201
|
Phanich J, Rungrotmongkol T, Kungwan N, Hannongbua S. Role of R292K mutation in influenza H7N9 neuraminidase toward oseltamivir susceptibility: MD and MM/PB(GB)SA study. J Comput Aided Mol Des 2016; 30:917-926. [PMID: 27714494 DOI: 10.1007/s10822-016-9981-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
The H7N9 avian influenza virus is a novel re-assortment from at least four different strains of virus. Neuraminidase, which is a glycoprotein on the surface membrane, has been the target for drug treatment. However, some H7N9 strains that have been isolated from patient after drug treatment have a R292K mutation in neuraminidase. This substitution was found to facilitate drug resistance using protein- and virus- assays, in particular it gave a high resistance to the most commonly used drug, oseltamivir. The aim of this research is to understand the source of oseltamivir resistance using MD simulations and the MM/PB(GB)SA binding free energy approaches. Both methods can predict the reduced susceptibility of oseltamivir in good agreement to the IC 50 binding energy, although MM/GBSA underestimates this prediction compared to the MM/PBSA calculation. Electrostatic interaction is the main contribution for oseltamivir binding in terms of both interaction and solvation. We found that the source of the drug resistance is a decrease in the binding interaction combined with the reduction of the dehydration penalty. The smaller K292 mutated residue has a larger binding pocket cavity compared to the wild-type resulting in the loss of drug carboxylate-K292 hydrogen bonding and an increased accessibility for water molecules around the K292 mutated residue. In addition, oseltamivir does not bind well to the R292K mutant complex as shown by the high degree of fluctuation in ligand RMSD during the simulation and the change in angular distribution of bulky side chain groups.
Collapse
Affiliation(s)
- Jiraphorn Phanich
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
202
|
Quantitative risk analysis of the novel H7N9 virus in environments associated with H9 avian influenza virus, Zhejiang province, China. Epidemiol Infect 2016; 145:133-140. [PMID: 27678396 DOI: 10.1017/s0950268816002168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H9 avian influenza virus played a key role during generation of the novel H7N9 virus. A surveillance programme was conducted to assess the H9 virus in relation to the risk of H7N9 virus contamination in the environment. Risk of H7N9 virus contamination in the presence of H9 virus was higher than without (adjusted odds ratio 4·49, 95% confidence interval 3·79-5·31). Adjusted odds ratios of the H7N9 virus associated with co-presence of H9 virus and interacting factors were 4·93 (rural vs. urban area), 46·80 (live poultry markets vs. other premises), 6·86 (Huzhou vs. Hangzhou prefecture), 40·67 (year 2015 vs. 2013), and 9·63 (sewage from cleaning poultry vs. poultry faeces). Regular surveillance on gene variability of H7N9 and H9 viruses should be conducted and extra measures are needed to reduce co-circulation of H7N9 and H9 viruses in the environment.
Collapse
|
203
|
Wang X, Sun Q, Ye Z, Hua Y, Shao N, Du Y, Zhang Q, Wan C. Computational approach for predicting the conserved B-cell epitopes of hemagglutinin H7 subtype influenza virus. Exp Ther Med 2016; 12:2439-2446. [PMID: 27703505 PMCID: PMC5038878 DOI: 10.3892/etm.2016.3636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/11/2016] [Indexed: 01/24/2023] Open
Abstract
An avian-origin influenza H7N9 virus epidemic occurred in China in 2013–2014, in which >422 infected people suffered from pneumonia, respiratory distress syndrome and septic shock. H7N9 viruses belong to the H7 subtype of avian-origin influenza viruses (AIV-H7). Hemagglutinin (HA) is a vital membrane protein of AIV that has an important role in host recognition and infection. The epitopes of HA are significant determinants of the regularity of epidemic and viral mutation and recombination mechanisms. The present study aimed to predict the conserved B-cell epitopes of AIV-H7 HA using a bioinformatics approach, including the three most effective epitope prediction softwares available online: Artificial Neural Network based B-cell Epitope Prediction (ABCpred), B-cell Epitope Prediction (BepiPred) and Linear B-cell Epitope Prediction (LBtope). A total of 24 strains of Euro-Asiatic AIV-H7 that had been associated with a serious poultry pandemic or had infected humans in the past 30 years were selected to identify the conserved regions of HA. Sequences were obtained from the National Center for Biotechnology Information and Global Initiative on Sharing Avian Influenza Data databases. Using a combination of software prediction and sequence comparisons, the conserved epitopes of AIV-H7 were predicted and clarified. A total of five conserved epitopes [amino acids (aa) 37–52, 131–142, 215–234, 465–484 and 487–505] with a suitable length, high antigenicity and minimal variation were predicted and confirmed. Each obtained a score of >0.80 in ABCpred, 60% in LBtope and a level of 0.35 in Bepipred. In addition, a representative amino acid change (glutamine235-to-leucine235) in the HA protein of the 2013 AIV-H7N9 was discovered. The strategy adopted in the present study may have profound implications on the rapid diagnosis and control of infectious disease caused by H7N9 viruses, as well as by other virulent viruses, such as the Ebola virus.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Sun
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhonghua Ye
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Hua
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Na Shao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanli Du
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiwei Zhang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chengsong Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
204
|
Kim SM, Kim YI, Pascua PNQ, Choi YK. Avian Influenza A Viruses: Evolution and Zoonotic Infection. Semin Respir Crit Care Med 2016; 37:501-11. [PMID: 27486732 PMCID: PMC7171714 DOI: 10.1055/s-0036-1584953] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics.
Collapse
Affiliation(s)
- Se Mi Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young-Il Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Philippe Noriel Q Pascua
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
205
|
Zhao X, Tefsen B, Li Y, Qi J, Lu G, Shi Y, Yan J, Xiao H, Gao GF. The NS1 gene from bat-derived influenza-like virus H17N10 can be rescued in influenza A PR8 backbone. J Gen Virol 2016; 97:1797-1806. [DOI: 10.1099/jgv.0.000509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Xuejin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Boris Tefsen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, P. R. China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, No 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou 215123, P. R. China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Guangwen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yi Shi
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, P. R. China
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Haixia Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - George F. Gao
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, P. R. China
- Office of Director-General, Chinese Center for Disease Control and Prevention, Beijing 102206, P. R. China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
206
|
Wei Y, Qi L, Gao H, Sun H, Pu J, Sun Y, Liu J. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine. Sci Rep 2016; 6:30382. [PMID: 27457755 PMCID: PMC4960571 DOI: 10.1038/srep30382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/30/2016] [Indexed: 11/12/2022] Open
Abstract
To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens.
Collapse
Affiliation(s)
- Yandi Wei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lu Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Huijie Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
207
|
Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014. Sci Rep 2016; 6:29888. [PMID: 27431568 PMCID: PMC4949417 DOI: 10.1038/srep29888] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/23/2016] [Indexed: 01/31/2023] Open
Abstract
In May 2014, China formally confirmed the first human infection with the novel H5N6 avian influenza virus (AIV) in Sichuan Province. Before the first human case was reported, surveillance of AIVs in wild birds resulted in the detection of three H5N6 viruses in faecal samples from migratory waterfowl in Chenhu wetlands, Hubei Province, China. Genetic and phylogenetic analyses revealed that these three novel viruses were closely related to the H5N6 virus that has caused human infections in China since 2014. A Bayesian phylogenetic reconstruction of all eight segments suggests multiple reassortment events in the evolution of these viruses. The hemagglutinin (HA) and neuraminidase (NA) originated from the H5N2 and H6N6 AIVs, respectively, whereas all six internal genes were derived from avian H5N1 viruses. The reassortant may have occurred in eastern China during 2012–2013. A phylogeographic analysis of the HA and NA genes traced the viruses to southern China, from where they spread to other areas via eastern China. A receptor-binding test showed that H5N6 viruses from migratory waterfowl had human-type receptor-binding activity, suggesting a potential for transmission to humans. These data suggest that migratory waterfowl may play a role in the dissemination of novel H5N6 viruses.
Collapse
|
208
|
Xu M, Cao C, Li Q, Jia P, Zhao J. Ecological Niche Modeling of Risk Factors for H7N9 Human Infection in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E600. [PMID: 27322296 PMCID: PMC4924057 DOI: 10.3390/ijerph13060600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/27/2023]
Abstract
China was attacked by a serious influenza A (H7N9) virus in 2013. The first human infection case was confirmed in Shanghai City and soon spread across most of eastern China. Using the methods of Geographic Information Systems (GIS) and ecological niche modeling (ENM), this research quantitatively analyzed the relationships between the H7N9 occurrence and the main environmental factors, including meteorological variables, human population density, bird migratory routes, wetland distribution, and live poultry farms, markets, and processing factories. Based on these relationships the probability of the presence of H7N9 was predicted. Results indicated that the distribution of live poultry processing factories, farms, and human population density were the top three most important determinants of the H7N9 human infection. The relative contributions to the model of live poultry processing factories, farms and human population density were 39.9%, 17.7% and 17.7%, respectively, while the maximum temperature of the warmest month and mean relative humidity had nearly no contribution to the model. The paper has developed an ecological niche model (ENM) that predicts the spatial distribution of H7N9 cases in China using environmental variables. The area under the curve (AUC) values of the model were greater than 0.9 (0.992 for the training samples and 0.961 for the test data). The findings indicated that most of the high risk areas were distributed in the Yangtze River Delta. These findings have important significance for the Chinese government to enhance the environmental surveillance at multiple human poultry interfaces in the high risk area.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chunxiang Cao
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qun Li
- Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Peng Jia
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede 7500, The Netherlands.
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA.
| | - Jian Zhao
- Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
209
|
Wu Z, Sha J, Yu Z, Zhao N, Cheng W, Chan TC, Amer S, Zhang Z, Liu S. Epidemiological and virological differences in human clustered and sporadic infections with avian influenza A H7N9. Int J Infect Dis 2016; 49:9-17. [PMID: 27235087 DOI: 10.1016/j.ijid.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous research has suggested that avian influenza A H7N9 has a greater potential pandemic risk than influenza A H5N1. This research investigated the difference in human clustered and sporadic cases of H7N9 virus and estimated the relative risk of clustered infections. METHODS Comparative epidemiology and virology studies were performed among 72 sporadic confirmed cases, 17 family clusters (FCs) caused by human-to-human transmission, and eight live bird market clusters (LCs) caused by co-exposure to the poultry environment. RESULTS The case fatality of FCs, LCs and sporadic cases (36%, 26%, and 29%, respectively) did not differ among the three groups (p>0.05). The average age (36 years, 60 years, and 58 years), co-morbidities (31%, 60%, and 54%), exposure to birds (72%, 100%, and 83%), and H7N9-positive rate (20%, 64%, and 35%) in FCs, LCs, and sporadic cases, respectively, differed significantly (p<0.05). These higher risks were associated with increased mortality. There was no difference between primary and secondary cases in LCs (p>0.05). However, exposure to a person with confirmed avian influenza A H7N9 (primary 12% vs. secondary 95%), history of visiting a live bird market (100% vs. 59%), multiple exposures (live bird exposure and human-to-human transmission history) (12% vs. 55%), and median days from onset to antiviral treatment (6 days vs. 3 days) differed significantly between primary and secondary cases in FCs (p<0.05). Mild cases were found in 6% of primary cases vs. 32% of secondary cases in FCs (p<0.05). Twenty-five isolates from the three groups showed 99.1-99.9% homology and increased human adaptation. CONCLUSIONS There was no statistical difference in the case fatality rate and limited transmission between FCs and LCs. However, the severity of the primary cases in FCs was much higher than that of the secondary cases due to the older age and greater underlying disease of the latter patients.
Collapse
Affiliation(s)
- Zuqun Wu
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Sha
- Department of Endocrinology, The 421 Hospital of the Chinese People's Liberation Army, Guangzhou, China
| | - Zhao Yu
- Department of Infectious Diseases and Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Na Zhao
- National Research Centre for Wildlife-Borne Diseases, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Cheng
- Department of Infectious Diseases and Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Ta-Chien Chan
- Research Centre for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Said Amer
- Department of Zoology, Faculty of Science, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiaotong University School of Medicine, 227 Chongqing South Road, Shanghai 200025, China.
| | - Shelan Liu
- Department of Infectious Diseases and Key Lab of Vaccine against Hemorrhagic Fever with Renal Syndrome, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
210
|
Zhang T, Bi Y, Tian H, Li X, Liu D, Wu Y, Jin T, Wang Y, Chen Q, Chen Z, Chang J, Gao GF, Xu B. Human infection with influenza virus A(H10N8) from live poultry markets, China, 2014. Emerg Infect Dis 2016; 20:2076-9. [PMID: 25425075 PMCID: PMC4257803 DOI: 10.3201/eid2012.140911] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human infection with avian influenza virus A(H10N8) was initially reported in China in December 2013. We characterized H10N8 strains from a human patient and from poultry in live markets that infected persons had visited. Results of genome sequencing and virus characterization suggest that the virus strains that infected humans originated from these markets.
Collapse
|
211
|
Fang S, Wang X, Dong F, Jin T, Liu G, Lu X, Peng B, Wu W, Liu H, Kong D, Tang X, Qin Y, Mei S, Xie X, He J, Ma H, Zhang R, Cheng J. Genomic characterization of influenza A (H7N9) viruses isolated in Shenzhen, Southern China, during the second epidemic wave. Arch Virol 2016; 161:2117-32. [PMID: 27169600 DOI: 10.1007/s00705-016-2872-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
There were three epidemic waves of human infection with avian influenza A (H7N9) virus in 2013-2014. While many analyses of the genomic origin, evolution, and molecular characteristics of the influenza A (H7N9) virus have been performed using sequences from the first epidemic wave, genomic characterization of the virus from the second epidemic wave has been comparatively less reported. In this study, an in-depth analysis was performed with respect to the genomic characteristics of 11 H7N9 virus strains isolated from confirmed cases and four H7N9 virus strains isolated from environmental samples in Shenzhen during the second epidemic wave. Phylogenetic analysis demonstrated that six internal segments of the influenza A (H7N9) virus isolated from confirmed cases and environmental samples in Shenzhen were clustered into two different clades and that the origin of the influenza A (H7N9) virus isolated from confirmed cases in Shenzhen was different from that of viruses isolated during the first wave. In addition, H9N2 viruses, which were prevalent in southern China, played an important role in the reassortment of the influenza A (H7N9) virus isolated in Shenzhen. HA-R47K and -T122A, PB2-V139I, PB1-I397M, and NS1-T216P were the signature amino acids of the influenza A (H7N9) virus isolated from confirmed cases in Shenzhen. We found that the HA, NA, M, and PA genes of the A(H7N9) viruses underwent positive selection in the human population. Therefore, enhanced surveillance should be carried out to determine the origin and mode of transmission of the novel influenza A (H7N9) virus and to facilitate the formulation of effective policies for prevention and containment of a human infection epidemics.
Collapse
Affiliation(s)
- Shisong Fang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xin Wang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Fangyuan Dong
- College of Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Tao Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guang Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xing Lu
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Bo Peng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Weihua Wu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Hui Liu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Dongfeng Kong
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xiujuan Tang
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Yanmin Qin
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Shujiang Mei
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xu Xie
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Jianfan He
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Hanwu Ma
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Renli Zhang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China.
| |
Collapse
|
212
|
Buhnerkempe MG, Webb CT, Merton AA, Buhnerkempe JE, Givens GH, Miller RS, Hoeting JA. Identification of migratory bird flyways in North America using community detection on biological networks. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:740-751. [PMID: 27411247 DOI: 10.1890/15-0934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Migratory behavior of waterfowl populations in North America has traditionally been broadly characterized by four north-south flyways, and these flyways have been central to the management of waterfowl populations for more than 80 yr. However, previous flyway characterizations are not easily updated with current bird movement data and fail to provide assessments of the importance of specific geographical regions to the identification of flyways. Here, we developed a network model of migratory movement for four waterfowl species, Mallard (Anas platyrhnchos), Northern Pintail (A. acuta), American Green-winged Teal (A. carolinensis), and Canada Goose (Branta canadensis), in North America, using bird band and recovery data. We then identified migratory flyways using a community detection algorithm and characterized the importance of smaller geographic regions in identifying flyways using a novel metric, the consolidation factor. We identified four main flyways for Mallards, Northern Pintails, and American Green-winged Teal, with the flyway identification in Canada Geese exhibiting higher complexity. For Mallards, flyways were relatively consistent through time. However, consolidation factors revealed that for Mallards and Green-winged Teal, the presumptive Mississippi flyway was potentially a zone of high mixing between other flyways. Our results demonstrate that the network approach provides a robust method for flyway identification that is widely applicable given the relatively minimal data requirements and is easily updated with future movement data to reflect changes in flyway definitions and management goals.
Collapse
|
213
|
Thornburg NJ, Zhang H, Bangaru S, Sapparapu G, Kose N, Lampley RM, Bombardi RG, Yu Y, Graham S, Branchizio A, Yoder SM, Rock MT, Creech CB, Edwards KM, Lee D, Li S, Wilson IA, García-Sastre A, Albrecht RA, Crowe JE. H7N9 influenza virus neutralizing antibodies that possess few somatic mutations. J Clin Invest 2016; 126:1482-94. [PMID: 26950424 PMCID: PMC4811156 DOI: 10.1172/jci85317] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/21/2016] [Indexed: 01/08/2023] Open
Abstract
Avian H7N9 influenza viruses are group 2 influenza A viruses that have been identified as the etiologic agent for a current major outbreak that began in China in 2013 and may pose a pandemic threat. Here, we examined the human H7-reactive antibody response in 75 recipients of a monovalent inactivated A/Shanghai/02/2013 H7N9 vaccine. After 2 doses of vaccine, the majority of donors had memory B cells that secreted IgGs specific for H7 HA, with dominant responses against single HA subtypes, although frequencies of H7-reactive B cells ranged widely between donors. We isolated 12 naturally occurring mAbs with low half-maximal effective concentrations for binding, 5 of which possessed neutralizing and HA-inhibiting activities. The 5 neutralizing mAbs exhibited narrow breadth of reactivity with influenza H7 strains. Epitope-mapping studies using neutralization escape mutant analysis, deuterium exchange mass spectrometry, and x-ray crystallography revealed that these neutralizing mAbs bind near the receptor-binding pocket on HA. All 5 neutralizing mAbs possessed low numbers of somatic mutations, suggesting the clones arose from naive B cells. The most potent mAb, H7.167, was tested as a prophylactic treatment in a mouse intranasal virus challenge study, and systemic administration of the mAb markedly reduced viral lung titers.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Binding Sites, Antibody/genetics
- Binding Sites, Antibody/immunology
- Epitope Mapping
- Epitopes/genetics
- Epitopes/immunology
- Female
- Humans
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Male
- Mice
- Middle Aged
- Mutation
Collapse
Affiliation(s)
- Natalie J. Thornburg
- The Vanderbilt Vaccine Center and
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heng Zhang
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | - Gopal Sapparapu
- The Vanderbilt Vaccine Center and
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | - Sandra M. Yoder
- The Vanderbilt Vaccine Center and
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Michael T. Rock
- The Vanderbilt Vaccine Center and
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee, USA
| | - C. Buddy Creech
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn M. Edwards
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee, USA
| | - David Lee
- Department of Medicine and Biomedical Sciences Graduate Program, School of Medicine, UCSD, San Diego, California, USA
| | - Sheng Li
- Department of Medicine and Biomedical Sciences Graduate Program, School of Medicine, UCSD, San Diego, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Adolfo García-Sastre
- Department of Microbiology
- Global Health and Emerging Pathogens Institute, and
- Department of Medicine, Division of Infectious Diseases at Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Randy A. Albrecht
- Department of Microbiology
- Global Health and Emerging Pathogens Institute, and
| | - James E. Crowe
- The Vanderbilt Vaccine Center and
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
- Departments of Pathology, Microbiology, and Immunology, and
| |
Collapse
|
214
|
Hoffmann M, Krüger N, Zmora P, Wrensch F, Herrler G, Pöhlmann S. The Hemagglutinin of Bat-Associated Influenza Viruses Is Activated by TMPRSS2 for pH-Dependent Entry into Bat but Not Human Cells. PLoS One 2016; 11:e0152134. [PMID: 27028521 PMCID: PMC4814062 DOI: 10.1371/journal.pone.0152134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/09/2016] [Indexed: 11/18/2022] Open
Abstract
New World bats have recently been discovered to harbor influenza A virus (FLUAV)-related viruses, termed bat-associated influenza A-like viruses (batFLUAV). The internal proteins of batFLUAV are functional in mammalian cells. In contrast, no biological functionality could be demonstrated for the surface proteins, hemagglutinin (HA)-like (HAL) and neuraminidase (NA)-like (NAL), and these proteins need to be replaced by their human counterparts to allow spread of batFLUAV in human cells. Here, we employed rhabdoviral vectors to study the role of HAL and NAL in viral entry. Vectors pseudotyped with batFLUAV-HAL and -NAL were able to enter bat cells but not cells from other mammalian species. Host cell entry was mediated by HAL and was dependent on prior proteolytic activation of HAL and endosomal low pH. In contrast, sialic acids were dispensable for HAL-driven entry. Finally, the type II transmembrane serine protease TMPRSS2 was able to activate HAL for cell entry indicating that batFLUAV can utilize human proteases for HAL activation. Collectively, these results identify viral and cellular factors governing host cell entry driven by batFLUAV surface proteins. They suggest that the absence of a functional receptor precludes entry of batFLUAV into human cells while other prerequisites for entry, HAL activation and protonation, are met in target cells of human origin.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- * E-mail: (SP); (MH)
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pawel Zmora
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Florian Wrensch
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- * E-mail: (SP); (MH)
| |
Collapse
|
215
|
Ren L, Yu X, Zhao B, Wu F, Jin Q, Zhang X, Wang J. Infection with possible precursor of avian influenza A(H7N9) virus in a child, China, 2013. Emerg Infect Dis 2016; 20:1362-5. [PMID: 25061975 PMCID: PMC4111171 DOI: 10.3201/eid2008.140325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the early stage of the avian influenza A(H7N9) epidemic in China in March 2013, a strain of the virus was identified in a 4-year-old boy with mild influenza symptoms. Phylogenetic analysis indicated that this strain, which has similarity to avian subtype H9N2 viruses, may represent a precursor of more-evolved H7N9 subtypes co-circulating among humans.
Collapse
|
216
|
Gerloff NA, Khan SU, Zanders N, Balish A, Haider N, Islam A, Chowdhury S, Rahman MZ, Haque A, Hosseini P, Gurley ES, Luby SP, Wentworth DE, Donis RO, Sturm-Ramirez K, Davis CT. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh. PLoS One 2016; 11:e0152131. [PMID: 27010791 PMCID: PMC4806916 DOI: 10.1371/journal.pone.0152131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/09/2016] [Indexed: 12/01/2022] Open
Abstract
Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year timeframe of sampling, indicate a continuous circulation of these viruses in the country.
Collapse
Affiliation(s)
- Nancy A. Gerloff
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Salah Uddin Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Natosha Zanders
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Amanda Balish
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Najmul Haider
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ausraful Islam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sukanta Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mahmudur Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ainul Haque
- Department of Livestock Services, Ministry of Fisheries and Livestock, Dhaka, Bangladesh
| | | | - Emily S. Gurley
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Stephen P. Luby
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - David E. Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Katharine Sturm-Ramirez
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - C. Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| |
Collapse
|
217
|
Liu J, Huang F, Zhang J, Tan L, Lu G, Zhang X, Zhang H. Characteristic amino acid changes of influenza A(H1N1)pdm09 virus PA protein enhance A(H7N9) viral polymerase activity. Virus Genes 2016; 52:346-53. [DOI: 10.1007/s11262-016-1311-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/25/2016] [Indexed: 11/25/2022]
|
218
|
Li Y, Tian K, Yin C, He RL, Yau SST. Virus classification in 60-dimensional protein space. Mol Phylogenet Evol 2016; 99:53-62. [PMID: 26988414 DOI: 10.1016/j.ympev.2016.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/24/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Due to vast sequence divergence among different viral groups, sequence alignment is not directly applicable to genome-wide comparative analysis of viruses. More and more attention has been paid to alignment-free methods for whole genome comparison and phylogenetic tree reconstruction. Among alignment-free methods, the recently proposed "Natural Vector (NV) representation" has successfully been used to study the phylogeny of multi-segmented viruses based on a 12-dimensional genome space derived from the nucleotide sequence structure. But the preference of proteomes over genomes for the determination of viral phylogeny was not deeply investigated. As the translated products of genes, proteins directly form the shape of viral structure and are vital for all metabolic pathways. In this study, using the NV representation of a protein sequence along with the Hausdorff distance suitable to compare point sets, we construct a 60-dimensional protein space to analyze the evolutionary relationships of 4021 viruses by whole-proteomes in the current NCBI Reference Sequence Database (RefSeq). We also take advantage of the previously developed natural graphical representation to recover viral phylogeny. Our results demonstrate that the proposed method is efficient and accurate for classifying viruses. The accuracy rates of our predictions such as for Baltimore II viruses are as high as 95.9% for family labels, 95.7% for subfamily labels and 96.5% for genus labels. Finally, we discover that proteomes lead to better viral classification when reliable protein sequences are abundant. In other cases, the accuracy rates using proteomes are still comparable to that of genomes.
Collapse
Affiliation(s)
- Yongkun Li
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Kun Tian
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Changchuan Yin
- Department of Mathematics, Statistics and Computer Science, The University of Illinois at Chicago, Chicago, IL 60607-7045, USA
| | - Rong Lucy He
- Department of Biological Sciences, Chicago State University, Chicago, IL 60628, USA
| | - Stephen S-T Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
219
|
Li C, Xu K, Hashem A, Shao M, Liu S, Zou Y, Gao Q, Zhang Y, Yuan L, Xu M, Li X, Wang J. Collaborative studies on the development of national reference standards for potency determination of H7N9 influenza vaccine. Hum Vaccin Immunother 2016; 11:1351-6. [PMID: 25970793 PMCID: PMC4514420 DOI: 10.1080/21645515.2015.1032490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The outbreak of human infections of a novel avian influenza virus A (H7N9) prompted the development of the vaccines against this virus. Like all types of influenza vaccines, H7N9 vaccine must be tested for its potency prior to being used in humans. However, the unavailability of international reference reagents for the potency determination of H7N9 vaccines substantially hinders the progress in vaccine development. To facilitate clinical development, we enlisted 5 participants in a collaborative study to develop critical reagents used in Single Radial Immunodiffusion (SRID), the currently acceptable assay for potency determination of influenza vaccine. Specifically, the hemagglutinin (HA) content of one vaccine bulk for influenza A (H7N9), herein designated as Primary Liquid Standard (PLS), was determined by SDS-PAGE. In addition, the freeze-dried antigen references derived from PLS were prepared to enhance the stability for long term storage. The final HA content of lyophilized antigen references were calibrated against PLS by SRID assay in a collaborative study. Importantly, application of these national reference standards to potency analyses greatly facilitated the development of H7N9 vaccines in China.
Collapse
Affiliation(s)
- Changgui Li
- a National Institutes for Food and Drug Control, No.2 ; TiantanXili ; Beijing , PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Clinical, epidemiological and virological characteristics of the first detected human case of avian influenza A(H5N6) virus. INFECTION GENETICS AND EVOLUTION 2016; 40:236-242. [PMID: 26973295 DOI: 10.1016/j.meegid.2016.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/28/2016] [Accepted: 03/09/2016] [Indexed: 02/03/2023]
Abstract
A human infection with novel avian influenza A H5N6 virus emerged in Changsha city, China in February, 2014. This is the first detected human case among all human cases identified from 2014 to early 2016. We obtained and summarized clinical, epidemiological, and virological data from this patient. Complete genome of the virus was determined and compared to other avian influenza viruses via the construction of phylogenetic trees using the neighbor-joining approach. A girl aged five and half years developed fever and mild respiratory symptoms on Feb. 16, 2014 and visited hospital on Feb. 17. Throat swab specimens were obtained from the patient and a novel reassortant avian influenza A H5N6 virus was detected. All eight viral gene segments were of avian origin. The hemagglutinin (HA) and neuraminidase (NA) gene segments were closely related to A/duck/Sichuan/NCXN11/2014(H5N1) and A/chicken/Jiangxi/12782/2014(H10N6) viruses, respectively. The six internal genes were homologous to avian influenza A (H5N2) viruses isolated in duck from Jiangxi in China. This H5N6 virus has not gained genetic mutations necessary for human infection and was suggested to be sensitive to neuraminidase inhibitors, but resistant to adamantanes. Epidemiological investigation of the exposure history of the patient found that a live poultry market could be the source place of infection and the incubation period was 2-5days. This novel reassortant Avian influenza A(H5N6) virus could be low pathogenic in humans. The prevalence and genetic evolution of this virus should be closely monitored.
Collapse
|
221
|
Ridenour C, Johnson A, Winne E, Hossain J, Mateu-Petit G, Balish A, Santana W, Kim T, Davis C, Cox NJ, Barr JR, Donis RO, Villanueva J, Williams TL, Chen LM. Development of influenza A(H7N9) candidate vaccine viruses with improved hemagglutinin antigen yield in eggs. Influenza Other Respir Viruses 2016; 9:263-70. [PMID: 25962412 PMCID: PMC4548996 DOI: 10.1111/irv.12322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 11/30/2022] Open
Abstract
Background The emergence of avian influenza A(H7N9) virus in poultry causing zoonotic human infections was reported on March 31, 2013. Development of A(H7N9) candidate vaccine viruses (CVV) for pandemic preparedness purposes was initiated without delay. Candidate vaccine viruses were derived by reverse genetics using the internal genes of A/Puerto/Rico/8/34 (PR8). The resulting A(H7N9) CVVs needed improvement because they had titers and antigen yields that were suboptimal for vaccine manufacturing in eggs, especially in a pandemic situation. Methods Two CVVs derived by reverse genetics were serially passaged in embryonated eggs to improve the hemagglutinin (HA) antigen yield. The total viral protein and HA antigen yields of six egg-passaged CVVs were determined by the BCA assay and isotope dilution mass spectrometry (IDMS) analysis, respectively. CVVs were antigenically characterized by hemagglutination inhibition (HI) assays with ferret antisera. Results Improvement of total viral protein yield was observed for the six egg-passaged CVVs; HA quantification by IDMS indicated approximately a twofold increase in yield of several egg-passaged viruses as compared to that of the parental CVV. Several different amino acid substitutions were identified in the HA of all viruses after serial passage. However, HI tests indicated that the antigenic properties of two CVVs remained unchanged. Conclusions If influenza A(H7N9) viruses were to acquire sustained human-to-human transmissibility, the improved HA yield of the egg-passaged CVVs generated in this study could expedite vaccine manufacturing for pandemic mitigation.
Collapse
Affiliation(s)
- Callie Ridenour
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adam Johnson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily Winne
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Battelle Memorial Institute, Atlanta, Georgia, USA
| | - Jaber Hossain
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Guaniri Mateu-Petit
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amanda Balish
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wanda Santana
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taejoong Kim
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charles Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nancy J Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ruben O Donis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julie Villanueva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tracie L Williams
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Li-Mei Chen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
222
|
Cui L, Liu D, Shi W, Pan J, Qi X, Li X, Guo X, Zhou M, Li W, Li J, Haywood J, Xiao H, Yu X, Pu X, Wu Y, Yu H, Zhao K, Zhu Y, Wu B, Jin T, Shi Z, Tang F, Zhu F, Sun Q, Wu L, Yang R, Yan J, Lei F, Zhu B, Liu W, Ma J, Wang H, Gao GF. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nat Commun 2016; 5:3142. [PMID: 24457975 DOI: 10.1038/ncomms4142] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022] Open
Abstract
Influenza A (H7N9) virus has been causing human infections in China since February 2013, raising serious concerns of potential pandemics. Previous studies demonstrate that human infection is directly linked to live animal markets, and that the internal genes of the virus are derived from H9N2 viruses circulating in the Yangtze River Delta area in Eastern China. Here following analysis of 109 viruses, we show a much higher genetic heterogeneity of the H7N9 viruses than previously reported, with a total of 27 newly designated genotypes. Phylogenetic and genealogical inferences reveal that genotypes G0 and G2.6 dominantly co-circulate within poultry, with most human isolates belonging to the genotype G0. G0 viruses are also responsible for the inter- and intra-province transmissions, leading to the genesis of novel genotypes. These observations suggest the province-specific H9N2 virus gene pools increase the genetic diversity of H7N9 via dynamic reassortments and also imply that G0 has not gained overwhelming fitness and the virus continues to undergo reassortment.
Collapse
Affiliation(s)
- Lunbiao Cui
- 1] Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China [2]
| | - Di Liu
- 1] CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China [2] Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China [3]
| | - Weifeng Shi
- 1] School of Basic Medical Sciences, Taishan Medical College, Shandong Province, China [2] CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China [3]
| | - Jingcao Pan
- 1] Hangzhou Center for Disease Control and Prevention, Zhejiang Province, China [2]
| | - Xian Qi
- 1] Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China [2]
| | - Xianbin Li
- 1] Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong Province, China [2] University of Chinese Academy of Sciences, Beijing, China
| | - Xiling Guo
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Minghao Zhou
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Wei Li
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Hangzhou Center for Disease Control and Prevention, Zhejiang Province, China
| | - Joel Haywood
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haixia Xiao
- Tianjin Institute of Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, Zhejiang Province, China
| | - Xiaoying Pu
- Hangzhou Center for Disease Control and Prevention, Zhejiang Province, China
| | - Ying Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huiyan Yu
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Kangchen Zhao
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Yefei Zhu
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Bin Wu
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Tao Jin
- BGI-Shenzhen, Shenzhen, Guangdong Province, China
| | - Zhiyang Shi
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Fenyang Tang
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Fengcai Zhu
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - Qinglan Sun
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juncai Ma
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Wang
- Key Laboratory of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Province, China
| | - George F Gao
- 1] CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China [2] University of Chinese Academy of Sciences, Beijing, China [3] Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China [4] Office of Director-General, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
223
|
Munoz O, De Nardi M, van der Meulen K, van Reeth K, Koopmans M, Harris K, von Dobschuetz S, Freidl G, Meijer A, Breed A, Hill A, Kosmider R, Banks J, Stärk KDC, Wieland B, Stevens K, van der Werf S, Enouf V, Dauphin G, Dundon W, Cattoli G, Capua I. Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies Transmission: A Literature Review. ECOHEALTH 2016; 13:171-198. [PMID: 25630935 DOI: 10.1007/s10393-014-1004-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.
Collapse
Affiliation(s)
- Olga Munoz
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy.
| | - Marco De Nardi
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
- SAFOSO AG, Bern, Switzerland
| | - Karen van der Meulen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Kristien van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Marion Koopmans
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kate Harris
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Sophie von Dobschuetz
- Royal Veterinary College (RVC), London, UK
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - Gudrun Freidl
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam Meijer
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andrew Breed
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Andrew Hill
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | - Jill Banks
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | | | | | - Sylvie van der Werf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Vincent Enouf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Gwenaelle Dauphin
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - William Dundon
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Giovanni Cattoli
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Ilaria Capua
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| |
Collapse
|
224
|
Ye G, Liang CH, Hua DG, Song LY, Xiang YG, Guang C, Lan CH, Ping HY. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus. Front Microbiol 2016; 7:57. [PMID: 26973600 PMCID: PMC4770023 DOI: 10.3389/fmicb.2016.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs.
Collapse
Affiliation(s)
- Ge Ye
- College of Wildlife Resources, Northeast Forestry University Harbin, China
| | - Chai Hong Liang
- College of Wildlife Resources, Northeast Forestry University Harbin, China
| | - Deng Guo Hua
- Harbin Veterinary Research Institute, Chinese Academy of Agriculture Sciences Harbin, China
| | - Lei Yong Song
- Hubei Province Wildlife Epidemic Disease Center Wuhan, China
| | - Yang Guo Xiang
- Hubei Province Wildlife Epidemic Disease Center Wuhan, China
| | - Chen Guang
- Hubei Province Wildlife Epidemic Disease Center Wuhan, China
| | - Chen Hua Lan
- Harbin Veterinary Research Institute, Chinese Academy of Agriculture Sciences Harbin, China
| | - Hua Yu Ping
- College of Wildlife Resources, Northeast Forestry University Harbin, China
| |
Collapse
|
225
|
Zhang L, Jia N, Li J, Han Y, Cao W, Wang S, Huang Z, Lu S. Optimal designs of an HA-based DNA vaccine against H7 subtype influenza viruses. Hum Vaccin Immunother 2016; 10:1949-58. [PMID: 25424804 DOI: 10.4161/hv.28795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The outbreak of a novel H7N9 influenza virus in 2013 has raised serious concerns for the potential of another avian-source pandemic influenza. Effective vaccines against H7N9 virus are important in the prevention and control of any major outbreak. Novel vaccination technologies are useful additions to existing approaches. In the current report, DNA vaccine studies were conducted to identify the optimal design of an H7 HA antigen using the HA gene from a previously reported H7N7 virus that is lethal in humans as the model antigen. New Zealand White rabbits were immunized with DNA vaccines expressing 1 of 3 forms of H7 HA antigen inserts encoding the HA gene from the same H7N7 virus. High-level H7 HA-specific IgG was detected by ELISA, and functional antibodies were confirmed by hemagglutination inhibition assay and pseudotyped virus-based neutralization assay against viruses expressing HA antigens from either the previous H7N7 virus or the novel H7N9 virus. HA antigen design under the tissue plasminogen activator leader (tPA) was the most immunogenic. The data presented in the current report confirm the immunogenicity of the H7 HA antigen and provide useful guidance to prepare for an optimized H7 HA DNA vaccine to help to control the emerging H7N9 virus if and when it is needed.
Collapse
Affiliation(s)
- Lu Zhang
- a Department of Infectious Diseases; The First Affiliated Hospital with Nanjing Medical University; Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Sha J, Chen X, Ren Y, Chen H, Wu Z, Ying D, Zhang Z, Liu S. Differences in the epidemiology and virology of mild, severe and fatal human infections with avian influenza A (H7N9) virus. Arch Virol 2016; 161:1239-59. [PMID: 26887968 PMCID: PMC7101734 DOI: 10.1007/s00705-016-2781-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/30/2016] [Indexed: 11/04/2022]
Abstract
A novel avian influenza A (H7N9) virus caused 5-10 % mild and 30.5 % fatal human infections as of December 10, 2015. In order to investigate the reason for the higher rate of fatal outcome of this infection, this study compared the molecular epidemiology and virology of avian influenza A (H7N9) viruses from mild (N = 14), severe (N = 50) and fatal (N = 35) cases, as well as from non-human hosts (N = 73). The epidemiological results showed that the average age of the people in the mild, severe and fatal groups was 27.6, 52 and 62 years old, respectively (p < 0.001). Males accounted for 42.9 % (6/14), 58.0 % (29/50), and 74.3 % (26/35) of cases in the mild, severe and fatal group respectively (p = 0.094). Median days from onset to start of antiviral treatment were 2, 5 and 7 days in the mild, severe and fatal group, respectively (p = 0.002). The median time from onset to discharge/death was 12, 40 and 19 days in the mild, severe and fatal group, respectively (p < 0.001). Analysis of whole genome sequences showed that PB2 (E627K), NA (R294K) and PA (V100A) mutations were markedly associated with an increased fatality rate, while HA (N276D) and PB2 (N559T) mutations were clearly related to mild cases. There were no differences in the genotypes, adaptation to mammalian hosts, and genetic identity between the three types of infection. In conclusion, advanced age and delayed confirmation of diagnosis and antiviral intervention were risk factors for death. Furthermore, PB2 (E627K), NA (R294K) and PA (V100A) mutations might contribute to a fatal outcome in human H7N9 infection.
Collapse
Affiliation(s)
- Jianping Sha
- Department of Gastroenterology, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Xiaowen Chen
- Department of Senior Cadres, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Yajin Ren
- Pharmacy Department, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Haijun Chen
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Zuqun Wu
- Department of Respiratory Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Dong Ying
- Department of Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiao Tong University, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, People's Republic of China.
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, People's Republic of China.
| |
Collapse
|
227
|
Wang H, Zhang Z, Chen Z, Zhang Y, Lv Q, An X, Tong Y, Carr MJ, Sun S, Shi W. High genetic diversity and frequent genetic reassortment of avian influenza A(H9N2) viruses along the East Asian-Australian migratory flyway. INFECTION GENETICS AND EVOLUTION 2016; 39:325-329. [PMID: 26876220 DOI: 10.1016/j.meegid.2016.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 12/09/2022]
Abstract
To understand the molecular epidemiology and evolution of avian influenza viruses (AIV) along the East Asian-Australian migration flyway, we collected faecal samples (n=2859) between November 2014 and March 2015 from poultry, environmental sources and wild birds in Dongying, Shandong province and Yancheng, Jiangsu province in eastern China. The presence of AIV RNA was evaluated by real-time PCR and the positivity rate ranged from 0 to 29.3%. In both Dongying and Yancheng, samples collected from live poultry markets had the highest positivity rate for AIV RNA. AIV whole genomes were generated and phylogenetically analysed. Our results demonstrate that most of the viruses belonged to the H9N2 subtype, and could be classified into nine novel genotypes based on the phylogenetic analysis of the eight gene segments of the AIV genomes. This revealed a high genetic diversity of H9N2 in this region and suggested that they might have undergone frequent genetic reassortment. In addition, the internal genes (PB2, etc.) of two viruses from wild birds and several viruses from poultry belonged to the same gene constellation, suggesting a potential inter-host transmission of AIV between wild birds and poultry in live markets along routes of migratory flyways. Our results highlight the high genetic diversity of AIV along the East Asian-Australian migration flyway and the need for more extensive AIV surveillance in eastern China.
Collapse
Affiliation(s)
- Haiming Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Institute of Pathogen Biology, Taishan Medical College, Tai'an, Shandong 271000, China.
| | - Zhenjie Zhang
- Institute of Pathogen Biology, Taishan Medical College, Tai'an, Shandong 271000, China.
| | - Zhanqiang Chen
- Dongying Forest and Plant Protection Station, Dongying, Shandong 257091, China.
| | - Yanru Zhang
- Dongying Forest and Plant Protection Station, Dongying, Shandong 257091, China.
| | - Qiang Lv
- Institute of Pathogen Biology, Taishan Medical College, Tai'an, Shandong 271000, China.
| | - Xiaoping An
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yigang Tong
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Michael J Carr
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland.
| | - Shuhong Sun
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Weifeng Shi
- Institute of Pathogen Biology, Taishan Medical College, Tai'an, Shandong 271000, China.
| |
Collapse
|
228
|
Zhu H, Lam TTY, Smith DK, Guan Y. Emergence and development of H7N9 influenza viruses in China. Curr Opin Virol 2016; 16:106-113. [PMID: 26922715 DOI: 10.1016/j.coviro.2016.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023]
Abstract
The occurrence of human infections with avian H7N9 viruses since 2013 demonstrates the continuing pandemic threat posed by the current influenza ecosystem in China. Influenza surveillance and phylogenetic analyses showed that these viruses were generated by multiple interspecies transmissions and reassortments among the viruses resident in domestic ducks and the H9N2 viruses enzootic in chickens. A large population of domestic ducks hosting diverse influenza viruses provided the precondition for these events to occur, while acquiring internal genes from enzootic H9N2 influenza viruses in chickens promoted the spread of these viruses. Human infections effectively act as sentinels, reflecting the intensity of the activity of these viruses in poultry.
Collapse
Affiliation(s)
- Huachen Zhu
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China; Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China.
| | - Tommy Tsan-Yuk Lam
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - David Keith Smith
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China; Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
229
|
Nian QG, Jiang T, Zhang Y, Deng YQ, Li J, Qin ED, Qin CF. High thermostability of the newly emerged influenza A (H7N9) virus. J Infect 2016; 72:393-4. [PMID: 26777313 DOI: 10.1016/j.jinf.2016.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Qing-Gong Nian
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yu Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jing Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - E-De Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
230
|
Chen L, Sun L, Li R, Chen Y, Zhang Z, Xiong C, Zhao G, Jiang Q. Is a highly pathogenic avian influenza virus H5N1 fragment recombined in PB1 the key for the epidemic of the novel AIV H7N9 in China, 2013? Int J Infect Dis 2016; 43:85-89. [PMID: 26778522 DOI: 10.1016/j.ijid.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND A novel avian influenza A H7N9 virus that infects humans was identified in China in 2013. This study is the first to comprehensively investigate the characteristics of genomic recombination, rather than reassortment, which has been the subject of investigation in previously reported studies. METHODS Novel avian influenza virus (AIV) H7N9 genome sequences were obtained from the NCBI Influenza Virus Sequence Database and the Global Initiative on Sharing Avian Influenza Database (GISAID) and a representative isolate was subjected to homogeneity analysis. A phylogenetic tree was constructed. Eight segments of the isolate were analyzed to identify segments with recombination events, the corresponding recombination fragments, and breakpoints. The evolutionary history of the recombined fragments was tracked by constructing phylogenetic trees of the recombination fragments. RESULTS Among the eight segments of the novel AIV H7N9 analyzed, only the PB1 segment showed a marked recombination phenomenon, with 11 recombination events; these included five actual recombination events and six possible misalignment artifact recombination events. The most notable was the recombination of a 291-nucleotide (nt) fragment at the 490-780 nt site that was affiliated to a highly pathogenic avian influenza virus (HPAIV) H5N1 (A/tree sparrow/Thailand/VSMU-16-RBR/2005). The phylogenetic tree of the 291-nt recombination fragment on the PB1 segment showed that the novel AIV H7N9 had a close genetic relationship to H9N2 and H5N1. CONCLUSIONS The novel AIV H7N9 might have reassorted its PB1 segment from H9N2 circulating in China, and this H9N2 PB1 might have been recombined into a highly pathogenic fragment from HPAIV H5N1, which could be the reason for the high fatality rate among patients with AIV H7N9 influenza.
Collapse
Affiliation(s)
- Liang Chen
- Department of Public Health Microbiology, School of Public Health, Fudan University, Bldg 8#, Rd. Dong'an 130, Shanghai 200032, People's Republic of China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People's Republic of China
| | - Liqian Sun
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Bldg 8#, Rd. Dong'an 130, Shanghai 200032, People's Republic of China; Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai, People's Republic of China
| | - Rui Li
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Bldg 8#, Rd. Dong'an 130, Shanghai 200032, People's Republic of China; Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai, People's Republic of China
| | - Yue Chen
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Zhijie Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Bldg 8#, Rd. Dong'an 130, Shanghai 200032, People's Republic of China; Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai, People's Republic of China.
| | - Chenglong Xiong
- Department of Public Health Microbiology, School of Public Health, Fudan University, Bldg 8#, Rd. Dong'an 130, Shanghai 200032, People's Republic of China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People's Republic of China.
| | - Genming Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Bldg 8#, Rd. Dong'an 130, Shanghai 200032, People's Republic of China
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
231
|
Crevar CJ, Carter DM, Lee KYJ, Ross TM. Cocktail of H5N1 COBRA HA vaccines elicit protective antibodies against H5N1 viruses from multiple clades. Hum Vaccin Immunother 2015; 11:572-83. [PMID: 25671661 DOI: 10.1080/21645515.2015.1012013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Pandemic outbreaks of influenza are caused by the emergence of a pathogenic and transmissible virus to which the human population is immunologically naïve. Recent outbreaks of highly pathogenic avian influenza (HPAI) of the H5N1 subtype are of particular concern because of the high mortality rate (60% case fatality rate) and novel subtype. In this study, we have engineered an influenza virus-like particle (VLP) that contains a synthetic, consensus-based HA molecule using a new methodology, computationally optimized broadly reactive antigen (COBRA). Three COBRA H5N1 HA proteins have been engineered based upon (1) human clade 2 H5N1 sequences, (2) human and avian clade 2 sequences, and (3) all H5N1 influenza sequences recorded between 2005-2008. Each hemagglutinin protein retained the ability to bind the appropriate receptors, as well as the ability to mediate particle fusion, following purification from a mammalian expression system. COBRA VLP vaccines were administered to mice and the humoral immune responses were compared to those induced by VLPs containing an HA derived from a primary viral isolate. Using a single vaccination (0.6 ug HA dose with an adjuvant) all animals vaccinated with COBRA clade 2 HA H5N1 VLPs had protective levels of HAI antibodies to a representative isolate from each subclade of clade 2, but lower titers against other clades. The addition of avian sequences from other clades expanded breadth of HAI antibodies to the divergent clades, but still not all of the 25 H5N1 viruses in the panel were recognized by antibodies elicited any one H5N1 COBRA VLP vaccine. Vaccination of mice with a cocktail of all 3 COBRA HA VLP vaccines, in a prime-boost regimen, elicited an average HAI titer greater than 1:40 against all 25 viruses. Collectively, our findings indicate that the elicited antibody response following VLP vaccination with all 3 COBRA HA vaccine simultaneously elicited a broadly-reactive set of antibodies that recognized H5N1 viruses from 11 H5N1 clades/subclades isolated over a 12-year span.
Collapse
Affiliation(s)
- Corey J Crevar
- a Vaccine and Gene Therapy Institute of Florida ; Port St. Lucie , FL USA
| | | | | | | |
Collapse
|
232
|
Tefsen B. Chances and challenges in China. Protein Cell 2015; 7:233-235. [PMID: 26687390 PMCID: PMC4818847 DOI: 10.1007/s13238-015-0235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Boris Tefsen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
233
|
Machalaba CC, Elwood SE, Forcella S, Smith KM, Hamilton K, Jebara KB, Swayne DE, Webby RJ, Mumford E, Mazet JAK, Gaidet N, Daszak P, Karesh WB. Global avian influenza surveillance in wild birds: a strategy to capture viral diversity. Emerg Infect Dis 2015; 21:e1-7. [PMID: 25811221 PMCID: PMC4378471 DOI: 10.3201/eid2104.141415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health–administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008–2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community.
Collapse
|
234
|
Abstract
Transmission via shared water implicates passerine birds as possible vectors for dissemination of this virus. Low pathogenicity avian influenza A(H7N9) virus has been detected in poultry since 2013, and the virus has caused >450 infections in humans. The mode of subtype H7N9 virus transmission between avian species remains largely unknown, but various wild birds have been implicated as a source of transmission. H7N9 virus was recently detected in a wild sparrow in Shanghai, China, and passerine birds, such as finches, which share space and resources with wild migratory birds, poultry, and humans, can be productively infected with the virus. We demonstrate that interspecies transmission of H7N9 virus occurs readily between society finches and bobwhite quail but only sporadically between finches and chickens. Inoculated finches are better able to infect naive poultry than the reverse. Transmission occurs through shared water but not through the airborne route. It is therefore conceivable that passerine birds may serve as vectors for dissemination of H7N9 virus to domestic poultry.
Collapse
|
235
|
Dong W, Yang K, Xu QL, Yang YL. A Predictive Risk Model for A(H7N9) Human Infections Based on Spatial-Temporal Autocorrelation and Risk Factors: China, 2013-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:15204-21. [PMID: 26633446 PMCID: PMC4690917 DOI: 10.3390/ijerph121214981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/11/2015] [Accepted: 11/10/2015] [Indexed: 12/29/2022]
Abstract
This study investigated the spatial distribution, spatial autocorrelation, temporal cluster, spatial-temporal autocorrelation and probable risk factors of H7N9 outbreaks in humans from March 2013 to December 2014 in China. The results showed that the epidemic spread with significant spatial-temporal autocorrelation. In order to describe the spatial-temporal autocorrelation of H7N9, an improved model was developed by introducing a spatial-temporal factor in this paper. Logistic regression analyses were utilized to investigate the risk factors associated with their distribution, and nine risk factors were significantly associated with the occurrence of A(H7N9) human infections: the spatial-temporal factor φ (OR = 2546669.382, p < 0.001), migration route (OR = 0.993, p < 0.01), river (OR = 0.861, p < 0.001), lake(OR = 0.992, p < 0.001), road (OR = 0.906, p < 0.001), railway (OR = 0.980, p < 0.001), temperature (OR = 1.170, p < 0.01), precipitation (OR = 0.615, p < 0.001) and relative humidity (OR = 1.337, p < 0.001). The improved model obtained a better prediction performance and a higher fitting accuracy than the traditional model: in the improved model 90.1% (91/101) of the cases during February 2014 occurred in the high risk areas (the predictive risk > 0.70) of the predictive risk map, whereas 44.6% (45/101) of which overlaid on the high risk areas (the predictive risk > 0.70) for the traditional model, and the fitting accuracy of the improved model was 91.6% which was superior to the traditional model (86.1%). The predictive risk map generated based on the improved model revealed that the east and southeast of China were the high risk areas of A(H7N9) human infections in February 2014. These results provided baseline data for the control and prevention of future human infections.
Collapse
Affiliation(s)
- Wen Dong
- School of Tourism and Geographic Science, Yunnan Normal University, Kunming 650500, China.
- School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China.
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China.
| | - Kun Yang
- School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China.
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China.
| | - Quan-Li Xu
- School of Tourism and Geographic Science, Yunnan Normal University, Kunming 650500, China.
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China.
| | - Yu-Lian Yang
- School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China.
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
236
|
Qi W, Shi W, Li W, Huang L, Li H, Wu Y, Yan J, Jiao P, Zhu B, Ma J, Gao GF, Liao M, Liu D. Continuous reassortments with local chicken H9N2 virus underlie the human-infecting influenza A (H7N9) virus in the new influenza season, Guangdong, China. Protein Cell 2015; 5:878-82. [PMID: 25109943 PMCID: PMC4225483 DOI: 10.1007/s13238-014-0084-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Kim EH, Park SJ, Kwon HI, Kim SM, Kim YI, Song MS, Choi EJ, Pascua PNQ, Choi YK. Mouse adaptation of influenza B virus increases replication in the upper respiratory tract and results in droplet transmissibility in ferrets. Sci Rep 2015; 5:15940. [PMID: 26526113 PMCID: PMC4630645 DOI: 10.1038/srep15940] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022] Open
Abstract
To investigate the molecular changes that allow influenza B viruses to adapt to new mammalian hosts, influenza B/Florida/04/2006 was serially passaged in BALB/c mice until highly virulent. The viral factors underlying this transition were then investigated in mice and ferrets. Five viruses, including the wild-type virus (P0), three intermediate viruses (P5, P9, and P12), and a lethal mouse-adapted virus (P17 (MA)), harbored one to five amino acid substitutions in the hemagglutinin, M, NP, and PA segments suggesting that these mutations enhance virulence. The P17 (MA) virus replicated significantly more efficiently than the P0 virus both in vitro and in vivo (P < 0.0001), and was highly virulent (MLD50: 10(5.25)TCID50) while the P0, P5, and P9 viruses did not kill any infected mice (MLD50 > 10(6.0)TCID50). Furthermore, the P17 (MA) virus grew to greater titers in the ferret upper respiratory tract compared with the P0 and intermediate viruses, and only the P17 (MA) virus was transmissible between ferrets via both direct and aerosol contact. To our knowledge, this is the first study to demonstrate ferret-to-ferret transmission of influenza B virus and to delineate factors that may affect its transmission.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | - Su-Jin Park
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | - Hyeok-Il Kwon
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | - Se Mi Kim
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | - Young-il Kim
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | - Min-Suk Song
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun-Ji Choi
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | - Philippe Noriel Q. Pascua
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794
| | - Young-Ki Choi
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| |
Collapse
|
238
|
Hu Y, Ren X, Li L, Xiao Y, Dong J, Sun L, Zhu Y, Yang F, Zhang X, Jin Q. Rapid genome sequencing and characterization of novel avian-origin influenza A H7N9 virus directly from clinical sample by semiconductor sequencing. J Clin Virol 2015; 73:84-88. [PMID: 26580409 DOI: 10.1016/j.jcv.2015.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Recent outbreaks of severe pneumonia or acute respiratory distress syndrome have attracted much public interest. Rapid and accurate diagnosis of the causative agent is key for an adequate response to suspected outbreaks. OBJECTIVES We report a case that highlights the potential of semiconductor sequencing to rapidly determine the novel virus genome sequences. STUDY DESIGN We have developed a method for rapid de novo assembly of the novel influenza A H7N9 virus genome directly from the tracheal aspirate of a patient using semiconductor sequencer without culture and prior sequence information. Further, characteristic amino acids were analyzed and phylogenetic analysis were done for key genes of the influenza A virus. RESULTS Deep sequencing yielded 435,239 reads assigned to H7N9 viruses, with an average length of 172 bp, accounting for 18.6% of total reads (2,339,680). Complete genome of the virus was obtained by de novo assembly method within 2 days. Genomic average depth of coverage of the Ion Torrent PGM was up to 5679 fold. Selected characteristic amino acids were observed, and phylogenetic analyses showed that the novel H7 virus was genetically close to 2011 duck H7N3 viruses in Zhejiang. The novel N9 sequences were most closely related to gene sequences of N9 derived from ducks H11N9 in 2011 in Jiangxi and H2N9 sequences from Hong Kong in 2010, in China, and therefore they may share a common ancestor. CONCLUSIONS The sequence-independent semiconductor sequencing is a powerful tool to investigate outbreak of a novel pathogen.
Collapse
Affiliation(s)
- Yongfeng Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Xianwen Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Li Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Jie Dong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Lilian Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Yafang Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China
| | - Fan Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China.
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, PR China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS & PUMC, Beijing 100176, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China.
| |
Collapse
|
239
|
Qin N, Zheng B, Yao J, Guo L, Zuo J, Wu L, Zhou J, Liu L, Guo J, Ni S, Li A, Zhu Y, Liang W, Xiao Y, Ehrlich SD, Li L. Influence of H7N9 virus infection and associated treatment on human gut microbiota. Sci Rep 2015; 5:14771. [PMID: 26490635 PMCID: PMC4614822 DOI: 10.1038/srep14771] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022] Open
Abstract
Between March and June, 2013, forty H7N9 patients were hospitalized in our hospital. Next-generation sequencing technologies have been used to sequence the fecal DNA samples of the patient, the within sample diversity analysis, enterotyping, functional gene and metagenomic species analysis have been carried on both the patients and healthy controls. The influence of associated treatment in H7N9 infected patients is dramatic and was firstly revealed in species level due to deep sequencing technology. We found that most of the MetaGenomic Species (MGS) enriched in the control samples were Roseburia inulinivorans DSM 16841, butyrate producing bacterium SS3/4 and most of MGS enriched in the H7N9 patients were Clostridium sp. 7 2 43FAA and Enterococcus faecium. It was concluded that H7N9 viral infection and antibiotic administration have a significant effect on the microbiota community with decreased diversity and overgrowth of the bacteria such as Escherichia coli and Enterococcus faecium. Enterotype analysis showed that the communities were unstable. Treatment including antivirals, probiotics and antibiotics helps to improve the microbiota diversity and the abundance of beneficial bacteria in the gut.
Collapse
Affiliation(s)
- Nan Qin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - Jian Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - Lihua Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Jian Zuo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Lingjiao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Jiawei Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - Lin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Shujun Ni
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Yixin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - Weifeng Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| | - S Dusko Ehrlich
- Metagenopolis, Institut National de la Recherche Agronomique, 78350, Jouy en Josas, France.,King's College London, Centre for Host-Microbiome Interactions, Dental Institute Central Office, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated College of Medicine, Zhejiang University, 310003 Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou, China
| |
Collapse
|
240
|
Wu M, Zhang ZL, Chen G, Wen CY, Wu LL, Hu J, Xiong CC, Chen JJ, Pang DW. Rapid and Quantitative Detection of Avian Influenza A(H7N9) Virions in Complex Matrices Based on Combined Magnetic Capture and Quantum Dot Labeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5280-8. [PMID: 26280101 DOI: 10.1002/smll.201403746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/27/2015] [Indexed: 05/20/2023]
Abstract
Avian influenza A(H7N9) virus, which emerged in China in the spring of 2013, has infected hundreds of people and resulted in many deaths. Herein, a rapid and quantitative assay is proposed for the one-step detection of H7N9 virions. Immunomagnetic nanospheres (IMNs) and antibody-conjugated quantum dots (Ab-QDs) are simultaneously employed to capture and identify the target virus, leading to a high efficiency, good specificity, and strong anti-interference ability. Moreover, this reliable detection assay, which combines the efficient magnetic enrichment and the unique photophysical properties of QDs, can achieve a high sensitivity for a low detection limit. At the same time, this detection strategy shows great flexibility for employment in a variety of fluorescence detectors, including fluorescence spectrometry, microscope assays, and handheld UV lamp tests. Furthermore, our one-step detection strategy induces very little change in the integrity of the vulnerable virions, which enables additional genotyping testing following the fluorescence detection. The present study, thus, reports a rapid and quantitative approach for the detection of H7N9 virions based on simultaneous magnetic capture and QD labeling, thereby providing a higher probability for detection and therefore faster diagnosis of H7N9-infected patients.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Gang Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Cong-Ying Wen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ling-Ling Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiao Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chao-Chao Xiong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jian-Jun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
241
|
He F, Chen EF, Li FD, Wang XY, Wang XX, Lin JF. Human infection and environmental contamination with Avian Influenza A (H7N9) Virus in Zhejiang Province, China: risk trend across the three waves of infection. BMC Public Health 2015; 15:931. [PMID: 26392274 PMCID: PMC4576372 DOI: 10.1186/s12889-015-2278-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022] Open
Abstract
Background The third wave of H7N9 cases in China emerged in the second half of 2014. This study was conducted to identify the risk trends of H7N9 virus in human infections and environment contamination. Methods A surveillance program for H7N9 virus has been conducted in all 90 counties in Zhejiang since March 2013. All H7N9 cases were reported by hospitals through the China Information System for Disease Control and Prevention. Sampling sites for environment specimens were randomly selected by a multi-stage sampling strategy. Poultry-related workers for serological surveillance were randomly selected from the sampling sites for environmental specimens in the first quarter of each year. rRT-PCR and viral isolation were performed to identify H7N9 virus. A hemagglutination inhibition assay was conducted to detect possible H7N9 infection among poultry-related workers. Results A total of 170 H7N9 cases were identified in Zhejiang from 20 March 2013 to 28 February 2015. The proportion of rural cases increased from 42.2 % (19/45) to 67.7 % (21/31) with progression of the three epidemics (P < 0.05). In 32 % (161/503) of towns and 16.0 % (238/1488) of surveyed premises, H7N9 virus was detected in the environment. The positive rate of environmental specimens was 6.1 % (868/14207). In addition, 912 poultry-related workers were recruited and 3.7 % (34) of them tested positive for H7N9 antibodies. Positive detection of H7N9 virus during environmental surveillance increased from the first to third wave (P < 0.05). Almost all positive rates of environmental surveillance were higher in urban than rural in the second wave (P < 0.05), however they were higher in rural area in the third wave (P < 0.05). Conclusions Our study highlights that the severity of poultry-related environmental contamination by H7N9 virus is intensifying. We strongly recommend that the local government stop illegal trading immediately and close live poultry markets in the territory. Poultry operations in slaughtering plants must be supervised rigorously. Prior to the closure of live poultry markets, daily cleaning and disinfecting of areas potentially contaminated by H7N9 virus, centralized collection and disposal of trash, designating certain days as market rest days, banning overnight poultry storage and other measures should be strictly carried out in both urban and rural areas.
Collapse
Affiliation(s)
- Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - En-Fu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - Fu-Dong Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - Xin-Yi Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - Xiao-Xiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| | - Jun-Fen Lin
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, People's Republic of China.
| |
Collapse
|
242
|
Shi D, Shen S, Fan X, Chen S, Wang D, Li C, Wu X, Li L, Bai D, Zhang C, Wang J. Evaluation of Commercial Diagnostic Assays for the Specific Detection of Avian Influenza A (H7N9) Virus RNA Using a Quality-Control Panel and Clinical Specimens in China. PLoS One 2015; 10:e0137862. [PMID: 26361351 PMCID: PMC4567293 DOI: 10.1371/journal.pone.0137862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/23/2015] [Indexed: 11/18/2022] Open
Abstract
A novel avian influenza A H7N9-subtype virus emerged in China in 2013 and threatened global public health. Commercial kits that specifically detect avian influenza A (H7N9) virus RNA are urgently required to prepare for the emergence and potential pandemic of this novel influenza virus. The safety and effectiveness of three commercial molecular diagnostic assays were evaluated using a quality-control panel and clinical specimens collected from over 90 patients with confirmed avian influenza A (H7N9) virus infections. The analytical performance evaluation showed that diverse influenza H7N9 viruses can be detected with high within- and between-lot reproducibility and without cross-reactivity to other influenza viruses (H1N1 pdm09, seasonal H1N1, H3N2, H5N1 and influenza B). The detection limit of all the commercial assays was 2.83 Log10 copies/μl [0.7 Log10TCID50/mL of avian influenza A (H7N9) virus strain A/Zhejiang/DTID-ZJU01/2013], which is comparable to the method recommended by the World Health Organization (WHO). In addition, using a WHO-Chinese National Influenza Center (CNIC) method as a reference for clinical evaluation, positive agreement of more than 98% was determined for all of the commercial kits, while negative agreement of more than 99% was observed. In conclusion, our findings provide comprehensive evidence for the high performance of three commercial diagnostic assays and suggest the application of these assays as rapid and effective diagnostic tools for avian influenza A (H7N9) virus in the routine clinical practice of medical laboratories.
Collapse
Affiliation(s)
- Dawei Shi
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Shu Shen
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Xingliang Fan
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Suhong Chen
- Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- WHO Collaborating Center for Reference and Research on Influenza, Beijing, People’s Republic of China
| | - Changgui Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Xing Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Lili Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Dongting Bai
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Chuntao Zhang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- * E-mail: (CTZ); (JZW)
| | - Junzhi Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- * E-mail: (CTZ); (JZW)
| |
Collapse
|
243
|
Su W, Wang C, Luo J, Zhao Y, Wu Y, Chen L, Zhao N, Li M, Xing C, Liu H, Zhang H, Chang YF, Li T, Ding H, Wan X, He H. Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus. Cell Rep 2015; 12:1831-41. [PMID: 26344762 DOI: 10.1016/j.celrep.2015.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/24/2015] [Accepted: 08/07/2015] [Indexed: 01/11/2023] Open
Abstract
Since 2013, avian influenza A(H7N9) viruses have diversified into multiple lineages by dynamically reassorting with other viruses, especially H9N2, in Chinese poultry. Despite concerns about the pandemic threat posed by H7N9 viruses, little is known about the biological properties of H7N9 viruses that may recruit internal genes from genetically distinct H9N2 viruses circulating among wild birds. Here, we generated 63 H7N9 reassortants derived from an avian H7N9 and a wild-bird-origin H9N2 virus. Compared with the wild-type parent, 25/63 reassortants had increased pathogenicity in mice. A reassortant containing PB1 of the H9N2 virus was highly lethal to mice and chickens but was not transmissible to guinea pigs by airborne routes; however, three substitutions associated with adaptation to mammals conferred airborne transmission to the virus. The emergence of the H7N9-pandemic reassortant virus highlights that continuous monitoring of H7N9 viruses is needed, especially at the domestic poultry/wild bird interface.
Collapse
Affiliation(s)
- Wen Su
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Chengmin Wang
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Luo
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuliang Zhao
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wu
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang 310021, China
| | - Lin Chen
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Na Zhao
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Xing
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Liu
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yung-fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY 14853-5786, USA
| | - Tianxian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hua Ding
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang 310021, China
| | - Xiufeng Wan
- Department of Basic Sciences, College of Veterinary Medicine, and Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Hongxuan He
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
244
|
Risk assessment of genetically modified pathogens: spotlight on influenza A viruses. J Verbrauch Lebensm 2015. [DOI: 10.1007/s00003-015-0960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
245
|
Hill AA, Dewé T, Kosmider R, Von Dobschuetz S, Munoz O, Hanna A, Fusaro A, De Nardi M, Howard W, Stevens K, Kelly L, Havelaar A, Stärk K. Modelling the species jump: towards assessing the risk of human infection from novel avian influenzas. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150173. [PMID: 26473042 PMCID: PMC4593676 DOI: 10.1098/rsos.150173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/12/2015] [Indexed: 05/06/2023]
Abstract
The scientific understanding of the driving factors behind zoonotic and pandemic influenzas is hampered by complex interactions between viruses, animal hosts and humans. This complexity makes identifying influenza viruses of high zoonotic or pandemic risk, before they emerge from animal populations, extremely difficult and uncertain. As a first step towards assessing zoonotic risk of influenza, we demonstrate a risk assessment framework to assess the relative likelihood of influenza A viruses, circulating in animal populations, making the species jump into humans. The intention is that such a risk assessment framework could assist decision-makers to compare multiple influenza viruses for zoonotic potential and hence to develop appropriate strain-specific control measures. It also provides a first step towards showing proof of principle for an eventual pandemic risk model. We show that the spatial and temporal epidemiology is as important in assessing the risk of an influenza A species jump as understanding the innate molecular capability of the virus. We also demonstrate data deficiencies that need to be addressed in order to consistently combine both epidemiological and molecular virology data into a risk assessment framework.
Collapse
Affiliation(s)
- A. A. Hill
- Royal Veterinary College, London, UK
- Animal and Plant Health Agency, New Haw, Surrey, UK
- Author for correspondence: A. A. Hill e-mail:
| | - T. Dewé
- Animal and Plant Health Agency, New Haw, Surrey, UK
| | - R. Kosmider
- Animal and Plant Health Agency, New Haw, Surrey, UK
| | - S. Von Dobschuetz
- Royal Veterinary College, London, UK
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - O. Munoz
- Instituto Zooprofilattico Sperimentale delle Venizie, Padua, Italy
| | - A. Hanna
- Animal and Plant Health Agency, New Haw, Surrey, UK
| | - A. Fusaro
- Instituto Zooprofilattico Sperimentale delle Venizie, Padua, Italy
| | - M. De Nardi
- Instituto Zooprofilattico Sperimentale delle Venizie, Padua, Italy
| | - W. Howard
- Animal and Plant Health Agency, New Haw, Surrey, UK
| | | | - L. Kelly
- Animal and Plant Health Agency, New Haw, Surrey, UK
| | | | - K. Stärk
- Royal Veterinary College, London, UK
| |
Collapse
|
246
|
Li Q, Wang X, Sun Z, Hu J, Gao Z, Hao X, Li J, Liu H, Wang X, Gu M, Xu X, Liu X, Liu X. Adaptive mutations in PB2 gene contribute to the high virulence of a natural reassortant H5N2 avian influenza virus in mice. Virus Res 2015; 210:255-63. [PMID: 26315686 DOI: 10.1016/j.virusres.2015.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/06/2015] [Accepted: 08/21/2015] [Indexed: 01/22/2023]
Abstract
The highly pathogenic A/chicken/Hebei/1102/2010 (HB10) H5N2 virus is a natural reassortant derived from circulating H5N1 and endemic H9N2 avian influenza viruses (AIV). To evaluate the potential of its interspecies transmission, we previously serially passaged the non-virulent HB10 virus in the mouse lung and obtained a high virulence variant (HB10-MA). Genomic sequencing revealed five mutations (HA-S227N, PB2-Q591K, PB2-D701N, PA-I554V and NP-R351K) that distinguished HB10-MA virus from its parental HB10 virus. In this study, we further investigated the molecular basis for the enhanced virulence of HB10-MA in mice. By generating a series of reassortants between the two viruses and evaluating their virulence in mice, we found that both PB2 and PA genes contribute to the high virulence of HB10-MA in mice, whereas PB2 gene carrying the 591K and/or 701N had a dominant function. In addition, the two amino acids showed a cumulative effect on the virulence, virus replication, and polymerase activity of HB10 or HB10-MA. Therefore, our results collectively emphasized the crucial role of PB2 gene, particularly the paired mutations of Q591K and D701N in the host adaptation of the novel reassortant H5N2 AIV in mammals, which may provide helpful insights into the pathogenic potential of emerging AIV in human beings.
Collapse
Affiliation(s)
- Qunhui Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhongtao Sun
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Juan Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiulong Xu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
247
|
Zheng J, Wu WL, Liu Y, Xiang Z, Liu M, Chan KH, Lau SY, Lam KT, To KKW, Chan JFW, Li L, Chen H, Lau YL, Yuen KY, Tu W. The Therapeutic Effect of Pamidronate on Lethal Avian Influenza A H7N9 Virus Infected Humanized Mice. PLoS One 2015; 10:e0135999. [PMID: 26285203 PMCID: PMC4540487 DOI: 10.1371/journal.pone.0135999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 07/28/2015] [Indexed: 01/04/2023] Open
Abstract
A novel avian influenza virus H7N9 infection occurred among human populations since 2013. Although the lack of sustained human-to-human transmission limited the epidemics caused by H7N9, the late presentation of most patients and the emergence of neuraminidase-resistant strains made the development of novel antiviral strategy against H7N9 in urgent demands. In this study, we evaluated the potential of pamidronate, a pharmacological phosphoantigen that can specifically boost human Vδ2-T-cell, on treating H7N9 virus-infected humanized mice. Our results showed that intraperitoneal injection of pamidronate could potently decrease the morbidity and mortality of H7N9-infected mice through controlling both viral replication and inflammation in affected lungs. More importantly, pamidronate treatment starting from 3 days after infection could still significantly ameliorate the severity of diseases in infected mice and improve their survival chance, whereas orally oseltamivir treatment starting at the same time showed no therapeutic effects. As for the mechanisms underlying pamidronate-based therapy, our in vitro data demonstrated that its antiviral effects were partly mediated by IFN-γ secreted from human Vδ2-T cells. Meanwhile, human Vδ2-T cells could directly kill virus-infected host cells in a perforin-, granzyme B- and CD137-dependent manner. As pamidronate has been used for osteoporosis treatment for more than 20 years, pamidronate-based therapy represents for a safe and readily available option for clinical trials to treat H7N9 infection.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Wai-Lan Wu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Yinping Liu
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Zheng Xiang
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Guangzhou Institute of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Siu-Ying Lau
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Kwok-Tai Lam
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Yu-Lung Lau
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Wenwei Tu
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
248
|
Tian D, Zheng T. Emerging infectious disease: trends in the literature on SARS and H7N9 influenza. Scientometrics 2015; 105:485-495. [PMID: 32214548 PMCID: PMC7089005 DOI: 10.1007/s11192-015-1681-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome (SARS) and human infection H7N9 influenza are emerging infectious diseases having a relatively high mortality. Epidemics of each began in China. By searching through Science Citation Index, this study analyzed the article literature on SARS and H7N9 influenza, particularly papers in the leading journals The Lancet, New England Journal of Medicine (NEJM), Nature and Science. The results show that the quantity and quality of SARS and H7N9 influenza literature from mainland China changed distinctly over the course of 10 years. Researchers from mainland China published 12 article literature in the The Lancet, NEJM, Nature and Science about H7N9 influenza, whereas mainland China had only 2 article literature about SARS in the same journals. The literature reflects China's growing strength in the science and technology of emerging infectious disease.
Collapse
Affiliation(s)
- Deqiao Tian
- Beijing Institute of Biotechnology, Beijing, 100071 People’s Republic of China
| | - Tao Zheng
- Beijing Institute of Biotechnology, Beijing, 100071 People’s Republic of China
| |
Collapse
|
249
|
Parvin R, Shehata AA, Heenemann K, Gac M, Rueckner A, Halami MY, Vahlenkamp TW. Differential replication properties among H9N2 avian influenza viruses of Eurasian origin. Vet Res 2015; 46:75. [PMID: 26149130 PMCID: PMC4491879 DOI: 10.1186/s13567-015-0198-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022] Open
Abstract
Avian influenza H9N2 viruses have become panzootic in Eurasia causing respiratory manifestations, great economic losses and occasionally being transmitted to humans. To evaluate the replication properties and compare the different virus quantification methods, four Eurasian H9N2 viruses from different geographical origins were propagated in embryonated chicken egg (ECE) and Madin-Darby canine kidney epithelial cell systems. The ECE-grown and cell culture-grown viruses were monitored for replication kinetics based on tissue culture infectious dose (TCID50), Hemagglutination (HA) test and quantitative real time RT-PCR (qRT-PCR). The cellular morphology was analyzed using immunofluorescence (IF) and cellular ELISA was used to screen the sensitivity of the viruses to amantadine. The Eurasian wild type-H9N2 virus produced lower titers compared to the three G1-H9N2 viruses at respective time points. Detectable titers were observed earliest at 16 h post inoculation (hpi), significant morphological changes on cells were first observed at 32 hpi. Few nucleotide and amino acid substitutions were noticed in the HA, NA and NS gene sequences but none of them are related to the known conserved region that can alter pathogenesis or virulence following a single passage in cell culture. All studied H9N2 viruses were sensitive to amantadine. The G1-H9N2 viruses have higher replication capabilities compared to the European wild bird-H9N2 probably due to their specific genetic constitutions which is prerequisite for a successful vaccine candidate. Both the ECE and MDCK cell system allowed efficient replication but the ECE system is considered as the better cultivation system for H9N2 viruses in order to get maximum amounts of virus within a short time period.
Collapse
Affiliation(s)
- Rokshana Parvin
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany. .,Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.
| | - Awad A Shehata
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany. .,Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Kristin Heenemann
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| | - Malgorzata Gac
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| | - Antje Rueckner
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| | - Mohammad Y Halami
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| | - Thomas W Vahlenkamp
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| |
Collapse
|
250
|
Richards KA, Nayak J, Chaves FA, DiPiazza A, Knowlden ZAG, Alam S, Treanor JJ, Sant AJ. Seasonal Influenza Can Poise Hosts for CD4 T-Cell Immunity to H7N9 Avian Influenza. J Infect Dis 2015; 212:86-94. [PMID: 25492919 PMCID: PMC4481611 DOI: 10.1093/infdis/jiu662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/11/2014] [Indexed: 01/26/2023] Open
Abstract
The emergence of avian H7N9 viruses has raised concerns about its pandemic potential and prompted vaccine trials. At present, it is unknown whether there will be sufficient cross-reactive hemagglutinin (HA)-specific CD4 T-cell memory with seasonal influenza to facilitate antibody production to H7 HA. There has also been speculation that H7N9 will have few CD4 T-cell epitopes. In this study, we quantified the potential of seasonal influenza to provide memory CD4 T cells that can cross-reactively recognize H7 HA-derived peptides. These studies have revealed that many humans have substantial H7-reactive CD4 T cells, whereas up to 40% are lacking such reactivity. Correlation studies indicate that CD4 T cells reactive with H7 HA are drawn from reactivity generated from seasonal strains. Overall, our findings suggest that previous exposure of humans to seasonal influenza can poise them to respond to avian H7N9, but this is likely to be uneven across populations.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Jennifer Nayak
- Department of Pediatrics, and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, New York
| | - Francisco A. Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Anthony DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Zackery A. G. Knowlden
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Shabnam Alam
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | | | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| |
Collapse
|