual conversion between biomass energy and electric energy, in order to solve the problems of serious membrane fouling and low efficiency of denitrification in membrane bioreactor, the low power generation efficiency, and unavailability of bioelectric energy of MFC. In recent years, MFC-MBR coupling system emerged. It can effectively mitigate the membrane fouling and reduce the excess sludge production. Simultaneously, the electricity can be used effectively. The new coupling system has good prospects for development. In this paper, we summarized the research progresses of the two kinds of coupling systems in recent years and analyzed the coupling structure and forms. Based on the above, the future development fields of the MFC-MBR coupling system were prospected.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Environmental and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Hui Jia
- School of Environmental and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China.
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Jie Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China.
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hongwei Zhang
- School of Environmental and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Changchun Xin
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yingjie Zhang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|
241
|
The Impact of Aluminium Salt Dosing for Chemical Phosphorus Removal on the Settleability of Activated Sludge. ENVIRONMENTS 2018. [DOI: 10.3390/environments5080088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of metal salts like aluminium in the precipitation of phosphorus in activated sludge plants has increased considerably in recent years due to the need to achieve tighter discharge consents for phosphorus in treated wastewater effluent. The impact of aluminium salt (Al3+) dosing on the settleability of activated sludge as a function of zone settling velocity (ZSV) and stirred specific volume index (SSVI) were investigated in batch settleability tests over a three-year period. The results showed that ZSV increased with increasing dose of aluminium salt as SSVI decreased. This trend was observed for dosing concentrations of less than 100 mg/L. At a dose concentration >100 mg/L, the trend was reversed as ZSV decreased and SSVI increased. At dose concentrations of <100 mg/L, Al3+ helped in the bioaggregation of dispersed activated sludge flocs, thereby improving settleability. The surface morphology from the scanning electron microscope (SEM) images indicated that the initial potential of interfloc bridging, open floc formation, and spindly bulking noticed in the undosed activated sludge flocs were remarkably reduced as the flocs became more compacted after Al3+ treatment. At >100 mg/L of Al3+, the sludge settleability started to disintegrate due mainly to surface charge reversal linked to the formation of aluminium hydroxides and the resultant disintegration of the activated sludge floc structure.
Collapse
|
242
|
High-Rate Contact Stabilization Process-Coupled Membrane Bioreactor for Maximal Recovery of Organics from Municipal Wastewater. WATER 2018. [DOI: 10.3390/w10070878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
243
|
Han JL, Xia X, Haider MR, Jiang WL, Tao Y, Liu MJ, Wang HC, Ding YC, Hou YN, Cheng HY, Wang AJ. Functional graphene oxide membrane preparation for organics/inorganic salts mixture separation aiming at advanced treatment of refractory wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:261-270. [PMID: 29438935 DOI: 10.1016/j.scitotenv.2018.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/04/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Some refractory organic matters or soluble microbial products remained in the effluents of refractory organic wastewater after biological secondary treatment and need an advanced treatment before final disposal. Graphene oxide (GO) was known to have potential to be the next generation membrane material. The functional organics/inorganic salts separation GO membrane preparation and application in wastewater advanced treatment could reduce energy or chemicals consumption and avoid organics/inorganic salts mixed concentrate waste problems after nanofiltration or reverse osmosis. In this study, we developed a novelty GO membrane aiming at advanced purification of organic matters in the secondary effluents of refractory organic wastewater and avoiding the organics/inorganic salts mixed concentrate waste problem. The influence of preparation conditions including pore size of support membrane, the number of GO layers and the applied pressure was investigated. It was found that for organics/inorganic salts mixture separation membrane preparation, the rejection and flux would achieve balance for the support membrane at a pore size of ~0.1μm and the number of GO layers of has an optimization value (~10 layers). A higher assemble pressure (~10bar) contributed to the acquisition of a higher rejection efficiency and lower roughness membrane. This as prepared GO membrane was applied to practical secondary effluent of a chemical synthesis pharmaceuticals wastewater. A good organic matter rejection efficiency (76%) and limited salt separation (<14%) was finally obtained. These results can promote the practical application of GO membrane and the resourcelized treatment of industrial wastewater.
Collapse
Affiliation(s)
- Jing-Long Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xue Xia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Muhammad Rizwan Haider
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wen-Li Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Tao
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Mei-Jun Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hong-Cheng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang-Cheng Ding
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ya-Nan Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hao-Yi Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ai-Jie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
244
|
Yang X, Li Z, Xiao H, Wang N, Li Y, Xu X, Chen Z, Tan H, Li J. A Universal and Ultrastable Mineralization Coating Bioinspired from Biofilms. ADVANCED FUNCTIONAL MATERIALS 2018. [DOI: 10.1002/adfm.201802730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiao Yang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| | - Zhenhua Li
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Hong Xiao
- Department of Pain Management; West China Hospital; Sichuan University; No. 37, GuoXue Xiang Chengdu 610041 P. R. China
| | - Ning Wang
- Regenerative Medicine Research Center; West China Hospital; Sichuan University; No. 37, GuoXue Xiang Chengdu 61004 P. R. China
| | - Yanpu Li
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Hong Tan
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; No. 24, South Section One of Yinhuan Road Chengdu 610065 P. R. China
| |
Collapse
|
245
|
Song X, Xie M, Li Y, Li G, Luo W. Salinity build-up in osmotic membrane bioreactors: Causes, impacts, and potential cures. BIORESOURCE TECHNOLOGY 2018; 257:301-310. [PMID: 29500063 DOI: 10.1016/j.biortech.2018.02.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Osmotic membrane bioreactor (OMBR), which integrates forward osmosis (FO) with biological treatment, has been developed to advance wastewater treatment and reuse. OMBR is superior to conventional MBR, particularly in terms of higher effluent quality, lower membrane fouling propensity, and higher membrane fouling reversibility. Nevertheless, advancement and future deployment of OMBR are hindered by salinity build-up in the bioreactor (e.g., up to 50 mS/cm indicated by the mixed liquor conductivity), due to high salt rejection of the FO membrane and reverse diffusion of the draw solution. This review comprehensively elucidates the relative significance of these two mechanisms towards salinity build-up and its associated effects in OMBR operation. Recently proposed strategies to mitigate salinity build-up in OMBR are evaluated and compared to highlight their potential in practical applications. In addition, the complementarity of system optimization and modification to effectively manage salinity build-up are recommended for sustainable OMBR development.
Collapse
Affiliation(s)
- Xiaoye Song
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Yun Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
246
|
Yang L, Xiao S, Luan T, Tam NFY. Overproduction of microbial extracellular polymeric substances in subtropical intertidal sediments in response to endocrine disrupting chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:673-682. [PMID: 29272836 DOI: 10.1016/j.scitotenv.2017.12.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Microorganisms and their extracellular polymeric substances (EPS) in sediments are important in sediment stabilization and the fate of pollutants. However, how toxic organic pollutants affect bacteria and EPS in sediments, particularly in subtropical intertidal zones is poorly known. The present study aims to investigate the bacterial abundance and related EPS in simulated intertidal sandflat and mangrove sediments under the stress of endocrine disrupting chemicals (EDCs). Results showed that the temporal changes of the bacterial number in both sandflat and mangrove sediments were similar, increased from days 0 to 56 then became steady during the 84-days incubation. Bacteria exhibited an important role in the production of high molecular weight (HMW) EPS protein and the degradation of the low molecular weight (LMW) EPS protein. During incubation, the EPS polysaccharides changed from a colloidal-LMW fraction at the beginning to a more complex-HMW fraction at the end of the experiment. The increases in the concentration of HMW polysaccharides might contribute to sediment stabilization. Among different spiked EDCs, nonylphenol (NP) and 17α-ethinylestradiol (EE2) tended to accumulate in both sandflat and mangrove sediments and posed stresses to bacterial growth, especially the latter sediment. The persistent EDCs promoted a higher production of EPS polysaccharides and proteins in both sediments when compared to the respective control, but the EPS in the sandflat sediment was mainly in the colloidal fraction while the bound fraction was more abundant in the mangrove sediment. The present results enhance our understanding of the effects of EDCs on sediment biofilms in intertidal systems. This study also demonstrates the significance of EPS polysaccharides and proteins in sediment stabilization and provides a fundamental basis for future microbiology studies.
Collapse
Affiliation(s)
- Lihua Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Department of Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Sirui Xiao
- Department of Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nora F Y Tam
- Department of Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
247
|
Fouling control mechanisms in filtrating natural organic matters by electro-enhanced carbon nanotubes hollow fiber membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
248
|
Modin O. A mathematical model of aerobic methane oxidation coupled to denitrification. ENVIRONMENTAL TECHNOLOGY 2018; 39:1217-1225. [PMID: 28443363 DOI: 10.1080/09593330.2017.1323961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Aerobic methanotrophic bacteria use methane as their only source of energy and carbon. They release organic compounds that can serve as electron donors for co-existing denitrifiers. This interaction between methanotrophs and denitrifiers is known to contribute to nitrogen losses in natural environments and has also been exploited by researchers for denitrification of nitrate-contaminated wastewater. The purpose of this study was to develop a mathematical model describing aerobic methane oxidation coupled to denitrification in suspended-growth reactors. The model considered the activities of three microbial groups: aerobic methanotrophs, facultative methylotrophs, and facultative heterotrophs. The model was tested against data from the scientific literature and used to explore the effects of the oxygen mass transfer coefficient, the solids retention time, and the fraction methane in the feed gas on nitrate removal. The fraction of methane in the feed gas was found to be critical for the nitrate removal rate. A value of about 15% in air was optimal. A lower methane fraction led to excess oxygen, which was detrimental for denitrification. A higher fraction led to oxygen-limitation, which restricted the growth rate of methanotrophs in the reactor.
Collapse
Affiliation(s)
- Oskar Modin
- a Division of Water Environment Technology, Department of Architecture and Civil Engineering , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
249
|
Azari M, Le AV, Lübken M, Denecke M. Model-based analysis of microbial consortia and microbial products in an anammox biofilm reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:1951-1959. [PMID: 29676752 DOI: 10.2166/wst.2018.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A mathematical model for a granular biofilm reactor for leachate treatment was validated by long-term measured data to investigate the mechanisms and drivers influencing biological nitrogen removal and microbial consortia dynamics. The proposed model, based on Activated Sludge Model (ASM1), included anaerobic ammonium oxidation (anammox), nitrifying and heterotrophic denitrifying bacteria which can attach and grow on granular activated carbon (GAC) particles. Two kinetic descriptions for the model were proposed: with and without soluble microbial products (SMP) and extracellular polymeric substance (EPS). The model accuracy was checked using recorded total inorganic nitrogen concentrations in the effluent and estimated relative abundance of active bacteria using quantitative fluorescence in-situ hybridization (qFISH). Results suggested that the model with EPS kinetics fits better for the relative abundance of anammox bacteria and nitrifying bacteria compared to the model without EPS. The model with EPS and SMP confirms that the growth and existence of heterotrophs in anammox biofilm systems slightly increased due to including the kinetics of SMP production in the model. During the one-year simulation period, the fractions of autotrophs and EPS in the biomass were almost stable but the fraction of heterotrophs decreased which is correlated with the reduction in nitrogen surface loading on the biofilm.
Collapse
Affiliation(s)
- M Azari
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, 45141 Essen, Germany E-mail: ; Contributed equally to this work
| | - A V Le
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, 45141 Essen, Germany E-mail: ; Contributed equally to this work
| | - M Lübken
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraβe 150, 44801 Bochum, Germany
| | - M Denecke
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, 45141 Essen, Germany E-mail:
| |
Collapse
|
250
|
Zhao Y, Feng Y, Li J, Guo Y, Chen L, Liu S. Insight into the Aggregation Capacity of Anammox Consortia during Reactor Start-Up. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3685-3695. [PMID: 29505708 DOI: 10.1021/acs.est.7b06553] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Anammox aggregates have been extensively observed in high-efficiency nitrogen-removal reactors, yet the variation and inherent cause of its aggregation capacity related to reactor operation are still unknown. Here, we used microbial detection, metabolomics, extended Derjaguin-Landau-Verwey-Overbeek theory, and multivariate statistical analysis to address this issue. The aggregation capacity of anammox consortia varied periodically during reactor operation, which was determined by the hydrophobic force and the ratio of extracellular protein (PN) to extracellular polysaccharides (PS). Fundamentally, it related to the variation of polysaccharides degradation bacteria abundance and the discrepancy of consortia metabolism. Specifically, the distinguishable up-regulation of the amino acids Phe, Leu, Ala, Thr, Gly, Glu, and Val potentially contributed to the high biosynthesis of extracellular PN. Together with the reduced extracellular PS production that was regulated via the uridine diphosphate (UDP)- N-acetyl-d-glucosamine and UDP- N-acetyl-d-galactosamine pathways, the elevated extracellular PN-to-PS ratio resulted in the obviously increased extracellular hydrophobicity and aggregation capacity. Additionally, the overtly enriched phosphatidylethanolamine biosynthesis pathway was also vital to increasing extracellular hydrophobicity to accelerate aggregation. Understanding aggregation capacity variation is useful for advancing anammox aggregation for its application in wastewater treatment.
Collapse
Affiliation(s)
- Yunpeng Zhao
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
- Key Laboratory of Water and Sediment Sciences , Ministry of Education of China , Beijing 100871 , China
| | - Ying Feng
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
- Key Laboratory of Water and Sediment Sciences , Ministry of Education of China , Beijing 100871 , China
| | - Jianqi Li
- Key Laboratory of Water and Sediment Sciences , Ministry of Education of China , Beijing 100871 , China
- School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yongzhao Guo
- Key Laboratory of Water and Sediment Sciences , Ministry of Education of China , Beijing 100871 , China
- School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Liming Chen
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
- Key Laboratory of Water and Sediment Sciences , Ministry of Education of China , Beijing 100871 , China
| | - Sitong Liu
- Department of Environmental Engineering , Peking University , Beijing 100871 , China
- Key Laboratory of Water and Sediment Sciences , Ministry of Education of China , Beijing 100871 , China
| |
Collapse
|