201
|
Hong P, Huang W, Du H, Hu D, Cao Q, Wang Y, Zhang H, Tong S, Li Z, Tong M. Prognostic value and immunological characteristics of a novel cuproptosis-related long noncoding RNAs risk signature in kidney renal clear cell carcinoma. Front Genet 2022; 13:1009555. [PMID: 36406128 PMCID: PMC9669974 DOI: 10.3389/fgene.2022.1009555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Background: Cuproptosis has been found as a novel cell death mode significantly associated with mitochondrial metabolism, which may be significantly associated with the occurrence and growth of tumors. LncRNAs take on critical significance in regulating the development of kidney renal clear cell carcinoma (KIRC), whereas the correlation between cuproptosis-related LncRNAs (CRLs) and KIRC is not clear at present. Therefore, this study built a prognosis signature based on CRLs, which can achieve accurate prediction of the outcome of KIRC patients. Methods: The TCGA database provided the expression profile information and relevant clinical information of KIRC patients. Univariate Cox, Lasso, and multivariate Cox were employed for building a risk signature based on CRLs. Kaplan-Meier (K-M) survival analysis and time-dependent receiver operating characteristic (ROC) curve were employed for the verification and evaluation of the reliability and accuracy of risk signature. Then, qRT-PCR analysis of risk LncRNAs was conducted. Finally, the possible effect of the developed risk signature on the microenvironment for tumor immunization was speculated in accordance with ssGSEA and ESTIMATE algorithms. Results: A prognosis signature composed of APCDD1L-DT, MINCR, AL161782.1, and AC026401.3 was built based on CRLs. As revealed by the results of the K-M survival study, the OS rate and progression-free survival rate of highrisk KIRC patients were lower than those of lowrisk KIRC patients, and the areas under ROC curves of 1, 3, and 5 years were 0.828, 0.780, and 0.794, separately. The results of the immune analysis showed that there were significant differences in the status of immunization and the microenvironment of tumor between groups at low-risk and at high-risk. The qRT-PCR results showed that the relative expression level of MINCR and APCDD1L-DT were higher in 786-O and 769-P tumor cells than in HK-2 cells, which were normal renal tubular epithelial cells. Conclusion: The developed risk signature takes on critical significance in the prediction of the prognosis of patients with KIRC, and it can bring a novel direction for immunotherapy and clinical drug treatment of KIRC. In addition, 4 identified risk LncRNAs (especially APCDD1L-DT and MINCR) can be novel targets for immunotherapy of KIRC patients.
Collapse
Affiliation(s)
- Peng Hong
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Weichao Huang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Huifang Du
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ding Hu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Qingfei Cao
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Yinjie Wang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Huashan Zhang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Siqiao Tong
- The First Clinical College of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Zizhi Li
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Ming Tong
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
202
|
Zhu Y, Liu K, Peng L. First-Line Lenvatinib plus Pembrolizumab or Everolimus versus Sunitinib for Advanced Renal Cell Carcinoma: A United States-based Cost-effectiveness Analysis. Clin Genitourin Cancer 2022; 21:417.e1-417.e10. [DOI: 10.1016/j.clgc.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
|
203
|
CircSCNN1A is a tumor suppressor in renal cell carcinoma via inducing the upregulation of MPP7 by the sponge effect on miR-421. Transpl Immunol 2022; 75:101736. [DOI: 10.1016/j.trim.2022.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
204
|
Ho NX, O'Meara S, Moran T, McGuire B. A curious case of metastatic parotid adenoid cystic carcinoma to kidney. BMJ Case Rep 2022; 15:e248833. [PMID: 36307140 PMCID: PMC9621166 DOI: 10.1136/bcr-2022-248833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
A woman in her 60s presented with a 2-week history of non-specific left-sided abdominal pain. She previously underwent a total parotidectomy and adjuvant radiotherapy for left parotid adenoid cystic carcinoma 13 years prior, with a local recurrence 4 years after. Investigations revealed a large left-sided renal mass with appearances of renal carcinoma and no signs of metastatic disease. Pathology following nephrectomy revealed a metastatic adenoid cystic carcinoma.Metastatic disease recurred 11 months postradical nephrectomy to the contralateral kidney and lung, and she was referred to medical oncology for further management.This case history demonstrates the highly aggressive nature of an adenoid cystic carcinoma primary of salivary gland origin with rare metastasis to the kidney.
Collapse
Affiliation(s)
- Ning Xuan Ho
- Department of Urology, St. Vincent's University Hospital, Dublin, Ireland
- Department of Urology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Sorcha O'Meara
- Department of Urology, St. Vincent's University Hospital, Dublin, Ireland
| | - Tom Moran
- Department of Otolaryngology/Head and Neck Surgery, Mater Misericordiae University Hospital, Dublin, Ireland
- Department of Otolaryngology/Head and Neck Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Barry McGuire
- Department of Urology, St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
205
|
Zhang Q, Tang D, Zha A, He J, Li D, Chen Y, Cai W, Dai J, Luan S, Yin L, Zhang W, Dai Y. NFE2L3 as a Potential Functional Gene Regulating Immune Microenvironment in Human Kidney Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9085186. [PMID: 36337840 PMCID: PMC9629961 DOI: 10.1155/2022/9085186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2025]
Abstract
With the increasing incidence and mortality of renal cancer, it is pressing to find new biomarkers and drug targets for diagnosis and treatment. However, as one negative upstream regulator of p53, the prognostic and immunological role of NFE2L3 in renal cancer is still barely known. We investigated the expression, prognostic value, and relevant pathways of NFE2L3 using the datasets from public databases, including The Cancer Genome Atlas Program (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and UALCAN. Furthermore, we analyzed the relationship between NFE2L3 expression and the immune microenvironment using distinct methods. We found that NFE2L3 was higher expressed in kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) tissues than adjacent normal tissues. Additionally, we identified NFE2L3 as one survival-related factor for KIRC and KIRP. The enrichment analyses revealed that NFE2L3 was associated with a variety of immune-relevant pathways in KIRC and related to the infiltration ratios of 17 types of immune cells in KIRC patients. Ultimately, we demonstrated nine significantly enriched mutations, such as TP53 and MET, in NFE2L3-expression-changing groups. The elevated expression of NFE2L3 in renal cancerous tissues versus normal tissues is associated with poor outcomes in patients. Besides, NFE2L3 has a role in the regulation of the immune microenvironment in renal cancer patients. The findings of our study provide a potential prognostic biomarker and a new drug target for renal cancer.
Collapse
Affiliation(s)
- Qian Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
- Institute of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Aiyun Zha
- Institute of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yumei Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jian Dai
- Department of Biomedical Engineering, Jinan University, Guangzhou 510630, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Lianghong Yin
- Institute of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Institute of Nephrology and Blood Purification, Jinan University, Guangzhou 510632, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
- Institute of Nephrology and Blood Purification, Jinan University, Guangzhou 510632, China
| |
Collapse
|
206
|
Li H, Meng X, You X, Zhou W, Ouyang W, Pu X, Zhao R, Tang H. Increased expression of the RNA-binding protein Musashi-2 is associated with immune infiltration and predicts better outcomes in ccRCC patients. Front Oncol 2022; 12:949705. [PMID: 36338702 PMCID: PMC9634258 DOI: 10.3389/fonc.2022.949705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/05/2022] [Indexed: 08/26/2023] Open
Abstract
RNA-binding proteins (RBPs) mainly contribute to abnormalities in posttranscriptional gene regulation. The RBP Musashi-2, an evolutionarily conserved protein, has been characterized as an oncoprotein in various tumors. However, the prognostic value and potential roles of Musashi-2 in clear cell renal cell carcinoma (ccRCC) have not yet been elucidated. In this study, we found that Musashi-2 was mainly expressed in the normal distal tubular cells and collecting duct cells of the kidneys, while its expression was significantly decreased in ccRCC. And higher expression levels of Musashi-2 indicated better overall survival (OS) in ccRCC. Furthermore, immunohistochemistry demonstrated that PD-L1 expression was negatively correlated with Musashi-2 expression, and Musashi-2 was found to be remarkably correlated with multiple immune cells and immune inhibitors, including CD8+ T cells, CD4+ T cells, regulatory T (Treg) cells, PDCD1, CTLA4, Foxp3, and LAG3. Functional enrichment analysis revealed that Musashi-2 might be involved in ccRCC metabolic reprogramming and immune infiltration and further predicted the therapeutic sensitivity of ccRCC. Taken together, Musashi-2 is a prognostic biomarker for ccRCC patients that may provide novel insights into individualized treatment strategies and guide effective immunotherapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xiaole Meng
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xuting You
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Pu
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Runan Zhao
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Huamei Tang
- Department of Pathology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
207
|
CBX Family Members in Two Major Subtypes of Renal Cell Carcinoma: A Comparative Bioinformatic Analysis. Diagnostics (Basel) 2022; 12:diagnostics12102452. [PMID: 36292141 PMCID: PMC9600067 DOI: 10.3390/diagnostics12102452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
The biological function and clinical values of Chromobox (CBX) family proteins in renal cell carcinoma (RCC) are still poorly investigated. This study aimed to compare the expression profiles and clinical relevance of CBXs between the two most frequent subtypes of RCC, clear cell renal cell carcinomas (ccRCC) and papillary renal cell carcinomas (pRCC), and to investigate whether CBXs would play a more or less similar role in the pathogenesis and progression of these RCC subtypes. Considering these two RCC populations in the TCGA database, we built a bioinformatics framework by integrating a computational pipeline with several online tools. CBXs showed a similar trend in ccRCC and pRCC tissues but with some features specific for each subtype. Specifically, the relative expressions of CBX3 and CBX2 were, respectively, the highest and lowest among all CBXs in both RCC subtypes. These data also found confirmation in cellular validation. Except for CBX4 and CBX8, all others were deregulated in the ccRCC subtype. CBX1, CBX6, and CBX7 were also significantly associated with the tumor stage. Further, low expression levels of CBX1, CBX5, CBX6, CBX7, and high expression of CBX8 were associated with poor prognosis. Otherwise, in the pRCC subtype, CBX2, CBX3, CBX7, and CBX8 were deregulated, and CBX2, CBX6, and CBX7 were associated with the tumor stage. In addition, in pRCC patients, low expression levels of CBX2, CBX4, and CBX7 were associated with an unfavorable prognosis. Similarly, CBX3, CBX6, and CBX7 presented the highest alteration rate in both subtypes and were found to be functionally related to histone binding, nuclear chromosomes, and heterochromatin. Furthermore, CBX gene expression levels correlated with immune cell infiltration, suggesting that CBXs might reflect the immune status of RCC subtypes. Our results highlight similarities and differences of CBXs within the two major RCC subtypes, providing new insights for future eligible biomarkers or possible molecular therapeutic targets for these diseases.
Collapse
|
208
|
Hu Y, Xu S, Qi Q, Wang X, Meng J, Zhou J, Hao Z, Liang Q, Feng X, Liang C. A novel nomogram and risk classification system predicting the overall survival of patients with papillary renal cell carcinoma after nephrectomy: A population-based study. Front Public Health 2022; 10:989566. [PMID: 36276376 PMCID: PMC9581403 DOI: 10.3389/fpubh.2022.989566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023] Open
Abstract
Background Papillary renal cell carcinoma (pRCC) is the largest histologic subtype of non-clear-cell RCC. To date, there is no reliable nomogram to predict the prognosis of patients with pRCC after nephrectomy. We aimed to first establish an effective nomogram to predict the overall survival (OS) of patients with pRCC after nephrectomy. Methods A total of 3,528 eligible patients with pRCC after nephrectomy were identified from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2015. The patients were randomized into the training cohort (n = 2,472) and the validation cohort (n = 1,056) at a 7:3 ratio. In total, 122 real-world samples from our institute (titled the AHMU-pRCC cohort) were used as the external validation cohort. Univariate and subsequent multivariate Cox regression analyses were conducted to identify OS-related prognostic factors, which were further used to establish a prognostic nomogram for predicting 1-, 3-, and 5-year OS probabilities. The performance of the nomogram was evaluated by using the concordance index (C-index), receiver operating characteristic curve (ROC), calibration plot, and decision curve analysis (DCA). Results Multivariate Cox analysis showed that age, race, marital status, TNM stage, tumor size, and surgery were significant OS-related prognostic factors. A prognostic model consisting of these clinical parameters was developed and virtualized by a nomogram. High C-index and area under the ROC curve (AUC) values of the nomogram at 1, 3, and 5 years were found in the training, validation, and AHMU-pRCC cohorts. The calibration plot and DCA also showed that the nomogram had a satisfactory clinical application value. A risk classification system was established to risk-stratify patients with pRCC. Conclusion Based on a large cohort from the public SEER database, a reliable nomogram predicting the OS of patients with pRCC after nephrectomy was constructed, which could optimize the survival assessment and clinical treatment.
Collapse
Affiliation(s)
- Yongtao Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Shun Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Qiao Qi
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xuhong Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Qianjun Liang
- Department of Urology, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, China
| | - Xingliang Feng
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China,*Correspondence: Xingliang Feng
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China,Chaozhao Liang
| |
Collapse
|
209
|
Capitanio U, Montorsi F. Identifying patients for adjuvant therapy after nephrectomy. Lancet 2022; 400:1080-1081. [PMID: 36099928 DOI: 10.1016/s0140-6736(22)01747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Umberto Capitanio
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS San Raffaele Hospital, Milan 20132, Italy.
| | - Francesco Montorsi
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS San Raffaele Hospital, Milan 20132, Italy
| |
Collapse
|
210
|
Huang G, Liao J, Cai S, Chen Z, Qin X, Ba L, Rao J, Zhong W, Lin Y, Liang Y, Wei L, Li J, Deng K, Li X, Guo Z, Wang L, Zhuo Y. Development and validation of a prognostic nomogram for predicting cancer-specific survival in patients with metastatic clear cell renal carcinoma: A study based on SEER database. Front Oncol 2022; 12:949058. [PMID: 36237316 PMCID: PMC9552762 DOI: 10.3389/fonc.2022.949058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Clear cell renal cell carcinoma (ccRCC) is highly prevalent, prone to metastasis, and has a poor prognosis after metastasis. Therefore, this study aimed to develop a prognostic model to predict the individualized prognosis of patients with metastatic clear cell renal cell carcinoma (mccRCC). Patients and Methods Data of 1790 patients with mccRCC, registered from 2010 to 2015, were extracted from the Surveillance, Epidemiology and End Results (SEER) database. The included patients were randomly divided into a training set (n = 1253) and a validation set (n = 537) based on the ratio of 7:3. The univariate and multivariate Cox regression analyses were used to identify the important independent prognostic factors. A nomogram was then constructed to predict cancer specific survival (CSS). The performance of the nomogram was internally validated by using the concordance index (C-index), calibration plots, receiver operating characteristic curves, net reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA). We compared the nomogram with the TNM staging system. Kaplan–Meier survival analysis was applied to validate the application of the risk stratification system. Results Diagnostic age, T-stage, N-stage, bone metastases, brain metastases, liver metastases, lung metastases, chemotherapy, radiotherapy, surgery, and histological grade were identified as independent predictors of CSS. The C-index of training and validation sets are 0.707 and 0.650 respectively. In the training set, the AUC of CSS predicted by nomogram in patients with mccRCC at 1-, 3- and 5-years were 0.770, 0.758, and 0.757, respectively. And that in the validation set were 0.717, 0.700, and 0.700 respectively. Calibration plots also showed great prediction accuracy. Compared with the TNM staging system, NRI and IDI results showed that the predictive ability of the nomogram was greatly improved, and DCA showed that patients obtained clinical benefits. The risk stratification system can significantly distinguish the patients with different survival risks. Conclusion In this study, we developed and validated a nomogram to predict the CSS rate in patients with mccRCC. It showed consistent reliability and clinical applicability. Nomogram may assist clinicians in evaluating the risk factors of patients and formulating an optimal individualized treatment strategy.
Collapse
Affiliation(s)
- Guangyi Huang
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jie Liao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaoping Qin
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Longhong Ba
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jingmin Rao
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Weimin Zhong
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ying Lin
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yuying Liang
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Liwei Wei
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jinhua Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Kaifeng Deng
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiangyue Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zexiong Guo
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Liang Wang
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yumin Zhuo
- Department of Urology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
211
|
Yang M, He X, Xu L, Liu M, Deng J, Cheng X, Wei Y, Li Q, Wan S, Zhang F, Wu L, Wang X, Song B, Liu M. CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma. Front Oncol 2022; 12:961779. [PMID: 36249050 PMCID: PMC9555088 DOI: 10.3389/fonc.2022.961779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Clear cell Renal Cell Carcinoma (ccRCC) is the most common malignant tumor in the urinary system and the predominant subtype of malignant renal tumors with high mortality. Biopsy is the main examination to determine ccRCC grade, but it can lead to unavoidable complications and sampling bias. Therefore, non-invasive technology (e.g., CT examination) for ccRCC grading is attracting more and more attention. However, noise labels on CT images containing multiple grades but only one label make prediction difficult. However, noise labels exist in CT images, which contain multiple grades but only one label, making prediction difficult. Aim We proposed a Transformer-based deep learning algorithm with CT images to improve the diagnostic accuracy of grading prediction and to improve the diagnostic accuracy of ccRCC grading. Methods We integrate different training models to improve robustness and predict Fuhrman nuclear grade. Then, we conducted experiments on a collected ccRCC dataset containing 759 patients and used average classification accuracy, sensitivity, specificity, and AreaUnderCurve as indicators to evaluate the quality of research. In the comparative experiments, we further performed various current deep learning algorithms to show the advantages of the proposed method. We collected patients with pathologically proven ccRCC diagnosed from April 2010 to December 2018 as the training and internal test dataset, containing 759 patients. We propose a transformer-based network architecture that efficiently employs convolutional neural networks (CNNs) and self-attention mechanisms to extract a persuasive feature automatically. And then, a nonlinear classifier is applied to classify. We integrate different training models to improve the accuracy and robustness of the model. The average classification accuracy, sensitivity, specificity, and area under curve are used as indicators to evaluate the quality of a model. Results The mean accuracy, sensitivity, specificity, and Area Under Curve achieved by CNN were 82.3%, 89.4%, 83.2%, and 85.7%, respectively. In contrast, the proposed Transformer-based model obtains a mean accuracy of 87.1% with a sensitivity of 91.3%, a specificity of 85.3%, and an Area Under Curve (AUC) of 90.3%. The integrated model acquires a better performance (86.5% ACC and an AUC of 91.2%). Conclusion A transformer-based network performs better than traditional deep learning algorithms in terms of the accuracy of ccRCC prediction. Meanwhile, the transformer has a certain advantage in dealing with noise labels existing in CT images of ccRCC. This method is promising to be applied to other medical tasks (e.g., the grade of neurogliomas and meningiomas).
Collapse
Affiliation(s)
- Meiyi Yang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaopeng He
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lifeng Xu
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Minghui Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiali Deng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuan Cheng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shang Wan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Zhang
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Lei Wu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaomin Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ming Liu, ; Bin Song,
| | - Ming Liu
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
- *Correspondence: Ming Liu, ; Bin Song,
| |
Collapse
|
212
|
Shi Z, Zheng J, Liang Q, Liu Y, Yang Y, Wang R, Wang M, Zhang Q, Xuan Z, Sun H, Wang K, Shao C. Identification and Validation of a Novel Ferroptotic Prognostic Genes-Based Signature of Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:4690. [PMID: 36230613 PMCID: PMC9562262 DOI: 10.3390/cancers14194690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022] Open
Abstract
Renal cell carcinoma (RCC), as one of the primary urological malignant neoplasms, shows poor survival, and the leading pathological type of RCC is clear cell RCC (ccRCC). Differing from other cell deaths (such as apoptosis, necroptosis, pyroptosis, and autophagy), ferroptosis is characterized by iron-dependence, polyunsaturated fatty acid oxidization, and lipid peroxide accumulation. We analyzed the ferroptosis database (FerrDb V2), Gene Expression Omnibus database, The Cancer Genome Atlas database, and the ArrayExpress database. Nine genes that were differentially expressed and related to prognosis were involved in the ferroptotic prognostic model via the least absolute shrinkage and selection operator Cox regression analysis, which was established in ccRCC patients from the kidney renal clear cell carcinoma (KIRC) cohort in TCGA database, and validated in ccRCC patients from the E-MTAB-1980 cohort in the ArrayExpress database. The signature could be an independent prognostic factor for ccRCC, and high-risk patients showed worse overall survival. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were utilized to investigate the potential mechanisms. The nine genes in ccRCC cells with erastin or RSL3 treatment were validated to find the crucial gene. The glutaminase 2 (GLS2) gene was upregulated during ferroptosis in ccRCC cells, and cells with GLS2 shRNA displayed lower survival, a lower glutathione level, and a high lipid peroxide level, which illustrated that GLS2 might be a ferroptotic suppressor in ccRCC.
Collapse
Affiliation(s)
- Zhiyuan Shi
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Jianzhong Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Qing Liang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Yankuo Liu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Yi Yang
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Rui Wang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Mingshan Wang
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Qian Zhang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Zuodong Xuan
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Huimin Sun
- Central Laboratory, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Kejia Wang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Chen Shao
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| |
Collapse
|
213
|
Bellini MI, Lori E, Forte F, Lauro A, Tripodi D, Amabile MI, Cantisani V, Varanese M, Ferent IC, Baldini E, Ulisse S, D’Andrea V, Pironi D, Sorrenti S. Thyroid and renal cancers: A bidirectional association. Front Oncol 2022; 12:951976. [PMID: 36212468 PMCID: PMC9538481 DOI: 10.3389/fonc.2022.951976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
There is a deep interrelation between the thyroid gland and the kidney parenchyma, with dysfunction of the first leading to significant changes in renal metabolism and vice versa. Given the recognition of cancer as a systemic disease, the raise of thyroid tumors and the common association of several malignancies, such as breast cancer, prostate cancer, colorectal cancer, and other, with an increased risk of kidney disease, public health alert for these conditions is warranted. A systematic review of the current evidence on the bidirectional relationship between thyroid and renal cancers was conducted including 18 studies, highlighting patient’s characteristics, histology, time for secondary malignancy to develop from the first diagnosis, treatment, and follow-up. A total of 776 patients were identified; median age was 64 years (range: 7–76 years). Obesity and family history were identified as the most common risk factors, and genetic susceptibility was suggested with a potential strong association with Cowden syndrome. Controversy on chemo and radiotherapy effects was found, as not all patients were previously exposed to these treatments. Men were more likely to develop kidney cancer after a primary thyroid malignancy, with 423/776 (54%) experiencing renal disease secondarily. Median time after the first malignancy was 5.2 years (range: 0–20 years). With the advancement of current oncological therapy, the prognosis for thyroid cancer patients has improved, although there has been a corresponding rise in the incidence of multiple secondary malignancy within the same population, particularly concerning the kidney. Surgery can achieve disease-free survival, if surveillance follow-up allows for an early localized form, where radical treatment is recommended.
Collapse
Affiliation(s)
- Maria Irene Bellini
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
- *Correspondence: Maria Irene Bellini,
| | - Eleonora Lori
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Flavio Forte
- Department of Urology, M. G. Vannini Hospital, Rome, Italy
| | - Augusto Lauro
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Tripodi
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Ida Amabile
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Vito Cantisani
- Department of Radiological, Anatomopathological and Oncological Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Varanese
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Enke Baldini
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Vito D’Andrea
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Salvatore Sorrenti
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
214
|
Senturk A, Sahin AT, Armutlu A, Kiremit MC, Acar O, Erdem S, Bagbudar S, Esen T, Ozlu N. Quantitative Phosphoproteomics Analysis Uncovers PAK2- and CDK1-Mediated Malignant Signaling Pathways in Clear Cell Renal Cell Carcinoma. Mol Cell Proteomics 2022; 21:100417. [PMID: 36152754 PMCID: PMC9637947 DOI: 10.1016/j.mcpro.2022.100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
Clear cell Renal Cell Carcinoma (ccRCC) is among the 10 most common cancers in both men and women and causes more than 140,000 deaths worldwide every year. In order to elucidate the underlying molecular mechanisms orchestrated by phosphorylation modifications, we performed a comprehensive quantitative phosphoproteomics characterization of ccRCC tumor and normal adjacent tissues. Here, we identified 16,253 phosphopeptides, of which more than 9000 were singly quantified. Our in-depth analysis revealed 600 phosphopeptides to be significantly differentially regulated between tumor and normal tissues. Moreover, our data revealed that significantly up-regulated phosphoproteins are associated with protein synthesis and cytoskeletal re-organization which suggests proliferative and migratory behavior of renal tumors. This is supported by a mesenchymal profile of ccRCC phosphorylation events. Our rigorous characterization of the renal phosphoproteome also suggests that both epidermal growth factor receptor and vascular endothelial growth factor receptor are important mediators of phospho signaling in RCC pathogenesis. Furthermore, we determined the kinases p21-activated kinase 2, cyclin-dependent kinase 1 and c-Jun N-terminal kinase 1 to be master kinases that are responsible for phosphorylation of many substrates associated with cell proliferation, inflammation and migration. Moreover, high expression of p21-activated kinase 2 is associated with worse survival outcome of ccRCC patients. These master kinases are targetable by inhibitory drugs such as fostamatinib, minocycline, tamoxifen and bosutinib which can serve as novel therapeutic agents for ccRCC treatment.
Collapse
Affiliation(s)
- Aydanur Senturk
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ayse T. Sahin
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ayse Armutlu
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Murat Can Kiremit
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Omer Acar
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Selcuk Erdem
- Department of Urology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Sidar Bagbudar
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Tarik Esen
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey,Koc University Research Center for Translational Medicine (KUTTAM), Omics Laboratory, Istanbul, Turkey,For correspondence: Nurhan Ozlu
| |
Collapse
|
215
|
Fallara G, Larcher A, Rosiello G, Raggi D, Marandino L, Martini A, Basile G, Colandrea G, Cignoli D, Belladelli F, Re C, Musso G, Cei F, Bertini R, Briganti A, Salonia A, Montorsi F, Necchi A, Capitanio U. How to optimize the use of adjuvant pembrolizumab in renal cell carcinoma: which patients benefit the most? World J Urol 2022; 40:2667-2673. [PMID: 36125505 DOI: 10.1007/s00345-022-04153-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE The KEYNOTE-564 trial showed improved disease-free survival (DFS) for patients with high-risk renal cell carcinoma (RCC) receiving adjuvant pembrolizumab as compared to placebo. However, if systematically administered to all high-risk patients, it might lead to the overtreatment in a non-negligible proportion of patient. Therefore, we aimed to determine the optimal candidate for adjuvant pembrolizumab. METHODS Within a prospectively maintained database we selected patients who fulfilled the inclusion criteria of the KEYNOTE-564. We compared baseline characteristics and oncologic outcomes in this cohort with those of the placebo arm of the KEYNOTE-564. Regression tree analyses was used to generate a risk stratification tool to predict 1-year DFS after surgery. RESULTS In the off-trial setting, patients had worse tumor characteristics then in the KEYNOTE-564 placebo arm, i.e. there were more pT4 (5.4 vs. 2.7%, p = 0.046) and pN1 (15 vs. 6.3%, p < 0.001) cases. Median DFS was 29 (95% CI 21-35) months as compared to value not reached in KEYNOTE-564 and 1-year DFS was 64.2% (95% CI 59.6-69.2) as compared to 76.2% (95% CI 72.2-79.7), respectively. Patients with pN1 were at the highest risk of 1-year recurrence (1-year DFS 28.6% [95% CI 20.2-40.3]); patients without LNI, but necrosis were at intermediate risk (1-year DFS 62.5% [95% CI 56.9-68.8]); those without LNI and necrosis were at the lowest risk (1-year DFS 83.8% [95% CI 79.1-88.9]). LVI substratification furtherly improved the accuracy in the prediction of early recurrence. CONCLUSIONS Patients potentially eligible for adjuvant pembrolizumab have worse characteristics and DFS in the off-trial setting as compared to the placebo arm of the KEYNOTE-564. Patients with either LNI or necrosis were at the highest risk of early-recurrence, which make them the ideal candidate to adjuvant pembrolizumab.
Collapse
Affiliation(s)
- Giuseppe Fallara
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy. .,University Vita-Salute San Raffaele, Milan, Italy.
| | - Alessandro Larcher
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Giuseppe Rosiello
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Daniele Raggi
- University Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Laura Marandino
- University Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alberto Martini
- Department of Urology, La Croix du Sud Hospital, Toulouse, France.,Department of Urology, Institut Universitaire du Cancer Toulouse-Oncopôle, Toulouse, France
| | - Giuseppe Basile
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Gianmarco Colandrea
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Daniele Cignoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Belladelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Re
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Giacomo Musso
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Cei
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Roberto Bertini
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Alberto Briganti
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Necchi
- University Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Umberto Capitanio
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
216
|
Huang S, Hou Y, Hu M, Hu J, Liu X. Clinical significance and oncogenic function of NR1H4 in clear cell renal cell carcinoma. BMC Cancer 2022; 22:995. [PMID: 36123627 PMCID: PMC9487048 DOI: 10.1186/s12885-022-10087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nuclear receptor subfamily 1 group H member 4 (NR1H4) have been reported in various cancer types, however, little is known about the clinical values and biological function in clear cell Renal cell carcinoma (ccRCC). METHODS The expression pattens of NR1H4 in ccRCC were investigated in clinical specimens, cell lines and publicly‑available databases. Cell Counting Kit-8 (CCK-8), colony formation, 5-ethynyl-2' -deoxyuridine (EdU), transwell and cell wound healing assays were performed to assess the biological functions of NR1H4 in 786-O ccRCC cells. Gene set enrichment analysis (GSEA), Flow Cytometry, quantitative real-time PCR (qRT-PCR), western blot and immunofluorescence were performed to explore the molecular mechanism of NR1H4 in ccRCC. We explored the early diagnostic value, prognostic value, genetic mutation and DNA methylation of NR1H4 by a comprehensive bioinformatics analysis based on the data published in the following databases: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Kaplan-Meier Plotter, Gene Expression Profiling Interactive Analysis (GEPIA), UNIVERSITY OF CALIFORNIA SANTA CRUZ Xena (UCSC Xena), cBio Cancer Genomics Portal, MethSurv, SurvivalMeth and The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN). Its correlation with tumor-infiltrating immune cells in ccRCC was analyzed by Tumor Immune Estimation Resource 2.0 (TIMER2.0) and Tumor Immune System Interactions Database (TISIDB). RESULTS In this study, NR1H4 was found to be highly expressed in ccRCC tissues and ccRCC cell lines. Knockdown of NR1H4 significantly suppressed cancer cell proliferation, migration and invasion. Mechanistically, tumor-associated signaling pathways were enriched in the NR1H4 overexpression group and si-NR1H4 could induce the downregulation of Cyclin E2 (CCNE2). By bioinformatics analysis, NR1H4 was identified as highly expressed in stage I ccRCC with a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.8). Genetic alteration and DNA methylation of NR1H4 were significantly associated with prognosis in ccRCC patients. Moreover, NR1H4 expression associated with immune cell infiltration levels in ccRCC, which provides a new idea for immunotherapy. CONCLUSIONS Our study indicated that NR1H4 might be a potential tumor biomarker and therapeutic target for ccRCC which could promote cancer cell proliferation, migration and invasion via regulating CCNE2.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yanguang Hou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
217
|
Li SC, Jia ZK, Yang JJ, Ning XH. Telomere-related gene risk model for prognosis and drug treatment efficiency prediction in kidney cancer. Front Immunol 2022; 13:975057. [PMID: 36189312 PMCID: PMC9523360 DOI: 10.3389/fimmu.2022.975057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney cancer is one of the most common urological cancers worldwide, and kidney renal clear cell cancer (KIRC) is the major histologic subtype. Our previous study found that von-Hippel Lindau (VHL) gene mutation, the dominant reason for sporadic KIRC and hereditary kidney cancer-VHL syndrome, could affect VHL disease-related cancers development by inducing telomere shortening. However, the prognosis role of telomere-related genes in kidney cancer has not been well discussed. In this study, we obtained the telomere-related genes (TRGs) from TelNet. We obtained the clinical information and TRGs expression status of kidney cancer patients in The Cancer Genome Atlas (TCGA) database, The International Cancer Genome Consortium (ICGC) database, and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Totally 353 TRGs were differential between tumor and normal tissues in the TCGA-KIRC dataset. The total TCGA cohort was divided into discovery and validation TCGA cohorts and then using univariate cox regression, lasso regression, and multivariate cox regression method to conduct data analysis sequentially, ten TRGs (ISG15, RFC2, TRIM15, NEK6, PRKCQ, ATP1A1, ELOVL3, TUBB2B, PLCL1, NR1H3) risk model had been constructed finally. The kidney patients in the high TRGs risk group represented a worse outcome in the discovery TCGA cohort (p<0.001), and the result was validated by these four cohorts (validation TCGA cohort, total TCGA cohort, ICGC cohort, and CPTAC cohort). In addition, the TRGs risk score is an independent risk factor for kidney cancer in all these five cohorts. And the high TRGs risk group correlated with worse immune subtypes and higher tumor mutation burden in cancer tissues. In addition, the high TRGs risk group might benefit from receiving immune checkpoint inhibitors and targeted therapy agents. Moreover, the proteins NEK6, RF2, and ISG15 were upregulated in tumors both at the RNA and protein levels, while PLCL1 and PRKCQ were downregulated. The other five genes may display the contrary expression status at the RNA and protein levels. In conclusion, we have constructed a telomere-related genes risk model for predicting the outcomes of kidney cancer patients, and the model may be helpful in selecting treatment agents for kidney cancer patients.
Collapse
|
218
|
Demirel E, Dilek O. A new finding for the obesity paradox? Evaluation of the relationship between muscle and adipose tissue in nuclear grade prediction in patients with clear cell renal cell carcinoma. Acta Radiol 2022; 64:1659-1667. [PMID: 37023029 DOI: 10.1177/02841851221126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Obesity is associated with an increased risk of developing clear cell renal cell carcinoma (ccRCC), but paradoxically there is a positive association between obesity and surveillance. Purpose To investigate the relationship between nucleus grade classification and body composition in patients with matched co-morbid conditions with non-metastatic ccRCC. Materials and Methods A total of 253 patients with non-metastatic ccRCC were included in the study. Body composition was assessed with abdominal computed tomography (CT) using an automated artificial intelligence software. Both adipose and muscle tissue parameters of the patients were calculated. In order to investigate the net effect of body composition, propensity score matching (PSM) procedure was applied over age, sex, and T stage parameters. In this way, selection bias and imbalance between groups were minimized. Univariate and multivariate logistic regression analyses were performed to identify the association between body composition and WHO/ISUP grade (I–IV). Result When the body composition of the patients was examined without matching the conditions, it was found that the subcutaneous adipose tissue (SAT) values were higher in patients with low grades ( P = 0.001). Normal attenuation muscle area (NAMA) was higher in high-grade patients than low-grade patients ( P < 0.05). In the post-matching evaluation, only SAT/NAMA was found to be associated with high-grade ccRCC (univariate analysis: odds ratio [OR]=0.899, 95% confidence interval [CI]=0.817−0.988, P = 0.028; multivariate analysis: OR=0.922, 95% CI=0.901−0.974, P = 0.042). Conclusion CT-based body composition parameters can be used as a prognostic marker in predicting nuclear grade when age, sex, and T stage match conditions. This finding offers a new perspective on the obesity paradox.
Collapse
Affiliation(s)
- Emin Demirel
- Department of Radiology, Emirdag City of Hospital, Afyonkarahisar, Turkey
| | - Okan Dilek
- Department of Radiology, University of Health Sciences, Adana City Training and Research Hospital, Adana, Turkey
| |
Collapse
|
219
|
Xin S, Mao J, Cui K, Li Q, Chen L, Li Q, Tu B, Liu X, Wang T, Wang S, Liu J, Song X, Song W. A cuproptosis-related lncRNA signature identified prognosis and tumour immune microenvironment in kidney renal clear cell carcinoma. Front Mol Biosci 2022; 9:974722. [PMID: 36188220 PMCID: PMC9515514 DOI: 10.3389/fmolb.2022.974722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is a heterogeneous malignant tumor with high incidence, metastasis, and mortality. The imbalance of copper homeostasis can produce cytotoxicity and cause cell damage. At the same time, copper can also induce tumor cell death and inhibit tumor transformation. The latest research found that this copper-induced cell death is different from the known cell death pathway, so it is defined as cuproptosis. We included 539 KIRC samples and 72 normal tissues from the Cancer Genome Atlas (TCGA) in our study. After identifying long non-coding RNAs (lncRNAs) significantly associated with cuproptosis, we clustered 526 KIRC samples based on the prognostic lncRNAs and obtained two different patterns (Cuproptosis.C1 and C2). C1 indicated an obviously worse prognostic outcome and possessed a higher immune score and immune cell infiltration level. Moreover, a prognosis signature (CRGscore) was constructed to effectively and accurately evaluate the overall survival (OS) of KIRC patients. There were significant differences in tumor immune microenvironment (TIME) and tumor mutation burden (TMB) between CRGscore-defined groups. CRGscore also has the potential to predict medicine efficacy.
Collapse
Affiliation(s)
- Sheng Xin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jiaquan Mao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qian Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bocheng Tu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaodong Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xiaodong Song, ; Wen Song,
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xiaodong Song, ; Wen Song,
| |
Collapse
|
220
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|
221
|
The Predictive Value of Three Variables in Patients with Metastatic Renal Cell Carcinoma Treated with Immune-Based Combination Therapies in Randomized Clinical Trials: A Systematic Review and Meta-Analysis. JOURNAL OF ONCOLOGY 2022; 2022:7733251. [PMID: 36124031 PMCID: PMC9482552 DOI: 10.1155/2022/7733251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022]
Abstract
Background Sex, age, and International Metastatic Renal-Cell Carcinoma Database Consortium (IMDC) prognostic risk may influence the immune response. Nonetheless, the correlation between these factors and the survival benefits of immune-based combination therapies in patients with metastatic renal cell carcinoma (mRCC) is controversial and undefined. As a result, the purpose of this research is to evaluate the potential differences of immune-based combination therapies on survival benefits from mRCC subgroups. Methods PubMed, Cochrane Library, Embase, and http://www.clinicaltrials.gov were searched from inception to March 17, 2022. Randomized clinical trials (RCTs) comparing overall survival (OS) or progression-free survival (PFS) in patients with mRCC treated by immune-based combinations vs. contemporary first-line therapies were included. Results Five RCTs with a total of 4206 subjects were included. An OS and PFS benefit of immune-based combinations were found for patients of different sex, age, and IMDC intermediate/poor risk. No obvious difference in relative PFS benefit from immune-based combinations over the control group was found in patients of different genders (P=0.71, I2 = 0%), ages (P=0.55, I2 = 0%), or IMDC prognostic risks (P=0.38, I2 = 0%). However, the difference in OS benefit was significant regarding age (P=0.009, I2 = 85.5%) and IMDC prognostic risk (P=0.004, I2 = 82.2%). Conclusions This meta-analysis found that immune-based combination therapies should not be restricted to certain patients with mRCC in gender categories. However, age and IMDC prognostic risk of mRCC patients are associated with different outcomes of OS and thus help identify those patients most probably to benefit from immune-based combination therapies.
Collapse
|
222
|
Chen W, Wang H, Lu Y, Huang Y, Xuan Y, Li X, Guo T, Wang C, Lai D, Wu S, Zhao W, Mai H, Li H, Wang B, Ma X, Zhang X. GTSE1 promotes tumor growth and metastasis by attenuating of KLF4 expression in clear cell renal cell carcinoma. J Transl Med 2022; 102:1011-1022. [PMID: 36775416 DOI: 10.1038/s41374-022-00797-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors and is characterized by a poor prognosis. Although G2- and S -phase expressed-1 (GTSE1) is known to be involved in the progression and metastasis of various cancers, its significance and mechanism in ccRCC remain unknown. In the present study, we found that GTSE1 was overexpressed in ccRCC tissues, especially in metastatic samples. Moreover, high GTSE1 expression was positively correlated with higher pT stage, tumor size, clinical stage, and WHO/ISUP grade and worse prognosis. And GTSE1 expression served as an independent prognostic factor for overall survival (OS). In addition, GTSE1 knockdown inhibited ccRCC cell proliferation, migration, and invasion, and enhanced cell apoptosis in vitro and in vivo. GTSE1 was crucial for epithelial-mesenchymal transition (EMT) in ccRCC. Mechanistically, GTSE1 depletion could upregulate the expression of Krüppel-like factor 4 (KLF4), which acts as a tumor suppressor in ccRCC. Downregulation of KLF4 effectively rescued the inhibitory effect induced by GTSE1 knockdown and reversed the EMT process. Overall, our results revealed that GTSE1 served as an oncogene regulating EMT through KLF4 in ccRCC, and that GTSE1 could also serve as a novel prognostic biomarker and may represent a promising therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Weihao Chen
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanfeng Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongliang Lu
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yan Huang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yundong Xuan
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiubin Li
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Tao Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Paediatrics, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Chenfeng Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Dong Lai
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Shengpan Wu
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenlei Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Haixing Mai
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Hongzhao Li
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Baojun Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xin Ma
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xu Zhang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
223
|
Larcher A, Belladelli F, Fallara G, Rowe I, Capitanio U, Marandino L, Raggi D, Capitanio JF, Bailo M, Lattanzio R, Barresi C, Calloni SF, Barbera M, Andreasi V, Guazzarotti G, Pipitone G, Carrera P, Necchi A, Mortini P, Bandello F, Falini A, Partelli S, Falconi M, De Cobelli F, Salonia A. Multidisciplinary management of patients diagnosed with von Hippel-Lindau disease: A practical review of the literature for clinicians. Asian J Urol 2022; 9:430-442. [DOI: 10.1016/j.ajur.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022] Open
|
224
|
Lyu C, Wang L, Stadlbauer B, Noessner E, Buchner A, Pohla H. Identification of EZH2 as Cancer Stem Cell Marker in Clear Cell Renal Cell Carcinoma and the Anti-Tumor Effect of Epigallocatechin-3-Gallate (EGCG). Cancers (Basel) 2022; 14:4200. [PMID: 36077742 PMCID: PMC9454898 DOI: 10.3390/cancers14174200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study was to develop a new therapeutic strategy to target cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC) and to identify typical CSC markers to improve therapy effectiveness. It was found that the corrected-mRNA expression-based stemness index was upregulated in kidney renal clear cell carcinoma (KIRC) tissues compared to non-tumor tissue and increased with higher tumor stage and grade. EZH2 was identified as a CSC marker and prognosis factor for KIRC patients. The expression of EZH2 was associated with several activated tumor-infiltrating immune cells. High expression of EZH2 was enriched in immune-related pathways, low expression was related to several metabolic pathways. Epigallocatechin-3-gallate (EGCG) was identified as the most potent suppressor of EZH2, was able to inhibit viability, migration, and invasion, and to increase the apoptosis rate of ccRCC CSCs. KIF11, VEGF, and MMP2 were identified as predictive EGCG target genes, suggesting a potential mechanism of how EZH2 might regulate invasiveness and migration. The percentages of FoxP3+ Treg cells in the peripheral blood mononuclear cells of ccRCC patients decreased significantly when cultured with spheres pretreated with EGCG plus sunitinib compared to spheres without treatment. Our findings provide new insights into the treatment options of ccRCC based on targeting CSCs.
Collapse
Affiliation(s)
- Chen Lyu
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
| | - Lili Wang
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Birgit Stadlbauer
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München, D-81377 Munich, Germany
| | - Alexander Buchner
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Heike Pohla
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| |
Collapse
|
225
|
Li Q, Zhang Z, Yin M, Cui C, Zhang Y, Wang Y, Liu F. What do we actually know about exosomal microRNAs in kidney diseases? Front Physiol 2022; 13:941143. [PMID: 36105281 PMCID: PMC9464820 DOI: 10.3389/fphys.2022.941143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
There are several types of kidney diseases with complex causes. If left untreated, these diseases irreversibly progress to end-stage renal disease. Thus, their early diagnosis and targeted treatment are important. Exosomes-extracellular vesicles released by a variety of cells-are ideal carriers for DNA, RNA, proteins, and other metabolites owing to their bilayer membranes. Studies have shown that almost all renal cells can secrete exosomes. While research on exosomal microRNAs in the context of renal diseases begun only recently, rapid progress has been achieved. This review summarizes the changes in exosomal microRNA expression in different kidney diseases. Thus, it highlights the diagnostic and prognostic value of these exosomal microRNAs. Further, this review analyzes their roles in the development of different kidney diseases, guiding research on molecular mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Qianyu Li
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Zhiping Zhang
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Min Yin
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Cancan Cui
- Clinical Laboratory, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Yucheng Zhang
- Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Yali Wang
- Department of Blood Transfusion, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Liu
- Department of Nephrology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
226
|
Wang Y, Feng YC, Gan Y, Teng L, Wang L, La T, Wang P, Gu Y, Yan L, Li N, Zhang L, Wang L, Thorne RF, Zhang XD, Cao H, Shao FM. LncRNA MILIP links YBX1 to translational activation of Snai1 and promotes metastasis in clear cell renal cell carcinoma. J Exp Clin Cancer Res 2022; 41:260. [PMID: 36028903 PMCID: PMC9414127 DOI: 10.1186/s13046-022-02452-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022] Open
Abstract
Abstract
Background
Distant metastasis is the major cause of clear cell renal cell carcinoma (ccRCC)-associated mortality. However, molecular mechanisms involved in ccRCC metastasis remain to be fully understood. With the increasing appreciation of the role of long non-coding RNAs (lncRNAs) in cancer development, progression, and treatment resistance, the list of aberrantly expressed lncRNAs contributing to ccRCC pathogenesis is expanding rapidly.
Methods
Bioinformatics analysis was carried out to interrogate publicly available ccRCC datasets. In situ hybridization and qRT-PCR assays were used to test lncRNA expression in human ccRCC tissues and cell lines, respectively. Chromatin immunoprecipitation and luciferase reporter assays were used to examine transcriptional regulation of gene expression. Wound healing as well as transwell migration and invasion assays were employed to monitor ccRCC cell migration and invasion in vitro. ccRCC metastasis was also examined using mouse models in vivo. RNA pulldown and RNA immunoprecipitation were performed to test RNA–protein associations, whereas RNA-RNA interactions were tested using domain-specific chromatin isolation by RNA purification.
Results
MILIP expression was upregulated in metastatic compared with primary ccRCC tissues. The increased MILIP expression in metastatic ccRCC cells was driven by the transcription factor AP-2 gamma (TFAP2C). Knockdown of MILIP diminished the potential of ccRCC cell migration and invasion in vitro and reduced the formation of ccRCC metastatic lesions in vivo. The effect of MILIP on ccRCC cells was associated with alterations in the expression of epithelial-to-mesenchymal transition (EMT) hallmark genes. Mechanistically, MILIP formed an RNA-RNA duplex with the snail family transcriptional repressor 1 (Snai1) mRNA and bound to Y-box binding protein 1 (YBX1). This promoted the association between the YBX1 protein and the Snai1 mRNA, leading to increased translation of the latter. Snai1 in turn played an important role in MILIP-driven ccRCC metastasis.
Conclusions
The TFAP2C-responsive lncRNA MILIP drives ccRCC metastasis. Targeting MILIP may thus represent a potential avenue for ccRCC treatment.
Collapse
|
227
|
Heterogeneity in NK Cell Subpopulations May Be Involved in Kidney Cancer Metastasis. J Immunol Res 2022; 2022:6378567. [PMID: 36046723 PMCID: PMC9424044 DOI: 10.1155/2022/6378567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Although substantial progress has been made in the immunotherapy of kidney cancer, its efficacy varies from patient to patient, with many responding suboptimally or even developing metastases. Thus, research on the tumour immune microenvironment and immune cell heterogeneity is essential for kidney cancer treatment. In this study, natural killer (NK) cell populations were isolated using signature genes from the single-cell sequencing data of clear cell renal cell carcinoma (ccRCC) and normal kidney tissues and divided into three subpopulations according to the differences in gene expression profiles: NK(GZMH), NK(EGR1), and NK(CAPG). Gene set enrichment analysis revealed that NK(EGR1) and NK(CAPG) were closely related to tumour metastasis, as shown by kidney cancer metastasis to Hodgkin lymphoma, T-cell leukaemia, and Ki-1+ anaplastic large cell lymphoma. Thus, these two NK cell subpopulations are promising targets for inhibiting metastasis in ccRCC. Our findings revealed heterogeneity in the infiltrating NK cells of kidney cancer, which can serve as a reference for the mechanisms underlying metastasis in kidney cancer.
Collapse
|
228
|
A multiomics disease progression signature of low-risk ccRCC. Sci Rep 2022; 12:13503. [PMID: 35931808 PMCID: PMC9356046 DOI: 10.1038/s41598-022-17755-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer. Identification of ccRCC likely to progress, despite an apparent low risk at the time of surgery, represents a key clinical issue. From a cohort of adult ccRCC patients (n = 443), we selected low-risk tumors progressing within a 5-years average follow-up (progressors: P, n = 8) and non-progressing (NP) tumors (n = 16). Transcriptome sequencing, miRNA sequencing and proteomics were performed on tissues obtained at surgery. We identified 151 proteins, 1167 mRNAs and 63 miRNAs differentially expressed in P compared to NP low-risk tumors. Pathway analysis demonstrated overrepresentation of proteins related to “LXR/RXR and FXR/RXR Activation”, “Acute Phase Response Signaling” in NP compared to P samples. Integrating mRNA, miRNA and proteomic data, we developed a 10-component classifier including two proteins, three genes and five miRNAs, effectively differentiating P and NP ccRCC and capturing underlying biological differences, potentially useful to identify “low-risk” patients requiring closer surveillance and treatment adjustments. Key results were validated by immunohistochemistry, qPCR and data from publicly available databases. Our work suggests that LXR, FXR and macrophage activation pathways could be critically involved in the inhibition of the progression of low-risk ccRCC. Furthermore, a 10-component classifier could support an early identification of apparently low-risk ccRCC patients.
Collapse
|
229
|
Xu N, Xiao W, Meng X, Li W, Wang X, Zhang X, Yang H. Up-regulation of SLC27A2 suppresses the proliferation and invasion of renal cancer by down-regulating CDK3-mediated EMT. Cell Death Dis 2022; 8:351. [PMID: 35927229 PMCID: PMC9352701 DOI: 10.1038/s41420-022-01145-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors of the urinary system. Distant metastasis is the leading cause of poor prognosis in ccRCC. However, ccRCC is found poorly responsitive to radiotherapy and chemotherapy. Effective therapeutic strategies for its metastasis remain scarce. We analyzed clinical samples and public database, for differential expression of SLC27A2 and further explored its relationship with clinical prognosis. Biochemistry and functional experiments were carried out to study the potential mechanisms of SLC27A2, CDK3, and EMT. SLC27A2 was significantly downregulated in clinical specimens and renal cancer cell lines and predicted poor prognosis. We found that specific upregulation of SLC27A2 could significantly inhibited the proliferation, migration, and invasion of renal cancer cell lines. SLC27A2 could also influence the Epithelial-mesenchymal transition (EMT) signaling pathway, linked to the progression and metastasis of renal cancer. Using whole transcriptome sequencing of SLC27A2, CDK3 was identified as a regulatory SLC27A2 target. In terms of mechanism, SLC27A2 may further inhibit the epithelial-to-mesenchymal transition by negatively regulating CDK3. Our work suggests that functional inhibition of SLC27A2-CDK3-EMT axis may be an attractive therapeutic target for metastasis of ccRCC.
Collapse
Affiliation(s)
- Ning Xu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuegang Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
230
|
Jiang A, Pang Q, Gan X, Wang A, Wu Z, Liu B, Luo P, Qu L, Wang L. Definition and verification of novel metastasis and recurrence related signatures of ccRCC: A multicohort study. CANCER INNOVATION 2022; 1:146-167. [PMID: 38090653 PMCID: PMC10686128 DOI: 10.1002/cai2.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2024]
Abstract
Background Cancer metastasis and recurrence remain major challenges in renal carcinoma patient management. There are limited biomarkers to predict the metastatic probability of renal cancer, especially in the early-stage subgroup. Here, our study applied robust machine-learning algorithms to identify metastatic and recurrence-related signatures across multiple renal cancer cohorts, which reached high accuracy in both training and testing cohorts. Methods Clear cell renal cell carcinoma (ccRCC) patients with primary or metastatic site sequencing information from eight cohorts, including one out-house cohort, were enrolled in this study. Three robust machine-learning algorithms were applied to identify metastatic signatures. Then, two distinct metastatic-related subtypes were identified and verified; matrix remodeling associated 5 (MXRA5), as a promising diagnostic and therapeutic target, was investigated in vivo and in vitro. Results We identified five stable metastasis-related signatures (renin, integrin subunit beta-like 1, MXRA5, mesenchyme homeobox 2, and anoctamin 3) from multicenter cohorts. Additionally, we verified the specificity and sensibility of these signatures in external and out-house cohorts, which displayed a satisfactory consistency. According to these metastatic signatures, patients were grouped into two distinct and heterogeneous ccRCC subtypes named metastatic cancer subtype 1 (MTCS1) and type 2 (MTCS2). MTCS2 exhibited poorer clinical outcomes and metastatic tendencies than MTCS1. In addition, MTCS2 showed higher immune cell infiltration and immune signature expression but a lower response rate to immune blockade therapy than MTCS1. The MTCS2 subgroup was more sensitive to saracatinib, sunitinib, and several molecular targeted drugs. In addition, MTCS2 displayed a higher genome mutation burden and instability. Furthermore, we constructed a prognosis model based on subtype biomarkers, which performed well in training and validation cohorts. Finally, MXRA5, as a promising biomarker, significantly suppressed malignant ability, including the cell migration and proliferation of ccRCC cell lines in vitro and in vivo. Conclusions This study identified five robust metastatic signatures and proposed two metastatic probability clusters with stratified prognoses, multiomics landscapes, and treatment options. The current work not only provided new insight into the heterogeneity of renal cancer but also shed light on optimizing decision-making in immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Qingyang Pang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Xinxin Gan
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Anbang Wang
- Department of Urology, Changzheng HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Zhenjie Wu
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Bing Liu
- Department of Urology, The Third Affiliated HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Le Qu
- Department of Urology, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Linhui Wang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| |
Collapse
|
231
|
Martini A, Fallara G, Pellegrino AA, Nocera L, Larcher A, Raggi D, Campi R, Ploussard G, Malavaud B, Montorsi F, Pal SK, Spiess PE, Choueiri TK, Necchi A, Capitanio U. Multidisciplinary team referral at diagnosis for patients with non-metastatic renal cell carcinoma. Urol Oncol 2022; 40:384.e9-384.e14. [DOI: 10.1016/j.urolonc.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
232
|
Zhao Y, Ye G, Wang Y, Luo D. MiR-4461 Inhibits Tumorigenesis of Renal Cell Carcinoma by Targeting PPP1R3C. Cancer Biother Radiopharm 2022; 37:503-514. [PMID: 32915648 DOI: 10.1089/cbr.2020.3846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Renal cell carcinoma (RCC) is one of the most common and malignant tumors in the urinary system. The aim of this research was to investigate the mechanism and clinical significance of miR-4461 in the RCC progression. Materials and Methods: Twenty-eight (28) paired RCC tissue samples and adjacent nontumor tissue samples, as well as RCC cell lines were used to measure the expression of miR-4461 and protein phosphatase 1 regulatory subunit 3C (PPP1R3C) transcript by real-time quantitative PCR. The target relationship between miR-4461 and PPP1R3C was predicted by TargetScan and further verified by dual-luciferase reporter gene assay and RNA pull-down assay. Cell Counting Kit-8 (CCK-8) assay and BrdU ELISA assay were performed to measure RCC cell viability and proliferation. In addition, caspase-3 activity assay and cell adhesion assay were implemented to measure RCC cell apoptosis and adhesion. Results: MiR-4461 was lowly expressed both in RCC tissues and cells, while upregulated PPP1R3C was tested in RCC tissues and cells. In addition, miR-4461 was validated to directly target PPP1R3C, thereby negatively regulating PPP1R3C. Particularly, miR-4461 exerted a clear inhibitory effect on the malignant phenotypes of RCC cells by binding and inhibiting PPP1R3C. Conclusion: MiR-4461, which served as a tumor suppressor, inhibited RCC progression by targeting and downregulating PPP1R3C.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - Gang Ye
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - You Wang
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - Dan Luo
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| |
Collapse
|
233
|
Cignoli D, Fallara G, Aleotti F, Larcher A, Rosiello G, Rowe I, Basile G, Colandrea G, Martini A, De Cobelli F, Brembilla G, Lucianò R, Colecchia M, Lena MS, Partelli S, Tamburrino D, Zamboni G, Rubini C, Falconi M, Montorsi F, Salonia A, Capitanio U. Pancreatic metastases after surgery for renal cell carcinoma: survival and pathways of progression. World J Urol 2022; 40:2481-2488. [PMID: 35904571 DOI: 10.1007/s00345-022-04106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Metastatic ccRCC has peculiar tropism in the pancreas. We describe the characteristics and pathways of progression of patients with PM in a large multi-institutional consortium and compare them to patients with metastases from ccRCC at other sites. METHODS Detailed clinical and histopathological data were collected. To account for differences in baseline characteristics between the two groups, IPTW was used to compare the two groups in terms of PFS and OS. RESULTS Of the 182 patients, 33 (18%) had pancreatic, 94 (52%) pulmonary, 30 (16%) bone, 13 (7%) hepatic, and 12 (7%) brain metastases. Patients with PM had less aggressive ccRCC at baseline compared to those with progression at other sites in terms of tumour stage and grade. Median time from ccRCC surgery to PM was 8 (95%CI 5-10) vs. 1 year (95%CI 1-2) for progression to other sites (p < 0.001). Median IPTW-weighted time to second progression was 4.3 years (95%CI 2.4-not reached) for patients with PM vs 1.1 year (95%CI 0.8-2.3) for those with progression in other sites (p < 0.001). The most frequent second progression sites were pancreas (24%) and liver (15%) in patients with PM, while progression to the pancreas was rare (4%) in those with a different first progression site. Surgery alone (55%) or in combination with medical therapy (30%) was more frequent in the PM group than in other sites (p < 0.001). Median IPTW-OS time was longer for patients with PM [8.8 years (95%CI 6.5-not reached)] compared to those with first progression in other sites [2.8 years (95%CI 1.9-4.3), p < 0.001]. CONCLUSION Pancreatic tropism is typical of ccRCC tumours with more indolent behaviour than those progressing to other sites. A long follow-up period is necessary to distinguish PM from ccRCC.
Collapse
Affiliation(s)
- Daniele Cignoli
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Fallara
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Aleotti
- IRCCS San Raffaele Scientific Institute, Pancreas Translational & Clinical Research Center, Pancreatic Surgery Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Larcher
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Rosiello
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Isaline Rowe
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Basile
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Gianmarco Colandrea
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Martini
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Brembilla
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Colecchia
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Schiavo Lena
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Partelli
- IRCCS San Raffaele Scientific Institute, Pancreas Translational & Clinical Research Center, Pancreatic Surgery Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Domenico Tamburrino
- IRCCS San Raffaele Scientific Institute, Pancreas Translational & Clinical Research Center, Pancreatic Surgery Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Zamboni
- Department of Pathology, IRCCS, Ospedale Sacro Cuore Don Calabria, University of Verona, Verona, Italy
| | - Corrado Rubini
- Pathology, Dip. Di Scienze Biomediche E Sanità Pubblica, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Falconi
- IRCCS San Raffaele Scientific Institute, Pancreas Translational & Clinical Research Center, Pancreatic Surgery Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Montorsi
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Salonia
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Umberto Capitanio
- Department of Urology, Urological Research Institute (URI), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
234
|
Zhang LL, Chang W, He SB, Zhang B, Ma G, Shang PF, Yue ZJ. High expression of eIF4A1 predicts unfavorable prognosis in clear cell renal cell carcinoma. Mol Cell Probes 2022; 65:101845. [PMID: 35820642 DOI: 10.1016/j.mcp.2022.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a worldwide malignancy with high morbidity and mortality. Translation initiation factor 4A1 (eIF4A1), which is an ATP-dependent RNA helicase as a part of eIF4F complex, has been linked to malignant transformation and progression, and a variety of cancers display dysregulation of this enzyme. However, its role in ccRCC remains unclear. In our study, we examined its potential effects in ccRCC. METHODS Based on Proteomic data, TCGA and ONCOMINE database, RCC cell lines and tissues, the expression of eIF4A1 between ccRCC and normal tissues were investigated. A correlation was evaluated between the prognostic model for OS and ccRCC progression. Analysis of functional enrichment and PPI network were performed. After examining differentially expressed genes between the eIF4A1 high and low-expression groups, we performed GSEA analysis. Furthermore, we investigated immune cell infiltration of eIF4A1. Then we determined eIF4A1 functions in the establishment and maintenance of cell viability, migration and invasion of cell lines. Flow cytometry was utilized to detect cell cycle. RESULTS The eIF4A1 was up-regulated in ccRCC tissues and cell lines. An increased level of eIF4A1 was linked to lower survival rates and impaired immunity. Depletion of eIF4A1 could arrest tumor cells in G1 phase, so as to seriously limit cell proliferation and weaken the capacity of cell migration. CONCLUSION ccRCC patients with high eIF4A1 expression are at increased risk of poor prognosis, furthermore eIF4A1 plays a prominent role in facilitating tumor cell proliferation and migration which may further be a potential prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Wei Chang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Shen-Bao He
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Bin Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Gui Ma
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Pan-Feng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| | - Zhong-Jin Yue
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, No.82 Cui Ying Gate, Cheng guan District, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
235
|
Liu R, Qiu K, Wu J, Jiang Y, Wu P, Pang J. Cost-effectiveness analysis of nivolumab plus cabozantinib versus sunitinib as first-line therapy in advanced renal cell carcinoma. Immunotherapy 2022; 14:859-869. [PMID: 35754404 DOI: 10.2217/imt-2021-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the cost-effectiveness of first-line treatment for advanced renal cell carcinoma with nivolumab plus cabozantinib versus sunitinib from a US payer perspective. Methods: Economic outcomes were estimated with Markov and partitioned survival models. Efficacy, safety and other data were taken from the CheckMate 9ER trial. Costs and utilities were gathered from published sources. Sensitivity analyses addressed model uncertainties. Results: The incremental cost-effectiveness ratio of nivolumab plus cabozantinib versus sunitinib was $555,663 and $531,748 per quality-adjusted life-year in the Markov and partitioned survival models, respectively, exceeding the willingness-to-pay threshold ($150,000 per quality-adjusted life-year). Sensitivity analyses showed robust outcomes. Conclusion: From a US payer perspective, first-line nivolumab plus cabozantinib for advanced renal cell carcinoma is not cost-effective.
Collapse
Affiliation(s)
- Ruizhe Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangdong Guangzhou, 510515, China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yanqing Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangdong Guangzhou, 510515, China
| | - Peihao Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangdong Guangzhou, 510515, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangdong Guangzhou, 510515, China
| |
Collapse
|
236
|
Mantione ME, Sana I, Vilia MG, Riba M, Doglioni C, Larcher A, Capitanio U, Muzio M. SIGIRR Downregulation and Interleukin-1 Signaling Intrinsic to Renal Cell Carcinoma. Front Oncol 2022; 12:894413. [PMID: 35814450 PMCID: PMC9256934 DOI: 10.3389/fonc.2022.894413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma is highly inflamed, and tumor cells are embedded into a microenvironment enriched with IL1. While inflammatory pathways are well characterized in the immune system, less is known about these same pathways in epithelial cells; it is unclear if and how innate immune signals directly impact on cancer cells, and if we could we manipulate these for therapeutic purposes. To address these questions, we first focused on the inflammatory receptors belonging to the IL1- and Toll-like receptor family including negative regulators in a small cohort of 12 clear cell RCC (ccRCC) patients’ samples as compared to their coupled adjacent normal tissues. Our data demonstrated that renal epithelial cancer cells showed a specific and distinctive pattern of inflammatory receptor expression marked by a consistent downregulation of the inhibitory receptor SIGIRR mRNA. This repression was confirmed at the protein level in both cancer cell lines and primary tissues. When we analyzed in silico data of different kidney cancer histotypes, we identified the clear cell subtype as the one where SIGIRR was mostly downregulated; nonetheless, papillary and chromophobe tumor types also showed low levels as compared to their normal counterpart. RNA-sequencing analysis demonstrated that IL1 stimulation of the ccRCC cell line A498 triggered an intrinsic signature of inflammatory pathway activation characterized by the induction of distinct “pro-tumor” genes including several chemokines, the autocrine growth factor IL6, the atypical co-transcription factor NFKBIZ, and the checkpoint inhibitor PD-L1. When we looked for the macroareas most represented among the differentially expressed genes, additional clusters emerged including pathways involved in cell differentiation, angiogenesis, and wound healing. To note, SIGIRR overexpression in A498 cells dampened IL1 signaling as assessed by a reduced induction of NFKBIZ. Our results suggest that SIGIRR downregulation unleashes IL1 signaling intrinsic to tumor cells and that manipulating this pathway may be beneficial in ccRCC.
Collapse
Affiliation(s)
- Maria Elena Mantione
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maria Giovanna Vilia
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Michela Riba
- Center for Omics Sciences, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Claudio Doglioni
- Pathology Unit, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandro Larcher
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Umberto Capitanio
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental Oncology, San Raffaele Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
- *Correspondence: Marta Muzio,
| |
Collapse
|
237
|
Freitas AS, Costa M, Pontes O, Seidel V, Proença F, Cardoso SM, Oliveira R, Baltazar F, Almeida-Aguiar C. Selective Cytotoxicity of Portuguese Propolis Ethyl Acetate Fraction towards Renal Cancer Cells. Molecules 2022; 27:molecules27134001. [PMID: 35807247 PMCID: PMC9268251 DOI: 10.3390/molecules27134001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Renal cell carcinoma is the most lethal cancer of the urological system due to late diagnosis and treatment resistance. Propolis, a beehive product, is a valuable natural source of compounds with bioactivities and may be a beneficial addition to current anticancer treatments. A Portuguese propolis sample, its fractions (n-hexane, ethyl acetate, n-butanol and water) and three subfractions (P1–P3), were tested for their toxicity on A498, 786-O and Caki-2 renal cell carcinoma cell lines and the non-neoplastic HK2 kidney cells. The ethyl acetate fraction showed the strongest toxicity against A498 (IC50 = 0.162 µg mL−1) and 786-O (IC50 = 0.271 µg mL−1) cells. With similar toxicity against 786-O, P1 (IC50 = 3.8 µg mL−1) and P3 (IC50 = 3.1 µg mL−1) exhibited greater effect when combined (IC50 = 2.5 µg mL−1). Results support the potential of propolis and its constituents as promising coadjuvants in renal cell carcinoma treatment.
Collapse
Affiliation(s)
- Ana Sofia Freitas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057 Braga, Portugal;
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (M.C.); (O.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/806-909 Guimarães, Portugal
| | - Olívia Pontes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (M.C.); (O.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/806-909 Guimarães, Portugal
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Fernanda Proença
- Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rui Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (M.C.); (O.P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/806-909 Guimarães, Portugal
- Correspondence: (F.B.); (C.A.-A.); Tel.: +351-253601513 (C.A.-A.)
| | - Cristina Almeida-Aguiar
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
- Correspondence: (F.B.); (C.A.-A.); Tel.: +351-253601513 (C.A.-A.)
| |
Collapse
|
238
|
Dubeux V, Zanier JFC, Chantong CGC, Carrerette F, Gabrich PN, Damiâo R. Nephrometry scoring systems: their importance for the planning of nephron-sparing surgery and the relationships among them. Radiol Bras 2022; 55:242-252. [PMID: 35983342 PMCID: PMC9380606 DOI: 10.1590/0100-3984.2021.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the development of new imaging techniques and scoring systems have improved the diagnosis and management of small renal masses. Imaging-based nephrometry scoring systems play an interesting role in the planning of nephron-sparing surgery, providing surgeons with the information necessary to determine the complexity of the renal mass, to deliver the appropriate postoperative care, and to predict adverse outcomes. The aim of this study was to review nephrometry scoring systems, evaluating their characteristics and the relationships among them. The urology and radiology communities should decide which nephrometry scoring system will prevail and be used in daily practice.
Collapse
Affiliation(s)
- Victor Dubeux
- Hospital Universitário Pedro Ernesto da Universidade do Estado do Rio de Janeiro (HUPE-UERJ), Brazil
| | | | | | - Fabricio Carrerette
- Hospital Universitário Pedro Ernesto da Universidade do Estado do Rio de Janeiro (HUPE-UERJ), Brazil
| | - Pedro Nicolau Gabrich
- Hospital Universitário Pedro Ernesto da Universidade do Estado do Rio de Janeiro (HUPE-UERJ), Brazil
| | - Ronaldo Damiâo
- Hospital Universitário Pedro Ernesto da Universidade do Estado do Rio de Janeiro (HUPE-UERJ), Brazil
| |
Collapse
|
239
|
Lindskog M, Laurell A, Kjellman A, Melichar B, Rey PM, Zieliński H, Villacampa F, Bigot P, Zoltan B, Parikh O, Alba DV, Jellvert Å, Flaskó T, Gallardo E, Caparrós MJR, Purkalne G, Suenaert P, Karlsson-Parra A, Ljungberg B. Ilixadencel, a Cell-based Immune Primer, plus Sunitinib Versus Sunitinib Alone in Metastatic Renal Cell Carcinoma: A Randomized Phase 2 Study. EUR UROL SUPPL 2022; 40:38-45. [PMID: 35638086 PMCID: PMC9142735 DOI: 10.1016/j.euros.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
Background The prognosis of patients with synchronous metastatic renal cell carcinoma (mRCC) is poor. Whereas single-agent tyrosine kinase inhibition (TKI) is clearly insufficient, the effects can be enhanced by combinations with immune checkpoint inhibitors. Innovative treatment options combining TKI and other immune-stimulating agents could prove beneficial. Objective To evaluate the clinical effects on metastatic disease when two doses of allogeneic monocyte-derived dendritic cells (ilixadencel) are administrated intratumorally followed by nephrectomy and treatment with sunitinib compared with nephrectomy and sunitinib monotherapy, in patients with synchronous mRCC. Design, setting, and participants A randomized (2:1) phase 2 multicenter trial enrolled 88 patients with newly diagnosed mRCC to treatment with the combination ilixadencel/sunitinib (ILIXA/SUN; 58 patients) or sunitinib alone (SUN; 30 patients). Outcome measurements and statistical analysis The primary endpoints were 18-mo survival rate and overall survival (OS). A secondary endpoint was objective response rate (ORR) assessed up to 18 mo after enrollment. Statistic evaluations included Kaplan-Meier estimates, log-rank tests, Cox regression, and stratified Cochran-Mantel-Haenszel tests. Results and limitations The median OS was 35.6 mo in the ILIXA/SUN arm versus 25.3 mo in the SUN arm (hazard ratio 0.73, 95% confidence interval 0.42–1.27; p = 0.25), while the 18-mo OS rates were 63% and 66% in the ILIXA/SUN and SUN arms, respectively. The confirmed ORR in the ILIXA/SUN arm were 42.2% (19/45), including three patients with complete response, versus 24.0% (six/25) in the SUN arm (p = 0.13) without complete responses. The study was not adequately powered to detect modest differences in survival. Conclusions The study failed to meet its primary endpoints. However, ilixadencel in combination with sunitinib was associated with a numerically higher, nonsignificant, confirmed response rate, including complete responses, compared with sunitinib monotherapy. Patient summary We studied the effects of intratumoral vaccination with ilixadencel followed by sunitinib versus sunitinib only in a randomized phase 2 study. The combination treatment showed numerically higher numbers of confirmed responses, suggesting an immunologic effect.
Collapse
Affiliation(s)
- Magnus Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
- Corresponding author. Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala University, Akademiska sjukhuset, Entrance 100/101, 751 85 Uppsala, Sweden. Tel. +46 (0) 768434455.
| | - Anna Laurell
- Department of Oncology, Akademiska University Hospital, Uppsala, Sweden
| | - Anders Kjellman
- Department of Urology, CLINTEC, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bohuslav Melichar
- Department of Urology and Urological Oncology, Wojewodzki Szpital Specjalistyczny im. Stefana Kardynała Wyszyńskiego, Lublin, Poland
| | | | - Henryk Zieliński
- Clinical Urology, Military Institute of Medicine, Warsaw, Poland
| | | | - Pierre Bigot
- Department of Urology, Centre Hospitalier Universitaire d'Angers, Angers Cedex, France
| | - Bajory Zoltan
- Szent-Györgyi Albert Klinikai Központ, Szegedi Tudomanyegyetem Altalanos Ovostudomanyi Kar Urologiai Klinika, Szeged, Hungary
| | - Omi Parikh
- Rosemere Cancer Centre, Royal Preston Hospital, Preston, UK
| | - David Vazquez Alba
- Servicio de Urología, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Åsa Jellvert
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tibor Flaskó
- Department of Urology, Medical School, University of Debrecen, Debrecen, Hungary
| | - Enrique Gallardo
- Oncology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | | | - Gunta Purkalne
- Oncology Clinic, Pauls Stradins Clinical University Hospital, Rīga, Latvia
| | | | - Alex Karlsson-Parra
- Immunicum AB, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| |
Collapse
|
240
|
Lagan J, Naish JH, Fortune C, Campbell C, Chow S, Pillai M, Bradley J, Francis L, Clark D, Macnab A, Nucifora G, Dobson R, Schelbert EB, Schmitt M, Hawkins R, Miller CA. Acute and Chronic Cardiopulmonary Effects of High Dose Interleukin-2 Therapy: An Observational Magnetic Resonance Imaging Study. Diagnostics (Basel) 2022; 12:diagnostics12061352. [PMID: 35741162 PMCID: PMC9221588 DOI: 10.3390/diagnostics12061352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
High dose interleukin-2 (IL-2) is known to be associated with cardiopulmonary toxicity. The goal of this study was to evaluate the effects of high dose IL-2 therapy on cardiopulmonary structure and function. Combined cardiopulmonary magnetic resonance imaging (MRI) was performed in 7 patients in the acute period following IL-2 therapy and repeated in 4 patients in the chronic period. Comparison was made to 10 healthy volunteers. IL-2 therapy was associated with myocardial and pulmonary capillary leak, tissue oedema and cardiomyocyte injury, which resulted in acute significant left ventricular (LV) dilatation, a reduction in LV ejection fraction (EF), an increase in LV mass and a prolongation of QT interval. The acute effects occurred irrespective of symptoms. In the chronic period many of the effects resolved, but LV hypertrophy ensued, driven by focal replacement and diffuse interstitial myocardial fibrosis and increased cardiomyocyte mass. In conclusion, IL-2 therapy is ubiquitously associated with acute cardiopulmonary inflammation, irrespective of symptoms, which leads to acute LV dilatation and dysfunction, increased LV mass and QT interval prolongation. Most of these effects are reversible but IL-2 therapy is associated with chronic LV hypertrophy, driven by interstitial myocardial fibrosis and increased cardiomyocyte mass. The findings have important implications for the monitoring and long term impact of newer immunotherapies. Future studies are needed to improve risk stratification and develop cardiopulmonary-protective strategies.
Collapse
Affiliation(s)
- Jakub Lagan
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; (J.L.); (C.F.); (J.B.); (L.F.); (D.C.); (A.M.); (G.N.); (M.S.)
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Josephine H. Naish
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Christien Fortune
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; (J.L.); (C.F.); (J.B.); (L.F.); (D.C.); (A.M.); (G.N.); (M.S.)
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Christopher Campbell
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK; (C.C.); (S.C.); (M.P.); (R.H.)
| | - Shien Chow
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK; (C.C.); (S.C.); (M.P.); (R.H.)
- The Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, Bebingtonm CH63 4JY, UK
| | - Manon Pillai
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK; (C.C.); (S.C.); (M.P.); (R.H.)
| | - Joshua Bradley
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; (J.L.); (C.F.); (J.B.); (L.F.); (D.C.); (A.M.); (G.N.); (M.S.)
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Lenin Francis
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; (J.L.); (C.F.); (J.B.); (L.F.); (D.C.); (A.M.); (G.N.); (M.S.)
| | - David Clark
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; (J.L.); (C.F.); (J.B.); (L.F.); (D.C.); (A.M.); (G.N.); (M.S.)
| | - Anita Macnab
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; (J.L.); (C.F.); (J.B.); (L.F.); (D.C.); (A.M.); (G.N.); (M.S.)
| | - Gaetano Nucifora
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; (J.L.); (C.F.); (J.B.); (L.F.); (D.C.); (A.M.); (G.N.); (M.S.)
| | - Rebecca Dobson
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Drive, Liverpool L14 3PE, UK;
| | - Erik B. Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA 15213, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthias Schmitt
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; (J.L.); (C.F.); (J.B.); (L.F.); (D.C.); (A.M.); (G.N.); (M.S.)
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Robert Hawkins
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK; (C.C.); (S.C.); (M.P.); (R.H.)
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Christopher A. Miller
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; (J.L.); (C.F.); (J.B.); (L.F.); (D.C.); (A.M.); (G.N.); (M.S.)
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-161-291-2034; Fax: +44-161-291-2389
| |
Collapse
|
241
|
Xiang Y, Zheng G, Zhong J, Sheng J, Qin H. Advances in Renal Cell Carcinoma Drug Resistance Models. Front Oncol 2022; 12:870396. [PMID: 35619895 PMCID: PMC9128023 DOI: 10.3389/fonc.2022.870396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Systemic therapy is the preferred method to eliminate residual cancer cells after surgery and prolong the survival of patients with inoperable RCC. A variety of molecular targeted and immunological therapies have been developed to improve the survival rate and prognosis of RCC patients based on their chemotherapy-resistant properties. However, owing to tumor heterogeneity and drug resistance, targeted and immunological therapies lack complete and durable anti-tumor responses; therefore, understanding the mechanisms of systemic therapy resistance and improving clinical curative effects in the treatment of RCC remain challenging. In vitro models with traditional RCC cell lines or primary cell culture, as well as in vivo models with cell or patient-derived xenografts, are used to explore the drug resistance mechanisms of RCC and screen new targeted therapeutic drugs. Here, we review the established methods and applications of in vivo and in vitro RCC drug resistance models, with the aim of improving our understanding of its resistance mechanisms, increasing the efficacy of combination medications, and providing a theoretical foundation for the development and application of new drugs, drug screening, and treatment guidelines for RCC patients.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Jianfeng Zhong
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
242
|
Feng C, Lyu Y, Gong L, Wang J. Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review. Nutrients 2022; 14:nu14112274. [PMID: 35684073 PMCID: PMC9182762 DOI: 10.3390/nu14112274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common cancer of the urinary system. The potential therapeutic effects of certain natural products against renal cell carcinoma have been reported both in vivo and in vitro, but no reviews have been published classifying and summarizing the mechanisms of action of various natural products. In this study, we used PubMed and Google Scholar to collect and screen the recent literature on natural products with anti-renal-cancer effects. The main mechanisms of action of these products include the induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis and reduction of drug resistance. In total, we examined more than 30 natural products, which include kahweol acetate, honokiol, englerin A and epigallocatechin-3-gallate, among others, have demonstrated a variety of anti-renal-cancer effects. In conclusion, natural products may have a wider application in kidney cancer than previously believed and are potential candidates for treatment in RCC.
Collapse
Affiliation(s)
- Chenchen Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yinfeng Lyu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Correspondence:
| |
Collapse
|
243
|
Apolo AB, Msaouel P, Niglio S, Simon N, Chandran E, Maskens D, Perez G, Ballman KV, Weinstock C. Evolving Role of Adjuvant Systemic Therapy for Kidney and Urothelial Cancers. Am Soc Clin Oncol Educ Book 2022; 42:1-16. [PMID: 35609225 DOI: 10.1200/edbk_350829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of adjuvant therapy in renal cell carcinoma and urothelial carcinoma is rapidly evolving. To date, the U.S. Food and Drug Administration has approved sunitinib and pembrolizumab in the adjuvant setting for renal cell carcinoma and nivolumab for urothelial carcinoma based on disease-free survival benefit. The U.S. Food and Drug Administration held a joint workshop with the National Cancer Institute and the Society of Urologic Oncology in 2017 to harmonize design elements, including eligibility and radiologic assessments across adjuvant trials in renal cell carcinoma and urothelial carcinoma. Considerations from the discussion at these workshops led the U.S. Food and Drug Administration to draft guidances to help inform subsequent adjuvant trial design for renal cell carcinoma and urothelial carcinoma. Patient-centered decision-making is crucial when determining therapeutic choices in the adjuvant setting; utility functions can be used to help quantify each patient's goals, values, and risk/benefit trade-offs to ensure that the decision regarding adjuvant therapy is informed by their preferences and the evolving outcomes data.
Collapse
Affiliation(s)
- Andrea B Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Scot Niglio
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nicholas Simon
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elias Chandran
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Deborah Maskens
- Patient Advocate, International Kidney Cancer Coalition Kidney Cancer Canada, Mississauga, ON, Canada
| | - Gabriela Perez
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Karla V Ballman
- Division of Biostatistics, Weill Cornell Medicine, New York, NY
| | - Chana Weinstock
- Division of Oncology 1, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
244
|
Dong K, Gu D, Shi J, Bao Y, Fu Z, Fang Y, Qu L, Zhu W, Jiang A, Wang L. Identification and Verification of m 7G Modification Patterns and Characterization of Tumor Microenvironment Infiltration via Multi-Omics Analysis in Clear Cell Renal Cell Carcinoma. Front Immunol 2022; 13:874792. [PMID: 35592316 PMCID: PMC9113293 DOI: 10.3389/fimmu.2022.874792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
The epigenetic modification of tumorigenesis and progression in neoplasm has been demonstrated in recent studies. Nevertheless, the underlying association of N7-methylguanosine (m7G) regulation with molecular heterogeneity and tumor microenvironment (TME) in clear cell renal cell carcinoma (ccRCC) remains unknown. We explored the expression profiles and genetic variation features of m7G regulators and identified their correlations with patient outcomes in pan-cancer. Three distinct m7G modification patterns, including MGCS1, MGCS2, and MGCS3, were further determined and systematically characterized via multi-omics data in ccRCC. Compared with the other two subtypes, patients in MGCS3 exhibited a lower clinical stage/grade and better prognosis. MGCS1 showed the lowest enrichment of metabolic activities. MGCS2 was characterized by the suppression of immunity. We then established and validated a scoring tool named m7Sig, which could predict the prognosis of ccRCC patients. This study revealed that m7G modification played a vital role in the formation of the tumor microenvironment in ccRCC. Evaluating the m7G modification landscape helps us to raise awareness and strengthen the understanding of ccRCC’s characterization and, furthermore, to guide future clinical decision making.
Collapse
Affiliation(s)
- Kai Dong
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Di Gu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiazi Shi
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yewei Bao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhibin Fu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wentong Zhu
- School of Chinese Medicine, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
245
|
High-Concentration Metformin Reduces Oxidative Stress Injury and Inhibits the Growth and Migration of Clear Cell Renal Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1466991. [PMID: 35592685 PMCID: PMC9113878 DOI: 10.1155/2022/1466991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/21/2022]
Abstract
Objective To explore the mechanism of metformin in treating CCRCC. Methods Prospective cohort study was conducted. SOD and cyclin D in six CCRCC samples donated by volunteers were detected to compare the degree of oxidative stress injury and the status of cell proliferation. 786-0 CCRCC cells were cultured in vitro with different concentrations of metformin, and MTT assay and Transwell cell migration and wound healing assay were used to detect their proliferation and migration. After culture, SOD and cyclin D in 786-0 CCRCC cells were also detected. Results In the edge tissue, SOD was lower than in the tumor nest and normal tissue, and cyclin D was highly expressed. In grade II CCRCC, SOD was higher than in grade IV CCRCC, but cyclin D was also highly expressed in grade IV CCRCC. The cell proliferation rate and density of the metformin group were lower than the control group, while in the high-concentration metformin group, it was lower than medium- and low-concentration groups. After culture, the migration of 786-0 cells in the metformin group was significantly lower than that in the control group, the wound healing rate was decreased, and the migration and wound healing rates in the high-concentration metformin group were significantly lower than those in the medium- and low-concentration groups. However, the SOD of the metformin group was higher than the control group, but the cyclin D was lower, while the SOD was higher than medium- and low-concentration groups in the high-concentration group, but the cyclin D was lower after cultured. Conclusion High-concentration metformin can reduce oxidative stress injury, increase the expression of SOD in CCRCC, and reduce cyclin D in CCRCC to inhibit proliferation and migration, which has optimistic prospects and application value in controlling the progression of CCRCC.
Collapse
|
246
|
Chen Y, Lu Z, Qi C, Yu C, Li Y, Huan W, Wang R, Luo W, Shen D, Ding L, Ren L, Xie H, Xue D, Wang M, Ni K, Xia L, Qian J, Li G. N 6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol Cancer 2022; 21:111. [PMID: 35538475 PMCID: PMC9087993 DOI: 10.1186/s12943-022-01549-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sunitinib resistance can be classified into primary and secondary resistance. While accumulating research has indicated several underlying factors contributing to sunitinib resistance, the precise mechanisms in renal cell carcinoma are still unclear. Methods RNA sequencing and m6A sequencing were used to screen for functional genes involved in sunitinib resistance. In vitro and in vivo experiments were carried out and patient samples and clinical information were obtained for clinical analysis. Results We identified a tumor necrosis factor receptor-associated factor, TRAF1, that was significantly increased in sunitinib-resistant cells, resistant cell-derived xenograft (CDX-R) models and clinical patients with sunitinib resistance. Silencing TRAF1 increased sunitinib-induced apoptotic and antiangiogenic effects. Mechanistically, the upregulated level of TRAF1 in sunitinib-resistant cells was derived from increased TRAF1 RNA stability, which was caused by an increased level of N6-methyladenosine (m6A) in a METTL14-dependent manner. Moreover, in vivo adeno-associated virus 9 (AAV9) -mediated transduction of TRAF1 suppressed the sunitinib-induced apoptotic and antiangiogenic effects in the CDX models, whereas knockdown of TRAF1 effectively resensitized the sunitinib-resistant CDXs to sunitinib treatment. Conclusions Overexpression of TRAF1 promotes sunitinib resistance by modulating apoptotic and angiogenic pathways in a METTL14-dependent manner. Targeting TRAF1 and its pathways may be a novel pharmaceutical intervention for sunitinib-treated patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01549-1.
Collapse
Affiliation(s)
- Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Chao Qi
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Chenhao Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Wang Huan
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Danyang Shen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Liangliang Ren
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Kangxin Ni
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China.
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China.
| |
Collapse
|
247
|
Yang J, Zhou Y, Li Y, Hu W, Yuan C, Chen S, Ye G, Chen Y, Wu Y, Liu J, Wang Y, Du J, Tong X. Functional deficiency of succinate dehydrogenase promotes tumorigenesis and development of clear cell renal cell carcinoma through weakening of ferroptosis. Bioengineered 2022; 13:11187-11207. [PMID: 35510387 PMCID: PMC9278435 DOI: 10.1080/21655979.2022.2062537] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal carcinomas, with high mortality and poor prognoses worldwide. Succinate dehydrogenase (SDH) consists of four nuclear-encoded subunits and it is the only complex involved in both the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Previous studies have shown decreased SDH activity in ccRCC. However, the role and underlying molecular mechanisms of SDH in ccRCC initiation and development remain unclear. In the present study, pan-cancer analysis of SDH gene expression was analyzed and the relationship between SDH gene expression and clinicopathological parameters was assessed using different databases. cBioPortal, UACLAN, and Tumor Immune Estimation Resource (TIMER) were subsequently utilized to analyze genetic alterations, methylation, and immune cell infiltration of SDH genes in ccRCC patients. We found SDHs were significantly downregulated in ccRCC tissues and correlated with ccRCC progression. Increased methylation and high SDH promoter mutation rates may be the cause of reduced expression of SDHs in ccRCC. Moreover, the interaction network showed that SDH genes were correlated with ferroptosis-related genes. We further demonstrated that SDH inhibition dampened oxidative phosphorylation, reduced ferroptotic events, and restored ferroptotic cell death, characterized by eliminated mitochondrial ROS levels, decreased cellular ROS and diminished peroxide accumulation. Collectively, this study provides new insights into the regulatory role of SDH in the carcinogenesis and progression of ccRCC, introducing a potential target for advanced antitumor therapy through ferroptosis.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wanye Hu
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Chen Yuan
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Shida Chen
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yuzhou Chen
- Pittsburgh Institute, Sichuan University, Chengdu, Sichuan, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jing Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.,Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
248
|
Zeng X, Chen K, Li L, Tian J, Ruan W, Hu Z, Peng D, Chen Z. Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radic Biol Med 2022; 184:135-147. [PMID: 35381326 DOI: 10.1016/j.freeradbiomed.2022.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/09/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common kidney malignancy that is characterized by poor prognosis. RNA-binding motif protein 15 (RBM15) has been identified as an oncogene in multiple tumors. Nevertheless, the function and mechanism of RBM15 in ccRCC are not clear. In this study, RBM15 was found to be upregulated in ccRCC cells and tissues. RBM15 enhanced the proliferation, clone formation, migration, invasion and epithelial-interstitial transition of ccRCC cells. Enhanced RBM15 was caused by the abundant histone 3 acetylation modification of the RBM15 promoter induced by EP300/CBP. RBM15 enhanced the stability of CXCL11 mRNA in an m6A-dependent manner. Moreover, RBM15 was found to promote macrophage infiltration and M2 polarization by promoting the secretion of CXCL11 in ccRCC cells in vitro and in vivo. Our findings highlight the function of RBM15 in ccRCC and reveal a novel identified EP300/CBP-RBM15-CXCL11 signaling axis, which promotes ccRCC progression and provides new insight into ccRCC therapy.
Collapse
Affiliation(s)
- Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jihua Tian
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weiqiang Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dan Peng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
249
|
Li M, He M, Xu F, Guan Y, Tian J, Wan Z, Zhou H, Gao M, Chong T. Abnormal expression and the significant prognostic value of aquaporins in clear cell renal cell carcinoma. PLoS One 2022; 17:e0264553. [PMID: 35245343 PMCID: PMC8896691 DOI: 10.1371/journal.pone.0264553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/12/2022] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are a kind of transmembrane proteins that exist in various organs of the human body. AQPs play an important role in regulating water transport, lipid metabolism and glycolysis of cells. Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the kidney, and the prognosis is worse than other types of renal cell cancer (RCC). The impact of AQPs on the prognosis of ccRCC and the potential relationship between AQPs and the occurrence and development of ccRCC are demanded to be investigated. In this study, we first explored the expression pattern of AQPs by using Oncomine, UALCAN, and HPA databases. Secondly, we constructed protein-protein interaction (PPI) network and performed function enrichment analysis through STRING, GeneMANIA, and Metascape. Then a comprehensive analysis of the genetic mutant frequency of AQPs in ccRCC was carried out using the cBioPortal database. In addition, we also analyzed the main enriched biological functions of AQPs and the correlation with seven main immune cells. Finally, we confirmed the prognostic value of AQPs throughGEPIA and Cox regression analysis. We found that the mRNA expression levels of AQP0/8/9/10 were up-regulated in patients with ccRCC, while those of AQP1/2/3/4/5/6/7/11 showed the opposite. Among them, the expression differences of AQP1/2/3/4/5/6/7/8/9/11 were statistically significant. The differences in protein expression levels of AQP1/2/3/4/5/6 in ccRCC and normal renal tissues were consistent with the change trends of mRNA. The biological functions of AQPs were mainly concentrated in water transport, homeostasis maintenance, glycerol transport, and intracellular movement of sugar transporters. The high mRNA expression levels of AQP0/8/9 were significantly correlated with worse overall survival (OS), while those of AQP1/4/7 were correlated with better OS. AQP0/1/4/9 were prognostic-related factors, and AQP1/9 were independent prognostic factors. In general, this research has investigated the values of AQPs in ccRCC, which could become new survival markers for ccRCC targeted therapy.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Minxin He
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Fangshi Xu
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yibing Guan
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Juanhua Tian
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ziyan Wan
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Haibin Zhou
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Mei Gao
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- * E-mail:
| |
Collapse
|
250
|
Kawakami I, Yoshino H, Fukumoto W, Tamai M, Okamura S, Osako Y, Sakaguchi T, Inoguchi S, Matsushita R, Yamada Y, Tatarano S, Nakagawa M, Enokida H. Targeting of the glutamine transporter SLC1A5 induces cellular senescence in clear cell renal cell carcinoma. Biochem Biophys Res Commun 2022; 611:99-106. [PMID: 35487063 DOI: 10.1016/j.bbrc.2022.04.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
In recent years, cancer metabolism has attracted attention as a therapeutic target, and glutamine metabolism is considered one of the most important metabolic processes in cancer. Solute carrier family 1 member 5 (SLC1A5) is a sodium channel that functions as a glutamine transporter. In various cancer types, SLC1A5 gene expression is enhanced, and cancer cell growth is suppressed by inhibition of SLC1A5. However, the involvement of SLC1A5 in clear cell renal cell carcinoma (ccRCC) is unclear. Therefore, in this study, we evaluated the clinical importance of SLC1A5 in ccRCC using The Cancer Genome Atlas database. Our findings confirmed that SLC1A5 was a prognosis factor for poor survival in ccRCC. Furthermore, loss-of-function assays using small interfering RNAs or an SLC1A5 inhibitor (V9302) in human ccRCC cell lines (A498 and Caki1) showed that inhibition of SLC1A5 significantly suppressed tumor growth, invasion, and migration. Additionally, inhibition of SLC1A5 by V9302 in vivo significantly suppressed tumor growth, and the antitumor effects of SLC1A5 inhibition were related to cellular senescence. Our findings may improve our understanding of ccRCC and the development of new treatment strategies for ccRCC.
Collapse
Affiliation(s)
- Issei Kawakami
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Wataru Fukumoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Motoki Tamai
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shunsuke Okamura
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoru Inoguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasutoshi Yamada
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|