201
|
Giuliani M, Bartolini E, Galli B, Santini L, Lo Surdo P, Buricchi F, Bruttini M, Benucci B, Pacchiani N, Alleri L, Donnarumma D, Pansegrau W, Peschiera I, Ferlenghi I, Cozzi R, Norais N, Giuliani MM, Maione D, Pizza M, Rappuoli R, Finco O, Masignani V. Human protective response induced by meningococcus B vaccine is mediated by the synergy of multiple bactericidal epitopes. Sci Rep 2018; 8:3700. [PMID: 29487324 PMCID: PMC5829249 DOI: 10.1038/s41598-018-22057-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
4CMenB is the first broad coverage vaccine for the prevention of invasive meningococcal disease caused by serogroup B strains. To gain a comprehensive picture of the antibody response induced upon 4CMenB vaccination and to obtain relevant translational information directly from human studies, we have isolated a panel of human monoclonal antibodies from adult vaccinees. Based on the Ig-gene sequence of the variable region, 37 antigen-specific monoclonal antibodies were identified and produced as recombinant Fab fragments, and a subset also produced as full length recombinant IgG1 and functionally characterized. We found that the monoclonal antibodies were cross-reactive against different antigen variants and recognized multiple epitopes on each of the antigens. Interestingly, synergy between antibodies targeting different epitopes enhanced the potency of the bactericidal response. This work represents the first extensive characterization of monoclonal antibodies generated in humans upon 4CMenB immunization and contributes to further unraveling the immunological and functional properties of the vaccine antigens. Moreover, understanding the mechanistic nature of protection induced by vaccination paves the way to more rational vaccine design and implementation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M Bruttini
- GSK, Siena, Italy.,University of Siena, Siena, Italy
| | - B Benucci
- GSK, Siena, Italy.,University of Siena, Siena, Italy
| | | | | | | | | | - I Peschiera
- GSK, Siena, Italy.,University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Shaker R, Fayad D, Dbaibo G. Challenges and opportunities for meningococcal vaccination in the developing world. Hum Vaccin Immunother 2018; 14:1084-1097. [PMID: 29393729 DOI: 10.1080/21645515.2018.1434463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Meningococcal disease continues to be a life threatening infection with high morbidity and mortality even in appropriately treated patients. Meningococcal vaccination plays a major role in the control of the disease; however, implementing vaccination remains problematic in the developing world. The objective of this review is to identify the challenges facing the use of meningococcal vaccines in the developing world in order to discuss the opportunities and available solutions to improve immunization in these countries. Inadequate epidemiologic information necessary to implement vaccination and financial challenges predominate. Multiple measures are needed to achieve the successful implementation of meningococcal conjugate vaccination programs that protect against circulating serogroups in developing countries including enhanced surveillance systems, financial support and aid through grants, product development partnerships that are the end result of effective collaboration and communication between different interdependent stakeholders to develop affordable vaccines, and demonstration of the cost-effectiveness of new meningococcal vaccines.
Collapse
Affiliation(s)
- Rouba Shaker
- a Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, and Center for Infectious Diseases Research , American University of Beirut Medical Center , Beirut , Lebanon
| | - Danielle Fayad
- a Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, and Center for Infectious Diseases Research , American University of Beirut Medical Center , Beirut , Lebanon
| | - Ghassan Dbaibo
- a Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, and Center for Infectious Diseases Research , American University of Beirut Medical Center , Beirut , Lebanon.,b Department of Biochemistry and Molecular Genetics , American University of Beirut , Beirut , Lebanon
| |
Collapse
|
203
|
Siena E, Bodini M, Medini D. Interplay Between Virulence and Variability Factors as a Potential Driver of Invasive Meningococcal Disease. Comput Struct Biotechnol J 2018; 16:61-69. [PMID: 29686800 PMCID: PMC5910500 DOI: 10.1016/j.csbj.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 01/09/2023] Open
Abstract
Neisseria meningitidis (Nm) is frequently found in the upper respiratory tract of the human population. Despite its prevalence as a commensal organism, Nm can occasionally invade the pharyngeal mucosal epithelium causing septicemia and life-threatening disease. A number of studies have tried to identify factors that are responsible for the onset of a virulent phenotype. Despite this however, we still miss clear causative elements. Several factors have been identified to be associated to an increased susceptibility to meningococcal disease in humans. None of them, however, could unambiguously discriminate healthy carrier from infected individuals. Similarly, comparative studies of virulent and apathogenic strains failed to identify virulence factors that could explain the emergence of the pathogenic phenotype. In line with this, a recent study of within host evolution found that Nm accumulates genomic changes during the asymptomatic carriage phase and that these are likely to contribute to the shift to a pathogenic phenotype. These results suggest that the presence of virulence factors in the meningococcal genome is not a sufficient condition for developing virulent traits, but is rather the ability to promote phenotypic variation, through the stochastic assortment of the repertoire of such factors, which could explain the occasional and unpredictable onset of IMD. Here, we present a series of argumentations supporting the hypothesis that invasive meningococcal disease comes as a result of the coexistence of bacterial virulence and variability factors in a plot that can be further complicated by additional latent factors, like host pre-existing immune status and genetic predisposition.
Collapse
|
204
|
Evellyn do Macedo L, Ferreira VM, Feitosa CA, Nunes AMPB, Campos LC, Sáfadi MAP. Impact of meningococcal C conjugate vaccination programs with and without catch-up campaigns in adolescents: Lessons learned from Bahia, Brazil. Hum Vaccin Immunother 2018; 14:1131-1137. [PMID: 29236585 DOI: 10.1080/21645515.2017.1415682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The significant increase in the incidence rates and ongoing outbreaks of serogroup C meningococcal (MenC) disease, associated with the sequence type-103 complex, motivated the incorporation of the meningococcal C conjugate (MCC) vaccine in the routine immunization program in the State of Bahia, Brazil in early 2010, targeting children younger than 5 years of age. In its capital, Salvador, the program also included a catch-up campaign for individuals 10-24 years of age. We performed an observational, ecological study, analyzing data collected from 2007 to 2015, to compare the impact of these two immunization strategies on meningococcal disease incidence and mortality rates. In Salvador, following the vaccination program, a dramatic early impact on MenC disease and mortality rates could be observed, with significant reductions in incidence rates of MenC disease in all age groups, including individuals that were too old to have been vaccinated, indicating the presence of herd protection. Compared to the pre-vaccine period, a virtual disappearance of MenC disease was observed in 2015. However, in the state of Bahia (excluding the city of Salvador), no herd protection could be observed, with significant impact only among vaccine-eligible children within 5 years of introduction of the MCC vaccination program. These results highlight the importance of catch-up campaigns, including adolescents and young adults, to induce herd protection compared to immunization strategies restricted to infants and young children. This information is crucial for identifying optimal immunization policies and future strategies, focused on adolescents, to optimize the impact of MCC vaccination programs.
Collapse
Affiliation(s)
| | - Viviane Matos Ferreira
- a Biomedicina, Escola Bahiana de Medicina e Saúde Pública , Salvador , Brazil.,b Biologia molecular e patologia, Instituto Gonçalo Moniz, FIOCRUZ- BA , Salvador , Brazil
| | | | | | - Leila Carvalho Campos
- b Biologia molecular e patologia, Instituto Gonçalo Moniz, FIOCRUZ- BA , Salvador , Brazil
| | | |
Collapse
|
205
|
Mustapha MM, Harrison LH. Vaccine prevention of meningococcal disease in Africa: Major advances, remaining challenges. Hum Vaccin Immunother 2018; 14:1107-1115. [PMID: 29211624 DOI: 10.1080/21645515.2017.1412020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Africa historically has had the highest incidence of meningococcal disease with high endemic rates and periodic epidemics. The meningitis belt, a region of sub-Saharan Africa extending from Senegal to Ethiopia, has experienced large, devastating epidemics. However, dramatic shifts in the epidemiology of meningococcal disease have occurred recently. For instance, meningococcal capsular group A (NmA) epidemics in the meningitis belt have essentially been eliminated by use of conjugate vaccine. However, NmW epidemics have emerged and spread across the continent since 2000; NmX epidemics have occurred sporadically, and NmC recently emerged in Nigeria and Niger. Outside the meningitis belt, NmB predominates in North Africa, while NmW followed by NmB predominate in South Africa. Improved surveillance is necessary to address the challenges of this changing epidemiologic picture. A low-cost, multivalent conjugate vaccine covering NmA and the emergent and prevalent meningococcal capsular groups C, W, and X in the meningitis belt is a pressing need.
Collapse
Affiliation(s)
- Mustapha M Mustapha
- a Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Lee H Harrison
- a Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
206
|
Aass HCD, Hellum M, Trøseid AMS, Brandtzaeg P, Berg JP, Øvstebø R, Henriksson CE. Whole-blood incubation with the Neisseria meningitidis lpxL1 mutant induces less pro-inflammatory cytokines than the wild type, and IL-10 reduces the MyD88-dependent cytokines. Innate Immun 2018; 24:101-111. [PMID: 29313733 PMCID: PMC6830899 DOI: 10.1177/1753425917749299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Levels of bacterial LPS, pro-inflammatory cytokines and IL-10 are related to the
severity of meningococcal septicaemia. Patients infected with a
Neisseria meninigitidis lpxL1 mutant
(Nm-mutant) with penta-acylated lipid A present with a milder
meningococcal disease than those infected with hexa-acylated Nm
wild type (Nm-wt). The aim was to compare the pro-inflammatory
responses after ex vivo incubation with the heat-inactivated
Nm-wt or the Nm-mutant in citrated whole
blood, and the modulating effects of IL-10. Concomitantly, we measured
intracellular IL-6, IL-8 and TNF-α to elucidate which cell types were
responsible for the pro-inflammatory responses. Incubation with
Nm-wt
(106/ml;107/ml;108/ml) resulted in a
dose-dependent increase of the MyD88-dependent pro-inflammatory cytokines
(IL-1β, IL-6, IL-8, TNF-α), which were mainly derived from monocytes. In
comparison, only 108/ml of the Nm-mutant
significantly increased the concentration of these cytokines. The
MyD88-independent cytokines (IP-10, RANTES) were evidently increased after
incubation with the Nm-wt but were unaffected by the
Nm-mutant. Co-incubation with IL-10 significantly reduced
the concentrations of the MyD88-dependent cytokines induced by both the
Nm-wt and the Nm-mutant, whereas the
MyD88-independent cytokines were almost unaffected. In summary, the
Nm-mutant is a weaker inducer of the
MyD88-dependent/independent cytokines than the Nm-wt in whole
blood, and IL-10 attenuates the Nm-stimulated increase in
MyD88-dependent pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hans Christian D Aass
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marit Hellum
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Petter Brandtzaeg
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,3 Department of Pediatrics, University of Oslo, Oslo, Norway
| | - Jens Petter Berg
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Reidun Øvstebø
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Carola Elisabeth Henriksson
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
207
|
Ispasanie E, Micoli F, Lamelas A, Keller D, Berti F, De Riccio R, Di Benedettoi R, Rondini S, Pluschke G. Spontaneous point mutations in the capsule synthesis locus leading to structural and functional changes of the capsule in serogroup A meningococcal populations. Virulence 2018; 9:1138-1149. [PMID: 30067453 PMCID: PMC6086313 DOI: 10.1080/21505594.2018.1467710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023] Open
Abstract
Whole genome sequencing analysis of 100 Neisseria meningitidis serogroup A isolates has revealed that the csaABCD-ctrABCD-ctrEF capsule polysaccharide synthesis locus represents a spontaneous point mutation hotspot. Structural and functional properties of the capsule of 11 carriage and two disease isolates with non-synonymous point mutations or stop codons in capsule synthesis genes were analyzed for their capsular polysaccharide expression, recognition by antibodies and sensitivity to bactericidal killing. Eight of eleven carriage isolates presenting capsule locus mutations expressed no or reduced amounts of capsule. One isolate with a stop codon in the O-acetyltransferase gene expressed non-O-acetylated polysaccharide, and was not recognized by anti-capsule antibodies. Capsule and O-acetylation deficient mutants were resistant to complement deposition and killing mediated by anti-capsular antibodies, but not by anti-lipopolysaccharide antibodies. Two capsule polymerase mutants, one carriage and one case isolate, showed capsule over-expression and increased resistance against bactericidal activity of both capsule- and lipopolysaccharide-specific antibodies. Meningococci have developed multiple strategies for changing capsule expression and structure, which is relevant both for colonization and virulence. Here we show that point mutations in the capsule synthesis genes substantially contribute to the repertoire of genetic mechanisms in natural populations leading to variability in capsule expression.
Collapse
Affiliation(s)
- Emma Ispasanie
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecologia, A.C., Veracruz, México
| | - Dominique Keller
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | | | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
208
|
Yaesoubi R, Trotter C, Colijn C, Yaesoubi M, Colombini A, Resch S, Kristiansen PA, LaForce FM, Cohen T. The cost-effectiveness of alternative vaccination strategies for polyvalent meningococcal vaccines in Burkina Faso: A transmission dynamic modeling study. PLoS Med 2018; 15:e1002495. [PMID: 29364884 PMCID: PMC5783340 DOI: 10.1371/journal.pmed.1002495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The introduction of a conjugate vaccine for serogroup A Neisseria meningitidis has dramatically reduced disease in the African meningitis belt. In this context, important questions remain about the performance of different vaccine policies that target remaining serogroups. Here, we estimate the health impact and cost associated with several alternative vaccination policies in Burkina Faso. METHODS AND FINDINGS We developed and calibrated a mathematical model of meningococcal transmission to project the disability-adjusted life years (DALYs) averted and costs associated with the current Base policy (serogroup A conjugate vaccination at 9 months, as part of the Expanded Program on Immunization [EPI], plus district-specific reactive vaccination campaigns using polyvalent meningococcal polysaccharide [PMP] vaccine in response to outbreaks) and three alternative policies: (1) Base Prime: novel polyvalent meningococcal conjugate (PMC) vaccine replaces the serogroup A conjugate in EPI and is also used in reactive campaigns; (2) Prevention 1: PMC used in EPI and in a nationwide catch-up campaign for 1-18-year-olds; and (3) Prevention 2: Prevention 1, except the nationwide campaign includes individuals up to 29 years old. Over a 30-year simulation period, Prevention 2 would avert 78% of the meningococcal cases (95% prediction interval: 63%-90%) expected under the Base policy if serogroup A is not replaced by remaining serogroups after elimination, and would avert 87% (77%-93%) of meningococcal cases if complete strain replacement occurs. Compared to the Base policy and at the PMC vaccine price of US$4 per dose, strategies that use PMC vaccine (i.e., Base Prime and Preventions 1 and 2) are expected to be cost saving if strain replacement occurs, and would cost US$51 (-US$236, US$490), US$188 (-US$97, US$626), and US$246 (-US$53, US$703) per DALY averted, respectively, if strain replacement does not occur. An important potential limitation of our study is the simplifying assumption that all circulating meningococcal serogroups can be aggregated into a single group; while this assumption is critical for model tractability, it would compromise the insights derived from our model if the effectiveness of the vaccine differs markedly between serogroups or if there are complex between-serogroup interactions that influence the frequency and magnitude of future meningitis epidemics. CONCLUSIONS Our results suggest that a vaccination strategy that includes a catch-up nationwide immunization campaign in young adults with a PMC vaccine and the addition of this new vaccine into EPI is cost-effective and would avert a substantial portion of meningococcal cases expected under the current World Health Organization-recommended strategy of reactive vaccination. This analysis is limited to Burkina Faso and assumes that polyvalent vaccines offer equal protection against all meningococcal serogroups; further studies are needed to evaluate the robustness of this assumption and applicability for other countries in the meningitis belt.
Collapse
Affiliation(s)
- Reza Yaesoubi
- Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Caroline Colijn
- Department of Mathematics, Imperial College London, London, United Kingdom
- Centre for Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| | - Maziar Yaesoubi
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | | - Stephen Resch
- Department of Health Policy and Management, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Paul A. Kristiansen
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
209
|
Cordeiro SM, Cardoso CW, de Araújo LG, Ribeiro LE, Azevedo J, Silva RDCV, Dos Reis MG, Ko AI, Reis JN. Dissemination of the ST-103 clonal complex serogroup C meningococci in Salvador, Brazil. Microbes Infect 2018; 20:19-24. [PMID: 28962886 DOI: 10.1016/j.micinf.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022]
Abstract
Invasive meningococcal disease (IMD) is a major public health problem worldwide. An epidemic of serogroup C (NmC) IMD occurred in 2010 in the city of Salvador. In this study, we describe the antigenic and genetic characterization of meningococcal isolates collected from meningitis cases in Salvador from 2001 to 2012. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed for the analysis of IMD isolates. A total of 733 cases were identified, and the serogroup was determined for 391 (53.0%) of these. Most cases were caused by NmC (53%) or B (47%). The most prevalent strains were B:4,7:P1.19,15 (32.9%; 129/391) and C:23:P1.14-6 (28.6%; 112/391). Based on PFGE/MLST analysis, 71.3% (77/108 PFGE-tested isolates) clustered as two clones of sequence type ST-3779 and ST-3780, both belonging to the ST-103 clonal complex. ST-3779 has been detected in Salvador since 1996 and together with ST-3780 became predominant after 2005. There was a predominance of C:23:P1.14-6, ST-3779/3780 in Salvador during the period of 2007-2012, establishing a major clonal lineage, which remained in the community for a long time; this has serious implications for public health, particularly in terms of prevention and control strategies of IMD.
Collapse
Affiliation(s)
- Soraia Machado Cordeiro
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Brazil Ministry of Health, Rua Waldemar Falcão, 141, Candeal, Salvador 40296-710, Brazil; School of Pharmacy, Federal University of Bahia, Rua Barão do Jeremoabo, n° 147, Ondina, Salvador, 40170-115, Brazil
| | - Cristiane Wanderley Cardoso
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Brazil Ministry of Health, Rua Waldemar Falcão, 141, Candeal, Salvador 40296-710, Brazil; Municipal Secretary of Health of Salvador, Rua da Grécia, 3, Comercio, Salvador 40010-010, Brazil
| | - Lorena Galvão de Araújo
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Brazil Ministry of Health, Rua Waldemar Falcão, 141, Candeal, Salvador 40296-710, Brazil
| | - Luis Eduardo Ribeiro
- School of Pharmacy, Federal University of Bahia, Rua Barão do Jeremoabo, n° 147, Ondina, Salvador, 40170-115, Brazil
| | - Jailton Azevedo
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Brazil Ministry of Health, Rua Waldemar Falcão, 141, Candeal, Salvador 40296-710, Brazil
| | | | - Mitermayer Galvão Dos Reis
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Brazil Ministry of Health, Rua Waldemar Falcão, 141, Candeal, Salvador 40296-710, Brazil
| | - Albert Icksang Ko
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Brazil Ministry of Health, Rua Waldemar Falcão, 141, Candeal, Salvador 40296-710, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520-8034, USA
| | - Joice Neves Reis
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Brazil Ministry of Health, Rua Waldemar Falcão, 141, Candeal, Salvador 40296-710, Brazil; School of Pharmacy, Federal University of Bahia, Rua Barão do Jeremoabo, n° 147, Ondina, Salvador, 40170-115, Brazil.
| |
Collapse
|
210
|
Abstract
Infection with the meningococcus is one of the main causes of meningitis and septicaemia worldwide. Humans are the only natural reservoir for the meningococcus which is found primarily as a commensal inhabitant in the nasopharynx in ~10% of adults, and may be found in over 25% of individuals during adolescence. Prompt recognition of meningococcal infection and early aggressive treatment are essential in order to reduce mortality, which occurs in up to 10% of those with invasive meningococcal disease (IMD). This figure may be significantly higher in those with inadequate or delayed treatment. Early administration of effective parenteral antimicrobial therapy and prompt recognition and appropriate management of the complications of IMD, including circulatory shock and raised intracranial pressure (ICP), are critical to help improve patient outcome. This review summarizes clinical features of IMD and current treatment recommendations. We will discuss the evidence for immunization and effects of vaccine strategies, particularly following implementation of effective vaccines against Group B meningococcus.
Collapse
Affiliation(s)
- Simon Nadel
- Paediatric Intensive Care Unit, St. Mary's Hospital and Imperial College London, London, United Kingdom
| | - Nelly Ninis
- Paediatrics, St Mary's Hospital, London, United Kingdom
| |
Collapse
|
211
|
Steele L, Bechman K, De Barra E, Mackworth-Young C. Meningococcal arthritis and myopericarditis: a case report. BMC Infect Dis 2017; 17:751. [PMID: 29207945 PMCID: PMC5718011 DOI: 10.1186/s12879-017-2845-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/21/2017] [Indexed: 02/03/2023] Open
Abstract
Background We report the first adult case of Neisseria meningitidis W-135 presenting with meningococcal arthritis and myopericarditis concomitantly, without other classical features of meningococcal disease. Case presentation A 67-year-old Caucasian man presented with acute-onset polyarthralgia, myalgia, and fever. On examination he had polyarticular synovitis. An electrocardiogram (ECG) demonstrated ST-elevation in leads I, II, III, aVF, and V2-V6 without reciprocal depression, and a high-sensitivity troponin level was significantly elevated. Cardiac magnetic resonance (CMR) imaging on day five of admission demonstrated patchy pericardial enhancement. Neisseria meningitidis W-135 was isolated from both synovial fluid and blood cultures. The clinical outcome was favourable with intravenous ceftriaxone and myopericarditis treatment (colchicine and ibuprofen). Conclusions We conclude that this is a rare case of disseminated Neisseria meningitidis W-135 presenting with acute polyarticular septic arthritis and myopericarditis, without other classical features of systemic meningococcal disease. The earlier described entity of primary meningococcal arthritis (PMA) can present in patients with meningococcal bacteraemia, and may not be distinct from disseminated meningococcal disease, but rather an atypical presentation of this. Electronic supplementary material The online version of this article (10.1186/s12879-017-2845-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lloyd Steele
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK.
| | - Katie Bechman
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Eoghan De Barra
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Charles Mackworth-Young
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK
| |
Collapse
|
212
|
Genomic, Transcriptomic, and Phenotypic Analyses of Neisseria meningitidis Isolates from Disease Patients and Their Household Contacts. mSystems 2017; 2:mSystems00127-17. [PMID: 29152586 PMCID: PMC5686521 DOI: 10.1128/msystems.00127-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022] Open
Abstract
Neisseria meningitidis causes meningococcal disease but is frequently carried in the throats of healthy individuals; the factors that determine whether invasive disease develops are not completely understood. We carried out detailed studies of isolates, collected from patients and their household contacts, to identify differences between commensal throat isolates and those that caused invasive disease. Though isolates were identical by laboratory typing methods, we uncovered many differences in their genomes, in gene expression, and in their interactions with host cells. In particular, we found that several carriage isolates had lost their type IV pili, a surprising finding since pili are often described as essential for colonization. However, loss of type IV pili correlated with reduced secretion of a proinflammatory cytokine, TNF-α, when meningococci were cocultured with human bronchial epithelial cells; hence, the loss of pili could provide an advantage to meningococci, by resulting in a dampened localized host immune response. Neisseria meningitidis (meningococcus) can cause meningococcal disease, a rapidly progressing and often fatal disease that can occur in previously healthy children. Meningococci are found in healthy carriers, where they reside in the nasopharynx as commensals. While carriage is relatively common, invasive disease, associated with hypervirulent strains, is a comparatively rare event. The basis of increased virulence in some strains is not well understood. New Zealand suffered a protracted meningococcal disease epidemic, from 1991 to 2008. During this time, a household carriage study was carried out in Auckland: household contacts of index meningococcal disease patients were swabbed for isolation of carriage strains. In many households, healthy carriers harbored strains identical, as determined by laboratory typing, to the ones infecting the associated patient. We carried out more-detailed analyses of carriage and disease isolates from a select number of households. We found that isolates, although indistinguishable by laboratory typing methods and likely closely related, had many differences. We identified multiple genome variants and transcriptional differences between isolates. These studies enabled the identification of two new phase-variable genes. We also found that several carriage strains had lost their type IV pili and that this loss correlated with reduced tumor necrosis factor alpha (TNF-α) expression when cultured with epithelial cells. While nonpiliated meningococcal isolates have been previously found in carriage strains, this is the first evidence of an association between type IV pili from meningococci and a proinflammatory epithelial response. We also identified potentially important metabolic differences between carriage and disease isolates, including the sulfate assimilation pathway. IMPORTANCENeisseria meningitidis causes meningococcal disease but is frequently carried in the throats of healthy individuals; the factors that determine whether invasive disease develops are not completely understood. We carried out detailed studies of isolates, collected from patients and their household contacts, to identify differences between commensal throat isolates and those that caused invasive disease. Though isolates were identical by laboratory typing methods, we uncovered many differences in their genomes, in gene expression, and in their interactions with host cells. In particular, we found that several carriage isolates had lost their type IV pili, a surprising finding since pili are often described as essential for colonization. However, loss of type IV pili correlated with reduced secretion of a proinflammatory cytokine, TNF-α, when meningococci were cocultured with human bronchial epithelial cells; hence, the loss of pili could provide an advantage to meningococci, by resulting in a dampened localized host immune response.
Collapse
|
213
|
Parungao GG, Zhao M, Wang Q, Zano SP, Viola RE, Blumenthal RM. Complementation of a metK-deficient E. coli strain with heterologous AdoMet synthetase genes. MICROBIOLOGY-SGM 2017; 163:1812-1821. [PMID: 29111970 DOI: 10.1099/mic.0.000565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
S-adenosyl-l-methionine (AdoMet) is an essential metabolite, playing a wide variety of metabolic roles. The enzyme that produces AdoMet from l-methionine and ATP (methionine adenosyltransferase, MAT) is thus an attractive target for anti-cancer and antimicrobial agents. It would be very useful to have a system that allows rapid identification of species-specific inhibitors of this essential enzyme. A previously generated E. coli strain, lacking MAT (∆metK) but containing a heterologous AdoMet transporter, was successfully complemented with heterologous metK genes from several bacterial pathogens, as well as with MAT genes from a fungal pathogen and Homo sapiens. The nine tested genes, which vary in both sequence and kinetic properties, all complemented strain MOB1490 well in rich medium. When these strains were grown in glucose minimal medium, growth delays or defects were observed with some specific metK genes, defects that were dramatically reduced if l-methionine was added to the medium.
Collapse
Affiliation(s)
- Gwenn G Parungao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Mojun Zhao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.,Present address: Department of Pathology, Valley Pathologists Inc., Miami Valley Hospital, Dayton, OH 45409, USA
| | - Qinzhe Wang
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Stephen P Zano
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, OH 43614, USA
| |
Collapse
|
214
|
Batista RS, Gomes AP, Dutra Gazineo JL, Balbino Miguel PS, Santana LA, Oliveira L, Geller M. Meningococcal disease, a clinical and epidemiological review. ASIAN PAC J TROP MED 2017; 10:1019-1029. [PMID: 29203096 DOI: 10.1016/j.apjtm.2017.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/29/2017] [Accepted: 09/28/2017] [Indexed: 11/29/2022] Open
Abstract
Meningococcal disease is the acute infection caused by Neisseria meningitidis, which has humans as the only natural host. The disease is widespread around the globe and is known for its epidemical potential and high rates of lethality and morbidity. The highest number of cases of the disease is registered in the semi-arid regions of sub-Saharan Africa. In Brazil, it is endemic with occasional outbreaks, epidemics and sporadic cases occurring throughout the year, especially in the winter. The major epidemics of the disease occurred in Brazil in the 70's caused by serogroups A and C. Serogroups B, C and Y represent the majority of cases in Europe, the Americas and Australia. However, there has been a growing increase in serogroup W in some areas. The pathogen transmission happens for respiratory route (droplets) and clinically can lead to meningitis and sepsis (meningococcemia). The treatment is made with antimicrobial and supportive care. For successful prevention, we have some measures like vaccination, chemoprophylaxis and droplets' precautions. In this review, we have described and clarify clinical features of the disease caused by N. meningitidis regarding its relevance for healthcare professionals.
Collapse
Affiliation(s)
- Rodrigo Siqueira Batista
- Laboratório de Agentes Patogênicos, Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Curso de Medicina, Faculdade Dinâmica do Vale do Piranga, Ponte Nova, MG, Brazil.
| | - Andréia Patrícia Gomes
- Laboratório de Agentes Patogênicos, Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Jorge Luiz Dutra Gazineo
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Sérgio Balbino Miguel
- Laboratório de Agentes Patogênicos, Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Luiz Alberto Santana
- Laboratório de Agentes Patogênicos, Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Lisa Oliveira
- Curso de Medicina, Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, RJ, Brazil
| | - Mauro Geller
- School of Medicine, New York University - NYU, New York, USA; Departamento de Genética Médica, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
215
|
Mowlaboccus S, Mullally CA, Richmond PC, Howden BP, Stevens K, Speers DJ, Keil AD, Bjørnstad ON, Perkins TT, Kahler CM. Differences in the population structure of Neisseria meningitidis in two Australian states: Victoria and Western Australia. PLoS One 2017; 12:e0186839. [PMID: 29065137 PMCID: PMC5655437 DOI: 10.1371/journal.pone.0186839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023] Open
Abstract
Neisseria meningitidis is the causative agent of invasive meningococcal disease (IMD). A recombinant vaccine called Bexsero® incorporates four subcapsular antigens (fHbp, NHBA, NadA and PorA) which are used to assign a Bexsero® antigen sequence type (BAST) to each meningococcal strain. The vaccine elicits an immune response against combinations of variants of these antigens which have been grouped into specific BAST profiles that have been shown to have different distributions within geographical locations thus potentially affecting the efficacy of the vaccine. In this study, invasive meningococcal disease isolates from the western seaboard of Australia (Western Australia; WA) were compared to those from the south-eastern seaboard (Victoria; VIC) from 2008 to 2012. Whole-genome sequencing (WGS) of 131 meningococci from VIC and 70 meningococci from WA were analysed for MLST, FetA and BAST profiling. Serogroup B predominated in both jurisdictions and a total of 10 MLST clonal complexes (cc) were shared by both states. Isolates belonging to cc22, cc103 and cc1157 were unique to VIC whilst isolates from cc60 and cc212 were unique to WA. Clonal complex 41/44 represented one-third of the meningococcal population in each state but the predominant ST was locally different: ST-6058 in VIC and ST-146 in WA. Of the 108 BAST profiles identified in this collection, only 9 BASTs were simultaneously observed in both states. A significantly larger proportion of isolates in VIC harboured alleles for the NHBA-2 peptide and fHbp-1, antigenic variants predicted to be covered by the Bexsero® vaccine. The estimate for vaccine coverage in WA (47.1% [95% CI: 41.1-53.1%]) was significantly lower than that in VIC (66.4% [95% CI: 62.3-70.5%]). In conclusion, the antigenic structure of meningococci causing invasive disease in two geographically distinct states of Australia differed significantly during the study period which may affect vaccine effectiveness and highlights the need for representative surveillance when predicting potential impact of meningococcal B vaccines.
Collapse
Affiliation(s)
- Shakeel Mowlaboccus
- Marshall Center for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Christopher A. Mullally
- Marshall Center for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter C. Richmond
- Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J. Speers
- Department of Microbiology, QEII Medical Centre, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Perth, Western Australia, Australia
| | - Anthony D. Keil
- Department of Microbiology, Princess Margaret Hospital for Children, PathWest Laboratory Medicine WA, Perth, Australia
| | - Ottar N. Bjørnstad
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Timothy T. Perkins
- Marshall Center for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Charlene M. Kahler
- Marshall Center for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
216
|
Riccò M, Vezzosi L, Odone A, Signorelli C. Invasive Meningococcal Disease on the Workplaces: a systematic review. ACTA BIO-MEDICA : ATENEI PARMENSIS 2017; 88:337-351. [PMID: 29083344 PMCID: PMC6142849 DOI: 10.23750/abm.v88i3.6726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023]
Abstract
Background and aims of the work: Invasive Meningococcal Disease (IMD) represents a global health threat, and occupational settings have the potential to contribute to its spreading. Therefore, here we present the available evidences on the epidemiology of IMD on the workplaces. METHODS The following key words were used to explore PubMed: Neisseria meningitidis, meningococcus, meningococcal, invasive meningococcal disease, epidemiology, outbreaks, profession(al), occupation(al). RESULTS We identified a total of 12 IMD cases among healthcare workers (HCW), 44 involving biological laboratory workers (BLW), 8 among school personnel, and eventually 27 from other settings, including 3 large industrial working populations. Eventual prognosis of BLW, particularly the case/fatality ratio, was dismal. As clustered in time and space, data about school cases as well as industrial cases seem to reflect community rather than occupational outbreaks. In general, we identified a common pattern for HCW and BLW, i.e. the exposure to droplets or aerosol containing N meningitidis in absence of appropriate personal protective equipment (PPE) and/or microbiological safety devices (MSD) (e.g. cabinets). Post-exposure chemoprophylaxis (PEC) was rarely reported by HCW (16.7%) workers, and never by BLW. Data regarding vaccination status were available only for a case, who had failed requested boosters. CONCLUSIONS The risk for occupational transmission of IMD appears relatively low, possibly as a consequence of significant reporting bias, with the exception of HCW and BLW. Improved preventive measures should be implemented in these occupational groups, in order to improve the strict use of PPE and MSD, and the appropriate implementation of PEC.
Collapse
Affiliation(s)
- Matteo Riccò
- Azienda USL di Reggio Emilia V.le Amendola n.2 - 42122 RE Servizio di Prevenzione e Sicurezza negli Ambienti di Lavoro (SPSAL) Dip. di Prevenzione.
| | | | | | | |
Collapse
|
217
|
Chan JM, Dillard JP. Attention Seeker: Production, Modification, and Release of Inflammatory Peptidoglycan Fragments in Neisseria Species. J Bacteriol 2017; 199:e00354-17. [PMID: 28674065 PMCID: PMC5637178 DOI: 10.1128/jb.00354-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Maintenance of the structural macromolecule peptidoglycan (PG), which involves regulated cycles of PG synthesis and PG degradation, is pivotal for cellular integrity and survival. PG fragments generated from the degradation process are usually efficiently recycled by Gram-negative bacteria. However, Neisseria gonorrhoeae and a limited number of Gram-negative bacteria release PG fragments in amounts sufficient to induce host tissue inflammation and damage during an infection. Due to limited redundancy in PG-modifying machineries and genetic tractability, N. gonorrhoeae serves as a great model organism for the study of biological processes related to PG. This review summarizes the generation, modification, and release of inflammatory PG molecules by N. gonorrhoeae and related species and discusses these findings in the context of understanding bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Jia Mun Chan
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P Dillard
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
218
|
Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C, Vogel J. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res 2017; 45:6147-6167. [PMID: 28334889 PMCID: PMC5449619 DOI: 10.1093/nar/gkx168] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of −35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.
Collapse
Affiliation(s)
- Nadja Heidrich
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Saskia Bauriedl
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Lei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christoph Schoen
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), D-97080 Würzburg, Germany
| |
Collapse
|
219
|
Rademacher J, Haibel H, Poddubnyy D, Ignatius R, Schneider T. Chronic meningococcaemia—a medical oxymoron. Rheumatology (Oxford) 2017; 56:1819-1821. [DOI: 10.1093/rheumatology/kex219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
220
|
Mirzakhani K, Gargari SLM, Rasooli I, Rasoulinejad S. Development of a DNA Aptamer for Screening Neisseria meningitidis Serogroup B by Cell SELEX. IRANIAN BIOMEDICAL JOURNAL 2017; 22:193-201. [PMID: 28941453 PMCID: PMC5889504 DOI: 10.22034/ibj.22.3.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023]
Abstract
Background Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers that bind to N. meningitidis serogroup B were identified by whole-cell Systemic Evolution of Ligands by EXponential Enrichment (SELEX). Methods The SELEX begins with a library of labeled ssDNA molecules. After six rounds of selection and two rounds of counter-selection, 60 clones were obtained, of which the binding efficiency of 21 aptamers to the aforementioned bacterium was tested by flow cytometry. Results The aptamers K3 and K4 showed the highest affinity to N. meningitidis serogroup B and no affinity to N. meningitidis serogroups Y, A, and C, or to other meningitis causing bacteria. The dissociation constant (Kd value) for K3 and K4 were calculated as 28.3±8.9 pM and 39.1±8.6 pM, respectively. K3 aptamer with the lowest Kd was chosen as the main aptamer. K3 could detect N. meningitidis in patients’ cerebrospinal fluid (CSF) samples and in CSF from healthy volunteers inoculated with N. meningitidis serogroup B (ATCC 13090) at 200 and 100 CFU ml-1, respectively. Conclusion The findings suggest the application of the developed aptamer in specific detection of N. meningitidis serogroup B amongst a group of meningitis causing bacteria.
Collapse
Affiliation(s)
- Kimia Mirzakhani
- Faculty of Medicine, Institute of Human Genetics, Friedrich-Schiller University, Jena, Germany
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | | |
Collapse
|
221
|
Neisseria cinerea Expresses a Functional Factor H Binding Protein Which Is Recognized by Immune Responses Elicited by Meningococcal Vaccines. Infect Immun 2017; 85:IAI.00305-17. [PMID: 28739825 PMCID: PMC5607398 DOI: 10.1128/iai.00305-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis and sepsis worldwide. Capsular polysaccharide vaccines are available against meningococcal serogroups A, C, W, and Y. More recently two protein-based vaccines, Bexsero and Trumenba, against meningococcal serogroup B strains have been licensed; both vaccines contain meningococcal factor H binding protein (fHbp). fHbp is a surface-exposed lipoprotein that binds the negative complement regulator complement factor H (CFH), thereby inhibiting the alternative pathway of complement activation. Recent analysis of available genomes has indicated that some commensal Neisseria species also contain genes that potentially encode fHbp, although the functions of these genes and how immunization with fHbp-containing vaccines could affect the commensal flora have yet to be established. Here, we show that the commensal species Neisseria cinerea expresses functional fHbp on its surface and that it is responsible for recruitment of CFH by the bacterium. N. cinerea fHbp binds CFH with affinity similar to that of meningococcal fHbp and promotes survival of N. cinerea in human serum. We examined the potential impact of fHbp-containing vaccines on N. cinerea We found that immunization with Bexsero elicits serum bactericidal activity against N. cinerea, which is primarily directed against fHbp. The shared function of fHbp in N. cinerea and N. meningitidis and cross-reactive responses elicited by Bexsero suggest that the introduction of fHbp-containing vaccines has the potential to affect carriage of N. cinerea and other commensal species.
Collapse
|
222
|
Streptococcus pneumoniae Colonization Is Required To Alter the Nasal Microbiota in Cigarette Smoke-Exposed Mice. Infect Immun 2017; 85:IAI.00434-17. [PMID: 28760931 DOI: 10.1128/iai.00434-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022] Open
Abstract
Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium, Gemella, and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization.
Collapse
|
223
|
Atkinson B, Gandhi A, Balmer P. History of Meningococcal Outbreaks in the United States: Implications for Vaccination and Disease Prevention. Pharmacotherapy 2017; 36:880-92. [PMID: 27332671 DOI: 10.1002/phar.1790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invasive meningococcal disease caused by Neisseria meningitidis presents a significant public health concern. Meningococcal disease is rare but potentially fatal within 24 hours of onset of illness, and survivors may experience permanent sequelae. This review presents the epidemiology, incidence, and outbreak data for invasive meningococcal disease in the United States since 1970, and it highlights recent changes in vaccine recommendations to prevent meningococcal disease. Relevant publications were obtained by database searches for articles published between January 1970 and July 2015. The incidence of meningococcal disease has decreased in the United States since 1970, but serogroup B meningococcal disease is responsible for an increasing proportion of disease burden in young adults. Recent serogroup B outbreaks on college campuses warrant broader age-based recommendations for meningococcal group B vaccines, similar to the currently recommended quadrivalent vaccine that protects against serogroups A, C, W, and Y. After the recent approval of two serogroup B vaccines, the Advisory Committee on Immunization Practices first updated its recommendations for routine meningococcal vaccination to cover at-risk populations, including those at risk during serogroup B outbreaks, and later it issued a recommendation for those aged 16-23 years. Meningococcal disease outbreaks remain challenging to predict, making the optimal disease management strategy one of prevention through vaccination rather than containment. How the epidemiology of serogroup B disease and prevention of outbreaks will be affected by the new category B recommendation for serogroup B vaccines remains to be seen.
Collapse
Affiliation(s)
- Bruce Atkinson
- Vaccine Medical Affairs, Pfizer Inc., Collegeville, Pennsylvania
| | - Ashesh Gandhi
- Vaccine Medical Affairs, Pfizer Inc., Collegeville, Pennsylvania
| | - Paul Balmer
- Vaccine Medical Affairs, Pfizer Inc., Collegeville, Pennsylvania
| |
Collapse
|
224
|
Ji X, Yao PP, Zhang LY, Li Y, Xu F, Mei LL, Zhu SR, Zhang YJ, Zhu HP, van der Veen S. Capsule switching of Neisseria meningitidis sequence type 7 serogroup A to serogroup X. J Infect 2017; 75:521-531. [PMID: 28916450 DOI: 10.1016/j.jinf.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The bacterial pathogen Neisseria meningitidis is able to escape the currently available capsule-based vaccines by undergoing capsule switching. In this study, we investigated whether capsule switching has occurred in a recently emerged sequence type (ST) 7 serogroup X isolate in China, for which currently no vaccine is available. METHODS To identify capsule switching breakpoints, the capsule locus and flanking regions of the ST-7 serogroup X isolate and three endemic ST-7 serogroup A isolates were sequenced and compared. To obtain further insight into capsule switching frequency and length of DNA fragments involved, capsule switching assays were performed using genomic DNA containing combinations of antibiotic selection markers at various locations in the capsule locus and flanking regions. RESULTS Sequence analyses showed that capsule switching has occurred and involved a 8450 bp serogroup X DNA fragment spanning the region from galE to ctrC. Capsule switching assays indicate that capsule switching occurs at a frequency of 6.3 × 10-6 per bacterium per μg of DNA and predominantly involved DNA fragments of about 8.1-9.6 kb in length. CONCLUSIONS Our results show that capsule switching in N. meningitidis occurs at high frequency and involves recombination in the flanking regions of the capsule biosynthesis genes.
Collapse
Affiliation(s)
- Xuemeng Ji
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ping-Ping Yao
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Le-Yi Zhang
- Wenzhou City Center for Disease Control and Prevention, China
| | - Yi Li
- Wenzhou City Center for Disease Control and Prevention, China
| | - Fang Xu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Ling-Ling Mei
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Shui-Rong Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Yan-Jun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Han-Ping Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
225
|
Frota ACC, Harrison LH, Ferreira B, Menna-Barreto D, Castro RBND, Silva GPD, Oliveira RHD, Abreu TF, Milagres LG, Hofer CB. Antibody persistence following meningococcal C conjugate vaccination in children and adolescents infected with human immunodeficiency virus. J Pediatr (Rio J) 2017; 93:532-537. [PMID: 28441513 DOI: 10.1016/j.jped.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/25/2016] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE HIV-infected individuals (HIVI) are threatened by meningococcal infection and presented lower response to vaccines. Data are scarce on long-term persistence of human serum bactericidal antibody (hSBA) after a meningococcal C conjugate (MCC) vaccine in HIVI youth; the authors aimed to describe this persistence in HIVI. METHODS HIVI and HIV uninfected individuals (HIVU), aged 2-18 years, CD4 >15% were recruited. Seroprotection (hSBA ≥1:4) at baseline and at 12-18 months after immunization was evaluated and the association of the different factors with the long-term persistence was calculated using logistic regression. RESULTS A total of 145 HIVI, 50 HIVU were recruited and immunized, and their median age was 11 years (median age in HIVI group was 12 years, and 10 years in HIVU group, p-value=0.02). 85 HIVI (44%) had undetectable viral load (UVL). Seroprotection rate was 27.2%: 24.1% in HIVI and 36% in HIVU 12-18 months after immunization (p=0.14). Baseline immunity (odds ratio [OR]=70.70, 95% CI: 65.2-766.6); UVL at entry (OR: 2.87, 95% CI: 0.96-8.62) and lower family income (OR: 0.09, 95% CI: 0.01-0.69) were associated with seroprotection among HIVI. CONCLUSION Seroprotection at 12-18 months after single dose of MCC was low for both groups, and higher among individuals who presented baseline immunity. Among HIVI, vaccine should be administered after UVL is achieved.
Collapse
Affiliation(s)
- Ana Cristina Cisne Frota
- Universidade Federal do Rio de Janeiro (UFRJ), Departamento de Medicina Preventiva, Rio de Janeiro, RJ, Brazil
| | - Lee H Harrison
- University of Pittsburgh, Infectious Diseases Epidemiology Research Unit, Pittsburgh, United States
| | - Bianca Ferreira
- Universidade Federal do Rio de Janeiro (UFRJ), Departamento de Medicina Preventiva, Rio de Janeiro, RJ, Brazil
| | - Daniela Menna-Barreto
- Universidade Federal do Rio de Janeiro (UFRJ), Departamento de Medicina Preventiva, Rio de Janeiro, RJ, Brazil
| | - Raquel Bernardo Nana de Castro
- Universidade do Estado do Rio de Janeiro (UERJ), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Microbiologia, Rio de Janeiro, RJ, Brazil
| | - Giselle Pereira da Silva
- Universidade do Estado do Rio de Janeiro (UERJ), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Microbiologia, Rio de Janeiro, RJ, Brazil
| | | | - Thalita F Abreu
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lucimar G Milagres
- Universidade do Estado do Rio de Janeiro (UERJ), Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Microbiologia, Rio de Janeiro, RJ, Brazil
| | - Cristina B Hofer
- Universidade Federal do Rio de Janeiro (UFRJ), Departamento de Medicina Preventiva, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
226
|
Frota ACC, Harrison LH, Ferreira B, Menna‐Barreto D, Castro RBND, Silva GPD, Oliveira RHD, Abreu TF, Milagres LG, Hofer CB. Antibody persistence following meningococcal C conjugate vaccination in children and adolescents infected with human immunodeficiency virus. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2017. [DOI: 10.1016/j.jpedp.2017.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
227
|
Cabellos C, Pelegrín I, Benavent E, Gudiol F, Tubau F, Garcia-Somoza D, Verdaguer R, Ariza J, Fernandez-Viladrich P. Invasive meningococcal disease: Impact of short course therapy. A DOOR/RADAR study. J Infect 2017; 75:420-425. [PMID: 28847701 DOI: 10.1016/j.jinf.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/08/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Invasive meningococcal disease is a severe infection. The appropriate duration of antibiotic therapy is not well established. METHODS Two hundred and sixty-three consecutive patients with invasive meningococcal disease treated with 4 days' antibiotic therapy were compared with 264 consecutive patients treated previously at the same center with 7 days' antibiotic therapy. A Desirability of Outcome Ranking (DOOR) and Response Adjusted for Duration of Antibiotic Risk (RADAR) study was also performed. RESULTS No relapses were recorded in any patient. Patients on the 4-day course were 63% female, with a median age of 23 years old (IQR 16-54) and patients on the 7-day course were 61% female, with a median age of 17 years old (IQR 12-43). Case fatality rate was 7% in the 4-d patients and 6% in the 7-d patients (p = 0.582). Neurological sequelae were recorded in 6% of the 4-d group and in 7% of the 7-d group ((p = 0.509) and cutaneous sequelae in 3% in both groups. There were no statistical significant differences between the groups in terms of clinical characteristics, laboratory findings or complications. The probability that a patient had a randomly chosen DOOR better with the 4-day regimen than with the 7-day regimen was 80.4% [95% CI 80.1-80.7%]. CONCLUSION Invasive meningococcal disease may be successfully treated with a four-day course of antibiotic therapy without relapses.
Collapse
Affiliation(s)
- Carmen Cabellos
- Infectious Diseases Department, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain.
| | - Ivan Pelegrín
- Infectious Diseases Department, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain.
| | - Eva Benavent
- Infectious Diseases Department, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Gudiol
- Infectious Diseases Department, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Fe Tubau
- Microbiology Department, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Dolores Garcia-Somoza
- Microbiology Department, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Ricard Verdaguer
- Microbiology Department, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Javier Ariza
- Infectious Diseases Department, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Fernandez-Viladrich
- Infectious Diseases Department, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
228
|
Brusletto BS, Hellerud BC, Løberg EM, Goverud IL, Vege Å, Berg JP, Brandtzaeg P, Øvstebø R. Traceability and distribution of Neisseria meningitidis DNA in archived post mortem tissue samples from patients with systemic meningococcal disease. BMC Clin Pathol 2017; 17:10. [PMID: 28824331 PMCID: PMC5559868 DOI: 10.1186/s12907-017-0049-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The pathophysiology and outcome of meningococcal septic shock is closely associated with the plasma level of N. meningitidis lipopolysaccharides (LPS, endotoxin) and the circulating level of meningococcal DNA. The aim of the present study was to quantify the number of N. meningitidis in different formalin-fixed, paraffin-embedded (FFPE) tissue samples and fresh frozen (FF) tissue samples from patients with systemic meningococcal disease (SMD), to explore the distribution of N. meningitidis in the body. METHODS DNA in FFPE and FF tissue samples from heart, lungs, liver, kidneys, spleen and brain from patients with meningococcal shock and controls (lethal pneumococcal infection) stored at variable times, were isolated. The bacterial load of N. meningitidis DNA was analyzed using quantitative real-time PCR (qPCR) and primers for the capsule transport A (ctrA) gene (1 copy per N. meningitidis DNA). The human beta-hemoglobin (HBB) gene was quantified to evaluate effect of the storage times (2-28 years) and storage method in archived tissue. RESULTS N. meningitidis DNA was detected in FFPE and FF tissue samples from heart, lung, liver, kidney, and spleen in all patients with severe shock. In FFPE brain, N. meningitidis DNA was only detected in the patient with the highest concentration of LPS in the blood at admission to hospital. The highest levels of N. meningitidis DNA were found in heart tissue (median value 3.6 × 107 copies N. meningitidis DNA/μg human DNA) and lung tissue (median value 3.1 × 107 copies N. meningitidis DNA/μg human DNA) in all five patients. N. meningitidis DNA was not detectable in any of the tissue samples from two patients with clinical meningitis and the controls (pneumococcal infection). The quantity of HBB declined over time in FFPE tissue stored at room temperature, suggesting degradation of DNA. CONCLUSIONS High levels of N. meningitidis DNA were detected in the different tissue samples from meningococcal shock patients, particularly in the heart and lungs suggesting seeding and major proliferation of meningococci in these organs during the development of shock, probably contributing to the multiple organ failure. The age of archived tissue samples appear to have an impact on the amount of quantifiable N. meningitidis DNA.
Collapse
Affiliation(s)
- Berit Sletbakk Brusletto
- Blood Cell Research Group, Section for Research, Department of Medical Biochemistry, Oslo University Hospital HF, Ullevål Hospital, PO Box 4956 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Else Marit Løberg
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ingeborg Løstegaard Goverud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Åshild Vege
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section for Forensic Pediatric Pathology, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Jens Petter Berg
- Blood Cell Research Group, Section for Research, Department of Medical Biochemistry, Oslo University Hospital HF, Ullevål Hospital, PO Box 4956 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Petter Brandtzaeg
- Blood Cell Research Group, Section for Research, Department of Medical Biochemistry, Oslo University Hospital HF, Ullevål Hospital, PO Box 4956 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Reidun Øvstebø
- Blood Cell Research Group, Section for Research, Department of Medical Biochemistry, Oslo University Hospital HF, Ullevål Hospital, PO Box 4956 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
229
|
Ignatov D, Johansson J. RNA-mediated signal perception in pathogenic bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28792118 DOI: 10.1002/wrna.1429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
230
|
Gowin E, Januszkiewicz-Lewandowska D, Słowiński R, Błaszczyński J, Michalak M, Wysocki J. With a little help from a computer: discriminating between bacterial and viral meningitis based on dominance-based rough set approach analysis. Medicine (Baltimore) 2017; 96:e7635. [PMID: 28796045 PMCID: PMC5556211 DOI: 10.1097/md.0000000000007635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Differential Diagnosis of bacterial and viral meningitis remains an important clinical problem. A number of methods to assist in the diagnoses of meningitis have been developed, but none of them have been found to have high specificity with 100% sensitivity.We conducted a retrospective analysis of the medical records of 148 children hospitalized in St. Joseph Children's Hospital in Poznań. In this study, we applied for the first time the original methodology of dominance-based rough set approach (DRSA) to diagnostic patterns of meningitis data and represented them by decision rules useful in discriminating between bacterial and viral meningitis. The induction algorithm is called VC-DomLEM; it has been implemented as software package called jMAF (http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html), based on java Rough Set (jRS) library.In the studied group, there were 148 patients (78 boys and 70 girls), and the mean age was 85 months. We analyzed 14 attributes, of which only 4 were used to generate the 6 rules, with C-reactive protein (CRP) being the most valuable.Factors associated with bacterial meningitis were: CRP level ≥86 mg/L, number of leukocytes in cerebrospinal fluid (CSF) ≥4481 μL, symptoms duration no longer than 2 days, or age less than 1 month. Factors associated with viral meningitis were CRP level not higher than 19 mg/L, or CRP level not higher than 84 mg/L in a patient older than 11 months with no more than 1100 μL leukocytes in CSF.We established the minimum set of attributes significant for classification of patients with meningitis. This is new set of rules, which, although intuitively anticipated by some clinicians, has not been formally demonstrated until now.
Collapse
Affiliation(s)
| | - Danuta Januszkiewicz-Lewandowska
- Department of Oncology, Hematology and Bone Marrow Transplantation
- Department of Molecular Pathology, Institute of Human Genetics Polish Academy of Sciences
- Department of Medical Diagnostics
| | - Roman Słowiński
- Institute of Computing Science, Poznań University of Technology
| | | | | | - Jacek Wysocki
- Department of Health Promotion, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
231
|
Mubaiwa TD, Semchenko EA, Hartley-Tassell LE, Day CJ, Jennings MP, Seib KL. The sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease. Pathog Dis 2017; 75:3867065. [PMID: 28633281 PMCID: PMC5808653 DOI: 10.1093/femspd/ftx063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Glycomics is a rapidly growing field that focuses on the structure and function of carbohydrates (glycans) in biological systems. Glycan interactions play a major role in infectious disease, at all stages of colonisation and disease progression. Neisseria meningitidis, the cause of meningococcal sepsis and meningitis, and Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhoea, are responsible for significant morbidity and mortality worldwide. Neisseria meningitidis displays a range of surface glycosylations including capsule polysaccharide, lipooligosaccharide and O-linked glycoproteins. While N. gonorrhoeae does not have a capsule, it does express both lipooligosaccharide and O-linked glycoproteins. Neisseria gonorrhoeae also has the ability to scavenge host sialic acids, while several N. meningitidis serogroups can synthesise sialic acid. Surface expressed sialic acid is key in serum resistance and survival in the host. On the host side, the pathogenic Neisseria protein adhesins such as Opc and NHBA bind to host glycans for adherence and colonisation of host cells. Essentially, from both the bacterial and host perspective, glycan interactions are fundamental in colonisation and disease of pathogenic Neisseria. The key aspects of glycobiology of the pathogenic Neisseria are reviewed herein.
Collapse
Affiliation(s)
- Tsitsi D. Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Evgeny A. Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
232
|
Abstract
Neisseria meningitidis is a harmless commensal bacterium finely adapted to humans. Unfortunately, under “privileged” conditions, it adopts a “devious” lifestyle leading to uncontrolled behavior characterized by the unleashing of molecular weapons causing potentially lethal disease such as sepsis and acute meningitis. Indeed, despite the lack of a classic repertoire of virulence genes in
N. meningitidis separating commensal from invasive strains, molecular epidemiology and functional genomics studies suggest that carriage and invasive strains belong to genetically distinct populations characterized by an exclusive pathogenic potential. In the last few years, “omics” technologies have helped scientists to unwrap the framework drawn by
N. meningitidis during different stages of colonization and disease. However, this scenario is still incomplete and would benefit from the implementation of physiological tissue models for the reproduction of mucosal and systemic interactions
in vitro. These emerging technologies supported by recent advances in the world of stem cell biology hold the promise for a further understanding of
N. meningitidis pathogenesis.
Collapse
|
233
|
Hovland E, Beyene GT, Frye SA, Homberset H, Balasingham SV, Gómez-Muñoz M, Derrick JP, Tønjum T, Ambur OH. DprA from Neisseria meningitidis: properties and role in natural competence for transformation. MICROBIOLOGY-SGM 2017; 163:1016-1029. [PMID: 28696187 PMCID: PMC5817196 DOI: 10.1099/mic.0.000489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA processing chain A (DprA) is a DNA-binding protein that is ubiquitous in bacteria and expressed in some archaea. DprA is active in many bacterial species that are competent for transformation of DNA, but its role in Neisseriameningitidis (Nm) is not well characterized. An Nm mutant lacking DprA was constructed, and the phenotypes of the wild-type and ΔdprA mutant were compared. The salient feature of the phenotype of dprA null cells is the total lack of competence for genetic transformation shown by all of the donor DNA substrates tested in this study. Here, Nm wild-type and dprA null cells appeared to be equally resistant to genotoxic stress. The gene encoding DprANm was cloned and overexpressed, and the biological activities of DprANm were further investigated. DprANm binds ssDNA more strongly than dsDNA, but lacks DNA uptake sequence-specific DNA binding. DprANm dimerization and interaction with the C-terminal part of the single-stranded binding protein SSBNmwere demonstrated. dprA is co-expressed with smg, a downstream gene of unknown function, and the gene encoding topoisomerase 1, topA.
Collapse
Affiliation(s)
- Eirik Hovland
- Department of Microbiology, University of Oslo, Oslo, Norway.,Present address: Lovisenberg Diaconal Hospital, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Jeremy P Derrick
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ole H Ambur
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Present address: Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, Norway
| |
Collapse
|
234
|
Seib KL, Jen FEC, Scott AL, Tan A, Jennings MP. Phase variation of DNA methyltransferases and the regulation of virulence and immune evasion in the pathogenic Neisseria. Pathog Dis 2017; 75:3966716. [DOI: 10.1093/femspd/ftx080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 01/31/2023] Open
|
235
|
Coldiron ME, Alcoba G, Ciglenecki I, Hitchings M, Djibo A, Page AL, Langendorf C, Grais RF. Ciprofloxacin for contacts of cases of meningococcal meningitis as an epidemic response: study protocol for a cluster-randomized trial. Trials 2017; 18:294. [PMID: 28646924 PMCID: PMC5482956 DOI: 10.1186/s13063-017-2028-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/31/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Epidemics of meningococcal meningitis are common in the "African meningitis belt." Current response strategies include reactive vaccination campaigns, which are often organized too late to have maximal impact. A novel strain of Neisseria meningitidis serogroup C has been circulating in recent years, and vaccine supplies are limited. An evaluation of chemoprophylaxis with single-dose ciprofloxacin for household contacts of meningitis cases has therefore been recommended. METHODS/DESIGN A three-arm cluster-randomized trial has been designed for implementation during a meningococcal meningitis epidemic in a health district in Niger in which at least two Health Zones (HZs) have met the weekly epidemic threshold. The primary outcome is the incidence (attack rate) of meningitis during the epidemic. Villages will be randomized in a 1:1:1 ratio to one of three different arms: standard care, household-level prophylaxis, or village-wide prophylaxis. After study launch, when a case of meningococcal meningitis is identified in an HZ, the first reported case from a village will trigger the inclusion and randomization of the village. Household-level prophylaxis with single-dose ciprofloxacin will be offered in the home to all household members within 24 hours of the notification of the case, and village-wide distributions will occur within 72 hours of the notification of the case. The sample size necessary to detect differences between each of the two intervention arms and the standard care arm will be set after 4 weeks of data collection, in order to quantify multiple variables that could be particular to a given area. The primary analysis will compare attack rates at the end of the epidemic in each of the three arms. A nested sub-study will assess the effects of ciprofloxacin prophylaxis on the prevalence of ciprofloxacin-resistant enterobacteriaceae. A total of 200 participants in the standard care arm and 200 in the village-wide prophylaxis arm will provide stool samples at days 0, 7, and 28 following their village's inclusion in the study. DISCUSSION An innovative trial is proposed for implementation during an epidemic that will assess the impact of a novel strategy for meningitis outbreak response. In parallel, we will describe potential negative effects of the intervention. TRIAL REGISTRATION ClinicalTrials.gov, NCT02724046 . Registered on 15 March 2016. Last updated on 13 June 2017.
Collapse
Affiliation(s)
| | - Gabriel Alcoba
- Médecins Sans Frontières, 78 rue de Lausanne, Geneva, Switzerland
| | - Iza Ciglenecki
- Médecins Sans Frontières, 78 rue de Lausanne, Geneva, Switzerland
| | - Matt Hitchings
- Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Ali Djibo
- Niamey National Hospital, Niamey, Niger
| | | | | | | |
Collapse
|
236
|
van Ravenhorst MB, van der Klis FRM, van Rooijen DM, Sanders EAM, Berbers GAM. Adolescent meningococcal serogroup A, W and Y immune responses following immunization with quadrivalent meningococcal A, C, W and Y conjugate vaccine: Optimal age for vaccination. Vaccine 2017. [PMID: 28647167 DOI: 10.1016/j.vaccine.2017.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recently the incidence of meningococcal serogroup Y (MenY) and in particular serogroup W (MenW) invasive disease has risen in several European countries, including the Netherlands. Adolescents are a target group for primary prevention through vaccination to protect against disease and reduce carriage and induce herd protection in the population. The present study assessed MenA, MenW and MenY antibody levels in adolescents up to one year following primary vaccination with quadrivalent MenACWY-PS conjugated to tetanus toxoid (MenACWY-TT). METHODS In this phase IV, open-label study, healthy 10-, 12- and 15-year-olds received the MenACWY-TT vaccine. Blood samples were collected before, 1month and 1year after the vaccination. Functional antibody levels against MenA, MenW and MenY were measured with serum bactericidal assay using baby rabbit complement (rSBA). MenA-, MenW-, and MenY-PS specific IgG, IgG1 and IgG2 levels were measured using fluorescent-bead-based multiplex immunoassay. RESULTS The quadrivalent MenACWY-TT vaccine elicited robust antibody responses against MenA, MenW and MenY, and the majority (94%) of the participants maintained rSBA titers ≥128 one year after the vaccination against all three serogroups. After one year, higher MenW rSBA GMTs were observed in the 12- and 15-year-olds compared to the 10-year-olds, while rSBA GMTs against MenA and MenY were similar between age groups. Furthermore, those participant who showed SBA titer ≥8 at baseline, also had higher antibody levels one year after vaccination as compared to participants with rSBA titer <8 at baseline. CONCLUSION The MenACWY-TT vaccine induces robust protective primary immune responses up to one year after vaccination. Our results suggest that persistence of individual protection increases with the age at which a primary quadrivalent MenACWY-TT vaccination is administered. Our results indicate that 12 or 15years seems a more optimal age for a primary quadrivalent MenACWY-TT vaccination to protect against the rapid increase of MenW disease.
Collapse
Affiliation(s)
- Mariëtte B van Ravenhorst
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands.
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debbie M van Rooijen
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
237
|
Sudarsanam TD, Rupali P, Tharyan P, Abraham OC, Thomas K. Pre-admission antibiotics for suspected cases of meningococcal disease. Cochrane Database Syst Rev 2017; 6:CD005437. [PMID: 28613408 PMCID: PMC6481530 DOI: 10.1002/14651858.cd005437.pub4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Meningococcal disease can lead to death or disability within hours after onset. Pre-admission antibiotics aim to reduce the risk of serious disease and death by preventing delays in starting therapy before confirmation of the diagnosis. OBJECTIVES To study the effectiveness and safety of pre-admission antibiotics versus no pre-admission antibiotics or placebo, and different pre-admission antibiotic regimens in decreasing mortality, clinical failure, and morbidity in people suspected of meningococcal disease. SEARCH METHODS We searched CENTRAL (6 January 2017), MEDLINE (1966 to 6 January 2017), Embase (1980 to 6 January 2017), Web of Science (1985 to 6 January 2017), LILACS (1982 to 6 January 2017), and prospective trial registries to January 2017. We previously searched CAB Abstracts from 1985 to June 2015, but did not update this search in January 2017. SELECTION CRITERIA Randomised controlled trials (RCTs) or quasi-RCTs comparing antibiotics versus placebo or no intervention, in people with suspected meningococcal infection, or different antibiotics administered before admission to hospital or confirmation of the diagnosis. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and extracted data from the search results. We calculated the risk ratio (RR) and 95% confidence interval (CI) for dichotomous data. We included only one trial and so did not perform data synthesis. We assessed the overall quality of the evidence using the GRADE approach. MAIN RESULTS We found no RCTs comparing pre-admission antibiotics versus no pre-admission antibiotics or placebo. We included one open-label, non-inferiority RCT with 510 participants, conducted during an epidemic in Niger, evaluating a single dose of intramuscular ceftriaxone versus a single dose of intramuscular long-acting (oily) chloramphenicol. Ceftriaxone was not inferior to chloramphenicol in reducing mortality (RR 1.21, 95% CI 0.57 to 2.56; N = 503; 308 confirmed meningococcal meningitis; 26 deaths; moderate-quality evidence), clinical failures (RR 0.83, 95% CI 0.32 to 2.15; N = 477; 18 clinical failures; moderate-quality evidence), or neurological sequelae (RR 1.29, 95% CI 0.63 to 2.62; N = 477; 29 with sequelae; low-quality evidence). No adverse effects of treatment were reported. Estimated treatment costs were similar. No data were available on disease burden due to sequelae. AUTHORS' CONCLUSIONS We found no reliable evidence to support the use pre-admission antibiotics for suspected cases of non-severe meningococcal disease. Moderate-quality evidence from one RCT indicated that single intramuscular injections of ceftriaxone and long-acting chloramphenicol were equally effective, safe, and economical in reducing serious outcomes. The choice between these antibiotics should be based on affordability, availability, and patterns of antibiotic resistance.Further RCTs comparing different pre-admission antibiotics, accompanied by intensive supportive measures, are ethically justified in people with less severe illness, and are needed to provide reliable evidence in different clinical settings.
Collapse
Affiliation(s)
- Thambu D Sudarsanam
- Christian Medical CollegeMedicine Unit 2 and Clinical Epidemiology UnitIda Scudder RoadVelloreTamil NaduIndia632 004
| | - Priscilla Rupali
- Christian Medical CollegeDepartment of General Medicine Unit ‐1 & Infectious DiseasesVelloreTamil NaduIndia632004
| | - Prathap Tharyan
- Christian Medical CollegeCochrane South Asia, Prof. BV Moses Center for Evidence‐Informed Health Care and Health PolicyCarman Block II FloorCMC Campus, BagayamVelloreTamil NaduIndia632002
| | | | | | | |
Collapse
|
238
|
Huis In 't Veld RAG, Kramer G, van der Ende A, Speijer D, Pannekoek Y. The Hfq regulon of Neisseria meningitidis. FEBS Open Bio 2017; 7:777-788. [PMID: 28593133 PMCID: PMC5458458 DOI: 10.1002/2211-5463.12218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/07/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023] Open
Abstract
The conserved RNA‐binding protein, Hfq, has multiple regulatory roles within the prokaryotic cell, including promoting stable duplex formation between small RNAs and mRNAs, and thus hfq deletion mutants have pleiotropic phenotypes. Previous proteome and transcriptome studies of Neisseria meningitidis have generated limited insight into differential gene expression due to Hfq loss. In this study, reversed‐phase liquid chromatography combined with data‐independent alternate scanning mass spectrometry (LC‐MSE) was utilized for rapid high‐resolution quantitative proteomic analysis to further elucidate the differentially expressed proteome of a meningococcal hfq deletion mutant. Whole‐cell lysates of N. meningitidis serogroup B H44/76 wild‐type (wt) and H44/76Δhfq (Δhfq) grown in liquid growth medium were subjected to tryptic digestion. The resulting peptide mixtures were separated by liquid chromatography (LC) prior to analysis by mass spectrometry (MSE). Differential expression was analyzed by Student's t‐test with control for false discovery rate (FDR). Reliable quantitation of relative expression comparing wt and Δhfq was achieved with 506 proteins (20%). Upon FDR control at q ≤ 0.05, 48 up‐ and 59 downregulated proteins were identified. From these, 81 were identified as novel Hfq‐regulated candidates, while 15 proteins were previously found by SDS/PAGE/MS and 24 with microarray analyses. Thus, using LC‐MSE we have expanded the repertoire of Hfq‐regulated proteins. In conjunction with previous studies, a comprehensive network of Hfq‐regulated proteins was constructed and differentially expressed proteins were found to be involved in a large variety of cellular processes. The results and comparisons with other gram‐negative model systems, suggest still unidentified sRNA analogs in N. meningitidis.
Collapse
Affiliation(s)
- Robert A G Huis In 't Veld
- Department of Medical Microbiology Center of Infection and Immunity Amsterdam (CINIMA) Academic Medical Center Amsterdam The Netherlands
| | - Gertjan Kramer
- Clinical Proteomics Facility Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands.,Present address: Genome Biology Unit EMBL Heidelberg Heidelberg Germany
| | - Arie van der Ende
- Department of Medical Microbiology Center of Infection and Immunity Amsterdam (CINIMA) Academic Medical Center Amsterdam The Netherlands.,Reference Laboratory for Bacterial Meningitis Department of Medical Microbiology Academic Medical Center Amsterdam The Netherlands
| | - Dave Speijer
- Clinical Proteomics Facility Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology Center of Infection and Immunity Amsterdam (CINIMA) Academic Medical Center Amsterdam The Netherlands
| |
Collapse
|
239
|
Strength of Neisseria meningitidis binding to endothelial cells requires highly-ordered CD147/β 2-adrenoceptor clusters assembled by alpha-actinin-4. Nat Commun 2017; 8:15764. [PMID: 28569760 PMCID: PMC5461506 DOI: 10.1038/ncomms15764] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/26/2017] [Indexed: 12/24/2022] Open
Abstract
Neisseria meningitidis (meningococcus) is an invasive bacterial pathogen that colonizes human vessels, causing thrombotic lesions and meningitis. Establishment of tight interactions with endothelial cells is crucial for meningococci to resist haemodynamic forces. Two endothelial receptors, CD147 and the β2-adrenergic receptor (β2AR), are sequentially engaged by meningococci to adhere and promote signalling events leading to vascular colonization, but their spatiotemporal coordination is unknown. Here we report that CD147 and β2AR form constitutive hetero-oligomeric complexes. The scaffolding protein α-actinin-4 directly binds to the cytosolic tail of CD147 and governs the assembly of CD147–β2AR complexes in highly ordered clusters at bacterial adhesion sites. This multimolecular assembly process increases the binding strength of meningococci to endothelial cells under shear stress, and creates molecular platforms for the elongation of membrane protrusions surrounding adherent bacteria. Thus, the specific organization of cellular receptors has major impacts on host–pathogen interaction. Neisseria meningitidis bacteria bind to host proteins CD147 and β2-adrenergic receptor on the surface of endothelial cells. Here, Maïssa et al. show that the two proteins interact with each other forming clusters that increase the binding strength of the bacteria to endothelial cells.
Collapse
|
240
|
Gianchecchi E, Piccini G, Torelli A, Rappuoli R, Montomoli E. An unwanted guest:Neisseria meningitidis– carriage, risk for invasive disease and the impact of vaccination with insight on Italy incidence. Expert Rev Anti Infect Ther 2017; 15:689-701. [DOI: 10.1080/14787210.2017.1333422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Giulia Piccini
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandro Torelli
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
241
|
Acevedo R, Zayas C, Norheim G, Fernández S, Cedré B, Aranguren Y, Cuello M, Rodriguez Y, González H, Mandiarote A, Pérez M, Hernández M, Hernández-Cedeño M, González D, Brorson SH, Rosenqvist E, Naess L, Tunheim G, Cardoso D, García L. Outer membrane vesicles extracted from Neisseria meningitidis serogroup X for prevention of meningococcal disease in Africa. Pharmacol Res 2017; 121:194-201. [PMID: 28495657 DOI: 10.1016/j.phrs.2017.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/13/2017] [Accepted: 04/29/2017] [Indexed: 11/30/2022]
Abstract
Meningococcal disease is caused mainly by serogroups A, B, C, Y, W of N. meningitidis. However, numerous cases of meningitis caused by serogroup X N. meningitidis (MenX) have recently been reported in several African countries. Currently, there are no licensed vaccines against this pathogen and most of the MenX cases have been caused by meningococci from clonal complex (c.c) 181. Detergent extracted meningococcal outer membrane vesicle (dOMV) vaccines have previously shown to be safe and effective against epidemics of serogroup B meningococcal disease in all age groups. The aim of this work is therefore to obtain, characterize and evaluate the vaccine potential of dOMVs derived from a MenX strain (OMVx). Three experimental lots of OMVx were prepared by deoxycholate extraction from the MenX strain BF 2/97. Size and morphology of the vesicles was determined by Dynamic Light Scattering and electron microscopy, whereas the antigenic composition was characterized by gel electrophoresis and immunoblotting. OMVx were thereafter adsorbed to aluminium hydroxide (OMVx/AL) and two doses of OMVx were administered s.c. to groups of Balb/c mice three weeks apart. The immunogenicity and functional antibody activities in sera were evaluated by ELISA (anti-OMVx specific IgG responses) and serum bactericidal activity (SBA) assay. The size range of OMVx was shown to be between 90 and 120nm, whereas some of the antigens detected were the outer membrane proteins PorA, OpcA and RmpM. The OMVx/AL elicited high anti-OMVx antibody responses with bactericidal activity and no bactericidal activity was observed in the control group of no immunised mice. The results demonstrate that OMVx are immunogenic and could form part of a future vaccine to prevent the majority of meningococcal disease in the African meningitis belt.
Collapse
Affiliation(s)
| | - Caridad Zayas
- Finlay Institute, P.O. Box 16000, La Lisa, Havana, Cuba
| | | | | | - Barbara Cedré
- Finlay Institute, P.O. Box 16000, La Lisa, Havana, Cuba
| | | | - Maribel Cuello
- Faculty of Engineering and Technology, Techinal University "Luis Vargas Torres", Emeralds, Ecuador
| | | | | | | | | | | | | | | | | | | | | | - Gro Tunheim
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Luis García
- Finlay Institute, P.O. Box 16000, La Lisa, Havana, Cuba
| |
Collapse
|
242
|
Tekin RT, Dinleyici EC, Ceyhan M, Karbuz A, Salman N, Sutçu M, Kurugol Z, Balliel Y, Celik M, Hacimustafaoglu M, Kuyucu N, Kondolot M, Sensoy G, Metin O, Kara SS, Dinleyici M, Kılıç O, Bayhan C, Gurbuz V, Aycan E, Memedova A, Karli A, Bozlu G, Celebi S. The prevalence, serogroup distribution and risk factors of meningococcal carriage in adolescents and young adults in Turkey. Hum Vaccin Immunother 2017; 13:1182-1189. [PMID: 28140784 PMCID: PMC5443366 DOI: 10.1080/21645515.2016.1268304] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
The serogroup epidemiology of invasive meningococcal disease (IMD), which varies considerably by geographic region and immunization schedule, changes continuously. Meningococcal carriage data are crucial for assessing IMD epidemiology and designing f potential vaccination strategies. Meningococcal seroepidemiology in Turkey differs from that in other countries: serogroups W and B are the predominant strains for IMD during childhood, whereas no serogroup C cases were identified over the last 10 y and no adolescent peak for IMD was found. There is a lack of data on meningococcal carriage that represents the whole population. The aims of this multicenter study (12 cities in Turkey) were to evaluate the prevalence of Neisseria meningitidis carriage, the serogroup distribution and the related risk factors (educational status, living in a dormitory or student house, being a household contact with Hajj pilgrims, smoking, completion of military service, attending bars/clubs) in 1518 adolescents and young adults aged 10-24 y. The presence of N. meningitidis DNA was tested, and a serogroup analysis was performed using polymerase chain reaction. The overall meningococcal carriage rate was 6.3% (n = 96) in the study population. A serogroup distribution of the 96 N. meningitidis strains isolated from the nasopharyngeal specimens revealed serogroup A in 5 specimens (5.2%), serogroup B in 9 specimens (9.4%), serogroup W in 64 specimens (66.6%), and serogroup Y in 4 specimens (4.2%); 14 were classified as non-grouped (14.4%). No serogroup C cases were detected. The nasopharyngeal meningococcal carriage rate was 5% in the 10-14 age group, 6.4% in the 15-17 age-group, and 4.7% in the 18-20 age group; the highest carriage rate was found in the 21-24 age group (9.1%), which was significantly higher than those of the other age groups (p < 0.05). The highest carriage rate was found in 17-year-old adolescents (11%). The carriage rate was higher among the participants who had had close contact with Hajj/Umrah pilgrims (p < 0.01) or a history of upper respiratory tract infections over the past 3 months (p < 0.05). The nasopharyngeal carriage rate was 6.3% among adolescents and young adults in Turkey and was similar to the recent rates observed in the same age groups in other countries. The most prevalent serogroup was W, and no serogroup C cases were found. In conclusion, the present study found that meningococcal carriage reaches its peak level by age 17, the highest carriage rate was found in 21 - to 24 - year-olds and the majority of the carriage cases were due to serogroup W. Adolescents and young adult carriers seem to be a potential reservoir for the disease, and further immunization strategies, including adolescent immunization, may play a role in the control of IMD.
Collapse
Affiliation(s)
- Rahmi Tuna Tekin
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Ener Cagri Dinleyici
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Mehmet Ceyhan
- Hacettepe University Faculty of Medicine, Pediatric Infectious Disease Unit, Ankara, Turkey
| | - Adem Karbuz
- Okmeydanı Training and Research Hospital, Pediatric Infectious Disease Unit, Istanbul, Turkey
| | - Nuran Salman
- Istanbul University Istanbul Faculty of Medicine, Pediatric Infectious Disease Unit, Istanbul, Turkey
| | - Murat Sutçu
- Istanbul University Istanbul Faculty of Medicine, Pediatric Infectious Disease Unit, Istanbul, Turkey
| | - Zafer Kurugol
- Ege University Faculty of Medicine, Pediatric Infectious Disease Unit, Izmir, Turkey
| | - Yasemin Balliel
- Muratpasa 1st Caybasi Family Practice Center, Antalya, Turkey
| | - Melda Celik
- Sanlıurfa Children Hospital, Sanliurfa, Turkey
| | | | - Necdet Kuyucu
- Mersin University Faculty of Medicine, Pediatric Infectious Disease Unit, Mersin, Turkey
| | - Meda Kondolot
- Erciyes University Faculty of Medicine, Department of Social Pediatrics, Kayseri, Turkey
| | - Gülnar Sensoy
- Konya Training and Research Hospital, Pediatric Infectious Disease Unit, Konya, Turkey
| | - Ozge Metin
- Ondokuz Mayıs University Faculty of Medicine, Pediatric Infectious Disease Unit, Samsun, Turkey
| | - Soner Sertan Kara
- Erzurum Training and Research Hospital, Pediatric Infectious Disease Unit, Erzurum, Turkey
| | - Meltem Dinleyici
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Omer Kılıç
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Cihangul Bayhan
- Hacettepe University Faculty of Medicine, Pediatric Infectious Disease Unit, Ankara, Turkey
| | - Venhar Gurbuz
- Hacettepe University Faculty of Medicine, Pediatric Infectious Disease Unit, Ankara, Turkey
| | - Emre Aycan
- Hacettepe University Faculty of Medicine, Pediatric Infectious Disease Unit, Ankara, Turkey
| | - Aygun Memedova
- Ege University Faculty of Medicine, Pediatric Infectious Disease Unit, Izmir, Turkey
| | - Arzu Karli
- Konya Training and Research Hospital, Pediatric Infectious Disease Unit, Konya, Turkey
| | - Gulçin Bozlu
- Mersin University Faculty of Medicine, Pediatric Infectious Disease Unit, Mersin, Turkey
| | - Solmaz Celebi
- Uludag University Faculty of Medicine, Pediatric Infectious Disease Unit, Bursa, Turkey
| |
Collapse
|
243
|
John CM, Phillips NJ, Stein DC, Jarvis GA. Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathog Dis 2017; 75:3569603. [PMID: 28423169 DOI: 10.1093/femspd/ftx030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
Infections due to Neisseria meningitidis afflict more than one million people worldwide annually and cause death or disability in many survivors. The clinical course of invasive infections has been well studied, but our understanding of the cause of differences in patient outcomes has been limited because these are dependent on multiple factors including the response of the host, characteristics of the bacteria and interactions between the host and the bacteria. The meningococcus is a highly inflammatory organism, and the lipooligosaccharide (LOS) on the outer membrane is the most potent inflammatory molecule it expresses due to the interactions of the lipid A moiety of LOS with receptors of the innate immune system. We previously reported that increased phosphorylation of hexaacylated neisserial lipid A is correlated with greater inflammatory potential. Here we postulate that variability in lipid A phosphorylation can tip the balance of innate immune responses towards homeostatic tolerance or proinflammatory signaling that affects adaptive immune responses, causing disease with meningitis only, or septicemia with or without meningitis, respectively. Furthermore, we propose that studies of the relationship between bacterial virulence and gene expression should consider whether genetic variation could affect properties of biosynthetic enzymes resulting in LOS structural differences that alter disease pathobiology.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Daniel C Stein
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742 USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
244
|
Beyene GT, Kalayou S, Riaz T, Tonjum T. Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis. BMC Microbiol 2017; 17:96. [PMID: 28431522 PMCID: PMC5399837 DOI: 10.1186/s12866-017-1004-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background DNA processing chain A (DprA) is a DNA binding protein which is ubiquitous in bacteria, and is required for DNA transformation to various extents among bacterial species. However, the interaction of DprA with competence and recombination proteins is poorly understood. Therefore, the proteomes of whole Neisseria meningitidis (Nm) wildtype and dprA mutant cells were compared. Such a comparative proteomic analysis increases our understanding of the interactions of DprA with other Nm components and may elucidate its potential role beyond DNA processing in transformation. Results Using label-free quantitative proteomics, a total of 1057 unique Nm proteins were identified, out of which 100 were quantified as differentially abundant (P ≤ 0.05 and fold change ≥ |2|) in the dprA null mutant. Proteins involved in homologous recombination (RecA, UvrD and HolA), pilus biogenesis (PilG, PilT1, PilT2, PilM, PilO, PilQ, PilF and PilE), cell division, including core energy metabolism, and response to oxidative stress were downregulated in the Nm dprA null mutant. The mass spectrometry data are available via ProteomeXchange with identifier PXD006121. Immunoblotting and co-immunoprecipitation were employed to validate the association of DprA with PilG. The analysis revealed reduced amounts of PilG in the dprA null mutant and reduced amounts of DprA in the Nm pilG null mutant. Moreover, a number of pilus biogenesis proteins were shown to interact with DprA and /or PilG. Conclusions DprA interacts with proteins essential for Nm DNA recombination in transformation, pilus biogenesis, and other functions associated with the inner membrane. Inverse downregulation of Nm DprA and PilG expression in the corresponding mutants indicates a link between DNA processing and pilus biogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Getachew Tesfaye Beyene
- Department of Microbiology, University of Oslo, Oslo, Norway.,Present address: College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Shewit Kalayou
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Mekelle University College of Veterinary Medicine, Mekelle, Ethiopia
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tonjum
- Department of Microbiology, University of Oslo, Oslo, Norway. .,Department of Microbiology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
245
|
Bandehpour M, Yarian F, Ahangarzadeh S. Bioinformatics evaluation of novel ribosome display-selected single chain variable fragment (scFv) structure with factor H binding protein through docking. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibodies play a significant role in the immunotherapy, basic research and the pharmaceutical industry. Nowadays, both DNA recombinant technology and antibody engineering technology are widely used in many fields such as diagnostics, therapeutics, drug targeted delivery, and research reagents. Computational docking of antigen-antibody complexes and analysis of atomic interactions are important to find effective B-cell epitopes and new antibodies with appropriate properties. In the present study, by using ClusPro 2.0 webserver, docking the antigen (factor H binding protein (fHbp)) to the novel-selected scFv antibody was performed. By analyzing the fHbp-scFv complexes, important amino acids were identified. After docking, peptides Ala192-His198, Asp 211-216, and Gly229-Ser228 of the fHbp antigen were recognized as essential interactive regions to the scFv antibody. Results obtained from our bioinformatics study are important and give us the basis for the favored designs of new molecules such as effective B-cell epitopes targeted by neutralizing antibodies for vaccine design.
Collapse
Affiliation(s)
- Mojgan Bandehpour
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Ahangarzadeh
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
246
|
Control of gdhR Expression in Neisseria gonorrhoeae via Autoregulation and a Master Repressor (MtrR) of a Drug Efflux Pump Operon. mBio 2017; 8:mBio.00449-17. [PMID: 28400529 PMCID: PMC5388806 DOI: 10.1128/mbio.00449-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The MtrCDE efflux pump of Neisseria gonorrhoeae contributes to gonococcal resistance to a number of antibiotics used previously or currently in treatment of gonorrhea, as well as to host-derived antimicrobials that participate in innate defense. Overexpression of the MtrCDE efflux pump increases gonococcal survival and fitness during experimental lower genital tract infection of female mice. Transcription of mtrCDE can be repressed by the DNA-binding protein MtrR, which also acts as a global regulator of genes involved in important metabolic, physiologic, or regulatory processes. Here, we investigated whether a gene downstream of mtrCDE, previously annotated gdhR in Neisseria meningitidis, is a target for regulation by MtrR. In meningococci, GdhR serves as a regulator of genes involved in glucose catabolism, amino acid transport, and biosynthesis, including gdhA, which encodes an l-glutamate dehydrogenase and is located next to gdhR but is transcriptionally divergent. We report here that in N. gonorrhoeae, expression of gdhR is subject to autoregulation by GdhR and direct repression by MtrR. Importantly, loss of GdhR significantly increased gonococcal fitness compared to a complemented mutant strain during experimental murine infection. Interestingly, loss of GdhR did not influence expression of gdhA, as reported for meningococci. This variance is most likely due to differences in promoter localization and utilization between gonococci and meningococci. We propose that transcriptional control of gonococcal genes through the action of MtrR and GdhR contributes to fitness of N. gonorrhoeae during infection.IMPORTANCE The pathogenic Neisseria species are strict human pathogens that can cause a sexually transmitted infection (N. gonorrhoeae) or meningitis or fulminant septicemia (N. meningitidis). Although they share considerable genetic information, little attention has been directed to comparing transcriptional regulatory systems that modulate expression of their conserved genes. We hypothesized that transcriptional regulatory differences exist between these two pathogens, and we used the gdh locus as a model to test this idea. For this purpose, we studied two conserved genes (gdhR and gdhA) within the locus. Despite general conservation of the gdh locus in gonococci and meningococci, differences exist in noncoding sequences that correspond to promoter elements or potential sites for interacting with DNA-binding proteins, such as GdhR and MtrR. Our results indicate that implications drawn from studying regulation of conserved genes in one pathogen are not necessarily translatable to a genetically related pathogen.
Collapse
|
247
|
Abstract
The protective effect of meningococcal vaccines targeting disease causing serogroups exemplified by the introduction of MenAfriVac™ in Africa, is well established and documented in large population-based studies. Due to the emergence of other meningococcal disease causing serogroups, novel vaccine formulations are needed. There is a high potential for novel nanotechnology-based meningococcal vaccine formulations that can provide wider vaccine coverage. The proposed meningococcal vaccine formulation contains spherical shaped micro and nanoparticles that are biological mimics of Niesseria meningitidis, therefore present to immune system as invader and elicit robust immune responses. Vaccine nanoparticles encapsulate meningococcal CPS polymers in a biodegradable material that slowly release antigens, therefore enhance antigen presentation by exerting antigen depot effect. The antigenicity of meningococcal vaccine delivered in nanoparticles is significantly higher when compared to vaccine delivered in solution. Preclinical studies are required to assess the immunogenicity of novel vaccine formulations. Therefore, implementing various in-vitro human immune cell-based assays that mimic in-vivo interactions, would provide good insight on optimal antigen dose, effective antigen presentation, facilitate screening of various vaccine and adjuvant combinations and predict in-vivo immunogenicity. This rapid approach is cost-effective and provides data required for the preclinical immunogenicity assessment of novel meningococcal vaccine formulations.
Collapse
Affiliation(s)
- Susu M Zughaier
- a Laboratory of Bacterial Pathogenesis , Department of Veterans Affairs Medical Center , Decatur , GA , USA.,b Department of Microbiology and Immunology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
248
|
Ampattu BJ, Hagmann L, Liang C, Dittrich M, Schlüter A, Blom J, Krol E, Goesmann A, Becker A, Dandekar T, Müller T, Schoen C. Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence. BMC Genomics 2017; 18:282. [PMID: 28388876 PMCID: PMC5383966 DOI: 10.1186/s12864-017-3616-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023] Open
Abstract
Background Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3616-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Laura Hagmann
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Department of Human Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Elizaveta Krol
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Anke Becker
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
249
|
Impact of meningococcal C conjugate vaccination four years after introduction of routine childhood immunization in Brazil. Vaccine 2017; 35:2025-2033. [DOI: 10.1016/j.vaccine.2017.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
|
250
|
Invasive meningococcal disease in Navarra in the era of a meningococcal C vaccine. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.anpede.2015.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|