201
|
Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform 2019; 20:1836-1852. [PMID: 29982332 PMCID: PMC7414524 DOI: 10.1093/bib/bby054] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression via recognition of cognate sequences and interference of transcriptional, translational or epigenetic processes. Bioinformatics tools developed for miRNA study include those for miRNA prediction and discovery, structure, analysis and target prediction. We manually curated 95 review papers and ∼1000 miRNA bioinformatics tools published since 2003. We classified and ranked them based on citation number or PageRank score, and then performed network analysis and text mining (TM) to study the miRNA tools development trends. Five key trends were observed: (1) miRNA identification and target prediction have been hot spots in the past decade; (2) manual curation and TM are the main methods for collecting miRNA knowledge from literature; (3) most early tools are well maintained and widely used; (4) classic machine learning methods retain their utility; however, novel ones have begun to emerge; (5) disease-associated miRNA tools are emerging. Our analysis yields significant insight into the past development and future directions of miRNA tools.
Collapse
Affiliation(s)
- Liang Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Liisa Heikkinen
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Changliang Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Yang Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Huiyan Sun
- Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| |
Collapse
|
202
|
Karamipour N, Fathipour Y, Talebi AA, Asgari S, Mehrabadi M. The microRNA pathway is involved in Spodoptera frugiperda (Sf9) cells antiviral immune defense against Autographa californica multiple nucleopolyhedrovirus infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103202. [PMID: 31422153 DOI: 10.1016/j.ibmb.2019.103202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The microRNA (miRNA) pathway is an epigenetic mechanism that plays important roles in various biological processes including host-virus interactions by regulating gene expression of the host and/or the virus. Previously, we showed that the cellular microRNAome in Spodoptera frugiperda (Sf9) cells is modulated following Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection suggesting that miRNAs may contribute in the cellular antiviral immunity. Here, we investigated the role of core components of the miRNA pathway in Sf9-AcMNPV interaction. Gene expression analyses showed that the expression levels of Dicer-1 (Dcr1), Argonaute-1 (Ago1) and Exportin-5 (Exp5) increased following AcMNPV infection particularly at 16 h post infection (hpi). Ran expression levels, however, decreased in response to virus infection. The expression levels of cellular miRNAs, miR-184 and let-7, also diminished at the post infection times further confirming differential expression of the cellular miRNAs following AcMNPV infection. To determine the role of the miRNA pathway in the interaction, we silenced key genes in the pathway using specific dsRNAs. RNAi of Dcr1, Ago1 and Ran enhanced viral DNA replication and reduced the abundance of miR-184 and let-7 underscoring the importance of the miRNA pathway in antiviral immunity in Sf9 cells. Suppression of the miRNA pathway in mock and infected cells had no effect on Ran expression levels suggesting miRNA-independent downregulation of this gene after virus infection. In conclusion, our results suggest the antiviral role of the miRNA pathway in Sf9 cells against AcMNPV. To modulate this immune response, AcMNPV represses host miRNAs likely through downregulation of Ran to enhance its replication in the host cells.
Collapse
Affiliation(s)
- Naeime Karamipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Asghar Talebi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
203
|
Doll MA, Soltanmohammadi N, Schumacher B. ALG-2/AGO-Dependent mir-35 Family Regulates DNA Damage-Induced Apoptosis Through MPK-1/ERK MAPK Signaling Downstream of the Core Apoptotic Machinery in Caenorhabditis elegans. Genetics 2019; 213:173-194. [PMID: 31296532 PMCID: PMC6727803 DOI: 10.1534/genetics.119.302458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) associate with argonaute (AGO) proteins to post-transcriptionally modulate the expression of genes involved in various cellular processes. Herein, we show that loss of the Caenorhabditis elegans AGO gene alg-2 results in rapid and significantly increased germ cell apoptosis in response to DNA damage inflicted by ionizing radiation (IR). We demonstrate that the abnormal apoptosis phenotype in alg-2 mutant animals can be explained by reduced expression of mir-35 miRNA family members. We show that the increased apoptosis levels in IR-treated alg-2 or mir-35 family mutants depend on a transient hyperactivation of the C. elegans ERK1/2 MAPK ortholog MPK-1 in dying germ cells. Unexpectedly, MPK-1 phosphorylation occurs downstream of caspase activation and depends at least in part on a functional cell corpse-engulfment machinery. Therefore, we propose a refined mechanism, in which an initial proapoptotic stimulus by the core apoptotic machinery initiates the engulfment process, which in turn activates MAPK signaling to facilitate the demise of genomically compromised germ cells.
Collapse
Affiliation(s)
- Markus Alexander Doll
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Najmeh Soltanmohammadi
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| |
Collapse
|
204
|
|
205
|
Vedanayagam J, Chatila WK, Aksoy BA, Majumdar S, Skanderup AJ, Demir E, Schultz N, Sander C, Lai EC. Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains exert similar effects on miRNA biogenesis. Nat Commun 2019; 10:3682. [PMID: 31417090 PMCID: PMC6695490 DOI: 10.1038/s41467-019-11610-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/25/2019] [Indexed: 11/09/2022] Open
Abstract
Somatic mutations in the RNase IIIb domain of DICER1 arise in cancer and disrupt the cleavage of 5' pre-miRNA arms. Here, we characterize an unstudied, recurrent, mutation (S1344L) in the DICER1 RNase IIIa domain in tumors from The Cancer Genome Atlas (TCGA) project and MSK-IMPACT profiling. RNase IIIa/b hotspots are absent from most cancers, but are notably enriched in uterine cancers. Systematic analysis of TCGA small RNA datasets show that DICER1 RNase IIIa-S1344L tumors deplete 5p-miRNAs, analogous to RNase IIIb hotspot samples. Structural and evolutionary coupling analyses reveal constrained proximity of RNase IIIa-S1344 to the RNase IIIb catalytic site, rationalizing why mutation of this site phenocopies known hotspot alterations. Finally, examination of DICER1 hotspot endometrial tumors reveals derepression of specific miRNA target signatures. In summary, comprehensive analyses of DICER1 somatic mutations and small RNA data reveal a mechanistic aspect of pre-miRNA processing that manifests in specific cancer settings.
Collapse
Affiliation(s)
- Jeffrey Vedanayagam
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Walid K Chatila
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Bülent Arman Aksoy
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.,Immunology and Microbiology Department, Medical University of South Carolina, Charleston, SC, 29412, USA
| | - Sonali Majumdar
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Anders Jacobsen Skanderup
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Emek Demir
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Oregon Health and Science University, Computational Biology Program, Portland, OR, 97239, USA
| | - Nikolaus Schultz
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Departments of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chris Sander
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA. .,cBio Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Eric C Lai
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA. .,Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
206
|
Schlösser V, Hall J. Labeling microRNA precursors for Dicer assays. Anal Biochem 2019; 579:35-37. [DOI: 10.1016/j.ab.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 01/12/2023]
|
207
|
Pule MN, Glover ML, Fire AZ, Arribere JA. Ribosome clearance during RNA interference. RNA (NEW YORK, N.Y.) 2019; 25:963-974. [PMID: 31110136 PMCID: PMC6633202 DOI: 10.1261/rna.070813.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
In the course of identifying and cleaving RNA, the RNAi machinery must encounter and contend with the megadalton-sized ribosomes that carry out translation. We investigated this interface by examining the fate of actively translated mRNAs subjected to RNAi in C. elegans Quantifying RNA levels (RNA-seq) and ongoing translation (Ribo-seq), we found there is a greater fold repression of ongoing translation than expected from loss of RNA alone, observing stronger translation repression relative to RNA repression for multiple, independent double-stranded RNA triggers, and for multiple genes. In animals that lack the RNA helicase SKI complex and the ribosome rescue factor PELOTA, ribosomes stall on the 3' edges of mRNAs at and upstream of the RNAi trigger. One model to explain these observations is that ribosomes are actively cleared from mRNAs by SKI and PELO during or following mRNA cleavage. Our results expand prior studies that show a role for the SKI RNA helicase complex in removing RNA targets following RNAi in flies and plants, illuminating the widespread role of the nonstop translation surveillance in RNA silencing during RNAi. Our results are also consistent with proposals that RNAi can attack messages during active translation.
Collapse
Affiliation(s)
- Makena N Pule
- Department of MCD Biology, UC Santa Cruz, Santa Cruz, California 95064, USA
| | - Marissa L Glover
- Department of MCD Biology, UC Santa Cruz, Santa Cruz, California 95064, USA
| | - Andrew Z Fire
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joshua A Arribere
- Department of MCD Biology, UC Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
208
|
Abstract
Most human genes are associated with promoters embedded in non-methylated, G + C-rich CpG islands (CGIs). Not all CGIs are found at annotated promoters, however, raising the possibility that many serve as promoters for transcripts that do not code for proteins. To test this hypothesis, we searched for novel transcripts in embryonic stem cells (ESCs) that originate within orphan CGIs. Among several candidates, we detected a transcript that included three members of the let-7 micro-RNA family: Let-7a-1, let-7f-1, and let-7d. Deletion of the CGI prevented expression of the precursor RNA and depleted the included miRNAs. Mice homozygous for this mutation were sub-viable and showed growth and other defects. The results suggest that despite the identity of their seed sequences, members of the let-7 miRNA family exert distinct functions that cannot be complemented by other members.
Collapse
|
209
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019; 20:89-108. [PMID: 30446728 DOI: 10.1038/s41576-018-0073-3] [Citation(s) in RCA: 734] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
Collapse
Affiliation(s)
- Deniz M Ozata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ansgar Zoch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
210
|
Humphries B, Wang Z, Yang C. MicroRNA Regulation of Epigenetic Modifiers in Breast Cancer. Cancers (Basel) 2019; 11:E897. [PMID: 31252590 PMCID: PMC6678197 DOI: 10.3390/cancers11070897] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Epigenetics refers to the heritable changes in gene expression without a change in the DNA sequence itself. Two of these major changes include aberrant DNA methylation as well as changes to histone modification patterns. Alterations to the epigenome can drive expression of oncogenes and suppression of tumor suppressors, resulting in tumorigenesis and cancer progression. In addition to modifications of the epigenome, microRNA (miRNA) dysregulation is also a hallmark for cancer initiation and metastasis. Advances in our understanding of cancer biology demonstrate that alterations in the epigenome are not only a major cause of miRNA dysregulation in cancer, but that miRNAs themselves also indirectly drive these DNA and histone modifications. More explicitly, recent work has shown that miRNAs can regulate chromatin structure and gene expression by directly targeting key enzymes involved in these processes. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as epigenetic biomarkers and as therapeutics, and presents a comprehensive summary of currently validated epigenetic targets in breast cancer.
Collapse
Affiliation(s)
- Brock Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI 48109; USA.
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
- Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY 40536; USA.
| |
Collapse
|
211
|
Minogue AL, Arur S. In Situ Hybridization for Detecting Mature MicroRNAs In Vivo at Single-Cell Resolution. ACTA ACUST UNITED AC 2019; 127:e93. [PMID: 31237425 DOI: 10.1002/cpmb.93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of cell and tissue development. However, spatial resolution of miRNA heterogeneity and accumulation patterns in vivo remains uncharted. Next-generation sequencing methods assay miRNA abundance in tissues, yet these analyses do not provide spatial resolution. A method to assay miRNA expression at single-cell resolution in vivo should clarify the cell-autonomous functions of miRNAs, their roles in influencing the cellular microenvironment, and their perdurance and turnover rate. We present an in situ hybridization protocol to map miRNA subcellular expression in single cells in vivo in four days. Using this protocol, we mapped distinct miRNAs that accumulate in the cytoplasm of one sibling oocyte but not another, dependent on the oocyte developmental stage. Thus, this method provides spatial and temporal resolution of the heterogeneity in expression of miRNAs during Caenorhabditis elegans oogenesis. This protocol can generally be adapted to any tissue amenable to dissection and fixation. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Amanda L Minogue
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Swathi Arur
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
212
|
Oncogenic Biogenesis of pri-miR-17∼92 Reveals Hierarchy and Competition among Polycistronic MicroRNAs. Mol Cell 2019; 75:340-356.e10. [PMID: 31253575 DOI: 10.1016/j.molcel.2019.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 05/23/2019] [Indexed: 01/07/2023]
Abstract
The microRNAs encoded by the miR-17∼92 polycistron are commonly overexpressed in cancer and orchestrate a wide range of oncogenic functions. Here, we identify a mechanism for miR-17∼92 oncogenic function through the disruption of endogenous microRNA (miRNA) processing. We show that, upon oncogenic overexpression of the miR-17∼92 primary transcript (pri-miR-17∼92), the microprocessor complex remains associated with partially processed intermediates that aberrantly accumulate. These intermediates reflect a series of hierarchical and conserved steps in the early processing of the pri-miR-17∼92 transcript. Encumbrance of the microprocessor by miR-17∼92 intermediates leads to the broad but selective downregulation of co-expressed polycistronic miRNAs, including miRNAs derived from tumor-suppressive miR-34b/c and from the Dlk1-Dio3 polycistrons. We propose that the identified steps of polycistronic miR-17∼92 biogenesis contribute to the oncogenic re-wiring of gene regulation networks. Our results reveal previously unappreciated functional paradigms for polycistronic miRNAs in cancer.
Collapse
|
213
|
|
214
|
Singh J, Ambi UB. A Comparative Whole Genome Sequence Analysis Leads to Identification of Repeat-Associated Evolutionarily Conserved miRNAs in Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5512995. [PMID: 31175835 PMCID: PMC6556081 DOI: 10.1093/jisesa/iez049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small noncoding RNAs, which play important regulatory roles in various biological processes. In this study, we have developed a computational approach for detecting conserved miRNAs based on comparison of whole genome sequences of closely related species by considering various key features of experimentally validated miRNAs. By applying this approach, we have identified 34 new miRNAs from Bombyx mori (L.), which are also conserved in Drosophila melanogaster (Diptera: Drosophilidae) and Anopheles gambiae (Diptera: Culicidae). Most of these miRNAs were associated with repeat region of the genome. We did an expression analysis of the 34 newly predicted miRNAs and found that 30 of these miRNAs are expressing in different tissues of B. mori. Besides, we have also predicted the putative targets of these miRNAs in B. mori based on several known characteristic features of miRNA::mRNA duplexes and found that these targets include diverse range of functions, suggesting multiple layers of gene regulation of various important biological processes.
Collapse
Affiliation(s)
- Jyoti Singh
- Lab-1 (New Building), National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Uddhav B Ambi
- Lab-1 (New Building), National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, Maharashtra, India
| |
Collapse
|
215
|
Li P, Tian Q, Hu M, Li W, Zhang X, Zeng Y. Cloning, expression, and characterization of the zebrafish Dicer and Drosha enzymes. Biochem Biophys Res Commun 2019; 514:200-204. [PMID: 31029426 DOI: 10.1016/j.bbrc.2019.04.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 10/27/2022]
Abstract
The biogenesis of animal microRNAs (miRNAs) involves transcription followed by a series of processing steps, with Drosha and Dicer being two key enzymes that cleave primary miRNA (pri-miRNA) and precursor miRNA (pre-miRNA) transcripts, respectively. While human and fly Dicer and human Drosha are well studied, their homologs in other organisms have not been biochemically characterized, leaving open the question of whether their miRNA substrate specificities and regulatory functions are conserved. Zebrafish is a widely used model organism, but its miRNA processing enzymes have never been reconstituted and analyzed. In this study we cloned and constructed expression plasmids encoding zebrafish Dicer, Drosha, and their accessory proteins TARBP2 and DGCR8. After transfection of human cell cultures, we isolated the recombinant protein complexes. We found that zebrafish Dicer bound TARBP2, but Dicer alone exhibited significant pre-miRNA processing activity. On the other hand, zebrafish Drosha associated with DGCR8, and both were required to cleave pri-miRNAs. The Drosha/DGCR8 holoenzyme preferred pri-miRNAs with a large terminal loop, an extended duplex region, and flanking single stranded RNAs. These results lay the foundation for future studies of the regulatory roles and conserved mechanisms of Drosha and Dicer.
Collapse
Affiliation(s)
- Peng Li
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Qiuhuan Tian
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Min Hu
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenjing Li
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiaoxiao Zhang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
216
|
Celebrating 25 Years of MicroRNA Research: From Discovery to Clinical Application. Int J Mol Sci 2019; 20:ijms20081987. [PMID: 31018550 PMCID: PMC6515517 DOI: 10.3390/ijms20081987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 02/07/2023] Open
|
217
|
Labi V, Schoeler K, Melamed D. miR-17∼92 in lymphocyte development and lymphomagenesis. Cancer Lett 2019; 446:73-80. [PMID: 30660648 DOI: 10.1016/j.canlet.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 01/07/2023]
Abstract
microRNAs (miRNAs) down-modulate the levels of proteins by sequence-specific binding to their respective target mRNAs, causing translational repression or mRNA degradation. The miR-17∼92 cluster encodes for six miRNAs whose target recognition specificities are determined by their distinct sequence. In mice, the four miRNA families generated from the miR-17∼92 cluster coordinate to allow for proper lymphocyte development and effective adaptive immune responses following infection or immunization. Lymphocyte development and homeostasis rely on tight regulation of PI3K signaling to avoid autoimmunity or immunodeficiency, and the miR-17∼92 miRNAs appear as key mediators to appropriately tune PI3K activity. On the other hand, in lymphoid tumors overexpression of the miR-17∼92 miRNAs is a common oncogenic event. In this review, we touch on what we have learned so far about the miR-17∼92 miRNAs, particularly with respect to their role in lymphocyte development, homeostasis and pathology.
Collapse
Affiliation(s)
- Verena Labi
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria.
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Doron Melamed
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
218
|
Burke MF, McLaurin DM, Logan MK, Hebert MD. Alteration of 28S rRNA 2'- O-methylation by etoposide correlates with decreased SMN phosphorylation and reduced Drosha levels. Biol Open 2019; 8:bio041848. [PMID: 30858166 PMCID: PMC6451326 DOI: 10.1242/bio.041848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
The most common types of modification in human rRNA are pseudouridylation and 2'-O ribose methylation. These modifications are performed by small nucleolar ribonucleoproteins (snoRNPs) which contain a guide RNA (snoRNA) that base pairs at specific sites within the rRNA to direct the modification. rRNA modifications can vary, generating ribosome heterogeneity. One possible method that can be used to regulate rRNA modifications is by controlling snoRNP activity. RNA fragments derived from some small Cajal body-specific RNAs (scaRNA 2, 9 and 17) may influence snoRNP activity. Most scaRNAs accumulate in the Cajal body - a subnuclear domain - where they participate in the biogenesis of small nuclear RNPs, but scaRNA 2, 9 and 17 generate nucleolus-enriched fragments of unclear function, and we hypothesize that these fragments form regulatory RNPs that impact snoRNP activity and modulate rRNA modifications. Our previous work has shown that SMN, Drosha and various stresses, including etoposide treatment, may alter regulatory RNP formation. Here we demonstrate that etoposide treatment decreases the phosphorylation of SMN, reduces Drosha levels and increases the 2'-O-methylation of two sites within 28S rRNA. These findings further support a role for SMN and Drosha in regulating rRNA modification, possibly by affecting snoRNP or regulatory RNP activity.
Collapse
Affiliation(s)
- Marilyn F Burke
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
219
|
Ban Y, Morita Y, Ogawa M, Higashi K, Nakatsuka T, Nishihara M, Nakayama M. Inhibition of post-transcriptional gene silencing of chalcone synthase genes in petunia picotee petals by fluacrypyrim. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1513-1523. [PMID: 30690559 DOI: 10.1093/jxb/erz009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
In petals of picotee petunia (Petunia hybrida) cultivars, margin-specific post-transcriptional gene silencing (PTGS) of chalcone synthase A (CHSA) inhibits anthocyanin biosynthesis, resulting in marginal white tissue formation. In this study, we found that a low molecular mass compound, fluacrypyrim, inhibits PTGS of CHSA, and we explored the site-specific PTGS mechanism of operation. Fluacrypyrim treatment abolished the picotee pattern and eliminated site-specific differences in the levels of anthocyanin-related compounds, CHSA expression, and CHSA small interfering RNA (siRNA). In addition, fluacrypyrim abolished the petunia star-type pattern, which is also caused by PTGS of CHSA. Fluacrypyrim treatment was effective only at the early floral developmental stage and predominantly eliminated siRNA derived from CHS genes; i.e. siRNA derived from other genes remained at a comparable level. Fluacrypyrim probably targets the induction of PTGS that specifically operates for CHS genes in petunia picotee flowers, rather than common PTGS maintenance mechanisms that degrade mRNAs and generate siRNA. Upon treatment, the proportion of colored tissue increased due to a shift of the border between white and colored sites toward the margin in a time- and dose-dependent manner. These findings imply that the fluacrypyrim-targeted PTGS induction is completed gradually and its strength is attenuated from the margins to the center of petunia picotee petals.
Collapse
Affiliation(s)
- Yusuke Ban
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Western Region Agricultural Research Center, NARO, Fukuyama, Hiroshima, Japan
| | - Yasumasa Morita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Experimental Farm, Faculty of Agriculture, Meijo University, Kasugai, Aichi, Japan
| | - Mika Ogawa
- Teikyo University of Science, Adachi, Tokyo, Japan
| | | | - Takashi Nakatsuka
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Shizuoka, Japan
| | | | - Masayoshi Nakayama
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
220
|
Duchaine TF, Fabian MR. Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032771. [PMID: 29959194 DOI: 10.1101/cshperspect.a032771] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) posttranscriptionally regulate gene expression by repressing protein synthesis and exert a broad influence over development, physiology, adaptation, and disease. Over the past two decades, great strides have been made toward elucidating how miRNAs go about shutting down messenger RNA (mRNA) translation and promoting mRNA decay.
Collapse
Affiliation(s)
- Thomas F Duchaine
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marc R Fabian
- Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
221
|
Seth P, Hsieh PN, Jamal S, Wang L, Gygi SP, Jain MK, Coller J, Stamler JS. Regulation of MicroRNA Machinery and Development by Interspecies S-Nitrosylation. Cell 2019; 176:1014-1025.e12. [PMID: 30794773 PMCID: PMC6559381 DOI: 10.1016/j.cell.2019.01.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/20/2018] [Accepted: 01/23/2019] [Indexed: 02/04/2023]
Abstract
Bioactive molecules can pass between microbiota and host to influence host cellular functions. However, general principles of interspecies communication have not been discovered. We show here in C. elegans that nitric oxide derived from resident bacteria promotes widespread S-nitrosylation of the host proteome. We further show that microbiota-dependent S-nitrosylation of C. elegans Argonaute protein (ALG-1)-at a site conserved and S-nitrosylated in mammalian Argonaute 2 (AGO2)-alters its function in controlling gene expression via microRNAs. By selectively eliminating nitric oxide generation by the microbiota or S-nitrosylation in ALG-1, we reveal unforeseen effects on host development. Thus, the microbiota can shape the post-translational landscape of the host proteome to regulate microRNA activity, gene expression, and host development. Our findings suggest a general mechanism by which the microbiota may control host cellular functions, as well as a new role for gasotransmitters.
Collapse
Affiliation(s)
- Puneet Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Paishiun N Hsieh
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, 2103 Cornell Road, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Suhib Jamal
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mukesh K Jain
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, 2103 Cornell Road, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
222
|
Macharia LW, Wanjiru CM, Mureithi MW, Pereira CM, Ferrer VP, Moura-Neto V. MicroRNAs, Hypoxia and the Stem-Like State as Contributors to Cancer Aggressiveness. Front Genet 2019; 10:125. [PMID: 30842790 PMCID: PMC6391339 DOI: 10.3389/fgene.2019.00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play key regulatory roles in cancer acting as both oncogenes and tumor suppressors. Due to their potential roles in improving cancer prognostic, predictive, diagnostic and therapeutic approaches, they have become an area of intense research focus in recent years. Several studies have demonstrated an altered expression of several miRNAs under hypoxic condition and even shown that the hypoxic microenvironment drives the selection of a more aggressive cancer cell population through cellular adaptations referred as the cancer stem-like cell. These minor fractions of cells are characterized by their self-renewal abilities and their ability to maintain the tumor mass, suggesting their crucial roles in cancer development. This review aims to highlight the interconnected role between miRNAs, hypoxia and the stem-like state in contributing to the cancer aggressiveness as opposed to their independent contributions, and it is based in four aggressive tumors, namely glioblastoma, cervical, prostate, and breast cancers.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Muriithi Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Valéria Pereira Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
223
|
Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells 2019; 8:cells8020121. [PMID: 30717449 PMCID: PMC6406308 DOI: 10.3390/cells8020121] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Bone formation and regeneration is a multistep complex process crucially determined by the formation of blood vessels in the growth plate region. This is preceded by the expression of growth factors, notably the vascular endothelial growth factor (VEGF), secreted by osteogenic cells, as well as the corresponding response of endothelial cells, although the exact mechanisms remain to be clarified. Thereby, coordinated coupling between osteogenesis and angiogenesis is initiated and sustained. The precise interplay of these two fundamental processes is crucial during times of rapid bone growth or fracture repair in adults. Deviations in this balance might lead to pathologic conditions such as osteoarthritis and ectopic bone formation. Besides VEGF, the recently discovered important regulatory and modifying functions of microRNAs also support this key mechanism. These comprise two principal categories of microRNAs that were identified with specific functions in bone formation (osteomiRs) and/or angiogenesis (angiomiRs). However, as hypoxia is a major driving force behind bone angiogenesis, a third group involved in this process is represented by hypoxia-inducible microRNAs (hypoxamiRs). This review was focused on the identification of microRNAs that were found to have an active role in osteogenesis as well as angiogenesis to date that were termed "CouplingmiRs (CPLGmiRs)". Outlined representatives therefore represent microRNAs that already have been associated with an active role in osteogenic-angiogenic coupling or are presumed to have its potential. Elucidation of the molecular mechanisms governing bone angiogenesis are of great relevance for improving therapeutic options in bone regeneration, tissue-engineering, and the treatment of bone-related diseases.
Collapse
|
224
|
Kwon SC, Baek SC, Choi YG, Yang J, Lee YS, Woo JS, Kim VN. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing. Mol Cell 2019; 73:505-518.e5. [DOI: 10.1016/j.molcel.2018.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/11/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
|
225
|
Park SK, Kee Y, Hwang BJ. Enhancement of gene knockdown efficiency by CNNC motifs in the intronic shRNA precursor. Genes Genomics 2019; 41:491-498. [PMID: 30656519 DOI: 10.1007/s13258-019-00783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Short hairpin RNAs (shRNAs) expressed from vectors have been used as an effective means of exploiting the RNA interference (RNAi) pathway in mammalian cells. Of several methods to express shRNA, a method of transcribing shRNAs embedded in microRNA precursors has been more widely used than the one that directly expresses shRNA from RNA polymerase III promoters because the microRNA precursor form of shRNA is known to cause lower levels of cytotoxicity and off-target effects than the overexpressed shRNAs from the RNA polymerase III promoters. OBJECTIVE We study the primary sequence features of microRNA precursors, which enhance their processing into mature form, helps design more potent shRNA precursors embedded in microRNA precursors. METHODS We measure the enhancement of gene knockdown efficiency by adding CNNC motifs in the 3' flanking region of shRNA precursor embedded in the human miR-30a microRNA precursor. RESULTS By systemically adding three CNNC motifs in the 3' flanking region of shRNA precursor, we found that addition of two CNNC motifs saturates their enhanced knockdown ability of shRNA and that the CNNC motif in the + 17 to + 20 from the drosha cleavage site is most important for the shRNA-mediated target gene knock down. We also did see little knockdown of target gene expression by the shRNA precursor lacking CNNC motif. CONCLUSION Since genetic studies generally require techniques that could reduce gene expression at different degrees, the findings in this study will allow us to use RNAi for genetic studies of reducing gene expression at different degrees.
Collapse
Affiliation(s)
- Seong Kyun Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea.
| |
Collapse
|
226
|
Bofill-De Ros X, Kasprzak WK, Bhandari Y, Fan L, Cavanaugh Q, Jiang M, Dai L, Yang A, Shao TJ, Shapiro BA, Wang YX, Gu S. Structural Differences between Pri-miRNA Paralogs Promote Alternative Drosha Cleavage and Expand Target Repertoires. Cell Rep 2019; 26:447-459.e4. [PMID: 30625327 PMCID: PMC6369706 DOI: 10.1016/j.celrep.2018.12.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/11/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA) processing begins with Drosha cleavage, the fidelity of which is critical for downstream processing and mature miRNA target specificity. To understand how pri-miRNA sequence and structure influence Drosha cleavage, we studied the maturation of three pri-miR-9 paralogs, which encode the same mature miRNA but differ in the surrounding scaffold. We show that pri-miR-9-1 has a unique Drosha cleavage profile due to its distorted and flexible stem structure. Cleavage of pri-miR-9-1, but not pri-miR-9-2 or pri-miR-9-3, generates an alternative miR-9 with a shifted seed sequence that expands the scope of its target RNAs. Analyses of low-grade glioma patient samples indicate that the alternative-miR-9 has a potential role in tumor progression. Furthermore, we provide evidence that distortion of pri-miRNA stems induced by asymmetric internal loops correlates with Drosha cleavage at non-canonical sites. Our studies reveal that pri-miRNA paralogs can have distinct functions via differential Drosha processing.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wojciech K Kasprzak
- Basic Science Program, RNA Biology Laboratory, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Yuba Bhandari
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Lixin Fan
- Small-Angle X-ray Scattering Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Quinn Cavanaugh
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Minjie Jiang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lisheng Dai
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Acong Yang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bruce A Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
227
|
Ji YJ, Wang J. Heterochronic Phenotype Analysis of Hypodermal Seam Cells in Caenorhabditis elegans. Bio Protoc 2019; 9:e3132. [PMID: 30792567 PMCID: PMC6368992 DOI: 10.21769/bioprotoc.3132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 11/02/2022] Open
Abstract
Heterochrony refers to changes in the timing of developmental events, and it is precisely regulated in the organisms by the heterochronic genes such as C. elegans lin-4 and let-7. Mutations in these genes cause precocious or retarded development of certain cell lineages. With well-defined cell lineages, C. elegans is one of the best model systems to study heterochronic genes, since the subtle changes in the development of cell lineages can be easily identified. Among the different cell types in C. elegans, hypodermal seam cells and their lineages are well known to be maintained by lin-14, whose expression level is regulated by two miRNA genes, lin-4 and let-7, at the larval stages. Therefore, analyzing the heterochronic phenotype of hypodermal seam cells in C. elegans could yield detailed insights into the status of the miRNA pathway. Here we describe the assay protocol to analyze the heterochronic phenotypes of C. elegans hypodermal seam cells, which can be used as a reliable method to study the miRNA pathway.
Collapse
Affiliation(s)
- Yon Ju Ji
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
228
|
Shahabi A, Naghili B, Ansarin K, Zarghami N. The relationship between microRNAs and Rab family GTPases in human cancers. J Cell Physiol 2019; 234:12341-12352. [PMID: 30609026 DOI: 10.1002/jcp.28038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs), as a group of noncoding RNAs, posttranscriptionally control gene expression by binding to 3'-untranslated region (3'-UTR). Ras-associated binding (Rab) proteins function as molecular switches for regulating vesicular transport, which mainly have oncogenic roles in cancer development and preventing the efficacy of chemotherapies. Increased evidence supported that miRNAs/Rabs interaction have been determined as potential therapeutics for cancer therapy. Nevertheless, instability and cross-targeting of miRNAs are main limitations of using miRNA-based therapeutic. The mutual interplay between Rabs and miRNAs has been poorly understood. In the present review, we focused on the essence and activity of these molecules in cancer pathogenesis. Also, numerous hindrances and potential methods in the expansion of miRNA as an anticancer therapeutics are mentioned.
Collapse
Affiliation(s)
- Arman Shahabi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
229
|
Zhang T, Wu YC, Mullane P, Ji YJ, Liu H, He L, Arora A, Hwang HY, Alessi AF, Niaki AG, Periz G, Guo L, Wang H, Elkayam E, Joshua-Tor L, Myong S, Kim JK, Shorter J, Ong SE, Leung AKL, Wang J. FUS Regulates Activity of MicroRNA-Mediated Gene Silencing. Mol Cell 2019; 69:787-801.e8. [PMID: 29499134 DOI: 10.1016/j.molcel.2018.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yen-Ching Wu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick Mullane
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yon Ju Ji
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Honghe Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lu He
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amit Arora
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amelia F Alessi
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amirhossein G Niaki
- Department of Biophysics, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hejia Wang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elad Elkayam
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Leemor Joshua-Tor
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sua Myong
- Department of Biophysics, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John K Kim
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
230
|
Abstract
Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex networks that regulate cell differentiation, development and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of the control of miRNA function. Here, we review the mechanisms that modulate miRNA activity, stability and cellular localization through alternative processing and maturation, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA-target interactions. We conclude by discussing intriguing, unresolved research questions.
Collapse
Affiliation(s)
- Luca F R Gebert
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
231
|
Abstract
MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29's functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
Collapse
|
232
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
233
|
Yu S, Zheng C, Zhou F, Baillie DL, Rose AM, Deng Z, Chu JSC. Genomic identification and functional analysis of essential genes in Caenorhabditis elegans. BMC Genomics 2018; 19:871. [PMID: 30514206 PMCID: PMC6278001 DOI: 10.1186/s12864-018-5251-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/14/2018] [Indexed: 11/27/2022] Open
Abstract
Background Essential genes are required for an organism’s viability and their functions can vary greatly, spreading across many pathways. Due to the importance of essential genes, large scale efforts have been undertaken to identify the complete set of essential genes and to understand their function. Studies of genome architecture and organization have found that genes are not randomly disturbed in the genome. Results Using combined genetic mapping, Illumina sequencing, and bioinformatics analyses, we successfully identified 44 essential genes with 130 lethal mutations in genomic regions of C. elegans of around 7.3 Mb from Chromosome I (left). Of the 44 essential genes, six of which were genes not characterized previously by mutant alleles, let-633/let-638 (B0261.1), let-128 (C53H9.2), let-511 (W09C3.4), let-162 (Y47G6A.18), let-510 (Y47G6A.19), and let-131 (Y71G12B.6). Examine essential genes with Hi-C data shows that essential genes tend to cluster within TAD units rather near TAD boundaries. We have also shown that essential genes in the left half of chromosome I in C. elegans function in enzyme and nucleic acid binding activities during fundamental processes, such as DNA replication, transcription, and translation. From protein-protein interaction networks, essential genes exhibit more protein connectivity than non-essential genes in the genome. Also, many of the essential genes show strong expression in embryos or early larvae stages, indicating that they are important to early development. Conclusions Our results confirmed that this work provided a more comprehensive picture of the essential gene and their functional characterization. These genetic resources will offer important tools for further heath and disease research. Electronic supplementary material The online version of this article (10.1186/s12864-018-5251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shicheng Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China. .,Wuhan Frasergen Bioinformatics, Wuhan East Lake High-tech Zone, Wuhan, 430075, China.
| | - Chaoran Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhou
- Wuhan Frasergen Bioinformatics, Wuhan East Lake High-tech Zone, Wuhan, 430075, China
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | | |
Collapse
|
234
|
Iruka Eliminates Dysfunctional Argonaute by Selective Ubiquitination of Its Empty State. Mol Cell 2018; 73:119-129.e5. [PMID: 30503771 DOI: 10.1016/j.molcel.2018.10.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are loaded into the Argonaute subfamily of proteins (AGO) to form an effector complex that silences target genes. Empty but not miRNA-loaded AGO is selectively degraded across species. However, the mechanism and biological significance of selective AGO degradation remain unclear. We discovered a RING-type E3 ubiquitin ligase we named Iruka (Iru), which selectively ubiquitinates the empty form of Drosophila Ago1 to trigger its degradation. Iru preferentially binds empty Ago1 and ubiquitinates Lys514 in the L2 linker, which is predicted to be inaccessible in the miRNA-loaded state. Depletion of Iru results in global impairment of miRNA-mediated silencing of target genes and in the accumulation of aberrant Ago1 that is dysfunctional for canonical protein-protein interactions and miRNA loading. Our findings reveal a sophisticated mechanism for the selective degradation of empty AGO that underlies a quality control process to ensure AGO function.
Collapse
|
235
|
Marr EJ, Wright HW, Sargison ND, Nisbet AJ, Burgess STG. Gene silencing by RNA interference in the ectoparasitic mite, Psoroptes ovis. Vet Res 2018; 49:112. [PMID: 30382906 PMCID: PMC6211577 DOI: 10.1186/s13567-018-0608-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022] Open
Abstract
The presence of components of the RNA interference (RNAi) pathway in Psoroptes ovis, an ectoparasitic mite responsible for psoroptic mange, was investigated through interrogation of the P. ovis genome. Homologues of transcripts representing critical elements for achieving effective RNAi in the mite, Tetranychus urticae and the model organisms Caenorhabditis elegans and Drosophila melanogaster were identified and, following the development of a non-invasive immersion method of double stranded RNA delivery, gene silencing by RNAi was successfully demonstrated in P. ovis. Significant reductions in transcript levels were achieved for three target genes which encode the Group 2 allergen (Pso o 2), mu-class glutathione S-transferase (PoGST-mu1) and beta-tubulin (Poβtub). This is the first demonstration of RNAi in P. ovis and provides a mechanism for mining transcriptomic and genomic datasets for novel control targets against this economically important ectoparasite.
Collapse
Affiliation(s)
- Edward J Marr
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, Scotland, UK.,Institute of Immunology and Infection Research, The King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, Scotland, UK
| | - Harry W Wright
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, Scotland, UK
| | - Neil D Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, Scotland, UK
| | - Stewart T G Burgess
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, Scotland, UK.
| |
Collapse
|
236
|
Acetylation of AGO2 promotes cancer progression by increasing oncogenic miR-19b biogenesis. Oncogene 2018; 38:1410-1431. [PMID: 30305728 PMCID: PMC6372475 DOI: 10.1038/s41388-018-0530-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/03/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
Argonaute2 (AGO2) is an effector of small RNA mediated gene silencing. Increasing evidence show that post-translational modifications of AGO2 can change miRNA activity at specific or global levels. Among the six mature miRNAs that are encoded by miR-17-92, miR-19b1 is the most powerful to exert the oncogenic properties of the entire cluster. Here we identify that AGO2 can be acetylated by P300/CBP and deacetylated by HDAC7, and that acetylation occurs at three sites K720, K493, and K355. Mutation of K493R/K720R, but not K355R at AGO2, inhibits miR-19b biogenesis. We demonstrate that acetylation of AGO2 specifically increases its recruiting pre-miR-19b1 to form the miPDC (miRNA precursor deposit complex), thereby to enhance miR-19b maturation. The motif UGUGUG in the terminal-loop of pre-miR-19b1, as a specific processing feature that is recognized and bound by acetylated AGO2, is essential for the assembly of miRISC (miRNA-induced silencing complex) loading complex. Analyses on public clinical data, xenograft mouse models, and IHC and ISH staining of lung cancer tissues, further confirm that the high levels of both AGO2 acetylation and miR-19b correlate with poor prognosis in lung cancer patients. Our finding reveals a novel function of AGO2 acetylation in increasing oncogenic miR-19b biogenesis and suggests that modulation of AGO2 acetylation has potential clinical implications.
Collapse
|
237
|
Fuchs Wightman F, Giono LE, Fededa JP, de la Mata M. Target RNAs Strike Back on MicroRNAs. Front Genet 2018; 9:435. [PMID: 30333855 PMCID: PMC6175985 DOI: 10.3389/fgene.2018.00435] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are extensively studied regulatory non-coding small RNAs that silence animal genes throughout most biological processes, typically doing so by binding to partially complementary sequences within target RNAs. A plethora of studies has described detailed mechanisms for microRNA biogenesis and function, as well as their temporal and spatial regulation during development. By inducing translational repression and/or degradation of their target RNAs, microRNAs can contribute to achieve highly specific cell- or tissue-specific gene expression, while their aberrant expression can lead to disease. Yet an unresolved aspect of microRNA biology is how such small RNA molecules are themselves cleared from the cell, especially under circumstances where fast microRNA turnover or specific degradation of individual microRNAs is required. In recent years, it was unexpectedly found that binding of specific target RNAs to microRNAs with extensive complementarity can reverse the outcome, triggering degradation of the bound microRNAs. This emerging pathway, named TDMD for Target RNA-Directed MicroRNA Degradation, leads to microRNA 3'-end tailing by the addition of A/U non-templated nucleotides, trimming or shortening from the 3' end, and highly specific microRNA loss, providing a new layer of microRNA regulation. Originally described in flies and known to be triggered by viral RNAs, novel endogenous instances of TDMD have been uncovered and are now starting to be understood. Here, we review our current knowledge of this pathway and its potential role in the control and diversification of microRNA expression patterns.
Collapse
Affiliation(s)
- Federico Fuchs Wightman
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Luciana E Giono
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Juan Pablo Fededa
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel de la Mata
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| |
Collapse
|
238
|
Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond) 2018; 15:68. [PMID: 30302122 PMCID: PMC6167836 DOI: 10.1186/s12986-018-0305-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), a class of single-stranded non-coding RNA of about 22 nucleotides, are potent regulators of gene expression existing in both plants and animals. Recent studies showed that plant miRNAs could enter mammalian bloodstream via gastrointestinal tract, through which access a variety of tissues and cells of recipients to exert therapeutic effects. This intriguing phenomenon indicates that miRNAs of diet/plant origin may act as a new class of bioactive ingredients communicating with mammalian systems. In this review, in order to pinpoint the reason underlying discrepancies of miRNAs transmission from diet/plant to animals, the pathways that generate miRNAs and machineries involved in the functions of miRNAs in both kingdoms were outlined and compared. Then, the current controversies concerning cross-kingdom regulations and the potential mechanisms responsible for absorption and transfer of diet/plant-derived miRNAs were interpreted. Furthermore, the hormone-like action of miRNAs and the intricate interplay between miRNAs and hormones were implicated. Finally, how these findings may impact nutrition and medicine were briefly discussed.
Collapse
Affiliation(s)
- Zhiqing Li
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005 People's Republic of China
| | - Ruodan Xu
- 2Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China.,3Department of Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Ning Li
- 2Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| |
Collapse
|
239
|
Logan MK, Burke MF, Hebert MD. Altered dynamics of scaRNA2 and scaRNA9 in response to stress correlates with disrupted nuclear organization. Biol Open 2018; 7:bio.037101. [PMID: 30177550 PMCID: PMC6176948 DOI: 10.1242/bio.037101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small Cajal body-specific RNAs (scaRNAs) are part of small Cajal body-specific ribonucleoproteins (scaRNPs) that modify small nuclear RNA (snRNA) in Cajal bodies (CBs). Several scaRNAs (scaRNA 2, 9 and 17) have been found to generate smaller, nucleolus-enriched fragments. We hypothesize that the fragments derived from scaRNA 2, 9 and 17 form regulatory RNPs that influence the level of modifications within rRNA by altering small nucleolar RNP (snoRNP) activity. Here we show that external factors such as DNA damaging agents can alter the scaRNA9 full length to processed fragment ratio. We also show that full-length scaRNA2 levels are likewise impacted by DNA damage, which correlates with the disruption of SMN, coilin and WRAP53 co-localization in CBs. The dynamics of scaRNA9 were also shown to be affected by Drosha levels, which suggests that this protein may participate in the biogenesis and processing of this non-coding RNA. Identification of factors that contribute to scaRNA 2, 9 and 17 processing may facilitate an assessment of how external stress can lead to changes in rRNA modifications.
Collapse
Affiliation(s)
- Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Marilyn F Burke
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
240
|
Rodríguez-Galán A, Fernández-Messina L, Sánchez-Madrid F. Control of Immunoregulatory Molecules by miRNAs in T Cell Activation. Front Immunol 2018; 9:2148. [PMID: 30319616 PMCID: PMC6167432 DOI: 10.3389/fimmu.2018.02148] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 01/01/2023] Open
Abstract
MiRNA targeting of key immunoregulatory molecules fine-tunes the immune response. This mechanism boosts or dampens immune functions to preserve homeostasis while supporting the full development of effector functions. MiRNA expression changes during T cell activation, highlighting that their function is constrained by a specific spatiotemporal frame related to the signals that induce T cell-based effector functions. Here, we update the state of the art regarding the miRNAs that are differentially expressed during T cell stimulation. We also revisit the existing data on miRNA function in T cell activation, with a special focus on the modulation of the most relevant immunoregulatory molecules.
Collapse
Affiliation(s)
- Ana Rodríguez-Galán
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Lola Fernández-Messina
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
241
|
Somatic and Germline MicroRNAs Form Distinct Silencing Complexes to Regulate Their Target mRNAs Differently. Dev Cell 2018; 47:239-247.e4. [PMID: 30245155 DOI: 10.1016/j.devcel.2018.08.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/31/2018] [Accepted: 08/23/2018] [Indexed: 11/23/2022]
Abstract
Animal germ cells possess a specific post-transcriptional regulatory context allowing the storage of maternal transcripts in the oocyte until their translation at a specific point in early development. As key regulators of gene expression, miRNAs repress translation mainly through mRNA destabilization. Thus, germline miRNAs likely use distinct ways to regulate their targets. Here, we use C. elegans to compare miRNA function within germline and somatic tissues. We show that the same miRNA displays tissue-specific gene regulatory mechanisms. While translational repression occurs in both tissues, targeted mRNAs are instead stabilized in the germline. Comparative analyses of miRNA silencing complexes (miRISC) demonstrate that their composition differs from germline to soma. We show that germline miRNA targets preferentially localize to perinuclear regions adjacent to P granules, and their repression is dependent on the core P granule component GLH-1. Together, our findings reveal the existence of different miRISC in animals that affect targeted mRNAs distinctively.
Collapse
|
242
|
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2018; 20:5-20. [DOI: 10.1038/s41580-018-0059-1] [Citation(s) in RCA: 904] [Impact Index Per Article: 129.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
243
|
Wu E, Vashisht AA, Chapat C, Flamand MN, Cohen E, Sarov M, Tabach Y, Sonenberg N, Wohlschlegel J, Duchaine TF. A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Res 2018; 45:2081-2098. [PMID: 28204614 PMCID: PMC5389717 DOI: 10.1093/nar/gkw872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) impinge on the translation and stability of their target mRNAs, and play key roles in development, homeostasis and disease. The gene regulation mechanisms they instigate are largely mediated through the CCR4–NOT deadenylase complex, but the molecular events that occur on target mRNAs are poorly resolved. We observed a broad convergence of interactions of germ granule and P body mRNP components on AIN-1/GW182 and NTL-1/CNOT1 in Caenorhabditis elegans embryos. We show that the miRISC progressively matures on the target mRNA from a scanning form into an effector mRNP particle by sequentially recruiting the CCR4–NOT complex, decapping and decay, or germ granule proteins. Finally, we implicate intrinsically disordered proteins, key components in mRNP architectures, in the embryonic function of lsy-6 miRNA. Our findings define dynamic steps of effector mRNP assembly in miRNA-mediated silencing, and identify a functional continuum between germ granules and P bodies in the C. elegans embryo.
Collapse
Affiliation(s)
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Clément Chapat
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Mathieu N Flamand
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - Emiliano Cohen
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute For Medical Research-Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G 1Y6 Canada
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
244
|
Lou S, Sun T, Li H, Hu Z. Mechanisms of microRNA-mediated gene regulation in unicellular model alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:244. [PMID: 30202439 PMCID: PMC6129010 DOI: 10.1186/s13068-018-1249-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/31/2018] [Indexed: 05/30/2023]
Abstract
MicroRNAs are a class of endogenous non-coding RNAs that play a vital role in post-transcriptional gene regulation in eukaryotic cells. In plants and animals, miRNAs are implicated in diverse roles ranging from immunity against viral infections, developmental pathways, molecular pathology of cancer and regulation of protein expression. However, the role of miRNAs in the unicellular model green alga Chlamydomonas reinhardtii remains unclear. The mode of action of miRNA-induced gene silencing in C. reinhardtii is very similar to that of higher eukaryotes, in terms of the activation of the RNA-induced silencing complex and mRNA targeting. Certain studies indicate that destabilization of mRNAs and mRNA turnover could be the major possible functions of miRNAs in eukaryotic algae. Here, we summarize recent findings that have advanced our understanding of miRNA regulatory mechanisms in C. reinhardtii.
Collapse
Affiliation(s)
- Sulin Lou
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Ting Sun
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
245
|
Pinto S, Sato VN, De-Souza EA, Ferraz RC, Camara H, Pinca APF, Mazzotti DR, Lovci MT, Tonon G, Lopes-Ramos CM, Parmigiani RB, Wurtele M, Massirer KB, Mori MA. Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis. Redox Biol 2018; 18:84-92. [PMID: 29986212 PMCID: PMC6037660 DOI: 10.1016/j.redox.2018.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 11/29/2022] Open
Abstract
Alterations in microRNA (miRNA) processing have been previously linked to aging. Here we used the small molecule enoxacin to pharmacologically interfere with miRNA biogenesis and study how it affects aging in C. elegans. Enoxacin extended worm lifespan and promoted survival under normal and oxidative stress conditions. Enoxacin-induced longevity required the transcription factor SKN-1/Nrf2 and was blunted by the antioxidant N-acetyl-cysteine, suggesting a prooxidant-mediated mitohormetic response. The longevity effects of enoxacin were also dependent on the miRNA pathway, consistent with changes in miRNA expression elicited by the drug. Among these differentially expressed miRNAs, the widely conserved miR-34-5p was found to play an important role in enoxacin-mediated longevity. Enoxacin treatment down-regulated miR-34-5p and did not further extend lifespan of long-lived mir-34 mutants. Moreover, N-acetyl-cysteine abrogated mir-34(gk437)-induced longevity. Evidence also points to double-stranded RNA-specific adenosine deaminases (ADARs) as new targets of enoxacin since ADAR loss-of-function abrogates enoxacin-induced lifespan extension. Thus, enoxacin increases lifespan by reducing miR-34-5p levels, interfering with the redox balance and promoting healthspan.
Collapse
Affiliation(s)
- Silas Pinto
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Vitor N Sato
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Evandro A De-Souza
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael C Ferraz
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Henrique Camara
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana Paula F Pinca
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Diego R Mazzotti
- Department of Psychobiology. São Paulo School of Medicine. Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Michael T Lovci
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Guilherme Tonon
- Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Martin Wurtele
- Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Katlin B Massirer
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo A Mori
- Department of Biophysics, Program in Molecular Biology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Laboratory of Aging Biology (LaBE), Department of Biochemistry and Tissue Biology, Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
246
|
Hong M, Sun H, Xu L, Yue Q, Shen G, Li M, Tang B, Li CZ. In situ monitoring of cytoplasmic precursor and mature microRNA using gold nanoparticle and graphene oxide composite probes. Anal Chim Acta 2018; 1021:129-139. [DOI: 10.1016/j.aca.2018.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 01/12/2023]
|
247
|
Bundus JD, Wang D, Cutter AD. Genetic basis to hybrid inviability is more complex than hybrid male sterility in Caenorhabditis nematodes. Heredity (Edinb) 2018; 121:169-182. [PMID: 29626207 PMCID: PMC6039526 DOI: 10.1038/s41437-018-0069-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/22/2018] [Accepted: 02/11/2018] [Indexed: 12/31/2022] Open
Abstract
Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.
Collapse
Affiliation(s)
- Joanna D Bundus
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Donglin Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
248
|
Ustianenko D, Chiu HS, Treiber T, Weyn-Vanhentenryck SM, Treiber N, Meister G, Sumazin P, Zhang C. LIN28 Selectively Modulates a Subclass of Let-7 MicroRNAs. Mol Cell 2018; 71:271-283.e5. [PMID: 30029005 PMCID: PMC6238216 DOI: 10.1016/j.molcel.2018.06.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/27/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
LIN28 is a bipartite RNA-binding protein that post-transcriptionally inhibits the biogenesis of let-7 microRNAs to regulate development and influence disease states. However, the mechanisms of let-7 suppression remain poorly understood because LIN28 recognition depends on coordinated targeting by both the zinc knuckle domain (ZKD), which binds a GGAG-like element in the precursor, and the cold shock domain (CSD), whose binding sites have not been systematically characterized. By leveraging single-nucleotide-resolution mapping of LIN28 binding sites in vivo, we determined that the CSD recognizes a (U)GAU motif. This motif partitions the let-7 microRNAs into two subclasses, precursors with both CSD and ZKD binding sites (CSD+) and precursors with ZKD but no CSD binding sites (CSD-). LIN28 in vivo recognition-and subsequent 3' uridylation and degradation-of CSD+ precursors is more efficient, leading to their stronger suppression in LIN28-activated cells and cancers. Thus, CSD binding sites amplify the regulatory effects of LIN28.
Collapse
Affiliation(s)
- Dmytro Ustianenko
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Hua-Sheng Chiu
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Treiber
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Sebastien M Weyn-Vanhentenryck
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Nora Treiber
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Pavel Sumazin
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
249
|
Waldron FM, Stone GN, Obbard DJ. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet 2018; 14:e1007533. [PMID: 30059538 PMCID: PMC6085071 DOI: 10.1371/journal.pgen.1007533] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022] Open
Abstract
RNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient, and probably shared by most animal (metazoan) phyla. Indeed, while vertebrates had been thought an exception, it has recently been argued that mammals also possess an antiviral RNAi pathway, although its immunological relevance is currently uncertain and the viral small RNAs (viRNAs) are not easily detectable. Here we use a metagenomic approach to test for the presence of viRNAs in five species from divergent animal phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga-which represents an independent origin of multicellularity from plants, fungi, and animals. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify viRNAs derived from those viruses. We identified 21U small RNAs derived from an RNA virus in the brown alga, reminiscent of plant and fungal viRNAs, despite the deep divergence between these lineages. However, contrary to our expectations, we were unable to identify canonical (i.e. Drosophila- or nematode-like) viRNAs in any of the animals, despite the widespread presence of abundant micro-RNAs, and somatic transposon-derived piwi-interacting RNAs. We did identify a distinctive group of small RNAs derived from RNA viruses in the mollusc. However, unlike ecdysozoan viRNAs, these had a piRNA-like length distribution but lacked key signatures of piRNA biogenesis. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. The absence of canonical virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response. Alternatively, these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, with cryptic viRNAs not detectable through simple metagenomic sequencing of wild-type individuals. In either case, our findings show that the antiviral RNAi responses of arthropods and nematodes, which are highly divergent from each other and from that of plants and fungi, are also highly diverged from the most likely ancestral metazoan state.
Collapse
Affiliation(s)
- Fergal M. Waldron
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Darren J. Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- Centre for Immunity Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
250
|
Method for Detection of miRNAs in Non-Model Organisms with Unreported Database. Methods Mol Biol 2018. [PMID: 29959683 DOI: 10.1007/978-1-4939-8624-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Non-model organisms are studied very frequently, as a simple accessible and convenient system to investigate the role of miRNAs in particular aspect of biology or disease. However, the unavailability of the annotated genome and hence miRNA database of these non-model organisms pose a major constraint for using them more efficiently. Here, we describe a new method to identify miRNAs in non-model organisms without complex sequencing strategies and using miRNAs from close relative organisms as proxy/reference sequences.
Collapse
|