201
|
Kothari A, Lachowiec J. Roles of Brassinosteroids in Mitigating Heat Stress Damage in Cereal Crops. Int J Mol Sci 2021; 22:2706. [PMID: 33800127 PMCID: PMC7962182 DOI: 10.3390/ijms22052706] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
Heat stress causes huge losses in the yield of cereal crops. Temperature influences the rate of plant metabolic and developmental processes that ultimately determine the production of grains, with high temperatures causing a reduction in grain yield and quality. To ensure continued food security, the tolerance of high temperature is rapidly becoming necessary. Brassinosteroids (BR) are a class of plant hormones that impact tolerance to various biotic and abiotic stresses and regulate cereal growth and fertility. Fine-tuning the action of BR has the potential to increase cereals' tolerance and acclimation to heat stress and maintain yields. Mechanistically, exogenous applications of BR protect yields through amplifying responses to heat stress and rescuing the expression of growth promoters. Varied BR compounds and differential signaling mechanisms across cereals point to a diversity of mechanisms that can be leveraged to mitigate heat stress. Further, hormone transport and BR interaction with other molecules in plants may be critical to utilizing BR as protective agrochemicals against heat stress. Understanding the interplay between heat stress responses, growth processes and hormone signaling may lead us to a comprehensive dogma of how to tune BR application for optimizing cereal growth under challenging environments in the field.
Collapse
Affiliation(s)
| | - Jennifer Lachowiec
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
202
|
Hao N, Zou X, Lin X, Cai R, Xiao W, Tong T, Yin H, Sun A, Guo X. LecRK-Ⅷ.2 mediates the cross-talk between sugar and brassinosteroid during hypocotyl elongation in Arabidopsis. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
203
|
Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci 2021; 78:2641-2664. [PMID: 33452901 PMCID: PMC8004507 DOI: 10.1007/s00018-020-03723-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.
Collapse
Affiliation(s)
- Dipan Roy
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
204
|
Wang L, Liu J, Shen Y, Pu R, Hou M, Wei Q, Zhang X, Li G, Ren H, Wu G. Brassinosteroids synthesised by CYP85A/A1 but not CYP85A2 function via a BRI1-like receptor but not via BRI1 in Picea abies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1748-1763. [PMID: 33247718 DOI: 10.1093/jxb/eraa557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) are essential plant hormones. In angiosperms, brassinolide and castasterone, the first and second most active BRs, respectively, are synthesised by CYP85A2 and CYP85A/A1, respectively. BRs in angiosperms function through an essential receptor, BR Insensitive 1 (BRI1). In addition, some angiosperms also have non-essential BRI1-like 1/3 (BRL1/3). In conifers, BRs promote seed germination under drought stress; however, how BRs function in gymnosperms is unknown. In this study, we performed functional complementation of BR biosynthesis and receptor genes from Picea abies with respective Arabidopsis mutants. We found that P. abies possessed functional PaCYP85A and PaBRL1 but not PaCYP85A2 or PaBRI1, and this results in weak BR signaling, and both PaCYP85A and PaBRL1 were abundantly expressed. However, neither BR treatment of P. abies seedlings nor expression of PaBRL1 in the Arabidopsis Atbri1 mutant promoted plant height, despite the fact that BR-responsive genes were activated. Importantly, chimeric AtBRI1 replaced with the BR-binding domain of PaBRL1 complemented the Atbri1 phenotypes. Furthermore, PaBRL1 had less kinase activity than BRI1 in vitro. Overall, P. abies had weak but still active BR signaling, explaining aspects of its slow growth and high stress tolerance. Our study sheds light on the functional and evolutionary significance of distinct BR signaling that is independent of BRI1 and brassinolide.
Collapse
Affiliation(s)
- Li Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Jing Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Yitong Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Ruolan Pu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Meiying Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Qiang Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Xinzhen Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|
205
|
Gan S, Rozhon W, Varga E, Halder J, Berthiller F, Poppenberger B. The acyltransferase PMAT1 malonylates brassinolide glucoside. J Biol Chem 2021; 296:100424. [PMID: 33600798 PMCID: PMC8010461 DOI: 10.1016/j.jbc.2021.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/01/2022] Open
Abstract
Brassinosteroids (BRs) are steroid hormones of plants that coordinate fundamental growth and development processes. Their homeostasis is controlled by diverse means, including glucosylation of the bioactive BR brassinolide (BL), which is catalyzed by the UDP-glycosyltransferases (UGTs) UGT73C5 and UGT73C6 and occurs mainly at the C-23 position. Additional evidence had suggested that the resultant BL-23-O-glucoside (BL-23-O-Glc) can be malonylated, but the physiological significance of and enzyme required for this reaction had remained unknown. Here, we show that in Arabidopsis thaliana malonylation of BL-23-O-Glc is catalyzed by the acyltransferase phenolic glucoside malonyl-transferase 1 (PMAT1), which is also known to malonylate phenolic glucosides and lipid amides. Loss of PMAT1 abolished BL-23-O-malonylglucoside formation and enriched BL-23-O-Glc, showing that the enzyme acts on the glucoside. An overexpression of PMAT1 in plants where UGT73C6 was also overexpressed, and thus, BL-23-O-Glc formation was promoted, enhanced the symptoms of BR-deficiency of UGT73C6oe plants, providing evidence that PMAT1 contributes to BL inactivation. Based on these results, a model is proposed in which PMAT1 acts in the conversion of both endogenous and xenobiotic glucosides to adjust metabolic homeostasis in spatial and temporal modes.
Collapse
Affiliation(s)
- Sufu Gan
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Elisabeth Varga
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | - Jyotirmoy Halder
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Franz Berthiller
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
206
|
Lei J, Dai P, Li Y, Zhang W, Zhou G, Liu C, Liu X. Heritable gene editing using FT mobile guide RNAs and DNA viruses. PLANT METHODS 2021; 17:20. [PMID: 33596981 PMCID: PMC7890912 DOI: 10.1186/s13007-021-00719-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/06/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The virus-induced genome editing (VIGE) system can be used to quickly identify gene functions and generate knock-out libraries as an alternative to the virus-induced gene silencing (VIGS). Although plant virus-mediated VIGE has been shown to have great application prospects, edited genes cannot be transferred to the next generations using this system, as viruses cannot enter into shoot apical meristem (SAM) in plants. RESULTS We developed a novel cotton leaf crumple virus (CLCrV)-mediated VIGE system designed to target BRI1, GL2, PDS genes, and GUS transgene in A. thaliana by transforming Cas9 overexpression (Cas9-OE) A. thaliana. Given the deficiency of the VIGE system, ProYao::Cas9 and Pro35S::Cas9 A. thaliana were transformed by fusing 102 bp FT mRNAs with sgRNAs so as to explore the function of Flowering Locus T (FT) gene in delivering sgRNAs into SAM, thus avoiding tissue culture and stably acquiring heritable mutant offspring. Our results showed that sgRNAs fused with FT mRNA at the 5' end (FT strategy) effectively enabled gene editing in infected plants and allowed the acquisition of mutations heritable by the next generation, with an efficiency of 4.35-8.79%. In addition, gene-edited offspring by FT-sgRNAs did not contain any components of the CLCrV genome. CONCLUSIONS FT strategy can be used to acquire heritable mutant offspring avoiding tissue culture and stable transformation based on the CLCrV-mediated VIGE system in A. thaliana.
Collapse
Affiliation(s)
- Jianfeng Lei
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Peihong Dai
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Yue Li
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Wanqi Zhang
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Guantong Zhou
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Chao Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Xiaodong Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China.
| |
Collapse
|
207
|
Gupta A, Hua L, Lin G, Molnár I, Doležel J, Liu S, Li W. Multiple origins of Indian dwarf wheat by mutations targeting the TREE domain of a GSK3-like kinase for drought tolerance, phosphate uptake, and grain quality. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:633-645. [PMID: 33164159 DOI: 10.1007/s00122-020-03719-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/27/2020] [Indexed: 05/28/2023]
Abstract
Multiple origins of Indian dwarf wheat were due to two mutations targeting the same TREE domain of a GSK3-like kinase, and these mutations confer to enhanced drought tolerance and increased phosphate and nitrogen accumulation for adaptation to the dry climate of Indian and Pakistan. Indian dwarf wheat, featured by the short stature, erect leaves, dense spikes, and small, spherical grains, was a staple crop in India and Pakistan from the Bronze Age until the early 1900s. These morphological features are controlled by a single locus Sphaerococcum 1 (S1), but the genetic identity of the locus and molecular mechanisms underlying the selection of this wheat type are unknown. In this study, we showed that the origin of Indian dwarf wheat was due to two independent missense mutations targeting the conserved TREE domain of a GSK3-like kinase, which is homologous to the Arabidopsis BIN2 protein, a negative regulator in brassinosteroid signaling. The S1 protein is involved in brassinosteroid signaling by physical interaction with the wheat BES1/BZR1 proteins. The dwarf alleles are insensitive to brassinosteroid, upregulates brassinosteroid biosynthetic genes, significantly enhanced drought tolerance, facilitated phosphate accumulation, and increased high molecular weight glutenins. It is the enhanced drought tolerance and accumulation of nitrogen and phosphate that contributed to the adaptation of such a small-grain form of wheat to the dry climate of India and Pakistan. Thus, our research not only identified the genetic events underlying the origin of the Indian dwarf wheat, but also revealed the function of brassinosteroid in the regulation of drought tolerance, phosphate homeostasis, and grain quality.
Collapse
Affiliation(s)
- Ajay Gupta
- 252 McFadden Biostress Laboratory, Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Lei Hua
- 252 McFadden Biostress Laboratory, Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Guifang Lin
- Plant Pathology Department, Kansas State University, Manhattan, KS, 66502, USA
| | - Istváan Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Sanzhen Liu
- Plant Pathology Department, Kansas State University, Manhattan, KS, 66502, USA
| | - Wanlong Li
- 252 McFadden Biostress Laboratory, Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
208
|
Turek I, Irving H. Moonlighting Proteins Shine New Light on Molecular Signaling Niches. Int J Mol Sci 2021; 22:1367. [PMID: 33573037 PMCID: PMC7866414 DOI: 10.3390/ijms22031367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.
Collapse
Affiliation(s)
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia;
| |
Collapse
|
209
|
Ou Y, Kui H, Li J. Receptor-like Kinases in Root Development: Current Progress and Future Directions. MOLECULAR PLANT 2021; 14:166-185. [PMID: 33316466 DOI: 10.1016/j.molp.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Cell-to-cell and cell-to-environment communications are critical to the growth and development of plants. Cell surface-localized receptor-like kinases (RLKs) are mainly involved in sensing various extracellular signals to initiate their corresponding cellular responses. As important vegetative organs for higher plants to adapt to a terrestrial living situation, roots play a critical role for the survival of plants. It has been demonstrated that RLKs control many biological processes during root growth and development. In this review, we summarize several key regulatory processes during Arabidopsis root development in which RLKs play critical roles. We also put forward a number of relevant questions that are required to be explored in future studies.
Collapse
Affiliation(s)
- Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
210
|
Takeuchi J, Fukui K, Seto Y, Takaoka Y, Okamoto M. Ligand-receptor interactions in plant hormone signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:290-306. [PMID: 33278046 DOI: 10.1111/tpj.15115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 05/28/2023]
Abstract
Small-molecule plant hormones principally control plant growth, development, differentiation, and environmental responses. Nine types of plant hormones are ubiquitous in angiosperms, and the molecular mechanisms of their hormone actions have been elucidated during the last two decades by genomic decoding of model plants with genetic mutants. In particular, the discovery of hormone receptors has greatly contributed to the understanding of signal transduction systems. The three-dimensional structure of the ligand-receptor complex has been determined for eight of the nine hormones by X-ray crystal structure analysis, and ligand perception mechanisms have been revealed at the atomic level. Collective research has revealed the molecular function of plant hormones that act as either molecular glue or an allosteric regulator for activation of receptors. In this review, we present an overview of the respective hormone signal transduction and describe the structural bases of ligand-receptor interactions.
Collapse
Affiliation(s)
- Jun Takeuchi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama, 700-0005, Japan
| | - Yoshiya Seto
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Masanori Okamoto
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-cho, Utsunomiya, Tochigi, 321-8505, Japan
| |
Collapse
|
211
|
Yang S, Yuan D, Zhang Y, Sun Q, Xuan YH. BZR1 Regulates Brassinosteroid-Mediated Activation of AMT1;2 in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:665883. [PMID: 34220889 PMCID: PMC8247761 DOI: 10.3389/fpls.2021.665883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 05/11/2023]
Abstract
Although it is known that brassinosteroids (BRs) play pleiotropic roles in plant growth and development, their roles in plant nutrient uptake remain unknown. Here, we hypothesized that BRs directly regulate ammonium uptake by activating the expression of rice AMT1-type genes. Exogenous BR treatment upregulated both AMT1;1 and AMT1;2 expression, while this induction was impaired in the BR-receptor gene BRI1 mutant d61-1. We then focused on brassinazole-resistant 1 (BZR1), a central hub of the BR signaling pathway, demonstrating the important role of this signaling pathway in regulating AMT1 expression and rice roots NH4 + uptake. The results showed that BR-induced expression of AMT1;2 was suppressed in BZR1 RNAi plants but was increased in bzr1-D, a gain-of-function BZR1 mutant. Further EMSA and ChIP analyses showed that BZR1 bound directly to the BRRE motif located in the promoter region of AMT1;2. Moreover, cellular ammonium contents, 15NH4 + uptake, and the regulatory effect of methyl-ammonium on root growth are strongly dependent on the levels of BZR1. Overexpression lines of BRI1 and BZR1 and Genetic combination of them mutants showed that BZR1 activates AMT1;2 expression downstream of BRI1. In conclusion, the findings suggest that BRs regulation of NH4+ uptake in rice involves transcription regulation of ammonium transporters.
Collapse
|
212
|
Abstract
In this Primer, Kim and Russinova provide an overview of brassinosteroid signalling in plants.
Collapse
Affiliation(s)
- Eun-Ji Kim
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
213
|
Ali K, Li W, Qin Y, Wang S, Feng L, Wei Q, Bai Q, Zheng B, Li G, Ren H, Wu G. Kinase Function of Brassinosteroid Receptor Specified by Two Allosterically Regulated Subdomains. FRONTIERS IN PLANT SCIENCE 2021; 12:802924. [PMID: 35095975 PMCID: PMC8792736 DOI: 10.3389/fpls.2021.802924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 05/07/2023]
Abstract
Plants acquire the ability to adapt to the environment using transmembrane receptor-like kinases (RLKs) to sense the challenges from their surroundings and respond appropriately. RLKs perceive a variety of ligands through their variable extracellular domains (ECDs) that activate the highly conserved intracellular kinase domains (KDs) to control distinct biological functions through a well-developed downstream signaling cascade. A new study has emerged that brassinosteroid-insensitive 1 (BRI1) family and excess microsporocytes 1 (EMS1) but not GASSHO1 (GSO1) and other RLKs control distinct biological functions through the same signaling pathway, raising a question how the signaling pathway represented by BRI1 is specified. Here, we confirm that BRI1-KD is not functionally replaceable by GSO1-KD since the chimeric BRI1-GSO1 cannot rescue bri1 mutants. We then identify two subdomains S1 and S2. BRI1 with its S1 and S2 substituted by that of GSO1 cannot rescue bri1 mutants. Conversely, chimeric BRI1-GSO1 with its S1 and S2 substituted by that of BRI1 can rescue bri1 mutants, suggesting that S1 and S2 are the sufficient requirements to specify the signaling function of BRI1. Consequently, all the other subdomains in the KD of BRI1 are functionally replaceable by that of GSO1 although the in vitro kinase activities vary after replacements, suggesting their functional robustness and mutational plasticity with diverse kinase activity. Interestingly, S1 contains αC-β4 loop as an allosteric hotspot and S2 includes kinase activation loop, proposedly regulating kinase activities. Further analysis reveals that this specific function requires β4 and β5 in addition to αC-β4 loop in S1. We, therefore, suggest that BRI1 specifies its kinase function through an allosteric regulation of these two subdomains to control its distinct biological functions, providing a new insight into the kinase evolution.
Collapse
|
214
|
de Azevedo Manhães AME, Ortiz-Morea FA, He P, Shan L. Plant plasma membrane-resident receptors: Surveillance for infections and coordination for growth and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:79-101. [PMID: 33305880 PMCID: PMC7855669 DOI: 10.1111/jipb.13051] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
As sessile organisms, plants are exposed to pathogen invasions and environmental fluctuations. To overcome the challenges of their surroundings, plants acquire the potential to sense endogenous and exogenous cues, resulting in their adaptability. Hence, plants have evolved a large collection of plasma membrane-resident receptors, including RECEPTOR-LIKE KINASEs (RLKs) and RECEPTOR-LIKE PROTEINs (RLPs) to perceive those signals and regulate plant growth, development, and immunity. The ability of RLKs and RLPs to recognize distinct ligands relies on diverse categories of extracellular domains evolved. Co-regulatory receptors are often required to associate with RLKs and RLPs to facilitate cellular signal transduction. RECEPTOR-LIKE CYTOPLASMIC KINASEs (RLCKs) also associate with the complex, bifurcating the signal to key signaling hubs, such as MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascades, to regulate diverse biological processes. Here, we discuss recent knowledge advances in understanding the roles of RLKs and RLPs in plant growth, development, and immunity, and their connection with co-regulatory receptors, leading to activation of diverse intracellular signaling pathways.
Collapse
Affiliation(s)
| | - Fausto Andres Ortiz-Morea
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Centro de Investigaciones Amazonicas CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002622, Colombia
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
215
|
Synthesis and Biological Activity of Brassinosteroid Analogues with a Nitrogen-Containing Side Chain. Int J Mol Sci 2020; 22:ijms22010155. [PMID: 33375728 PMCID: PMC7795425 DOI: 10.3390/ijms22010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.
Collapse
|
216
|
A BIN2-GLK1 Signaling Module Integrates Brassinosteroid and Light Signaling to Repress Chloroplast Development in the Dark. Dev Cell 2020; 56:310-324.e7. [PMID: 33357403 DOI: 10.1016/j.devcel.2020.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/05/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022]
Abstract
Arabidopsis GLYCOGEN SYNTHASE KINASE 3 (GSK3)-like kinases play various roles in plant development, including chloroplast development, but the underlying molecular mechanism is not well defined. Here, we demonstrate that transcription factors GLK1 and GLK2 interact with and are phosphorylated by the BRASSINOSTEROID insensitive2 (BIN2). The loss-of-function mutant of BIN2 and its homologs, bin2-3 bil1 bil2, displays abnormal chloroplast development, whereas the gain-of-function mutant, bin2-1, exhibits insensitivity to BR-induced de-greening and reduced numbers of thylakoids per granum, suggesting that BIN2 positively regulates chloroplast development. Furthermore, BIN2 phosphorylates GLK1 at T175, T238, T248, and T256, and mutations of these phosphorylation sites alter GLK1 protein stability and DNA binding and impair plant responses to BRs/darkness. On the other hand, BRs and darkness repress the BIN2-GLK module to enhance BR/dark-mediated de-greening and impair the formation of the photosynthetic apparatus. Our results thus provide a mechanism by which BRs modulate photomorphogenesis and chloroplast development.
Collapse
|
217
|
Hwang H, Lee HY, Ryu H, Cho H. Functional Characterization of BRASSINAZOLE-RESISTANT 1 in Panax Ginseng ( PgBZR1) and Brassinosteroid Response during Storage Root Formation. Int J Mol Sci 2020; 21:ijms21249666. [PMID: 33352948 PMCID: PMC7766047 DOI: 10.3390/ijms21249666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
Brassinosteroids (BRs) play crucial roles in the physiology and development of plants. In the model plant Arabidopsis, BR signaling is initiated at the level of membrane receptors, BRASSINOSTEROIDS INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) complex, thus activating the transcription factors (TFs) BRASSINAZOLE RESISTANT 1/BRI1-EMS-SUPPRESSOR 1 (BZR1/BES1) to coordinate BR responsive genes. BRASSINOSTEROIDS INSENSITIVE 2 (BIN2), glycogen synthase kinase 3 (GSK3) like-kinase, negatively regulates BZR1/BES1 transcriptional activity through phosphorylation-dependent cytosolic retention and shuttling. However, it is still unknown whether this mechanism is conserved in Panax ginseng C. A. Mayer, a member of the Araliaceae family, which is a shade-tolerant perennial root crop. Despite its pharmacological and agricultural importance, the role of BR signaling in the development of P. ginseng and characterization of BR signaling components are still elusive. In this study, by utilizing the Arabidopsisbri1 mutant, we found that ectopic expression of the gain of function form of PgBZR1 (Pgbzr1-1D) restores BR deficiency. In detail, ectopic expression of Pgbzr1-1D rescues dwarfism, defects of floral organ development, and hypocotyl elongation of bri1-5, implying the functional conservation of PgBZR1 in P. ginseng. Interestingly, brassinolide (BL) and BRs biosynthesis inhibitor treatment in two-year-old P. ginseng storage root interferes with and promotes, respectively, secondary growth in terms of xylem formation. Altogether, our results provide new insight into the functional conservation and potential diversification of BR signaling and response in P. ginseng.
Collapse
Affiliation(s)
- Hyeona Hwang
- Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Hwa-Yong Lee
- Department of Forest Science, College of Agriculture, Life & Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Hojin Ryu
- Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Correspondence: (H.R.); (H.C.)
| | - Hyunwoo Cho
- Department of Industrial Plant Science & Technology, College of Agriculture, Life & Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (H.R.); (H.C.)
| |
Collapse
|
218
|
Oh J, Wilson M, Hill K, Leftley N, Hodgman C, Bennett MJ, Swarup R. Arabidopsis antibody resources for functional studies in plants. Sci Rep 2020; 10:21945. [PMID: 33319797 PMCID: PMC7738516 DOI: 10.1038/s41598-020-78689-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022] Open
Abstract
Here we report creation of a unique and a very valuable resource for Plant Scientific community worldwide. In this era of post-genomics and modelling of multi-cellular systems using an integrative systems biology approach, better understanding of protein localization at sub-cellular, cellular and tissue levels is likely to result in better understanding of their function and role in cell and tissue dynamics, protein–protein interactions and protein regulatory networks. We have raised 94 antibodies against key Arabidopsis root proteins, using either small peptides or recombinant proteins. The success rate with the peptide antibodies was very low. We show that affinity purification of antibodies massively improved the detection rate. Of 70 protein antibodies, 38 (55%) antibodies could detect a signal with high confidence and 22 of these antibodies are of immunocytochemistry grade. The targets include key proteins involved in hormone synthesis, transport and perception, membrane trafficking related proteins and several sub cellular marker proteins. These antibodies are available from the Nottingham Arabidopsis Stock Centre.
Collapse
Affiliation(s)
- Jaesung Oh
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK.,Plasma Technology Research Center, National Fusion Research Institute, Gunsan, Jeollabuk-do, 573-540, Republic of Korea
| | - Michael Wilson
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Kristine Hill
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Nicola Leftley
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Charlie Hodgman
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Malcolm J Bennett
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK
| | - Ranjan Swarup
- School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
219
|
Wu J, Yan M, Zhang D, Zhou D, Yamaguchi N, Ito T. Histone Demethylases Coordinate the Antagonistic Interaction Between Abscisic Acid and Brassinosteroid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:596835. [PMID: 33324437 PMCID: PMC7724051 DOI: 10.3389/fpls.2020.596835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/03/2020] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) interacts antagonistically with brassinosteroids (BRs) to control plant growth and development in response to stress. The response to environmental cues includes hormonal control via epigenetic regulation of gene expression. However, the details of the ABA-BR crosstalk remain largely unknown. Here, we show that JUMONJI-C domain containing histone demethylases (JMJs) coordinate the antagonistic interaction between ABA and BR signaling pathways during the post-germination stage in Arabidopsis. BR blocks ABA-mediated seedling arrest through repression of JMJ30. JMJs remove the repressive histone marks from the BRASSINAZOLE RESISTANT1 (BZR1) locus for its activation to balance ABA and BR signaling pathways. JMJs and BZR1 co-regulate genes encoding three membrane proteins, a regulator of vacuole morphology, and two lipid-transfer proteins, each of which play a different role in transport. BZR1 also regulates stimuli-related target genes in a JMJ-independent pathway. Our findings suggest that the histone demethylases integrate ABA and BR signals, leading to changes in growth program after germination.
Collapse
Affiliation(s)
- Jinfeng Wu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Dawei Zhang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Dinggang Zhou
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Toshiro Ito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
220
|
He C, Wang J, Dong R, Guan H, Liu T, Liu C, Liu Q, Wang L. Overexpression of an Antisense RNA of Maize Receptor-Like Kinase Gene ZmRLK7 Enlarges the Organ and Seed Size of Transgenic Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:579120. [PMID: 33304362 PMCID: PMC7693544 DOI: 10.3389/fpls.2020.579120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 05/28/2023]
Abstract
Leucine-rich repeat (LRR)-receptor-like protein kinases (LRR-RLKs) play vital roles in plant growth, development, and responses to environmental stresses. In this study, a new LRR-RLK gene, ZmRLK7, was isolated from maize, and its function within plant development was investigated through ectopic expression in Arabidopsis. The spatial expression pattern analysis reveals that ZmRLK7 is highly expressed in embryos prior to programmed cell death (PCD) of starchy endosperm tissues, and its encoded protein has been localized to both plasm and nuclear membranes subcellularly. Overexpression of sense ZmRLK7 reduced the plant height, organ size (e.g., petals, silique, and seeds), and 1000-seed weight in transgenic lines, while the antisense transgene enlarged these traits. Cytological analysis suggested that ZmRLK7 negatively regulates petal size through restricting both cell expansion and proliferation. In addition, abnormal epidermal cell structure was observed, and the stomata number decreased obviously in sense ZmRLK7 transgenic lines with a lower stomatal index than that in the wild type. Quantitative RT-PCR analysis indicated that transcript levels of genes that are involved in the brassinosteroid and ERACTA signaling pathways were coordinately altered, which could partially explain the phenotypic variation. Moreover, overexpression of antisense ZmRLK7 substantially rescued the Arabidopsis bak1-3 mutant phenotype. All these results together suggest that ZmRLK7 can serve as an important regulator in regulating plant architecture and organ size formation. This work will provide insight into the function of ZmRLK7 in maize.
Collapse
Affiliation(s)
- Chunmei He
- *Correspondence: Liming Wang, ; Chunmei He,
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Niraula PM, Sharma K, McNeece BT, Troell HA, Darwish O, Alkharouf NW, Lawrence KS, Klink VP. Mitogen activated protein kinase (MAPK)-regulated genes with predicted signal peptides function in the Glycine max defense response to the root pathogenic nematode Heterodera glycines. PLoS One 2020; 15:e0241678. [PMID: 33147292 PMCID: PMC7641413 DOI: 10.1371/journal.pone.0241678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
Glycine max has 32 mitogen activated protein kinases (MAPKs), nine of them exhibiting defense functions (defense MAPKs) to the plant parasitic nematode Heterodera glycines. RNA seq analyses of transgenic G. max lines overexpressing (OE) each defense MAPK has led to the identification of 309 genes that are increased in their relative transcript abundance by all 9 defense MAPKs. Here, 71 of those genes are shown to also have measurable amounts of transcript in H. glycines-induced nurse cells (syncytia) produced in the root that are undergoing a defense response. The 71 genes have been grouped into 7 types, based on their expression profile. Among the 71 genes are 8 putatively-secreted proteins that include a galactose mutarotase-like protein, pollen Ole e 1 allergen and extensin protein, endomembrane protein 70 protein, O-glycosyl hydrolase 17 protein, glycosyl hydrolase 32 protein, FASCICLIN-like arabinogalactan protein 17 precursor, secreted peroxidase and a pathogenesis-related thaumatin protein. Functional transgenic analyses of all 8 of these candidate defense genes that employ their overexpression and RNA interference (RNAi) demonstrate they have a role in defense. Overexpression experiments that increase the relative transcript abundance of the candidate defense gene reduces the ability that the plant parasitic nematode Heterodera glycines has in completing its life cycle while, in contrast, RNAi of these genes leads to an increase in parasitism. The results provide a genomic analysis of the importance of MAPK signaling in relation to the secretion apparatus during the defense process defense in the G. max-H. glycines pathosystem and identify additional targets for future studies.
Collapse
Affiliation(s)
- Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Brant T. McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Hallie A. Troell
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Women’s University, Denton, TX, United States of America
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States of America
| | - Katherine S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States of America
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States of America
| |
Collapse
|
222
|
Wang H, Song S, Cheng H, Tan YW. State-of-the-Art Technologies for Understanding Brassinosteroid Signaling Networks. Int J Mol Sci 2020; 21:E8179. [PMID: 33142942 PMCID: PMC7662629 DOI: 10.3390/ijms21218179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023] Open
Abstract
Brassinosteroids, the steroid hormones of plants, control physiological and developmental processes through its signaling pathway. The major brassinosteroid signaling network components, from the receptor to transcription factors, have been identified in the past two decades. The development of biotechnologies has driven the identification of novel brassinosteroid signaling components, even revealing several crosstalks between brassinosteroid and other plant signaling pathways. Herein, we would like to summarize the identification and improvement of several representative brassinosteroid signaling components through the development of new technologies, including brassinosteroid-insensitive 1 (BRI1), BRI1-associated kinase 1 (BAK1), BR-insensitive 2 (BIN2), BRI1 kinase inhibitor 1 (BKI1), BRI1-suppressor 1 (BSU1), BR signaling kinases (BSKs), BRI1 ethyl methanesulfonate suppressor 1 (BES1), and brassinazole resistant 1 (BZR1). Furthermore, improvement of BR signaling knowledge, such as the function of BKI1, BES1 and its homologous through clustered regularly interspaced short palindromic repeats (CRISPR), the regulation of BIN2 through single-molecule methods, and the new in vivo interactors of BIN2 identified by proximity labeling are described. Among these technologies, recent advanced methods proximity labeling and single-molecule methods will be reviewed in detail to provide insights to brassinosteroid and other phytohormone signaling pathway studies.
Collapse
Affiliation(s)
- Haijiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Song Song
- Department of Basic Courses, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China;
| | - Huaqiang Cheng
- State Key Laboratory of Surface Physics, Multiscale Research Institute of Complex Systems, Department of Physics, Fudan University, Shanghai 200433, China;
| | - Yan-Wen Tan
- State Key Laboratory of Surface Physics, Multiscale Research Institute of Complex Systems, Department of Physics, Fudan University, Shanghai 200433, China;
| |
Collapse
|
223
|
Wang S, Hu T, Tian A, Luo B, Du C, Zhang S, Huang S, Zhang F, Wang X. Modification of Serine 1040 of SIBRI1 Increases Fruit Yield by Enhancing Tolerance to Heat Stress in Tomato. Int J Mol Sci 2020; 21:ijms21207681. [PMID: 33081382 PMCID: PMC7589314 DOI: 10.3390/ijms21207681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/27/2022] Open
Abstract
High temperature is a major environmental factor that adversely affects plant growth and production. SlBRI1 is a critical receptor in brassinosteroid signalling, and its phosphorylation sites have differential functions in plant growth and development. However, the roles of the phosphorylation sites of SIBRI1 in stress tolerance are unknown. In this study, we investigated the biological functions of the phosphorylation site serine 1040 (Ser-1040) of SlBRI1 in tomato. Phenotype analysis indicated that transgenic tomato harbouring SlBRI1 dephosphorylated at Ser-1040 showed increased tolerance to heat stress, exhibiting better plant growth and plant yield under high temperature than transgenic lines expressing SlBRI1 or SlBRI1 phosphorylated at Ser-1040. Biochemical and physiological analyses further showed that antioxidant activity, cell membrane integrity, osmo-protectant accumulation, photosynthesis and transcript levels of heat stress defence genes were all elevated in tomato plants harbouring SlBRI1 dephosphorylated at Ser-1040, and the autophosphorylation level of SlBRI1 was inhibited when SlBRI1 dephosphorylated at Ser-1040. Taken together, our results demonstrate that the phosphorylation site Ser-1040 of SlBRI1 affects heat tolerance, leading to improved plant growth and yield under high-temperature conditions. Our results also indicate the promise of phosphorylation site modification as an approach for protecting crop yields from high-temperature stress.
Collapse
Affiliation(s)
- Shufen Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Tixu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Aijuan Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Bote Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Chenxi Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Siwei Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Shuhua Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Fei Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Xiaofeng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
- Correspondence:
| |
Collapse
|
224
|
Jose J, Roy Choudhury S. Heterotrimeric G-proteins mediated hormonal responses in plants. Cell Signal 2020; 76:109799. [PMID: 33011291 DOI: 10.1016/j.cellsig.2020.109799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/27/2023]
Abstract
Phytohormones not only orchestrate intrinsic developmental programs from germination to senescence but also regulate environmental inputs through complex signalling pathways. Despite building an own signalling network, hormones mutually contribute several signalling systems, which are also essential for plant growth and development, defense, and responses to abiotic stresses. One of such important signalling cascades is G-proteins, which act as critical regulators of a wide range of fundamental cellular processes by transducing receptor signals to the intracellular environment. G proteins are composed of α, β, and γ subunits, and the molecular switching between active and inactive conformation of Gα controls the signalling cycle. The active GTP bound Gα and freed Gβγ have both independent and tightly coordinated roles in the regulation of effector molecules, thereby modulating multiple responses, including hormonal responses. Therefore, an interplay of hormones with G-proteins fine-tunes multiple biological processes of plants; however, their molecular mechanisms are largely unknown. Functional characterization of hormone biosynthesis, perception, and signalling components, as well as identification of few effector molecules of G-proteins and their interaction networks, reduces the complexity of the hormonal signalling networks related to G-proteins. In this review, we highlight a valuable insight into the mechanisms of how the G-protein signalling cascades connect with hormonal responses to regulate increased developmental flexibility as well as remarkable plasticity of plants.
Collapse
Affiliation(s)
- Jismon Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India.
| |
Collapse
|
225
|
Genome-Wide Characterization, Evolution, and Expression Analysis of the Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Gene Family in Medicago truncatula. Life (Basel) 2020; 10:life10090176. [PMID: 32899802 PMCID: PMC7555646 DOI: 10.3390/life10090176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) constitute the largest subfamily of receptor-like kinases (RLKs) in plants. They play roles in plant growth and developmental and physiological processes, but less is known about the functions of LRR-RLKs in Medicago truncatula. Our genome-wide analysis revealed 329 LRR-RLK genes in the M.truncatula genome. Phylogenetic and classification analysis suggested that these genes could be classified into 15 groups and 24 subgroups. A total of 321 genes were mapped onto all chromosomes, and 23 tandem duplications (TDs) involving 56 genes were distributed on each chromosome except 4. Twenty-seven M.truncatula LRR-RLK segmental duplication gene pairs were colinearly related. The exon/intron organization, motif composition and arrangements were relatively conserved among members of the same groups or subgroups. Using publicly available RNAseq data and quantitative real-time polymerase chain reaction (qRT-PCR), expression profiling suggested that LRR-RLKs were differentially expressed among different tissues, while some were expressed specifically in the roots and nodules. The expression of LRR-RLKs in A17 and 4 nodule mutants under rhizobial infection showed that 36 LRR-RKLs were highly upregulated in the sickle (skl) mutant [an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant] after 12 h of rhizobium inoculation. Among these LRR-RLKs, six genes were also expressed specifically in the roots and nodules, which might be specific to the Nod factor and involved in autoregulation of the nodulation signal. Our results provide information on the LRR-RLK gene family in M. truncatula and serve as a guide for functional research of the LRR-RLKs.
Collapse
|
226
|
Zhu C, Xiaoyu L, Junlan G, Yun X, Jie R. Integrating transcriptomic and metabolomic analysis of hormone pathways in Acer rubrum during developmental leaf senescence. BMC PLANT BIOLOGY 2020; 20:410. [PMID: 32883206 PMCID: PMC7650285 DOI: 10.1186/s12870-020-02628-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND To fully elucidate the roles and mechanisms of plant hormones in leaf senescence, we adopted an integrated analysis of both non-senescing and senescing leaves from red maple with transcriptome and metabolome data. RESULTS Transcription and metabolite profiles were generated through a combination of deep sequencing, third-generation sequencing data analysis, and ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS), respectively. We investigated the accumulation of compounds and the expression of biosynthesis and signaling genes for eight hormones. The results revealed that ethylene and abscisic acid concentrations increased during the leaf senescence process, while the contents of cytokinin, auxin, jasmonic acid, and salicylic acid continued to decrease. Correlation tests between the hormone content and transcriptional changes were analyzed, and in six pathways, genes closely linked with leaf senescence were identified. CONCLUSIONS These results will enrich our understanding of the mechanisms of plant hormones that regulate leaf senescence in red maple, while establishing a foundation for the genetic modification of Acer in the future.
Collapse
Affiliation(s)
- Chen Zhu
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| | - Lu Xiaoyu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, 130 Changjiangxilu, Hefei, Anhui 230036 P.R. China
| | - Gao Junlan
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| | - Xuan Yun
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| | - Ren Jie
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| |
Collapse
|
227
|
Jaiswal S, Båga M, Chibbar RN. Brassinosteroid receptor mutation influences starch granule size distribution in barley grains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:369-378. [PMID: 32623092 DOI: 10.1016/j.plaphy.2020.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BR) are plant-based steroids which influence several morphogenetic and developmental processes. A barley (Hordeum vulgare L.) genotype Kinai Kyoshinkai-2 (KK-2) carrying the uzu mutation exhibited altered starch granule size distribution. Hybridizing KK-2 with a barley genotype CDC Kendall with bi-modal starch granules produced progeny lines (116, 144 and 168) with almost uni-modal starch granules. Bioassays correlated uzu mutation with defective BR perception. DNA sequence analysis of the BR receptor-1 (BRI-1) gene detected a single-nucleotide A > G substitution at the position 2612 in the kinase domain which resulted in the change of His (CAC) to Arg (CGC) at residue 857 in subdomain IV of the kinase domain of the respective polypeptide. The study focused on the development of barley grain, accumulation of starch and composition influenced by defective BR perception due to the mutation detected in KK-2 and three other barley-breeding lines (116, 144 and 168). Aberrant BRI-1 delayed grain development, amylose synthesis and starch accumulation in the endosperm. The barley breeding lines 116, 144 and 168 carrying the aberrant BRI-1, exhibited altered granule size distribution with significant shift in the diameter maxima, but insignificant differences in amylose concentration. The BRI-1 mutation also altered amylopectin fine structure in both B- and C- type small starch granules, resulting in an increased fraction of short A-type glucan chains (<10 DP) and decreased fraction of B2 chains (25-36 DP) in genotypes carrying the BRI-1 mutation. The results show the influence of BR on barley grain development, starch accumulation, granule size distribution and amylopectin structure.
Collapse
Affiliation(s)
- Sarita Jaiswal
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, S7N5A8, Canada
| | - Monica Båga
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, S7N5A8, Canada
| | - Ravindra N Chibbar
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, S7N5A8, Canada.
| |
Collapse
|
228
|
Demissie ZA, Huang F, Song H, Todd AT, Vrinten P, Loewen MC. Barley "uzu" and Wheat "uzu-like" Brassinosteroid Receptor BRI1 Kinase Domain Variations Modify Phosphorylation Activity In Vitro. Biochemistry 2020; 59:2986-2997. [PMID: 32786402 DOI: 10.1021/acs.biochem.0c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brassinosteroid insensitive1 (BRI1), a leucine-rich repeat receptor kinase, is responsible for the perception of the brassinosteroid (BR) phytohormone in plants. While recent evidence has implicated a naturally occurring Hordeum vulgare V. (barley) HvBRI1 kinase domain (KD) variant (H857R; "uzu" variation) in increased fungal disease resistance, the impact of the variation on receptor function and thus the mechanism by which disease resistance might be imparted remain enigmatic. Here, the functional implications of the uzu variation as well as the effects of newly identified naturally occurring Triticum aestivum L. (wheat) TaBRI1-KD variants are investigated. Recombinantly produced KDs of wild-type (WT) and uzu HvBRI1 were assessed for phosphorylation activity in vitro, yielding WT KM and VMAX values similar to those of other reports, but the uzu variation delayed saturation and reduced turnover levels. In silico modeling of the H857R variation showed it to be surface-exposed and distal from the catalytic site. Further evaluation of three naturally occurring wheat TaBRI1 variants, A907T, A970V, and G1019R (barley numbering) identified in the A, B, and D subgenomic genes, respectively, highlighted a significant loss of activity for A907T. A907T is located on the same surface as the H857R variation and a negative regulatory phosphorylation site (T982) in Arabidopsis thaliana BRI1. A fourth variation, T1031A (barley numbering), unique to both subgenomic A proteins and localized to the BKI1 binding site, also decreased activity. The outcomes are discussed with respect to the predicted structural contexts of the variations and their implications with respect to mechanisms of action.
Collapse
Affiliation(s)
- Zerihun A Demissie
- National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Fang Huang
- National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Halim Song
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Andrea T Todd
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Patricia Vrinten
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Michele C Loewen
- National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
229
|
Jia D, Chen LG, Yin G, Yang X, Gao Z, Guo Y, Sun Y, Tang W. Brassinosteroids regulate outer ovule integument growth in part via the control of INNER NO OUTER by BRASSINOZOLE-RESISTANT family transcription factors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1093-1111. [PMID: 32009278 DOI: 10.1111/jipb.12915] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 05/14/2023]
Abstract
Brassinosteroids (BRs) play important roles in regulating plant reproductive processes. BR signaling or BR biosynthesis null mutants do not produce seeds under natural conditions, but the molecular mechanism underlying this infertility is poorly understood. In this study, we report that outer integument growth and embryo sac development were impaired in the ovules of the Arabidopsis thaliana BR receptor null mutant bri1-116. Gene expression and RNA-seq analyses showed that the expression of INNER NO OUTER (INO), an essential regulator of outer integument growth, was significantly reduced in the bri1-116 mutant. Increased INO expression due to overexpression or increased transcriptional activity of BRASSINAZOLE-RESISTANT 1 (BZR1) in the mutant alleviated the outer integument growth defect in bri1-116 ovules, suggesting that BRs regulate outer integument growth partially via BZR1-mediated transcriptional regulation of INO. Meanwhile, INO expression in bzr-h, a null mutant for all BZR1 family genes, was barely detectable; and the outer integument of bzr-h ovules had much more severe growth defects than those of the bri1-116 mutant. Together, our findings establish a new role for BRs in regulating ovule development and suggest that BZR1 family transcription factors might regulate outer integument growth through both BRI1-dependent and BRI1-independent pathways.
Collapse
Affiliation(s)
- Dandan Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lian-Ge Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Guimin Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaorui Yang
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhihua Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yi Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
230
|
Borassi C, Gloazzo Dorosz J, Ricardi MM, Carignani Sardoy M, Pol Fachin L, Marzol E, Mangano S, Rodríguez Garcia DR, Martínez Pacheco J, Rondón Guerrero YDC, Velasquez SM, Villavicencio B, Ciancia M, Seifert G, Verli H, Estevez JM. A cell surface arabinogalactan-peptide influences root hair cell fate. THE NEW PHYTOLOGIST 2020; 227:732-743. [PMID: 32064614 DOI: 10.1111/nph.16487] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 05/20/2023]
Abstract
Root hairs (RHs) develop from specialized epidermal trichoblast cells, whereas epidermal cells that lack RHs are known as atrichoblasts. The mechanism controlling RH cell fate is only partially understood. RH cell fate is regulated by a transcription factor complex that promotes the expression of the homeodomain protein GLABRA 2 (GL2), which blocks RH development by inhibiting ROOT HAIR DEFECTIVE 6 (RHD6). Suppression of GL2 expression activates RHD6, a series of downstream TFs including ROOT HAIR DEFECTIVE 6 LIKE-4 (RSL4) and their target genes, and causes epidermal cells to develop into RHs. Brassinosteroids (BRs) influence RH cell fate. In the absence of BRs, phosphorylated BIN2 (a Type-II GSK3-like kinase) inhibits a protein complex that regulates GL2 expression. Perturbation of the arabinogalactan peptide (AGP21) in Arabidopsis thaliana triggers aberrant RH development, similar to that observed in plants with defective BR signaling. We reveal that an O-glycosylated AGP21 peptide, which is positively regulated by BZR1, a transcription factor activated by BR signaling, affects RH cell fate by altering GL2 expression in a BIN2-dependent manner. Changes in cell surface AGP disrupts BR responses and inhibits the downstream effect of BIN2 on the RH repressor GL2 in root epidermis.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Javier Gloazzo Dorosz
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Martiniano M Ricardi
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos Aires, CP C1405BWE, Buenos Aires, C1428EGA, Argentina
| | - Mariana Carignani Sardoy
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | | | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Silvina Mangano
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | | | - Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | | | - Silvia M Velasquez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Bianca Villavicencio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, CP 15005, Porto Alegre, 91500-970 RS, Brazil
| | - Marina Ciancia
- Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Cátedra de Química de Biomoléculas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Centro de Investigación de Hidratos de Carbono (CIHIDECAR), CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Georg Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, BOKU Vienna, Muthgasse 11, A-1190, Vienna, Austria
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, CP 15005, Porto Alegre, 91500-970 RS, Brazil
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, 8331150, Chile
| |
Collapse
|
231
|
Park SY, Choi JH, Oh DH, Johnson JC, Dassanayake M, Jeong DH, Oh MH. Genome-wide analysis of brassinosteroid responsive small RNAs in Arabidopsis thaliana. Genes Genomics 2020; 42:957-969. [PMID: 32648234 DOI: 10.1007/s13258-020-00964-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Brassinosteroids (BRs) are a class of phytohormones with important roles in regulating physiological and developmental processes. Small RNAs, including small interfering RNAs and microRNAs (miRNAs), are non-protein coding RNAs that regulate gene expression at the transcriptional and post-transcriptional levels. However, the roles of small RNAs in BR response have not been studied well. OBJECTIVE In this study, we aimed to identify BR-responsive small RNA clusters and miRNAs in Arabidopsis. In addition, the effect of BR-responsive small RNAs on their transcripts and target genes were examined. METHODS Small RNA libraries were constructed from control and epibrassinolide-treated seedlings expressing wild-type BRI1-Flag protein under its native promoter in the bri1-5 mutant. After sequencing the small RNA libraries, differentially expressed small RNA clusters were identified by examining the expression levels of small RNAs in 100-nt bins of the Arabidopsis genome. To identify the BR-responsive miRNAs, the expression levels of all the annotated mature miRNAs, registered in miRBase, were analyzed. Previously published RNA-seq data were utilized to monitor the BR-responsive expression patterns of differentially expressed small RNA clusters and miRNA target genes. RESULTS In results, 38 BR-responsive small RNA clusters, including 30 down-regulated and eight up-regulated clusters, were identified. These differentially expressed small RNA clusters were from miRNA loci, transposons, protein-coding genes, pseudogenes and others. Of these, a transgene, BRI1, accumulates small RNAs, which are not found in the wild type. Small RNAs in this transgene are up-regulated by BRs while BRI1 mRNA is down-regulated by BRs. By analyzing the expression patterns of mature miRNAs, we have identified BR-repressed miR398a-5p and BR-induced miR156g. Although miR398a-5p is down-regulated by BRs, its predicted targets were not responsive to BRs. However, SPL3, a target of BR-inducible miR156g, is down-regulated by BRs. CONCLUSION BR-responsive small RNAs and miRNAs identified in this study will provide an insight into the role of small RNAs in BR responses in plants. Especially, we suggest that miR156g/SPL3 module might play a role in BR-mediated growth and development in Arabidopsis.
Collapse
Affiliation(s)
- So Young Park
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jae-Han Choi
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 34134, Korea
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - John C Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dong-Hoon Jeong
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Republic of Korea.
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
232
|
Niraula PM, Lawrence KS, Klink VP. The heterologous expression of a soybean (Glycine max) xyloglucan endotransglycosylase/hydrolase (XTH) in cotton (Gossypium hirsutum) suppresses parasitism by the root knot nematode Meloidogyne incognita. PLoS One 2020; 15:e0235344. [PMID: 32628728 PMCID: PMC7337317 DOI: 10.1371/journal.pone.0235344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/14/2020] [Indexed: 11/18/2022] Open
Abstract
A Glycine max (soybean) hemicellulose modifying gene, xyloglucan endotransglycoslase/hydrolase (XTH43), has been identified as being expressed within a nurse cell known as a syncytium developing within the soybean root undergoing the process of defense to infection by the parasitic nematode, Heterodera glycines. The highly effective nature of XTH43 overexpression in suppressing H. glycines parasitism in soybean has led to experiments examining whether the heterologous expression of XTH43 in Gossypium hirsutum (upland cotton) could impair the parasitism of Meloidogyne incognita, that form a different type of nurse cell called a giant cell that is enclosed within a swollen root structure called a gall. The heterologous transgenic expression of XTH43 in cotton resulted in an 18% decrease in the number of galls, 70% decrease in egg masses, 64% decrease in egg production and a 97% decrease in second stage juvenile (J2) production as compared to transgenic controls. The heterologous XTH43 expression does not significantly affect root mass. The results demonstrate XTH43 expression functions effectively in impairing the development of M. incognita at numerous life cycle stages occurring within the cotton root. The experiments reveal that there are highly conserved aspects of the defense response of G. max that can function effectively in G. hirsutum to impair M. incognita having a different method of parasitism.
Collapse
Affiliation(s)
- Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Katherine S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, Mississippi, United States of America
| |
Collapse
|
233
|
Mishra B, Ploch S, Runge F, Schmuker A, Xia X, Gupta DK, Sharma R, Thines M. The Genome of Microthlaspi erraticum (Brassicaceae) Provides Insights Into the Adaptation to Highly Calcareous Soils. FRONTIERS IN PLANT SCIENCE 2020; 11:943. [PMID: 32719698 PMCID: PMC7350527 DOI: 10.3389/fpls.2020.00943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Microthlaspi erraticum is widely distributed in temperate Eurasia, but restricted to Ca2+-rich habitats, predominantly on white Jurassic limestone, which is made up by calcium carbonate, with little other minerals. Thus, naturally occurring Microthlaspi erraticum individuals are confronted with a high concentration of Ca2+ ions while Mg2+ ion concentration is relatively low. As there is a competitive uptake between these two ions, adaptation to the soil condition can be expected. In this study, it was the aim to explore the genomic consequences of this adaptation by sequencing and analysing the genome of Microthlaspi erraticum. Its genome size is comparable with other diploid Brassicaceae, while more genes were predicted. Two Mg2+ transporters known to be expressed in roots were duplicated and one showed a significant degree of positive selection. It is speculated that this evolved due to the pressure to take up Mg2+ ions efficiently in the presence of an overwhelming amount of Ca2+ ions. Future studies on plants specialized on similar soils and affinity tests of the transporters are needed to provide unequivocal evidence for this hypothesis. If verified, the transporters found in this study might be useful for breeding Brassicaceae crops for higher yield on Ca2+-rich and Mg2+ -poor soils.
Collapse
Affiliation(s)
- Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Fabian Runge
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | - Xiaojuan Xia
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Deepak K. Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Rahul Sharma
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Goethe University, Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| |
Collapse
|
234
|
Comparative phosphoproteomic analysis of BR-defective mutant reveals a key role of GhSK13 in regulating cotton fiber development. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1905-1917. [PMID: 32632733 DOI: 10.1007/s11427-020-1728-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Brassinosteroid (BR), a steroid phytohormone, whose signaling transduction pathways include a series of phosphorylation and dephosphorylation events, and GSK3s are the main negative regulator kinases. BRs have been shown to play vital roles in cotton fiber elongation. However, the underlying mechanism is still elusive. In this study, fibers of a BR-defective mutant Pagoda 1 (pag1), and its corresponding wild-type (ZM24) were selected for a comparative global phosphoproteome analysis at critical developmental time points: fast-growing stage (10 days after pollination (DPA)) and secondary cell wall synthesis stage (20 DPA). Based on the substrate characteristics of GSK3, 900 potential substrates were identified. Their GO and KEGG annotation results suggest that BR functions in fiber development by regulating GhSKs (GSK3s of Gossypium hirsutum L.) involved microtubule cytoskeleton organization, and pathways of glucose, sucrose and lipid metabolism. Further experimental results revealed that among the GhSK members identified, GhSK13 not only plays a role in BR signaling pathway, but also functions in developing fiber by respectively interacting with an AP2-like ethylene-responsive factor GhAP2L, a nuclear transcription factor Gh_DNF_YB19, and a homeodomain zipper member GhHDZ5. Overall, our phosphoproteomic research advances the understanding of fiber development controlled by BR signal pathways especially through GhSKs, and also offers numbers of target proteins for improving cotton fiber quality.
Collapse
|
235
|
Receptor-like protein kinase-mediated signaling in controlling root meristem homeostasis. ABIOTECH 2020; 1:157-168. [PMID: 36303569 PMCID: PMC9590551 DOI: 10.1007/s42994-020-00024-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/09/2020] [Indexed: 02/01/2023]
Abstract
Generation of the root greatly benefits higher plants living on land. Continuous root growth and development are achieved by the root apical meristem, which acts as a reservoir of stem cells. The stem cells, on the one hand, constantly renew themselves through cell division. On the other hand, they differentiate into functional cells to form diverse tissues of the root. The balance between the maintenance and consumption of the root apical meristem is governed by cell-to-cell communications. Receptor-like protein kinases (RLKs), a group of signaling molecules localized on the cell surface, have been implicated in sensing multiple endogenous and environmental signals for plant development and stress adaptation. Over the past two decades, various RLKs and their ligands have been revealed to participate in regulating root meristem homeostasis. In this review, we focus on the recent studies about RLK-mediated signaling in regulating the maintenance and consumption of the root apical meristem.
Collapse
|
236
|
Pandey A, Devi LL, Singh AP. Review: Emerging roles of brassinosteroid in nutrient foraging. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110474. [PMID: 32540004 DOI: 10.1016/j.plantsci.2020.110474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BRs) are well-characterized growth hormones that are critical for plant growth, development, and productivity. Genetic and molecular studies have revealed the key components of BR biosynthesis and signaling pathways. The membrane-localized BR signaling receptor, BRASSINOSTEROID INSENSITIVE1 (BRI1) binds directly to its ligand and initiates series of signaling events that led to the activation of BR transcriptional regulators, BRASSINAZOLE RESISTANT1 (BZR1) and BRI1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1/BZR2) to regulate the cellular processes. Insights from Arabidopsis research revealed tissue and cell type-specific roles of BR in controlling cell elongation and maintenance of stem cell niche in roots. More recently, BRs have gained much attention in regulating the root growth during nutrient deficiency such as nitrogen, phosphorus, and boron. Differential distribution of nutrients in the rhizosphere alters BR hormone levels and signaling to reprogram spatial distribution of root system architecture (RSA) such as a change in primary root growth, lateral root numbers, length, and angle, root hair formation and elongation. These morpho-physiological changes in RSA are also known as an adaptive root trait or foraging response of the plant. In this review, we highlight the role of BRs in regulating RSA to increase root foraging response during fluctuating nutrient availability.
Collapse
Affiliation(s)
- Anshika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
237
|
Mao J, Li J. Regulation of Three Key Kinases of Brassinosteroid Signaling Pathway. Int J Mol Sci 2020; 21:E4340. [PMID: 32570783 PMCID: PMC7352359 DOI: 10.3390/ijms21124340] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Brassinosteroids (BRs) are important plant growth hormones that regulate a wide range of plant growth and developmental processes. The BR signals are perceived by two cell surface-localized receptor kinases, Brassinosteroid-Insensitive1 (BRI1) and BRI1-Associated receptor Kinase (BAK1), and reach the nucleus through two master transcription factors, bri1-EMS suppressor1 (BES1) and Brassinazole-resistant1 (BZR1). The intracellular transmission of the BR signals from BRI1/BAK1 to BES1/BZR1 is inhibited by a constitutively active kinase Brassinosteroid-Insensitive2 (BIN2) that phosphorylates and negatively regulates BES1/BZR1. Since their initial discoveries, further studies have revealed a plethora of biochemical and cellular mechanisms that regulate their protein abundance, subcellular localizations, and signaling activities. In this review, we provide a critical analysis of the current literature concerning activation, inactivation, and other regulatory mechanisms of three key kinases of the BR signaling cascade, BRI1, BAK1, and BIN2, and discuss some unresolved controversies and outstanding questions that require further investigation.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
238
|
Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. Int J Mol Sci 2020; 21:ijms21114000. [PMID: 32503273 PMCID: PMC7313013 DOI: 10.3390/ijms21114000] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are conserved protein kinases in eukaryotes that establish signaling circuits to transduce information from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing growth, development, stress responses, and disease resistance. Plant RLKs share considerable homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal, followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its immediate substrates have predominantly contributed to a better understanding of the fundamental signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple RLKs are involved in modulating various types of physiological roles via diverse signaling routes. Here, we summarize recent advances and provide an updated overview of transmembrane RLKs in Arabidopsis.
Collapse
|
239
|
Zhang H, Zhang H, Lin J. Systemin-mediated long-distance systemic defense responses. THE NEW PHYTOLOGIST 2020; 226:1573-1582. [PMID: 32083726 DOI: 10.1111/nph.16495] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/13/2020] [Indexed: 05/20/2023]
Abstract
Systemin, a peptide plant hormone of 18 amino acids, coordinates local and systemic immune responses. The activation of the canonical systemin-mediated systemic signaling pathway involves systemin release from its precursor prosystemin, systemin binding to its membrane receptor SYSTEMIN RECEPTOR1 (SYR1), and the transport of long-distance signaling molecules, including jasmonic acid, the prosystemin mRNA, volatile organic compounds and possibly systemin itself. Here, we review emerging evidence that the disordered structure and unconventional processing and secretion of systemin contribute to the regulation of systemin-mediated signaling during plant defense. We highlight recent advances in systemin research, which elucidated how cells integrate multiple long-distance signals into the systemic defense response. In addition, we discuss the perception of systemin by SYR1 and its mediation of downstream defense responses.
Collapse
Affiliation(s)
- Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
240
|
Lv J, Li Y, Liu Z, Li X, Lei X, Gao C. Response of BpBZR genes to abiotic stress and hormone treatment in Betula platyphylla. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:157-165. [PMID: 32222679 DOI: 10.1016/j.plaphy.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Brassinazole-resistant (BZR) transcription factors have important roles in the brassinosteroid (BR) signalling pathway and are widely involved in plant growth and abiotic stress processes. However, there are few studies on the functions and regulatory mechanisms of BZR TFs in birch. In this study, 5 BZR genes were identified from birch. The qRT-PCR results showed that the expression levels of most BpBZRs were significantly downregulated and/or upregulated in at least one organ following NaCl and PEG stress or ABA, GA3 and JA treatments. In particular, BpBZR1 expression was changed in all three organs after exposure to NaCl stress at all time points, indicating that this gene may be involved in salt stress. The BpBZR1 transcription factor was shown to have transcriptional activation activity in a yeast two-hybrid assay. Through a transient transformation system, we found that overexpression of BpBZR1 in birch resulted in lower H2O2 and MDA accumulation, higher SOD and POD activities and maintained a higher photosynthetic intensity and a lower chlorophyll degradation rate than those of the control plants under salt stress. These results preliminarily showed that overexpression of the BpBZR1 gene increased the tolerance of birch to salt stress.
Collapse
Affiliation(s)
- Jiaxin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yabo Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xinping Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
241
|
Dievart A, Gottin C, Périn C, Ranwez V, Chantret N. Origin and Diversity of Plant Receptor-Like Kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:131-156. [PMID: 32186895 DOI: 10.1146/annurev-arplant-073019-025927] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Because of their high level of diversity and complex evolutionary histories, most studies on plant receptor-like kinase subfamilies have focused on their kinase domains. With the large amount of genome sequence data available today, particularly on basal land plants and Charophyta, more attention should be paid to primary events that shaped the diversity of the RLK gene family. We thus focus on the motifs and domains found in association with kinase domains to illustrate their origin, organization, and evolutionary dynamics. We discuss when these different domain associations first occurred and how they evolved, based on a literature review complemented by some of our unpublished results.
Collapse
Affiliation(s)
- Anne Dievart
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Céline Gottin
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Christophe Périn
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Vincent Ranwez
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Nathalie Chantret
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| |
Collapse
|
242
|
Mubassir MHM, Naser MA, Abdul-Wahab MF, Jawad T, Alvy RI, Hamdan S. Comprehensive in silico modeling of the rice plant PRR Xa21 and its interaction with RaxX21-sY and OsSERK2. RSC Adv 2020; 10:15800-15814. [PMID: 35493652 PMCID: PMC9052883 DOI: 10.1039/d0ra01396j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
The first layer of defense that plants deploy to ward off a microbial invasion comes in the form of pattern-triggered immunity (PTI), which is initiated when the pattern-recognition receptors (PRRs) bind with the pathogen-associated molecular patterns (PAMPs) and co-receptor proteins, and transmit a defense signal. Although several plant PRRs have been discovered, very few of them have been fully characterized, and their functional parameters assessed. In this study, the 3D-model prediction of an entire plant PRR protein, Xa21, was done by implementing multiple in silico modeling techniques. Subsequently, the PAMP RaxX21-sY (sulphated RaxX21) and leucine-rich repeat (LRR) domain of the co-receptor OsSERK2 were docked with the LRR domain of Xa21. The docked complex of these three proteins formed a heterodimer that closely resembles the other crystallographic PTI complexes available. Molecular dynamics simulations and MM/PBSA calculations were applied for an in-depth analysis of the interactions between Xa21 LRR, RaxX21-sY, and OsSERK2 LRR. Arg230 and Arg185 from Xa21 LRR, Val2 and Lys15 from RaxX21-sY and Lys164 from OsSERK2 LRR were found to be the prominent residues which might contribute significantly in the formation of a heterodimer during the PTI process mediated by Xa21. Additionally, RaxX21-sY interacted much more favorably with Xa21 LRR in the presence of OsSERK2 LRR in the complex, which substantiates the necessity of the co-receptor in Xa21 mediated PTI to recognize the PAMP RaxX21-sY. However, the free energy binding calculation reveals the favorability of a heterodimer formation of PRR Xa21 and co-receptor OsSERK2 without the presence of PAMP RaxX21-sY, which validate the previous lab result.
Collapse
Affiliation(s)
- M H M Mubassir
- Department of Mathematics and Natural Sciences, BRAC University 66 Mohakhali Dhaka-1212 Bangladesh
| | - M Abu Naser
- Faculty Bioscience and Medical Engineering, Universiti Teknologi Malaysia 81310 Johor Bahru Johor Malaysia
| | - Mohd Firdaus Abdul-Wahab
- Faculty Bioscience and Medical Engineering, Universiti Teknologi Malaysia 81310 Johor Bahru Johor Malaysia
| | - Tanvir Jawad
- Department of Mathematics and Natural Sciences, BRAC University 66 Mohakhali Dhaka-1212 Bangladesh
| | - Raghib Ishraq Alvy
- Department of Mathematics and Natural Sciences, BRAC University 66 Mohakhali Dhaka-1212 Bangladesh
| | - Salehhuddin Hamdan
- Faculty Bioscience and Medical Engineering, Universiti Teknologi Malaysia 81310 Johor Bahru Johor Malaysia
| |
Collapse
|
243
|
Lv M, Li J. Molecular Mechanisms of Brassinosteroid-Mediated Responses to Changing Environments in Arabidopsis. Int J Mol Sci 2020; 21:ijms21082737. [PMID: 32326491 PMCID: PMC7215551 DOI: 10.3390/ijms21082737] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Plant adaptations to changing environments rely on integrating external stimuli into internal responses. Brassinosteroids (BRs), a group of growth-promoting phytohormones, have been reported to act as signal molecules mediating these processes. BRs are perceived by cell surface receptor complex including receptor BRI1 and coreceptor BAK1, which subsequently triggers a signaling cascade that leads to inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Recent studies in the model plant Arabidopsis demonstrated that BR biosynthesis and signal transduction, especially the regulatory components BIN2 and BES1/BZR1, are finely tuned by various environmental cues. Here, we summarize these research updates and give a comprehensive review of how BR biosynthesis and signaling are modulated by changing environments and how these changes regulate plant adaptive growth or stress tolerance.
Collapse
|
244
|
Großeholz R, Feldman-Salit A, Wanke F, Schulze S, Glöckner N, Kemmerling B, Harter K, Kummer U. Specifying the role of BAK1-interacting receptor-like kinase 3 in brassinosteroid signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:456-469. [PMID: 30912278 DOI: 10.1111/jipb.12803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/27/2019] [Indexed: 05/26/2023]
Abstract
Brassinosteroids (BR) are involved in the control of several developmental processes ranging from root elongation to senescence and adaptation to environmental cues. Thus, BR perception and signaling have to be precisely regulated. One regulator is BRI1-associated kinase 1 (BAK1)-interacting receptor-like kinase 3 (BIR3). In the absence of BR, BIR3 forms complexes with BR insensitive 1 (BRI1) and BAK1. However, the biophysical and energetic requirements for complex formation in the absence of the ligand have yet to be determined. Using computational modeling, we simulated the potential complexes between the cytoplasmic domains of BAK1, BRI1 and BIR3. Our calculations and experimental data confirm the interaction of BIR3 with BAK1 and BRI1, with the BAK1 BIR3 interaction clearly favored. Furthermore, we demonstrate that BIR3 and BRI1 share the same interaction site with BAK1. This suggests a competition between BIR3 and BRI1 for binding to BAK1, which results in preferential binding of BIR3 to BAK1 in the absence of the ligand thereby preventing the active participation of BAK1 in BR signaling. Our model also suggests that BAK1 and BRI1 can interact even while BAK1 is in complex with BIR3 at an additional binding site of BAK1 that does not allow active BR signaling.
Collapse
Affiliation(s)
- Ruth Großeholz
- Centre for Organismal Studies/ BioQuant, Heidelberg University, 69120, Heidelberg, Germany
| | - Anna Feldman-Salit
- Centre for Organismal Studies/ BioQuant, Heidelberg University, 69120, Heidelberg, Germany
| | - Friederike Wanke
- Center for Plant Molecular Biology (ZMBP), University Tübingen, 72076, Tübingen, Germany
| | - Sarina Schulze
- Center for Plant Molecular Biology (ZMBP), University Tübingen, 72076, Tübingen, Germany
| | - Nina Glöckner
- Center for Plant Molecular Biology (ZMBP), University Tübingen, 72076, Tübingen, Germany
| | - Birgit Kemmerling
- Center for Plant Molecular Biology (ZMBP), University Tübingen, 72076, Tübingen, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University Tübingen, 72076, Tübingen, Germany
| | - Ursula Kummer
- Centre for Organismal Studies/ BioQuant, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
245
|
Local and Systemic Effects of Brassinosteroid Perception in Developing Phloem. Curr Biol 2020; 30:1626-1638.e3. [PMID: 32220322 DOI: 10.1016/j.cub.2020.02.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
Abstract
The plant vasculature is an essential adaptation to terrestrial growth. Its phloem component permits efficient transfer of photosynthates between source and sink organs but also transports signals that systemically coordinate physiology and development. Here, we provide evidence that developing phloem orchestrates cellular behavior of adjacent tissues in the growth apices of plants, the meristems. Arabidopsis thaliana plants that lack the three receptor kinases BRASSINOSTEROID INSENSITIVE 1 (BRI1), BRI1-LIKE 1 (BRL1), and BRL3 ("bri3" mutants) can no longer sense brassinosteroid phytohormones and display severe dwarfism as well as patterning and differentiation defects, including disturbed phloem development. We found that, despite the ubiquitous expression of brassinosteroid receptors in growing plant tissues, exclusive expression of the BRI1 receptor in developing phloem is sufficient to systemically correct cellular growth and patterning defects that underlie the bri3 phenotype. Although this effect is brassinosteroid-dependent, it cannot be reproduced with dominant versions of known downstream effectors of BRI1 signaling and therefore possibly involves a non-canonical signaling output. Interestingly, the rescue of bri3 by phloem-specific BRI1 expression is associated with antagonism toward phloem-specific CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 45 (CLE45) peptide signaling in roots. Hyperactive CLE45 signaling causes phloem sieve element differentiation defects, and consistently, knockout of CLE45 perception in bri3 background restores proper phloem development. However, bri3 dwarfism is retained in such lines. Our results thus reveal local and systemic effects of brassinosteroid perception in the phloem: whereas it locally antagonizes CLE45 signaling to permit phloem differentiation, it systemically instructs plant organ formation via a phloem-derived, non-cell-autonomous signal.
Collapse
|
246
|
Sun X, Chen F, Yuan L, Mi G. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. PLANTA 2020; 251:84. [PMID: 32189077 DOI: 10.1007/s00425-020-03376-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
In response to low nitrogen stress, multiple hormones together with nitric oxide signaling pathways work synergistically and antagonistically in crop root elongation. Changing root morphology allows plants to adapt to soil nutrient availability. Nitrogen is the most important essential nutrient for plant growth. An important adaptive strategy for crops responding to nitrogen deficiency is root elongation, thereby accessing increased soil space and nitrogen resources. Multiple signaling pathways are involved in this regulatory network, working together to fine-tune root elongation in response to soil nitrogen availability. Based on existing research, we propose a model to explain how different signaling pathways interact to regulate root elongation in response to low nitrogen stress. In response to a low shoot nitrogen status signal, auxin transport from the shoot to the root increases. High auxin levels in the root tip stimulate the production of nitric oxide, which promotes the synthesis of strigolactones to accelerate cell division. In this process, cytokinin, ethylene, and abscisic acid play an antagonistic role, while brassinosteroids and auxin play a synergistic role in regulating root elongation. Further study is required to identify the QTLs, genes, and favorable alleles which control the root elongation response to low nitrogen stress in crops.
Collapse
Affiliation(s)
- Xichao Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
247
|
Sokolowska EM, Schlossarek D, Luzarowski M, Skirycz A. PROMIS: Global Analysis of PROtein-Metabolite Interactions. ACTA ACUST UNITED AC 2020; 4:e20101. [PMID: 31750999 DOI: 10.1002/cppb.20101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small molecules are not only intermediates of metabolism, but also play important roles in signaling and in controlling cellular metabolism, growth, and development. Although a few systematic studies have been conducted, the true extent of protein-small molecule interactions in biological systems remains unknown. PROtein-metabolite interactions using size separation (PROMIS) is a method for studying protein-small molecule interactions in a non-targeted, proteome- and metabolome-wide manner. This approach uses size-exclusion chromatography followed by proteomics and metabolomics liquid chromatography-mass spectrometry analysis of the collected fractions. Assuming that small molecules bound to proteins would co-fractionate together, we found numerous small molecules co-eluting with proteins, strongly suggesting the formation of stable complexes. Using PROMIS, we identified known small molecule-protein complexes, such as between enzymes and cofactors, and also found novel interactions. © 2019 The Authors. Basic Protocol 1: Preparation of native cell lysate from plant material Support Protocol: Bradford assay to determine protein concentration Basic Protocol 2: Separation of molecular complexes using size-exclusion chromatography Basic Protocol 3: Simultaneous extraction of proteins and metabolites using single-step extraction protocol Basic Protocol 4: Metabolomics analysis Basic Protocol 5: Proteomics analysis.
Collapse
Affiliation(s)
| | | | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | |
Collapse
|
248
|
Zheng X, Xiao Y, Tian Y, Yang S, Wang C. PcDWF1, a pear brassinosteroid biosynthetic gene homologous to AtDWARF1, affected the vegetative and reproductive growth of plants. BMC PLANT BIOLOGY 2020; 20:109. [PMID: 32143576 PMCID: PMC7060609 DOI: 10.1186/s12870-020-2323-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/28/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The steroidal hormones brassinosteroids (BRs) play important roles in plant growth and development. The pathway and genes involved in BR biosynthesis have been identified primarily in model plants like Arabidopsis, but little is known about BR biosynthesis in woody fruits such as pear. RESULTS In this study, we found that applying exogenous brassinolide (BL) could significantly increase the stem growth and rooting ability of Pyrus ussuriensis. PcDWF1, which had a significantly lower level of expression in the dwarf-type pear than in the standard-type pear, was cloned for further analysis. A phylogenetic analysis showed that PcDWF1 was a pear brassinosteroid biosynthetic gene that was homologous to AtDWARF1. The subcellular localization analysis indicated that PcDWF1 was located in the plasma membrane. Overexpression of PcDWF1 in tobacco (Nicotiana tabacum) or pear (Pyrus ussuriensis) plants promoted the growth of the stems, which was caused by a larger cell size and more developed xylem than those in the control plants, and the rooting ability was significantly enhanced. In addition to the change in vegetative growth, the tobacco plants overexpressing PcDWF1 also had a delayed flowering time and larger seed size than did the control tobacco plants. These phenotypes were considered to result from the higher BL contents in the transgenic lines than in the control tobacco and pear plants. CONCLUSIONS Taken together, these results reveal that the pear BR biosynthetic gene PcDWF1 affected the vegetative and reproductive growth of Pyrus ussuriensis and Nicotiana tabacum and could be characterized as an important BR biosynthetic gene in perennial woody fruit plants.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| | - Yuxiong Xiao
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| | - Shaolan Yang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| |
Collapse
|
249
|
Srivastava M, Srivastava AK, Orosa-Puente B, Campanaro A, Zhang C, Sadanandom A. SUMO Conjugation to BZR1 Enables Brassinosteroid Signaling to Integrate Environmental Cues to Shape Plant Growth. Curr Biol 2020; 30:1410-1423.e3. [PMID: 32109396 PMCID: PMC7181186 DOI: 10.1016/j.cub.2020.01.089] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 01/21/2023]
Abstract
Brassinosteroids (BRs) play crucial roles in plant development, but little is known of mechanisms that integrate environmental cues into BR signaling. Conjugation to the small ubiquitin-like modifier (SUMO) is emerging as an important mechanism to transduce environmental cues into cellular signaling. In this study, we show that SUMOylation of BZR1, a key transcription factor of BR signaling, provides a conduit for environmental influence to modulate growth during stress. SUMOylation stabilizes BZR1 in the nucleus by inhibiting its interaction with BIN2 kinase. During salt stress, Arabidopsis plants arrest growth through deSUMOylation of BZR1 in the cytoplasm by promoting the accumulation of the BZR1 targeting SUMO protease, ULP1a. ULP1a mutants are salt tolerant and insensitive to the BR inhibitor, brassinazole. BR treatment stimulates ULP1a degradation, allowing SUMOylated BZR1 to accumulate and promote growth. This study uncovers a mechanism for integrating environmental cues into BR signaling to shape growth. BZR1 SUMOylation allows brassinosteroids to shape plant growth to its environment SUMOylation stabilizes BZR1 by inhibiting BIN2 interaction, promoting plant growth Salinity stimulates BZR1 deSUMOylation via ULP1a SUMO protease to suppress growth BRs destabilize ULP1a, allowing SUMOylated BZR1 to accumulate and promote growth
Collapse
Affiliation(s)
- Moumita Srivastava
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Anjil K Srivastava
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | | | - Alberto Campanaro
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Cunjin Zhang
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
250
|
Wolf S. Deviating from the Beaten Track: New Twists in Brassinosteroid Receptor Function. Int J Mol Sci 2020; 21:ijms21051561. [PMID: 32106564 PMCID: PMC7084826 DOI: 10.3390/ijms21051561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
A key feature of plants is their plastic development tailored to the environmental conditions. To integrate environmental signals with genetic growth regulatory programs, plants rely on a number of hormonal pathways, which are intimately connected at multiple levels. Brassinosteroids (BRs), a class of plant sterol hormones, are perceived by cell surface receptors and trigger responses instrumental in tailoring developmental programs to environmental cues. Arguably, BR signalling is one of the best-characterized plant signalling pathways, and the molecular composition of the core signal transduction cascade seems clear. However, BR research continues to reveal new twists to re-shape our view on this key signalling circuit. Here, exciting novel findings pointing to the plasma membrane as a key site for BR signalling modulation and integration with other pathways are reviewed and new inputs into the BR signalling pathway and emerging “non-canonical” functions of the BR receptor complex are highlighted. Together, this new evidence underscores the complexity of plant signalling integration and serves as a reminder that highly-interconnected signalling pathways frequently comprise non-linear aspects which are difficult to convey in classical conceptual models.
Collapse
Affiliation(s)
- Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, INF230, 69120 Heidelberg, Germany
| |
Collapse
|