201
|
Copur S, Tanriover C, Yavuz F, Soler MJ, Ortiz A, Covic A, Kanbay M. Novel strategies in nephrology: what to expect from the future? Clin Kidney J 2022; 16:230-244. [PMID: 36755838 PMCID: PMC9900595 DOI: 10.1093/ckj/sfac212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Chronic kidney disease (CKD) will become the fifth global case of death by 2040. Its largest impact is on premature mortality but the number of persons with kidney failure requiring renal replacement therapy (RRT) is also increasing dramatically. Current RRT is suboptimal due to the shortage of kidney donors and dismal outcomes associated with both hemodialysis and peritoneal dialysis. Kidney care needs a revolution. In this review, we provide an update on emerging knowledge and technologies that will allow an earlier diagnosis of CKD, addressing the current so-called blind spot (e.g. imaging and biomarkers), and improve renal replacement therapies (wearable artificial kidneys, xenotransplantation, stem cell-derived therapies, bioengineered and bio-artificial kidneys).
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Maria J Soler
- Department of Nephrology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Spain,Nephrology and Kidney Transplant Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital, and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | | |
Collapse
|
202
|
Huang W, Chen YY, Li ZQ, He FF, Zhang C. Recent Advances in the Emerging Therapeutic Strategies for Diabetic Kidney Diseases. Int J Mol Sci 2022; 23:ijms231810882. [PMID: 36142794 PMCID: PMC9506036 DOI: 10.3390/ijms231810882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common causes of end-stage renal disease worldwide. The treatment of DKD is strongly associated with clinical outcomes in patients with diabetes mellitus. Traditional therapeutic strategies focus on the control of major risk factors, such as blood glucose, blood lipids, and blood pressure. Renin–angiotensin–aldosterone system inhibitors have been the main therapeutic measures in the past, but the emergence of sodium–glucose cotransporter 2 inhibitors, incretin mimetics, and endothelin-1 receptor antagonists has provided more options for the management of DKD. Simultaneously, with advances in research on the pathogenesis of DKD, some new therapies targeting renal inflammation, fibrosis, and oxidative stress have gradually entered clinical application. In addition, some recently discovered therapeutic targets and signaling pathways, mainly in preclinical and early clinical trial stages, are expected to provide benefits for patients with DKD in the future. This review summarizes the traditional treatments and emerging management options for DKD, demonstrating recent advances in the therapeutic strategies for DKD.
Collapse
|
203
|
Sprangers B, Perazella MA, Lichtman SM, Rosner MH, Jhaveri KD. Improving Cancer Care for Patients With CKD: The Need for Changes in Clinical Trials. Kidney Int Rep 2022; 7:1939-1950. [PMID: 36090489 PMCID: PMC9458993 DOI: 10.1016/j.ekir.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
Chemotherapeutic agents used to treat cancer generally have narrow therapeutic indices along with potentially serious adverse toxicities. Many cancer drugs are at least partially excreted through the kidney and, thus, the availability of accurate data on safe and effective dosing of these drugs in patients with chronic kidney disease (CKD) is essential to guide treatment decisions. Typically, during drug development, initial clinical studies only include patients with normal or only mildly impaired kidney function. In subsequent preregistration studies, a limited number of patients with more severe kidney dysfunction are included. Data obtained from patients with either severe kidney dysfunction (here defined as an estimated glomerular filtration rate [eGFR] < 30 ml/min or stage 4G CKD) or end-stage kidney disease (ESKD) requiring kidney replacement treatment are particularly limited before drug registration and only a minority of new drug applications to the US Food and Drug Administration (FDA) include data from this population. Unfortunately, limited data and/or other safety concerns may result in a manufacturer statement that the drug is contraindicated in patients with advanced kidney disease, which hinders access to potentially beneficial drugs for these patients. This systemic exclusion of patients with CKD from cancer drug trials remains an unsolved problem, which prevents provision of optimal clinical care for these patients, raises questions of inclusion, diversity, and equity. In addition, with the aging of the population, there are increasing numbers of patients with CKD and cancer who face these issues. In this review, we evaluate the scientific basis to exclude patients with CKD from cancer trials and propose a comprehensive strategy to address this problem.
Collapse
Affiliation(s)
- Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Mark A. Perazella
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Stuart M. Lichtman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mitchell H. Rosner
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Kenar D. Jhaveri
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York, USA
| |
Collapse
|
204
|
Hypertension mediated kidney and cardiovascular damage and risk stratification: Redefining concepts. Nefrologia 2022. [DOI: 10.1016/j.nefro.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
205
|
Gales A, Monteiro-Pai S, Hyndman KA. Endothelin system expression in the kidney following cisplatin-induced acute kidney injury in male and female mice. Can J Physiol Pharmacol 2022; 100:868-879. [PMID: 35704945 PMCID: PMC9904337 DOI: 10.1139/cjpp-2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The chemotherapeutic agent cisplatin accumulates in the kidney and induces acute kidney injury (AKI). Preclinical and clinical studies suggest that young female mice and women show greater recovery from cisplatin-AKI compared to young male mice and men. The endothelin (ET) and ET receptors are enriched in the kidney and may be dysfunctional in cisplatin-AKI; however, there is a gap in our knowledge about the putative effects of sex and cisplatin on the renal ET system. We hypothesized that cisplatin-AKI male and female mice will have increased expression of the renal ET system. As expected, all cisplatin-AKI mice had kidney damage and body weight loss greater than control mice. Cisplatin-AKI mice had greater cortical Edn1, Edn3, Ednra, and Ednrb, while outer medullary Ednra was significantly suppressed in both sexes. Of the ∼25 000 genes sequenced from the inner medulla, only 91 genes (comparing saline mice) and 134 genes (comparing cisplatin-AKI mice) were differentially expressed and they were unrelated to the ET system. However, Edn1 was significantly greater in the inner medulla of male and female cisplatin-AKI mice. Thus, RNA profiles of the ET system were significantly affected by cisplatin-AKI throughout the kidney regardless of sex and this may help determine the therapeutic potential of targeting the ET receptors in cisplatin-AKI.
Collapse
Affiliation(s)
- Anabelle Gales
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sureena Monteiro-Pai
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kelly A. Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
206
|
Márquez DF, Rodríguez-Sánchez E, de la Morena JS, Ruilope LM, Ruiz-Hurtado G. Hypertension mediated kidney and cardiovascular damage and risk stratification: Redefining concepts. Nefrologia 2022; 42:519-530. [PMID: 36792306 DOI: 10.1016/j.nefroe.2021.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/18/2021] [Indexed: 06/18/2023] Open
Abstract
Hypertension mediated organ damage (HMOD) refers to structural or functional changes in arteries or target organs that can be present in long-standing hypertension, but it can be also found in naïve never treated patients. Traditionally, cardiovascular risk is stratified with charts or calculators that tend to underestimate the real cardiovascular risk. The diagnosis of HMOD automatically reclassifies patients to the highest level of cardiovascular risk. Subclinical HMOD can be present already at the diagnosis of hypertension and more than 25% of hypertensives are misclassified with the routine tests recommended by hypertension guidelines. Whether HMOD regression improves cardiovascular outcomes has never been investigated in randomized clinical trials and remains controversial. However, different drugs have been probed with promising results in high cardiovascular risk patients, such as the new antidiabetic or the novel non-steroid mineralocorticoid antagonists. Accordingly, trials have shown that lowering blood pressure reduces cardiovascular events. In this narrative review, we will discuss the role of HMOD in cardiovascular risk stratification, the different types of organ damage, and the evidence available to define whether HMOD can be used as a therapeutic target.
Collapse
Affiliation(s)
- Diego Francisco Márquez
- Unidad de Hipertensión Arterial-Servicio de Clínica Médica, Hospital San Bernardo, Salta, Argentina; Instituto de NefroUrología y Nutrición de Salta, Salta, Argentina
| | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12 and Hospital 12 de Octubre, Madrid, Spain
| | - Julián Segura de la Morena
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12 and Hospital 12 de Octubre, Madrid, Spain; Unidad de Hipertensión Arterial, Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis Miguel Ruilope
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12 and Hospital 12 de Octubre, Madrid, Spain; Unidad de Hipertensión Arterial, Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, Spain; Escuela de Estudios Postdoctorales and Investigación, Universidad Europea de Madrid, Madrid, Spain; CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12 and Hospital 12 de Octubre, Madrid, Spain; Unidad de Hipertensión Arterial, Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, Spain; CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
207
|
Pelle MC, Provenzano M, Busutti M, Porcu CV, Zaffina I, Stanga L, Arturi F. Up-Date on Diabetic Nephropathy. Life (Basel) 2022; 12:1202. [PMID: 36013381 PMCID: PMC9409996 DOI: 10.3390/life12081202] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes is one of the leading causes of kidney disease. Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease (ESKD) worldwide, and it is linked to an increase in cardiovascular (CV) risk. Diabetic nephropathy (DN) increases morbidity and mortality among people living with diabetes. Risk factors for DN are chronic hyperglycemia and high blood pressure; the renin-angiotensin-aldosterone system blockade improves glomerular function and CV risk in these patients. Recently, new antidiabetic drugs, including sodium-glucose transport protein 2 inhibitors and glucagon-like peptide-1 agonists, have demonstrated additional contribution in delaying the progression of kidney disease and enhancing CV outcomes. The therapeutic goal is regression of albuminuria, but an atypical form of non-proteinuric diabetic nephropathy (NP-DN) is also described. In this review, we provide a state-of-the-art evaluation of current treatment strategies and promising emerging treatments.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Clara Valentina Porcu
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Isabella Zaffina
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Stanga
- Oncology Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
208
|
Stuart D, Peterson CS, Hu C, Revelo MP, Huang Y, Kohan DE, Ramkumar N. Lack of renoprotective effects of targeting the endothelin A receptor and (or) sodium glucose transporter 2 in a mouse model of Type 2 diabetic kidney disease. Can J Physiol Pharmacol 2022; 100:763-771. [PMID: 35531905 DOI: 10.1139/cjpp-2022-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two recent clinical trials, using sodium glucose cotransporter (SGLT2) or endothelin-A receptor (ET-A) blocker, reported the first efficacious treatments in 18 years to slow progression of diabetic kidney disease (DKD). We hypothesized that combined inhibition of SGLT2 and ET-A receptor may confer greater protection against renal injury than either agent alone. Uninephrectomized male db/db mice were randomized to four groups: vehicle, SGLT2 inhibitor (dapagliflozin (dapa), 1 mg/kg/day), ET-A blocker (atrasentan (atra), 5 mg/kg/day), or dual treatment from 10 weeks until 22 weeks of age. At 10 weeks of age, no differences were observed in body weight, blood glucose or urinary albumin excretion among the four groups. At 16 and 22 weeks of age, body weight was lower and blood glucose levels higher in the vehicle and atra groups compared with dapa- and dual-treated groups. No notable differences were observed among the four groups in urinary albumin excretion at weeks 16 and 22. Histological analysis showed mild glomerulosclerosis and tubular injury (<5%) in all four groups with reduced glomerulosclerosis in the dual treatment group compared with vehicle. Individual or combined treatment with an SGLT2 inhibitor and (or) an ET-A antagonist did not confer renoprotective effects in this model.
Collapse
Affiliation(s)
- Deborah Stuart
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Caitlin S Peterson
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Chunyan Hu
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah Health, Salt Lake City, UT 84112, USA
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Donald E Kohan
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Nirupama Ramkumar
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| |
Collapse
|
209
|
Stapel JR, Speed JS, Clemmer JS. Endothelin antagonism reduces hemoglobin A1c in patients with pulmonary hypertension. Can J Physiol Pharmacol 2022; 100:828-833. [PMID: 35658576 PMCID: PMC9851169 DOI: 10.1139/cjpp-2022-0132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our lab recently reported that the blockade of endothelin-1 (ET-1) receptors attenuates insulin resistance in obese mice; therefore, we hypothesized that patients taking ET-1 receptor antagonists (ERAs) will have improved glycemic control. University of Mississippi Medical Center (2013-2020) electronic health record (EPIC) data were extracted from patients ≥18 years old with a clinical diagnosis of pulmonary hypertension (Food and Drug Administration indication for ERA use) and at least two clinical visits within 2 years. Patients prescribed ERAs (n = 11) were similar in age (61 ± 14 years vs. 60 ± 14 years), body mass index (BMI) (34 ± 8 kg/m 2 vs. 35 ± 11 kg/m2), diabetes prevalence (73% vs. 80%, p = 0.59), and follow-up time (209 ± 74 days vs. 283 ± 180 days) compared with patients not taking ERAs (n = 137). There was a small but similar decrease in BMI at follow-up in the ERA (-1.9 ± 3 kg/m2) and control patients (-1.6 ± 5 kg/m2). At follow-up, hemoglobin A1c (HbA1c) significantly decreased -12% ± 11% of baseline in patients taking ERAs, while this did not occur in the control patients (2% ± 20% increase in HbA1c). In the whole population, baseline HbA1c and ERA prescription predicted the fall in HbA1c, while there was no significant association with demographics, diabetes prevalence, and diabetic treatment. These data suggest a potential role of ET-1 in promoting insulin resistance and warrant further investigation into using these drugs for glycemic control.
Collapse
Affiliation(s)
- Jennifer R. Stapel
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Joshua S. Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John S. Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
210
|
Singh AK, Singh R. Renin-angiotensin system blockers-SGLT2 inhibitors-mineralocorticoid receptor antagonists in diabetic kidney disease: A tale of the past two decades! World J Diabetes 2022; 13:471-481. [PMID: 36051422 PMCID: PMC9329844 DOI: 10.4239/wjd.v13.i7.471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/19/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Several pharmacological agents to prevent the progression of diabetic kidney disease (DKD) have been tested in patients with type 2 diabetes mellitus (T2DM) in the past two decades. With the exception of renin-angiotensin system blockers that have shown a significant reduction in the progression of DKD in 2001, no other pharmacological agent tested in the past two decades have shown any clinically meaningful result. Recently, the sodium-glucose cotransporter-2 inhibitor (SGLT-2i), canagliflozin, has shown a significant reduction in the composite of hard renal and cardiovascular (CV) endpoints including progression of end-stage kidney disease in patients with DKD with T2DM at the top of renin-angiotensin system blocker use. Another SGLT-2i, dapagliflozin, has also shown a significant reduction in the composite of renal and CV endpoints including death in patients with chronic kidney disease (CKD), regardless of T2DM status. Similar positive findings on renal outcomes were recently reported as a top-line result of the empagliflozin trial in patients with CKD regardless of T2DM. However, the full results of this trial have not yet been published. While the use of older steroidal mineralocorticoid receptor antagonists (MRAs) such as spironolactone in DKD is associated with a significant reduction in albuminuria outcomes, a novel non-steroidal MRA finerenone has additionally shown a significant reduction in the composite of hard renal and CV endpoints in patients with DKD and T2DM, with reasonably acceptable side effects.
Collapse
Affiliation(s)
- Awadhesh Kumar Singh
- Department of Diabetes & Endocrinology, G.D Hospital & Diabetes Institute, Kolkata 700013, West Bengal, India
| | - Ritu Singh
- Department of Diabetes & Endocrinology, G.D Hospital & Diabetes Institute, Kolkata 700013, West Bengal, India
| |
Collapse
|
211
|
Kuczmarski AV, Welti LM, Moreau KL, Wenner MM. ET-1 as a Sex-Specific Mechanism Impacting Age-Related Changes in Vascular Function. FRONTIERS IN AGING 2022; 2:727416. [PMID: 35822003 PMCID: PMC9261354 DOI: 10.3389/fragi.2021.727416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/13/2021] [Indexed: 01/30/2023]
Abstract
Aging is a primary risk factor for cardiovascular disease (CVD), which is the leading cause of death in developed countries. Globally, the population of adults over the age of 60 is expected to double by the year 2050. CVD prevalence and mortality rates differ between men and women as they age in part due to sex-specific mechanisms impacting the biological processes of aging. Measures of vascular function offer key insights into cardiovascular health. Changes in vascular function precede changes in CVD prevalence rates in men and women and with aging. A key mechanism underlying these changes in vascular function is the endothelin (ET) system. Studies have demonstrated sex and sex hormone effects on endothelin-1 (ET-1), and its receptors ETA and ETB. However, with aging there is a dysregulation of this system resulting in an imbalance between vasodilation and vasoconstriction. Thus, ET-1 may play a role in the sex differences observed with vascular aging. While most research has been conducted in pre-clinical animal models, we describe more recent translational data in humans showing that the ET system is an important regulator of vascular dysfunction with aging and acts through sex-specific ET receptor mechanisms. In this review, we present translational evidence (cell, tissue, animal, and human) that the ET system is a key mechanism regulating sex-specific changes in vascular function with aging, along with therapeutic interventions to reduce ET-mediated vascular dysfunction associated with aging. More knowledge on the factors responsible for the sex differences with vascular aging allow for optimized therapeutic strategies to attenuate CVD risk in the expanding aging population.
Collapse
Affiliation(s)
- Andrew V Kuczmarski
- University of Delaware, Kinesiology and Applied Physiology, Newark, DE, United States
| | - Laura M Welti
- University of Delaware, Kinesiology and Applied Physiology, Newark, DE, United States
| | - Kerrie L Moreau
- University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Denver Veterans Administrative Medical Center, Geriatric Research Education and Clinical Center, Aurora, CO, United States
| | - Megan M Wenner
- University of Delaware, Kinesiology and Applied Physiology, Newark, DE, United States
| |
Collapse
|
212
|
McGill JB, Haller H, Roy-Chaudhury P, Cherrington A, Wada T, Wanner C, Ji L, Rossing P. Making an impact on kidney disease in people with type 2 diabetes: the importance of screening for albuminuria. BMJ Open Diabetes Res Care 2022; 10:e002806. [PMID: 35790319 PMCID: PMC9258490 DOI: 10.1136/bmjdrc-2022-002806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Albuminuria is useful for early screening and diagnosis of kidney impairment, especially in people with pre-diabetes or type 2 diabetes (T2D), which is the leading cause of chronic kidney disease (CKD) and end-stage kidney disease (ESKD), associated with increased mortality, poor cardiovascular outcomes, and high economic burden. Identifying patients with CKD who are most likely to progress to ESKD permits timely implementation of appropriate interventions. The early stages of CKD are asymptomatic, which means identification of CKD relies on routine assessment of kidney damage and function. Both albuminuria and estimated glomerular filtration rate are measures of kidney function. This review discusses albuminuria as a marker of kidney damage and cardiorenal risk, highlights the importance of early screening and routine testing for albuminuria in people with T2D, and provides new insights on the optimum management of CKD in T2D using albuminuria as a target in a proposed algorithm. Elevated urine albumin can be used to detect CKD in people with T2D and monitor its progression; however, obstacles preventing early detection exist, including lack of awareness of CKD in the general population, poor adherence to clinical guidelines, and country-level variations in screening and treatment incentives. With albuminuria being used as an entry criterion and a surrogate endpoint for kidney failure in clinical trials, and with novel treatment interventions available to prevent CKD progression, there is an urgent need for early screening and diagnosis of kidney function decline in people with T2D or pre-diabetes.
Collapse
Affiliation(s)
- Janet B McGill
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Prabir Roy-Chaudhury
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Department of Medicine, WG Hefner VA Medical Center, Salisbury, North Carolina, USA
| | - Andrea Cherrington
- Division of Preventive Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Christoph Wanner
- Division of Nephrology and Hypertension, University Hospital of Würzburg, Würzburg, Germany
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
213
|
Ravikumar NPG, Pao AC, Raphael KL. Acid-Mediated Kidney Injury Across the Spectrum of Metabolic Acidosis. Adv Chronic Kidney Dis 2022; 29:406-415. [PMID: 36175078 DOI: 10.1053/j.ackd.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/25/2023]
Abstract
Metabolic acidosis affects about 15% of patients with chronic kidney disease. As kidney function declines, the kidneys progressively fail to eliminate acid, primarily reflected by a decrease in ammonium and titratable acid excretion. Several studies have shown that the net acid load remains unchanged in patients with reduced kidney function; the ensuing acid accumulation can precede overt metabolic acidosis, and thus, indicators of urinary acid or potential base excretion, such as ammonium and citrate, may serve as early signals of impending metabolic acidosis. Acid retention, with or without overt metabolic acidosis, initiates compensatory responses that can promote tubulointerstitial fibrosis via intrarenal complement activation and upregulation of endothelin-1, angiotensin II, and aldosterone pathways. The net effect is a cycle between acid accumulation and kidney injury. Results from small- to medium-sized interventional trials suggest that interrupting this cycle through base administration can prevent further kidney injury. While these findings inform current clinical practice guidelines, large-scale clinical trials are still necessary to prove that base therapy can limit chronic kidney disease progression or associated adverse events.
Collapse
Affiliation(s)
- Naveen P G Ravikumar
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR; Veterans Affairs Portland Health Care System, Portland, OR
| | - Alan C Pao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Kalani L Raphael
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR; Veterans Affairs Portland Health Care System, Portland, OR.
| |
Collapse
|
214
|
Feng G, Byrne CD, Targher G, Wang F, Zheng MH. Ferroptosis and metabolic dysfunction-associated fatty liver disease: Is there a link? Liver Int 2022; 42:1496-1502. [PMID: 35007392 DOI: 10.1111/liv.15163] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), recently re-defined and re-classified as metabolic dysfunction-associated fatty liver disease (MAFLD), has become increasingly prevalent and emerged as a public health problem worldwide. To date, the precise pathogenic mechanisms underpinning MAFLD are not entirely understood, and there is no effective pharmacological therapy for NAFLD/MAFLD. As a newly discovered form of iron-dependent programmed cell death, ferroptosis can be involved in the development and progression of various chronic diseases, but the pathogenic connections and mechanisms that link MAFLD and ferroptosis have not been fully elucidated. The main characteristics of ferroptosis are the accumulation of lipid peroxides and reactive oxygen species. In this brief narrative review, the mechanisms of ferroptosis and its putative pathogenic role in MAFLD are discussed to highlight potential new research directions and ideas for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Gong Feng
- Xi'an Medical University, Xi'an, China
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
215
|
Neuen BL, Inker LA, Vaduganathan M. Endothelin Receptor Antagonists and Risk of Heart Failure in CKD: Balancing the Cardiorenal Axis. JACC. HEART FAILURE 2022; 10:508-511. [PMID: 35772862 DOI: 10.1016/j.jchf.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Brendon L Neuen
- George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia; Department of Renal Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia.
| | - Lesley A Inker
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Muthiah Vaduganathan
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
216
|
Smeijer JD, Koomen J, Kohan DE, McMurray JJV, Bakris GL, Correa-Rotter R, Hou FF, Januzzi JL, Kitzman DW, Kolansky DM, Makino H, Perkovic V, Tobe S, Parving HH, de Zeeuw D, Heerspink HJL. Increase in BNP in Response to Endothelin-Receptor Antagonist Atrasentan Is Associated With Incident Heart Failure. JACC. HEART FAILURE 2022; 10:498-507. [PMID: 35772861 DOI: 10.1016/j.jchf.2022.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The endothelin receptor antagonist atrasentan reduced the risk of kidney failure in patients with type 2 diabetes mellitus and chronic kidney disease (CKD) in the SONAR (Study of Diabetic Nephropathy with Atrasentan) trial, although with a numerically higher incidence of heart failure (HF) hospitalization. OBJECTIVES The purpose of this study was to assess if early changes in B-type natriuretic peptide (BNP) and body weight during atrasentan treatment predict HF risk. METHODS Participants with type 2 diabetes and CKD entered an open-label enrichment phase to assess response to atrasentan 0.75 mg/day. Participants without substantial fluid retention (>3 kg body weight increase or BNP increase to >300 pg/mL), were randomized to atrasentan 0.75 mg/day or placebo. Cox proportional hazards regression was used to assess the effects of atrasentan vs placebo on the prespecified safety outcome of HF hospitalizations. RESULTS Among 3,668 patients, 73 (4.0%) participants in the atrasentan and 51 (2.8%) in the placebo group developed HF (HR: 1.39; 95% CI: 0.97-1.99; P = 0.072). In a multivariable analysis, HF risk was associated with higher baseline BNP (HR: 2.32; 95% CI: 1.81-2.97) and percent increase in BNP during response enrichment (HR: 1.46; 95% CI: 1.08-1.98). Body weight change was not associated with HF. Exclusion of patients with at least 25% BNP increase during enrichment attenuated the risk of HF with atrasentan (HR: 1.02; 95% CI: 0.66-1.56) while retaining nephroprotective effects (HR: 0.58; 95% CI: 0.44-0.78). CONCLUSIONS In patients with type 2 diabetes and CKD, baseline BNP and early changes in BNP in response to atrasentan were associated with HF hospitalization, highlighting the importance of natriuretic peptide monitoring upon initiation of atrasentan treatment. (Study Of Diabetic Nephropathy With Atrasentan [SONAR]; NCT01858532).
Collapse
Affiliation(s)
- J David Smeijer
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Jeroen Koomen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah, USA
| | - John J V McMurray
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - George L Bakris
- American Society of Hypertension Comprehensive Hypertension Center, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Ricardo Correa-Rotter
- National Medical Science and Nutrition Institute Salvador Zubirán, Mexico City, Mexico
| | - Fan-Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, Guangzhou, China
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | - Dalane W Kitzman
- Sections on Cardiovascular Disease and Geriatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Daniel M Kolansky
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Vlado Perkovic
- George Institute for Global Health, Newtown, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Sheldon Tobe
- Division of Nephrology, Sunnybrook Health Sciences Centre, University of Toronto and the Northern Ontario School of Medicine, Toronto, Ontario, Canada
| | - Hans-Henrik Parving
- Department of Medical Endocrinology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Dick de Zeeuw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands; George Institute for Global Health, Newtown, Australia.
| |
Collapse
|
217
|
Albumin-induced premature senescence in human renal proximal tubular cells and its relationship with intercellular fibrosis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:893-903. [PMID: 35713317 PMCID: PMC9828402 DOI: 10.3724/abbs.2022055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The presence of senescent cells is associated with renal fibrosis. This study aims to investigate the effect of albumin-induced premature senescence on tubulointerstitial fibrosis and its possible mechanism in vitro. Different concentrations of bovine serum albumim (BSA) with or without si-p21 are used to stimulate HK-2 cells for 72 h, and SA-β-gal activity, senescence-associated secretory phenotypes (SASPs), LaminB1 are used as markers of senescence. Immunofluorescence staining is performed to characterize the G2/M phase arrest between the control and BSA groups. Alterations in the DNA damage marker γ-H2AX, fibrogenesis, and associated proteins at the G2/M phase, such as p21, p-CDC25C and p-CDK1, are evaluated. Compared with those in the control group, the SA-β-gal activity, SASP, and γ-H2AX levels are increased in the BSA group, while the level of LaminB1 is decreased. Meanwhile, HK-2 cells blocked at the G2/M phase are significantly increased under the stimulation of BSA, and the levels of p21, p-CDC25C and p-CDK1, as well as fibrogenesis are also increased. When p21 expression is inhibited, the levels of p-CDC25C and p-CDK1 are decreased and the G2/M phase arrest is improved, which decreases the production of fibrogenesis. In conclusion, BSA induces renal tubular epithelial cell premature senescence, which regulates the G2/M phase through the CDC25C/CDK1 pathway, leading to tubulointerstitial fibrosis.
Collapse
|
218
|
Schechter M, Melzer Cohen C, Yanuv I, Rozenberg A, Chodick G, Bodegård J, Leiter LA, Verma S, Lambers Heerspink HJ, Karasik A, Mosenzon O. Epidemiology of the diabetes-cardio-renal spectrum: a cross-sectional report of 1.4 million adults. Cardiovasc Diabetol 2022; 21:104. [PMID: 35689214 PMCID: PMC9188046 DOI: 10.1186/s12933-022-01521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Type-2 diabetes (T2D), chronic kidney disease, and heart failure (HF) share epidemiological and pathophysiological features. Although their prevalence was described, there is limited contemporary, high-resolution, epidemiological data regarding the overlap among them. We aimed to describe the epidemiological intersections between T2D, HF, and kidney dysfunction in an entire database, overall and by age and sex. Methods This is a cross-sectional analysis of adults ≥ 25 years, registered in 2019 at Maccabi Healthcare Services, a large healthcare maintenance organization in Israel. Collected data included sex, age, presence of T2D or HF, and last estimated glomerular filtration rate (eGFR) in the past two years. Subjects with T2D, HF, or eGFR < 60 mL/min/1.73 m2 were defined as within the diabetes-cardio-renal (DCR) spectrum. Results Overall, 1,389,604 subjects (52.2% females) were included; 445,477 (32.1%) were 25– < 40 years, 468,273 (33.7%) were 40– < 55 years, and 475,854 (34.2%) were ≥ 55 years old. eGFR measurements were available in 74.7% of the participants and in over 97% of those with T2D or HF. eGFR availability increased in older age groups. There were 140,636 (10.1%) patients with T2D, 54,187 (3.9%) with eGFR < 60 mL/min/1.73m2, and 11,605 (0.84%) with HF. Overall, 12.6% had at least one condition within the DCR spectrum, 2.0% had at least two, and 0.23% had all three. Cardiorenal syndrome (both HF and eGFR < 60 mL/min/1.73m2) was prevalent in 0.40% of the entire population and in 2.3% of those with T2D. In patients with both HF and T2D, 55.2% had eGFR < 60 mL/min/1.73m2 and 15.8% had eGFR < 30 mL/min/1.73m2. Amongst those within the DCR spectrum, T2D was prominent in younger participants, but was gradually replaced by HF and eGFR < 60 mL/min/1.73m2 with increasing age. The congruence between all three conditions increased with age. Conclusions This large, broad-based study provides a contemporary, high-resolution prevalence of the DCR spectrum and its components. The results highlight differences in dominance and degree of congruence between T2D, HF, and kidney dysfunction across ages. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01521-9.
Collapse
Affiliation(s)
- Meir Schechter
- Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, P.O. Box 12000, 9112001, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cheli Melzer Cohen
- Maccabi Institute for Research and Innovation, Maccabi Healthcare Services, Tel-Aviv, Israel
| | - Ilan Yanuv
- Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, P.O. Box 12000, 9112001, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aliza Rozenberg
- Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, P.O. Box 12000, 9112001, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gabriel Chodick
- Maccabi Institute for Research and Innovation, Maccabi Healthcare Services, Tel-Aviv, Israel.,School of Public Health Sackler, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Johan Bodegård
- Cardiovascular, Renal and Metabolism, Medical Department, BioPharmaceuticals, AstraZeneca, Oslo, Norway
| | - Lawrence A Leiter
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Hiddo J Lambers Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Avraham Karasik
- Maccabi Institute for Research and Innovation, Maccabi Healthcare Services, Tel-Aviv, Israel.,Tel Aviv University, Tel Aviv, Israel
| | - Ofri Mosenzon
- Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, P.O. Box 12000, 9112001, Jerusalem, Israel. .,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
219
|
Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, Uribarri J. Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney Int 2022; 102:248-260. [PMID: 35661785 DOI: 10.1016/j.kint.2022.05.012] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease has a high global disease burden and substantially increases risk of kidney failure and cardiovascular events. Despite treatment, there is substantial residual risk of disease progression with existing therapies. Therefore, there is an urgent need to better understand the molecular mechanisms driving diabetic kidney disease to help identify new therapies that slow progression and reduce associated risks. Diabetic kidney disease is initiated by diabetes-related disturbances in glucose metabolism, which then trigger other metabolic, hemodynamic, inflammatory, and fibrotic processes that contribute to disease progression. This review summarizes existing evidence on the molecular drivers of diabetic kidney disease onset and progression, focusing on inflammatory and fibrotic mediators-factors that are largely unaddressed as primary treatment targets and for which there is increasing evidence supporting key roles in the pathophysiology of diabetic kidney disease. Results from recent clinical trials highlight promising new drug therapies, as well as a role for dietary strategies, in treating diabetic kidney disease.
Collapse
Affiliation(s)
- Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, Washington, USA; Institute of Translational Health Sciences, Kidney Research Institute, and Nephrology Division, University of Washington, Seattle, Washington, USA.
| | - Rajiv Agarwal
- Nephrology Division, Indiana University School of Medicine, Indianapolis, Indiana, USA; Nephrology Division, VA Medical Center, Indianapolis, Indiana, USA
| | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George L Bakris
- American Heart Association Comprehensive Hypertension Center at the University of Chicago Medicine, Chicago, Illinois, USA
| | - Frank C Brosius
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Pharmaceuticals, Research & Development, Bayer AG, Wuppertal, Germany
| | - Jaime Uribarri
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
220
|
Waijer SW, Provenzano M, Mulder S, Rossing P, Persson F, Perkovic V, Heerspink HJL. Impact of random variation in albuminuria and estimated glomerular filtration rate on patient enrolment and duration of clinical trials in nephrology. Diabetes Obes Metab 2022; 24:983-990. [PMID: 35112455 PMCID: PMC9306498 DOI: 10.1111/dom.14660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
AIM To test whether a screening approach with more flexible urinary albumin creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) thresholds would decrease screen failure rate without negatively impacting on the event rate and overall study duration. METHODS We performed a post-hoc analysis of the ALTITUDE trial. We selected participants randomized to placebo with a UACR of >300 mg/g and an eGFR between 30 mL/min/1.73 m2 and 60 mL/min/1.73 m2 at the first visit (pre-screening) for the trial. We then used less stringent lower UACR and higher eGFR thresholds for the following qualifying visit. For each scenario we calculated the number of eligible participants, the number of renal and cardiovascular endpoints, and the event rates. Based on this, we performed simulations for a future trial and estimated the duration of enrolment and total duration of this trial. RESULTS The base scenario consisted of 848 participants (median UACR 1239 mg/g; median eGFR 44 mL/min/1.73 m2 ). Lowering the UACR and/or raising eGFR qualification thresholds increased the number of eligible participants, decreased screen failures and resulted in only a modest decrease in renal and cardiovascular event rates. For example, relaxing the UACR criterion from 300 mg/g to 210 mg/g at the qualifying visit, increased the number of eligible patients from 848 to 923, and increased the number of renal events from 117 to 122 events. The event rate showed a moderate decrease from 5.6 (4.6-6.7) events per 100 patient-years to 5.3 (4.4-6.4) events per 100 patient-years. In simulations, lowering the UACR and raising eGFR thresholds for inclusion accelerated patient enrolment and did not increase in the overall trial duration. CONCLUSION More flexible albuminuria and eGFR-based inclusion criteria, in participants who met the inclusion criteria of a trial based on pre-screening values prior to the clinical trial, decreases screen failure rates and accelerated patient enrolment leading to more efficient trial conduct without impacting the overall trial duration.
Collapse
Affiliation(s)
- Simke W. Waijer
- Department of Clinical Pharmacy and PharmacologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | | | - Skander Mulder
- Department of Clinical Pharmacy and PharmacologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
- Pattern Recognition Laboratory, Faculty of Electrical Engineering, Mathematics and Computer ScienceUniversity of Technology DelftDelftThe Netherlands
| | - Peter Rossing
- Steno Diabetes Centre CopenhagenGentofteDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | | | - Vlado Perkovic
- George Institute for Global HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Hiddo J. L. Heerspink
- Department of Clinical Pharmacy and PharmacologyUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
- George Institute for Global HealthUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
221
|
Yu HX, Feng Z, Lin W, Yang K, Liu RQ, Li JQ, Liu XY, Pei M, Yang HT. Ongoing Clinical Trials in Aging-Related Tissue Fibrosis and New Findings Related to AhR Pathways. Aging Dis 2022; 13:732-752. [PMID: 35656117 PMCID: PMC9116921 DOI: 10.14336/ad.2021.1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is a pathological manifestation of wound healing that replaces dead/damaged tissue with collagen-rich scar tissue to maintain homeostasis, and complications from fibrosis contribute to nearly half of all deaths in the industrialized world. Ageing is closely associated with a progressive decline in organ function, and the prevalence of tissue fibrosis dramatically increases with age. Despite the heavy clinical and economic burden of organ fibrosis as the population ages, to date, there is a paucity of therapeutic strategies that are specifically designed to slow fibrosis. Aryl hydrocarbon receptor (AhR) is an environment-sensing transcription factor that exacerbates aging phenotypes in different tissues that has been brought back into the spotlight again with economic development since AhR could interact with persistent organic pollutants derived from incomplete waste combustion. In addition, gut microbiota dysbiosis plays a pivotal role in the pathogenesis of numerous diseases, and microbiota-associated tryptophan metabolites are dedicated contributors to fibrogenesis by acting as AhR ligands. Therefore, a better understanding of the effects of tryptophan metabolites on fibrosis modulation through AhR may facilitate the exploitation of new therapeutic avenues for patients with organ fibrosis. In this review, we primarily focus on how tryptophan-derived metabolites are involved in renal fibrosis, idiopathic pulmonary fibrosis, hepatic fibrosis and cardiac fibrosis. Moreover, a series of ongoing clinical trials are highlighted.
Collapse
Affiliation(s)
- Hang-Xing Yu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhe Feng
- 3Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wei Lin
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Kang Yang
- 4Kidney Disease Treatment Center, The first affiliated hospital of Henan university of CM, Zhengzhou, Henan, China
| | - Rui-Qi Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jia-Qi Li
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin-Yue Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ming Pei
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hong-Tao Yang
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
222
|
González A, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M, Falcao-Pires I, Díez J, Foo RSY, Chan MY, Aimo A, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, Ben Gal T, Cohen-Solal A, Böhm M, Chioncel O, Delgado V, Emdin M, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Januzzi JL, Jhund PS, Lopatin Y, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, Van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Bayés-Genís A. Cardiac remodelling - Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:927-943. [PMID: 35334137 DOI: 10.1002/ejhf.2493] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiac remodelling refers to changes in left ventricular structure and function over time, with a progressive deterioration that may lead to heart failure (HF) development (adverse remodelling) or vice versa a recovery (reverse remodelling) in response to HF treatment. Adverse remodelling predicts a worse outcome, whilst reverse remodelling predicts a better prognosis. The geometry, systolic and diastolic function and electric activity of the left ventricle are affected, as well as the left atrium and on the long term even right heart chambers. At a cellular and molecular level, remodelling involves all components of cardiac tissue: cardiomyocytes, fibroblasts, endothelial cells and leucocytes. The molecular, cellular and histological signatures of remodelling may differ according to the cause and severity of cardiac damage, and clearly to the global trend toward worsening or recovery. These processes cannot be routinely evaluated through endomyocardial biopsies, but may be reflected by circulating levels of several biomarkers. Different classes of biomarkers (e.g. proteins, non-coding RNAs, metabolites and/or epigenetic modifications) and several biomarkers of each class might inform on some aspects on HF development, progression and long-term outcomes, but most have failed to enter clinical practice. This may be due to the biological complexity of remodelling, so that no single biomarker could provide great insight on remodelling when assessed alone. Another possible reason is a still incomplete understanding of the role of biomarkers in the pathophysiology of cardiac remodelling. Such role will be investigated in the first part of this review paper on biomarkers of cardiac remodelling.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - A Mark Richards
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Inês Falcao-Pires
- Department od Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Departments of Cardiology and Cardiac Surgery, and Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roger S Y Foo
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Mark Y Chan
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chukwuemeka G Anene-Nzelu
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Montreal Heart Institute, Montreal, Canada
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Beilinson, Israel
| | | | - Michael Böhm
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Saarland University, Homburg/Saar, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu' Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Rigshospitalet-Copenhagen University Hospital, Heart Centre, Department of Cardiology, Copenhagen, Denmark
| | | | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - Pardeep S Jhund
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Cardiology, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davor Milicic
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Portugal
| | | | | | - Julio Núñez
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Massimo F Piepoli
- Cardiology Division, Castelsangiovanni Hospital, Castelsangiovanni, Italy
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen D Ristić
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie Van Linthout
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals, NHS Trust, University of London, London, UK
| | | | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
223
|
van Ruiten CC, Hesp AC, van Raalte DH. Sodium glucose cotransporter-2 inhibitors protect the cardiorenal axis: Update on recent mechanistic insights related to kidney physiology. Eur J Intern Med 2022; 100:13-20. [PMID: 35414444 DOI: 10.1016/j.ejim.2022.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
Sodium glucose cotransporter-2 (SGLT2) inhibitors have acquired a central role in the treatment of type 2 diabetes, chronic kidney disease including diabetic kidney disease, and heart failure with reduced ejection fraction. SGLT2 inhibitors lower glucose levels by inducing glycosuria. In addition, SGLT2 inhibitors improve cardiovascular outcomes (3-point MACE), end-stage kidney disease, hospitalization for heart failure, and cardiovascular mortality in people with and without diabetes. The mechanisms underlying these benefits have been extensively investigated, but remain poorly understood. In this review, we first summarize recent trial evidence and subsequently focus on (1) the mechanisms by which SGLT2 inhibitors improve kidney outcomes and (2) the potential role of the kidneys in mediating the cardioprotective effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Charlotte C van Ruiten
- Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers (Amsterdam UMC), location VU University Medical Center, De Boelelaan 1117 (room ZH 4A63), Amsterdam 1081 HV, the Netherland.
| | - Anne C Hesp
- Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers (Amsterdam UMC), location VU University Medical Center, De Boelelaan 1117 (room ZH 4A63), Amsterdam 1081 HV, the Netherland
| | - Daniël H van Raalte
- Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers (Amsterdam UMC), location VU University Medical Center, De Boelelaan 1117 (room ZH 4A63), Amsterdam 1081 HV, the Netherland; Department of Vascular Medicine Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, the Netherland
| |
Collapse
|
224
|
Stern EP, Host LV, Wanjiku I, Escott KJ, Gilmour PS, Ochiel R, Unwin R, Burns A, Ong VH, Cadiou H, O'Keeffe AG, Denton CP. Zibotentan in systemic sclerosis-associated chronic kidney disease: a phase II randomised placebo-controlled trial. Arthritis Res Ther 2022; 24:130. [PMID: 35650639 PMCID: PMC9158153 DOI: 10.1186/s13075-022-02818-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/21/2022] [Indexed: 11/19/2022] Open
Abstract
Background We report results from a phase II randomised placebo-controlled trial assessing zibotentan, a highly selective endothelin receptor antagonist (ERA), in chronic kidney disease (CKD) secondary to systemic sclerosis (SSc). Methods This trial included three sub-studies: ZEBRA 1—a randomised placebo-controlled, double-blind trial of zibotentan in SSc patients with CKD2 or CKD3 (and glomerular filtration rate (GFR) >45 ml/min) over 26 weeks; ZEBRA 2A—a 26-week placebo-controlled, single-blind trial of zibotentan in scleroderma renal crisis patients not requiring dialysis; and ZEBRA 2B—an open label pharmacokinetic study of zibotentan in patients on haemodialysis. Results Sixteen patients were screened for ZEBRA 1. Of these, 6 patients were randomised to zibotentan and 7 to placebo. In ZEBRA 1, there were 47 non-serious adverse events (AE) during the trial. Twenty-seven occurred in the placebo group and 20 in the zibotentan group. One serious adverse event (SAE) occurred during ZEBRA1, in the placebo arm. Descriptive statistics did not suggest an effect of study drug on serum sVCAM1. Estimated GFR numerically declined in patients treated with placebo at 26 weeks and 52 weeks. In contrast, average eGFR increased in zibotentan-treated cases. The 4 patients in ZEBRA 2A experienced 8 non-serious AEs, distributed equally between placebo and zibotentan. There was one SAE each in placebo and zibotentan groups, both unrelated to study medication. ZEBRA 2B recruited 8 patients, 6 completed first dosing, and 2 completed a second dosing visit. Pharmacokinetic analysis confirmed zibotentan levels within the therapeutic range. Three patients experienced 3 non-serious AEs. One SAE occurred and was unrelated to study drug. Conclusions Zibotentan was generally well-tolerated. ZEBRA 1 did not show any effect of zibotentan on serum sVCAM-1 but was associated with numerical improvement in eGFR at 26 weeks that was more marked at 52 weeks. ZEBRA 2B suggested a feasible dose regimen for haemodialysis patients. Trial registration EudraCT no: 2013-003200-39 (first posted January 28, 2014) ClinicalTrials.gov Identifier: NCT02047708 Sponsor protocol number: 13/0077
Collapse
Affiliation(s)
- Edward P Stern
- Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Lauren V Host
- Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Ivy Wanjiku
- Division of Medicine, University College London, Royal Free Campus, London, UK
| | - K Jane Escott
- Emerging Innovations Unit, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Peter S Gilmour
- Emerging Innovations Unit, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Rachel Ochiel
- Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Robert Unwin
- Division of Medicine, University College London, Royal Free Campus, London, UK.,Early Clinical Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Aine Burns
- Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Voon H Ong
- Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Helen Cadiou
- Joint Research Office, University College London, London, UK
| | - Aidan G O'Keeffe
- Joint Research Office, University College London, London, UK.,School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Christopher P Denton
- Division of Medicine, University College London, Royal Free Campus, London, UK. .,UCL Centre for Rheumatology and Connective Tissue Diseases, 2nd Floor - UCL Medical School Building, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
225
|
Agarwal R, Anker SD, Bakris G, Filippatos G, Pitt B, Rossing P, Ruilope L, Gebel M, Kolkhof P, Nowack C, Joseph A, on behalf of the FIDELIO-DKD and FIGARO-DKD Investigators. Investigating new treatment opportunities for patients with chronic kidney disease in type 2 diabetes: the role of finerenone. Nephrol Dial Transplant 2022; 37:1014-1023. [PMID: 33280027 PMCID: PMC9130026 DOI: 10.1093/ndt/gfaa294] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Despite the standard of care, patients with chronic kidney disease (CKD) and type 2 diabetes (T2D) progress to dialysis, are hospitalized for heart failure and die prematurely. Overactivation of the mineralocorticoid receptor (MR) causes inflammation and fibrosis that damages the kidney and heart. Finerenone, a nonsteroidal, selective MR antagonist, confers kidney and heart protection in both animal models and Phase II clinical studies; the effects on serum potassium and kidney function are minimal. Comprising the largest CKD outcomes program to date, FIDELIO-DKD (FInerenone in reducing kiDnEy faiLure and dIsease prOgression in Diabetic Kidney Disease) and FIGARO-DKD (FInerenone in reducinG cArdiovascular moRtality and mOrbidity in Diabetic Kidney Disease) are Phase III trials investigating the efficacy and safety of finerenone on kidney failure and cardiovascular outcomes from early to advanced CKD in T2D. By including echocardiograms and biomarkers, they extend our understanding of pathophysiology; by including quality of life measurements, they provide patient-centered outcomes; and by including understudied yet high-risk cardiorenal subpopulations, they have the potential to widen the scope of therapy in T2D with CKD. Trial registration number: FIDELIO-DKD (NCT02540993) and FIGARO-DKD (NCT02545049).
Collapse
Affiliation(s)
- Rajiv Agarwal
- Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - George Bakris
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Luis Ruilope
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research imas12, Madrid, Spain
- IBER-CV, Hospital Universitario, 12 de Octubre, Madrid, Spain
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain
| | - Martin Gebel
- Research and Development, Statistics and Data Insights, Bayer AG, Berlin, Germany
| | - Peter Kolkhof
- Research and Development, Preclinical Research Cardiovascular, Bayer AG, Wuppertal, Germany
| | - Christina Nowack
- Research and Development, Clinical Development Operations, Bayer AG, Wuppertal, Germany
| | - Amer Joseph
- Cardiology and Nephrology Clinical Development, Bayer AG, Berlin, Germany
| | | |
Collapse
|
226
|
Provenzano M, Maritati F, Abenavoli C, Bini C, Corradetti V, La Manna G, Comai G. Precision Nephrology in Patients with Diabetes and Chronic Kidney Disease. Int J Mol Sci 2022; 23:5719. [PMID: 35628528 PMCID: PMC9144494 DOI: 10.3390/ijms23105719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes is the leading cause of kidney failure and specifically, diabetic kidney disease (DKD) occurs in up to 30% of all diabetic patients. Kidney disease attributed to diabetes is a major contributor to the global burden of the disease in terms of clinical and socio-economic impact, not only because of the risk of progression to End-Stage Kidney Disease (ESKD), but also because of the associated increase in cardiovascular (CV) risk. Despite the introduction of novel treatments that allow us to reduce the risk of future outcomes, a striking residual cardiorenal risk has been reported. This risk is explained by both the heterogeneity of DKD and the individual variability in response to nephroprotective treatments. Strategies that have been proposed to improve DKD patient care are to develop novel biomarkers that classify with greater accuracy patients with respect to their future risk (prognostic) and biomarkers that are able to predict the response to nephroprotective treatment (predictive). In this review, we summarize the principal prognostic biomarkers of type 1 and type 2 diabetes and the novel markers that help clinicians to individualize treatments and the basis of the characteristics that predict an optimal response.
Collapse
Affiliation(s)
- Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (C.A.); (C.B.); (V.C.); (G.C.)
| | | | | | | | | | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (C.A.); (C.B.); (V.C.); (G.C.)
| | | |
Collapse
|
227
|
De Nicola L, Cozzolino M, Genovesi S, Gesualdo L, Grandaliano G, Pontremoli R. Can SGLT2 inhibitors answer unmet therapeutic needs in chronic kidney disease? J Nephrol 2022; 35:1605-1618. [PMID: 35583597 PMCID: PMC9300572 DOI: 10.1007/s40620-022-01336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022]
Abstract
Chronic kidney disease (CKD) is a global health problem, affecting more than 850 million people worldwide. The number of patients receiving renal replacement therapy (dialysis or renal transplantation) has increased over the years, and it has been estimated that the number of people receiving renal replacement therapy will more than double from 2.618 million in 2010 to 5.439 million in 2030, with wide differences among countries. The main focus of CKD treatment has now become preserving renal function rather than replacing it. This is possible, at least to some extent, through the optimal use of multifactorial therapy aimed at preventing end-stage kidney disease and cardiovascular events. Sodium/glucose cotransporter 2 inhibitors (SGLT2i) reduce glomerular hypertension and albuminuria with beneficial effects on progression of renal damage in both diabetic and non-diabetic CKD. SGLT2 inhibitors also show great benefits in cardiovascular protection, irrespective of diabetes. Therefore, the use of these drugs will likely be extended to the whole CKD population as a new standard of care.
Collapse
Affiliation(s)
- Luca De Nicola
- Nephrology and Dialysis Unit, Department of Advanced Medical and Surgical Sciences, University Vanvitelli, Naples, Italy
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy.
| | - Simonetta Genovesi
- School of Medicine and Surgery, Nephrology Clinic, University of Milano-Bicocca, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation (DETO), School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Grandaliano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze Mediche e Chirurgiche, U.O.C. Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Pontremoli
- Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
228
|
Endothelin and the Cardiovascular System: The Long Journey and Where We Are Going. BIOLOGY 2022; 11:biology11050759. [PMID: 35625487 PMCID: PMC9138590 DOI: 10.3390/biology11050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary In this review, we describe the basic functions of endothelin and related molecules, including their receptors and enzymes. Furthermore, we discuss the important role of endothelin in several cardiovascular diseases, the relevant clinical evidence for targeting the endothelin pathway, and the scope of endothelin-targeting treatments in the future. We highlight the present uses of endothelin receptor antagonists and the advancements in the development of future treatment options, thereby providing an overview of endothelin research over the years and its future scope. Abstract Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In subsequent years, three isoforms, two canonical receptors, and two converting enzymes were identified, and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years, the endothelin system has been found to be critical in the pathogenesis of several cardiovascular diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery disease. In this review, we summarize the current knowledge on endothelin and its role in cardiovascular diseases. Furthermore, we discuss how endothelin-targeting therapies, such as endothelin receptor antagonists, have been employed to treat cardiovascular diseases with varying degrees of success. Lastly, we provide a glimpse of what could be in store for endothelin-targeting treatment options for cardiovascular diseases in the future.
Collapse
|
229
|
Chavez E, Rodriguez J, Drexler Y, Fornoni A. Novel Therapies for Alport Syndrome. Front Med (Lausanne) 2022; 9:848389. [PMID: 35547199 PMCID: PMC9081811 DOI: 10.3389/fmed.2022.848389] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease associated with proteinuria, hematuria and progressive kidney failure. It is characterized by a defective glomerular basement membrane caused by mutations in type IV collagen genes COL4A3/A4/A5 which result in defective type IV collagen α3, α4, or α5 chains, respectively. Alport syndrome has three different patterns of inheritance: X-linked, autosomal and digenic. In a study of CKD of unknown etiology type IV collagen gene mutations accounted for the majority of the cases of hereditary glomerulopathies which suggests that AS is often underrecognized. The natural history and prognosis in patients with AS is variable and is determined by genetics and environmental factors. At present, no preventive or curative therapies exist for AS. Current treatment includes the use of renin-angiotensin-aldosterone system inhibitors which slow progression of kidney disease and prolong life expectancy. Ramipril was found in retrospective studies to delay the onset of ESKD and was recently demonstrated to be safe and effective in children and adolescents, supporting that early initiation of Renin Angiotensin Aldosterone System (RAAS) blockade is very important. Mineralocorticoid receptor blockers might be favorable for patients who develop "aldosterone breakthrough." While the DAPA-CKD trial suggests a beneficial effect of SGLT2 inhibitors in CKD of non-metabolic origin, only a handful of patients had Alport in this cohort, and therefore conclusions can't be extrapolated for the treatment of AS with SGLT2 inhibitors. Advances in our understanding on the pathogenesis of Alport syndrome has culminated in the development of innovative therapeutic approaches that are currently under investigation. We will provide a brief overview of novel therapeutic targets to prevent progression of kidney disease in AS. Our review will include bardoxolone methyl, an oral NRf2 activator; lademirsen, an anti-miRNA-21 molecule; sparsentan, dual endothelin type A receptor (ETAR) and angiotensin 1 receptor inhibitor; atrasentan, oral selective ETAR inhibitor; lipid-modifying agents, including cholesterol efflux transporter ATP-binding cassette A1 (ABCA1) inducers, discoidin domain receptor 1 (DDR1) inhibitors and osteopontin blocking agents; the antimalarial drug hydroxychloroquine; the antiglycemic drug metformin and the active vitamin D analog paricalcitol. Future genomic therapeutic strategies such as chaperone therapy, genome editing and stem cell therapy will also be discussed.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juanly Rodriguez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
230
|
Block TJ, Batu D, Cooper ME. Recent advances in the pharmacotherapeutic management of diabetic kidney disease. Expert Opin Pharmacother 2022; 23:791-803. [PMID: 35522659 DOI: 10.1080/14656566.2022.2054699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) remains a major cause of morbidity and mortality in diabetes and is a key cause of end-stage kidney disease (ESKD) worldwide. Major clinical advances have been confirmed in large trials demonstrating renoprotection, adding to the benefits of existing intensive glucose and blood pressure control therapies. Furthermore, there are exciting new treatments predominantly at an experimental and early clinical phase which appear promising. AREAS COVERED The authors review DKD in the context of existing and emerging therapies affording cardiorenal benefits including SGLT2 inhibitors and GLP-1 receptor agonists. They explore novel therapies demonstrating potential including a newly developed mineralocorticoid receptor antagonist and endothelin receptor blockade, while evaluating the utility of DPP4 inhibitors in current clinical practice. They also consider the recent evidence of emerging therapies targeting metabolic pathways with enzyme inhibitors, anti-fibrotic agents, and agents modulating transcription factors. EXPERT OPINION Significant improvements have been made in the management of DKD with SGLT2i and GLP-1 agonists providing impressive renoprotection, with novel progress in renin-angiotensin-aldosterone system (RAAS) blockade with finerenone. There is also great potential for several new experimental therapies. These advances provide us with optimism that the outlook of this devastating condition will continue to improve.
Collapse
Affiliation(s)
- Tomasz J Block
- Department of Diabetes, Monash University Central School, Melbourne, VIC, Australia
| | - Duygu Batu
- Department of Diabetes, Monash University Central School, Melbourne, VIC, Australia
| | - Mark E Cooper
- Department of Diabetes, Monash University Central School, Melbourne, VIC, Australia
| |
Collapse
|
231
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
232
|
Raj R. Finerenone: a new mineralocorticoid receptor antagonist to beat chronic kidney disease. Curr Opin Nephrol Hypertens 2022; 31:265-271. [PMID: 35165249 DOI: 10.1097/mnh.0000000000000785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Clinical trials of the mineralocorticoid receptor antagonist (MRA) finerenone published recently suggest that they improve outcomes in patients with diabetic kidney disease (DKD). This review summarises key research from the last two years to provide clinicians with a synopsis of recent findings. RECENT FINDINGS Large international trials, such as Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease (5674 participants) and Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease (7437 participants), suggest that in proteinuric patients with DKD and estimated glomerular filtration rate >25 ml/min/1.73 m2, already on renin-angiotensin-aldosterone system inhibitors, addition of finerenone provided modest further improvement in composite renal and cardiovascular outcomes. Proteinuria was reduced; there was also a small drop in systolic blood pressure. Hyperkalaemia remained a concern, although the incidence is lower with finerenone. Emerging data suggest that newer potassium binding agents may mitigate this risk. Preclinical studies suggest additive benefits when MRA and sodium-glucose co-transporter 2 (SGLT-2) inhibitors are used in combination. SUMMARY The nonsteroidal MRA finerenone could improve renal and cardiac outcomes further in diabetics with kidney disease when added to renin-angiotensin system inhibitors. Hyperkalaemia is probably less worrisome, but real-world data is needed. Combinations with other new nephroprotective agents (such as SGLT2i inhibitors) has the potential to provide increasing benefit. Benefits of finerenone in chronic kidney disease without diabetes remains to be seen.
Collapse
Affiliation(s)
- Rajesh Raj
- Clinical Associate Professor, University of Tasmania, Consultant Nephrol-ogist, Launceston General Hospital, Launceston, Australia
| |
Collapse
|
233
|
Yau K, Dharia A, Alrowiyti I, Cherney DZ. Prescribing SGLT2 Inhibitors in Patients with Chronic Kidney Disease: Expanding Indications and Practical Considerations. Kidney Int Rep 2022; 7:1463-1476. [PMID: 35812300 PMCID: PMC9263228 DOI: 10.1016/j.ekir.2022.04.094] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kevin Yau
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Atit Dharia
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ibrahim Alrowiyti
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Z.I. Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Correspondence: David Z.I. Cherney, Division of Nephrology, Department of Medicine, Toronto General Hospital, 585 University Avenue, 8N-845, Toronto, Ontario, M5G 2N2, Canada.
| |
Collapse
|
234
|
Heerspink H, de Zeeuw D. Endothelin Receptor Antagonists for Kidney Protection. Clin J Am Soc Nephrol 2022; 17:908-910. [PMID: 35483734 PMCID: PMC9269667 DOI: 10.2215/cjn.00560122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiddo Heerspink
- H Heerspink, Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, Groningen, Netherlands
| | - Dick de Zeeuw
- D de Zeeuw, Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, Groningen, Netherlands
| |
Collapse
|
235
|
Zhang Y, Le X, Zheng S, Zhang K, He J, Liu M, Tu C, Rao W, Du H, Ouyang Y, Li C, Wu D. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res Ther 2022; 13:171. [PMID: 35477552 PMCID: PMC9044847 DOI: 10.1186/s13287-022-02855-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and a common cause of end-stage renal disease (ESRD). Mesenchymal stem cells (MSCs) possess potent anti-inflammatory and immunomodulatory properties, which render them an attractive therapeutic tool for tissue damage and inflammation. Methods This study was designed to determine the protective effects and underlying mechanisms of human umbilical cord-derived MSCs (UC-MSCs) on streptozotocin-induced DN. Renal function and histological staining were used to evaluate kidney damage. RNA high-throughput sequencing on rat kidney and UCMSC-derived exosomes was used to identify the critical miRNAs. Co-cultivation of macrophage cell lines and UC-MSCs-derived conditional medium were used to assess the involvement of macrophage polarization signaling. Results UC-MSC administration significantly improved renal function, reduced the local and systemic inflammatory cytokine levels, and attenuated inflammatory cell infiltration into the kidney tissue in DN rats. Moreover, UC-MSCs shifted macrophage polarization from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype. Mechanistically, miR-146a-5p was significantly downregulated and negatively correlated with renal injury in DN rats as determined through high-throughput RNA sequencing. Importantly, UC-MSCs-derived miR-146a-5p promoted M2 macrophage polarization by inhibiting tumor necrosis factor receptor-associated factor-6 (TRAF6)/signal transducer and activator of transcription (STAT1) signaling pathway. Furthermore, miR-146a-5p modification in UC-MSCs enhanced the efficacy of anti-inflammation and renal function improvement. Conclusions Collectively, our findings demonstrate that UC-MSCs-derived miR-146a-5p have the potential to restore renal function in DN rats through facilitating M2 macrophage polarization by targeting TRAF6. This would pave the way for the use of miRNA-modified cell therapy for kidney diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02855-7.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xi Le
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Mengting Liu
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Chengshu Tu
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Wei Rao
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Hongyuan Du
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China. .,Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China. .,Guangzhou Hamilton Biotechnology Co., Ltd, Wuhan, China.
| |
Collapse
|
236
|
Chou PR, Wu PY, Wu PH, Huang TH, Huang JC, Chen SC, Lee SC, Kuo MC, Chiu YW, Hsu YL, Chang JM, Hwang SJ. Investigation of the Relationship between Cardiovascular Biomarkers and Brachial-Ankle Pulse Wave Velocity in Hemodialysis Patients. J Pers Med 2022; 12:jpm12040636. [PMID: 35455752 PMCID: PMC9025475 DOI: 10.3390/jpm12040636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
Brachial−ankle pulse wave velocity (baPWV) and cardiovascular (CV) biomarkers are correlated with clinical cardiovascular diseases (CVDs) in patients with kidney disease. However, limited studies evaluated the relationship between baPWV and CV biomarkers in hemodialysis patients. This study investigated the relationship between circulating CV biomarkers and baPWV in patients on hemodialysis. Hemodialysis patients were enrolled between August 2016 and January 2017 for the measurement of baPWV, traditional CV biomarkers, including high-sensitivity troponin-T (hsTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP), and novel CV biomarkers, including Galectin-3, Cathepsin D, placental growth factor, Endocan-1, and Fetuin-A. The independent association was assessed by multivariate-adjusted linear regression analysis to control for potential confounders. The final analysis included 176 patients (95 men and 81 women) with a mean age of 60 ± 11 y old. After adjusting for age and sex, hsTnT (p < 0.01), NT-proBNP (p = 0.01), Galectin-3 (p = 0.03), and Cathepsin D (p < 0.01) were significantly directly correlated with baPWV. The direct correlation with baPWV existed in multivariable linear regression models with a β of 0.1 for hsTnT and 0.1 for Cathepsin D. The direct relationship between baPWV and CV biomarkers, particularly with hsTnT and Cathepsin D, may be helpful for risk stratification of hemodialysis patients.
Collapse
Affiliation(s)
- Ping-Ruey Chou
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Pei-Yu Wu
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 81267, Taiwan; (P.-Y.W.); (J.-C.H.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
| | - Ping-Hsun Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 7351)
| | - Teng-Hui Huang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
| | - Jiun-Chi Huang
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 81267, Taiwan; (P.-Y.W.); (J.-C.H.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 81267, Taiwan; (P.-Y.W.); (J.-C.H.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Chu Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
| | - Mei-Chuan Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jer-Ming Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (T.-H.H.); (S.-C.L.); (M.-C.K.); (Y.-W.C.); (J.-M.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
237
|
Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022; 136:493-520. [PMID: 35415751 PMCID: PMC9008595 DOI: 10.1042/cs20210625] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.
Collapse
|
238
|
Tye SC, de Vries ST, Mann JFE, Schechter M, Mosenzon O, Denig P, Heerspink HJL. Prediction of the Effects of Liraglutide on Kidney and Cardiovascular Outcomes Based on Short-Term Changes in Multiple Risk Markers. Front Pharmacol 2022; 13:786767. [PMID: 35496307 PMCID: PMC9044907 DOI: 10.3389/fphar.2022.786767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Aims: The LEADER trial demonstrated that the glucagon-like peptide-1 receptor agonist (GLP1-RA) liraglutide reduces kidney and cardiovascular (CV) risk in patients with type 2 diabetes. We previously developed a Parameter Response Efficacy (PRE) score that translates multiple short-term risk marker changes, from baseline to first available follow-up measurement, into a predicted long-term drug effect on clinical outcomes. The objective of this study was to assess the accuracy of the PRE score in predicting the efficacy of liraglutide in reducing the risk of kidney and CV outcomes. Methods: Short-term changes in glycated hemoglobin (HbA1c), systolic blood pressure (BP), urinary-albumin-creatinine-ratio (UACR), hemoglobin, body weight, high-density-lipoprotein (HDL) cholesterol, low-density-lipoprotein (LDL) cholesterol, and potassium were monitored in the LEADER trial. Associations between risk markers and kidney or CV outcomes were established using a multivariable Cox proportional hazards model in a separate pooled database of 6,355 patients with type 2 diabetes. The regression coefficients were then applied to the short-term risk markers in the LEADER trial to predict the effects of liraglutide on kidney (defined as a composite of doubling of serum creatinine or end-stage kidney disease) and CV (defined as a composite of non-fatal myocardial infarction, non-fatal stroke, and CV death) outcomes. Results: Liraglutide compared to placebo reduced HbA1c (1.4%), systolic BP (3.0 mmHg), UACR (13.2%), body weight (2.3 kg), hemoglobin (2.6 g/L), and increased HDL-cholesterol (0.01 mmol/L) (all p-values <0.01). Integrating multiple risk marker changes in the PRE score resulted in a predicted relative risk reduction (RRR) of 16.2% (95% CI 13.7–18.6) on kidney outcomes which was close to the observed RRR of 15.5% (95% CI -9.0–34.6). For the CV outcome, the PRE score predicted a 7.6% (95% CI 6.8–8.3) RRR, which was less than the observed 13.2% (95% CI 3.2–22.2) RRR. Conclusion: Integrating multiple short-term risk markers using the PRE score adequately predicted the effect of liraglutide on the composite kidney outcome. However, the PRE score underestimated the effect of liraglutide for the composite CV outcome, suggesting that the risk markers included in the PRE score do not fully capture the CV benefit of liraglutide.
Collapse
Affiliation(s)
- Sok Cin Tye
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | - Sieta T. de Vries
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | - Johannes F. E. Mann
- KfH Kidney Center, Munich, Germany
- Department of Medicine, Friedrich Alexander University, Erlangen, Germany
| | - Meir Schechter
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Diabetes Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ofri Mosenzon
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Diabetes Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Petra Denig
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | - Hiddo J. L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Hiddo J. L. Heerspink,
| |
Collapse
|
239
|
Saurage E, Davis PR, Meek R, Pollock DM, Kasztan M. Endothelin A receptor antagonist attenuated renal iron accumulation in iron overload heme oxygenase-1 knockout mice. Can J Physiol Pharmacol 2022; 100:637-650. [PMID: 35413222 PMCID: PMC10164438 DOI: 10.1139/cjpp-2022-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Progressive iron accumulation and renal impairment are prominent in both patients and mouse models of sickle cell disease (SCD). Endothelin A receptor (ETA) antagonism prevents this iron accumulation phenotype and reduces renal iron deposition in proximal tubules of SCD mice. To better understand the mechanisms of iron metabolism in the kidney and the role of ETA receptor in iron chelation and transport, we studied renal iron handling in a non-sickle cell iron overload model, heme oxygenase-1 (Hmox-1-/-) knockout mice. We found that Hmox-1-/- mice had elevated plasma endothelin-1 (ET-1), cortical ET-1 mRNA expression, and renal iron content compared to Hmox-1+/+ controls. The ETA receptor antagonist, ambrisentan, attenuated renal iron deposition, without any changes to anemia status in Hmox-1-/- mice. This was accompanied by reduced urinary iron excretion. Finally, ambrisentan had an important iron recycling effect by increasing expression of cellular iron exporter, ferroportin-1 (FPN-1) and circulating total iron levels in Hmox-1-/- mice. These findings suggest the ET-1/ETA signaling pathway contributes to in renal iron trafficking in a murine model of iron overload.
Collapse
Affiliation(s)
- Elizabeth Saurage
- The University of Alabama at Birmingham School of Medicine, 9967, Medicine, Division of Nephrology, Birmingham, Alabama, United States;
| | - Parker Ross Davis
- The University of Alabama at Birmingham Department of Medicine, 164494, Medicine, Division of Nephrology, Birmingham, Alabama, United States;
| | - Rachel Meek
- The University of Alabama at Birmingham School of Medicine, 9967, Medicine, Devision of Nephrology, Birmingham, Alabama, United States;
| | - David M Pollock
- The University of Alabama at Birmingham Department of Medicine, 164494, Medicine, Division of Nephrology, Birmingham, Alabama, United States;
| | - Malgorzata Kasztan
- The University of Alabama at Birmingham School of Medicine, 9967, Pediatrics, Division of Hematology-Oncology, Birmingham, Alabama, United States;
| |
Collapse
|
240
|
Tsai JL, Chen CH, Wu MJ, Tsai SF. New Approaches to Diabetic Nephropathy from Bed to Bench. Biomedicines 2022; 10:biomedicines10040876. [PMID: 35453626 PMCID: PMC9031931 DOI: 10.3390/biomedicines10040876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage kidney disease (ESKD). DN-related ESKD has the worst prognosis for survival compared with other causes. Due to the complex mechanisms of DN and the heterogeneous presentations, unmet needs exist for the renal outcome of diabetes mellitus. Clinical evidence for treating DN is rather solid. For example, the first Kidney Disease: Improving Global Outcomes (KDIGO) guideline was published in October 2020: KDIGO Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. In December of 2020, the International Society of Nephrology published 60 (+1) breakthrough discoveries in nephrology. Among these breakthroughs, four important ones after 1980 were recognized, including glomerular hyperfiltration theory, renal protection by renin-angiotensin system inhibition, hypoxia-inducible factor, and sodium-glucose cotransporter 2 inhibitors. Here, we present a review on the pivotal and new mechanisms of DN from the implications of clinical studies and medications.
Collapse
Affiliation(s)
- Jun-Li Tsai
- Division of Family Medicine, Cheng Ching General Hospital, Taichung 407, Taiwan;
- Division of Family Medicine, Cheng Ching Rehabilitation Hospital, Taichung 407, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence:
| |
Collapse
|
241
|
Chan KW, Yu KY, Yiu WH, Xue R, Lok SWY, Li H, Zou Y, Ma J, Lai KN, Tang SCW. Potential Therapeutic Targets of Rehmannia Formulations on Diabetic Nephropathy: A Comparative Network Pharmacology Analysis. Front Pharmacol 2022; 13:794139. [PMID: 35387335 PMCID: PMC8977554 DOI: 10.3389/fphar.2022.794139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Previous retrospective cohorts showed that Rehmannia-6 (R-6, Liu-wei-di-huang-wan) formulations were associated with significant kidney function preservation and mortality reduction among chronic kidney disease patients with diabetes. This study aimed to investigate the potential mechanism of action of common R-6 variations in a clinical protocol for diabetic nephropathy (DN) from a system pharmacology approach. Study Design and Methods: Disease-related genes were retrieved from GeneCards and OMIM by searching “Diabetic Nephropathy” and “Macroalbuminuria”. Variations of R-6 were identified from a published existing clinical practice guideline developed from expert consensus and pilot clinical service program. The chemical compound IDs of each herb were retrieved from TCM-Mesh and PubChem. Drug targets were subsequently revealed via PharmaMapper and UniProtKB. The disease gene interactions were assessed through STRING, and disease–drug protein–protein interaction network was integrated and visualized by Cytoscape. Clusters of disease–drug protein–protein interaction were constructed by Molecular Complex Detection (MCODE) extension. Functional annotation of clusters was analyzed by DAVID and KEGG pathway enrichment. Differences among variations of R-6 were compared. Binding was verified by molecular docking with AutoDock. Results: Three hundred fifty-eight genes related to DN were identified, forming 11 clusters which corresponded to complement and coagulation cascades and signaling pathways of adipocytokine, TNF, HIF-1, and AMPK. Five variations of R-6 were analyzed. Common putative targets of the R-6 variations on DN included ACE, APOE, CCL2, CRP, EDN1, FN1, HGF, ICAM1, IL10, IL1B, IL6, INS, LEP, MMP9, PTGS2, SERPINE1, and TNF, which are related to regulation of nitric oxide biosynthesis, lipid storage, cellular response to lipopolysaccharide, inflammatory response, NF-kappa B transcription factor activity, smooth muscle cell proliferation, blood pressure, cellular response to interleukin-1, angiogenesis, cell proliferation, peptidyl-tyrosine phosphorylation, and protein kinase B signaling. TNF was identified as the seed for the most significant cluster of all R-6 variations. Targets specific to each formulation were identified. The key chemical compounds of R-6 have good binding ability to the putative protein targets. Conclusion: The mechanism of action of R-6 on DN is mostly related to the TNF signaling pathway as a core mechanism, involving amelioration of angiogenesis, fibrosis, inflammation, disease susceptibility, and oxidative stress. The putative targets identified could be validated through clinical trials.
Collapse
Affiliation(s)
- Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kam Yan Yu
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rui Xue
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sarah Wing-Yan Lok
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hongyu Li
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yixin Zou
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jinyuan Ma
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
242
|
Sridhar VS, Ambinathan JPN, Gillard P, Mathieu C, Cherney DZI, Lytvyn Y, Singh SK. Cardiometabolic and Kidney Protection in Kidney Transplant Recipients With Diabetes: Mechanisms, Clinical Applications, and Summary of Clinical Trials. Transplantation 2022; 106:734-748. [PMID: 34381005 DOI: 10.1097/tp.0000000000003919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Kidney transplantation is the therapy of choice for patients with end-stage renal disease. Preexisting diabetes is highly prevalent in kidney transplant recipients (KTR), and the development of posttransplant diabetes is common because of a number of transplant-specific risk factors such as the use of diabetogenic immunosuppressive medications and posttransplant weight gain. The presence of pretransplant and posttransplant diabetes in KTR significantly and variably affect the risk of graft failure, cardiovascular disease (CVD), and death. Among the many available therapies for diabetes, there are little data to determine the glucose-lowering agent(s) of choice in KTR. Furthermore, despite the high burden of graft loss and CVD among KTR with diabetes, evidence for strategies offering cardiovascular and kidney protection is lacking. Recent accumulating evidence convincingly shows glucose-independent cardiorenal protective effects in non-KTR with glucose-lowering agents, such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists. Therefore, our aim was to review cardiorenal protective strategies, including the evidence, mechanisms, and rationale for the use of these glucose-lowering agents in KTR with diabetes.
Collapse
Affiliation(s)
- Vikas S Sridhar
- Division of Nephrology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- The Kidney Transplant Program and the Ajmera Tranplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jaya Prakash N Ambinathan
- Division of Nephrology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- The Kidney Transplant Program and the Ajmera Tranplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - David Z I Cherney
- Division of Nephrology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Division of Nephrology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Sunita K Singh
- Division of Nephrology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- The Kidney Transplant Program and the Ajmera Tranplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
243
|
Liu S, Yuan Y, Xue Y, Xing C, Zhang B. Podocyte Injury in Diabetic Kidney Disease: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol 2022; 10:832887. [PMID: 35321238 PMCID: PMC8935076 DOI: 10.3389/fcell.2022.832887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Podocytes are a crucial cellular component in maintaining the glomerular filtration barrier, and their injury is the major determinant in the development of albuminuria and diabetic kidney disease (DKD). Podocytes are rich in mitochondria and heavily dependent on them for energy to maintain normal functions. Emerging evidence suggests that mitochondrial dysfunction is a key driver in the pathogenesis of podocyte injury in DKD. Impairment of mitochondrial function results in an energy crisis, oxidative stress, inflammation, and cell death. In this review, we summarize the recent advances in the molecular mechanisms that cause mitochondrial damage and illustrate the impact of mitochondrial injury on podocytes. The related mitochondrial pathways involved in podocyte injury in DKD include mitochondrial dynamics and mitophagy, mitochondrial biogenesis, mitochondrial oxidative phosphorylation and oxidative stress, and mitochondrial protein quality control. Furthermore, we discuss the role of mitochondria-associated membranes (MAMs) formation, which is intimately linked with mitochondrial function in podocytes. Finally, we examine the experimental evidence exploring the targeting of podocyte mitochondrial function for treating DKD and conclude with a discussion of potential directions for future research in the field of mitochondrial dysfunction in podocytes in DKD.
Collapse
Affiliation(s)
- Simeng Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi Xue
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Pukou Branch of JiangSu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| |
Collapse
|
244
|
Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev 2022; 182:114045. [PMID: 34767865 DOI: 10.1016/j.addr.2021.114045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and is predicted to rise to 700 million by 2045. The associated financial and societal costs of this burgeoning epidemic demand an understanding of the pathology of this disease, and its complications, that will inform treatment to enable improved patient outcomes. Nearly two decades after the sequencing of the human genome, the significance of noncoding RNA expression is still being assessed. The family of functional noncoding RNAs known as microRNAs regulates the expression of most genes encoded by the human genome. Altered microRNA expression profiles have been observed both in diabetes and in diabetic complications. These transcripts therefore have significant potential and novelty as targets for therapy, therapeutic agents and biomarkers.
Collapse
Affiliation(s)
- Alexa Wonnacott
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard J M Coward
- Bristol Renal, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
245
|
Chaudhuri A, Ghanim H, Arora P. Improving the residual risk of renal and cardiovascular outcomes in diabetic kidney disease: A review of pathophysiology, mechanisms, and evidence from recent trials. Diabetes Obes Metab 2022; 24:365-376. [PMID: 34779091 PMCID: PMC9300158 DOI: 10.1111/dom.14601] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Based on global estimates, almost 10% of adults have diabetes, of whom 40% are estimated to also have chronic kidney disease (CKD). Almost 2 decades ago, treatments targeting the renin-angiotensin system (RAS) were shown to slow the progression of kidney disease. More recently, studies have reported the additive benefits of antihyperglycaemic sodium-glucose co-transporter-2 inhibitors in combination with RAS inhibitors on both CKD progression and cardiovascular outcomes. However, these recent data also showed that patients continue to progress to kidney failure or die from kidney- or cardiovascular-related causes. Therefore, new agents are needed to address this continuing risk. Overactivation of the mineralocorticoid (MR) receptor contributes to kidney inflammation and fibrosis, suggesting that it is an appropriate treatment target in patients with diabetes and CKD. Novel, selective non-steroidal MR antagonists are being studied in these patients, and the results of two large recently completed clinical trials have shown that one such treatment, finerenone, significantly reduces CKD progression and cardiovascular events compared with standard of care. This review summarizes the pathogenic mechanisms of CKD in type 2 diabetes and examines the potential benefit of novel disease-modifying agents that target inflammatory and fibrotic factors in these patients.
Collapse
Affiliation(s)
- Ajay Chaudhuri
- Division of Endocrinology and MetabolismJacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloNew YorkUSA
- Diabetes CenterKaleida HealthBuffaloNew YorkUSA
| | - Husam Ghanim
- Division of Endocrinology and MetabolismJacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloNew YorkUSA
| | - Pradeep Arora
- Buffalo VA Medical CenterJacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
246
|
Sridhar VS, Yau K, Benham JL, Campbell DJT, Cherney DZI. Sex and Gender Related Differences in Diabetic Kidney Disease. Semin Nephrol 2022; 42:170-184. [PMID: 35718364 DOI: 10.1016/j.semnephrol.2022.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diversity in sex and gender are important considerations in the pathogenesis, prognostication, research, and management of diabetic kidney disease (DKD). Sex and gender differences in the disease risk, disease-specific mechanisms, and outcomes in DKD may be attributed to biological differences between males and females at the cellular and tissue level, inconsistencies in the diagnostic and assessment tools used in chronic kidney disease and DKD, as well societal differences in the way men, women, and gender-diverse individuals self-manage and interact with health care systems. This review outlines key considerations related to the impact of sex on DKD, specifically elaborating on how they contribute to observed differences in disease epidemiology, pathogenesis, and treatment strategies. We also highlight the effect of gender on DKD progression and care.
Collapse
Affiliation(s)
- Vikas S Sridhar
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Kevin Yau
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Jamie L Benham
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - David J T Campbell
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta.
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| |
Collapse
|
247
|
Wang Y, Zhao L, Qiu D, Shi Y, Duan H. Effects of transforming growth factor beta-activated kinase 1 (TAK1) on apoptosis of HK-2 cells in the high glucose environment. Bioengineered 2022; 13:5880-5891. [PMID: 35184673 PMCID: PMC8973667 DOI: 10.1080/21655979.2022.2040875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To observe the role of transforming growth factor beta-activated kinase 1 (TAK1)/p38 MAPK/TGF-β1 signal pathway plays in oxidative stress and apoptosis in human renal tubular epithelial cells (HK-2) under high glucose induction. HK-2 cells were cultured in high glucose medium with and without TAK1 inhibitor 5Z-7-oxozeaenol. TUNEL and flow cytometry were used to detect cell apoptosis. The protein expression of TAK1, TGF-β1, Bax and Bcl-2 was detected by immunofluorescence. Meanwhile, flow cytometry was used to detect the production of reactive oxygen species (ROS), and MitoSOX staining was performed to detect the production of mitochondrial ROS. Moreover, real-time quantitative PCR and Western blotting was used to measure the expression of TAK1, TGF-β1, NOX1, NOX4 and HO-1, Bax, Bcl-2, p38MAPK, p-p38MAPK and TGF-β1. Results showed that high glucose up-regulated the protein expression of p-TAK1, p-p38 MAPK and TGF-β1, which induced the aggravation of oxidative stress by promoting the production of ROS, thus promote the apoptosis in HK-2 cells. However, addition of 5z −7-oxozeaenol in HK-2 cells reversed all the above functions induced by high glucose. Another experimental result also showed that SB203580, a p38MAPK inhibitor can down-regulated TGF-β1 expression and reduce ROS production, thus alleviate cell apoptosis in TAK1 overexpression group. In summary, high glucose intervention could activate TAK1 and promote apoptosis in HK-2 cells. Inhibition of TAK1 expression could block p38 MAPK/TGF-β1 signaling pathway and reduce ROS production and oxidative stress, which may be one of the signal pathways of TAK1 to reduce apoptosis of HK-2 cells induced by high glucose. Abbreviations: DN, Diabetic nephropathy; TAK1, transforming growth factor β-activated kinase-1; TGF-β, transforming growth factor-β; NG, normal glucose; HG, high glucose; p38 MAPK, p38 mitogen-activated protein kinase; ROS, reactive oxygen species.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Gastroenterology and Hepatology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Li Zhao
- Department of Gastroenterology and Hepatology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - DuoJun Qiu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
248
|
Martin WP, Malmodin D, Pedersen A, Wallace M, Fändriks L, Aboud CM, Petry TBZ, Cunha da Silveira LP, da Costa Silva ACC, Cohen RV, le Roux CW, Docherty NG. Urinary Metabolomic Changes Accompanying Albuminuria Remission following Gastric Bypass Surgery for Type 2 Diabetic Kidney Disease. Metabolites 2022; 12:139. [PMID: 35186675 PMCID: PMC7612403 DOI: 10.3390/metabo12020139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the Microvascular Outcomes after Metabolic Surgery randomised clinical trial (MOMS RCT, NCT01821508), combined metabolic surgery (gastric bypass) plus medical therapy (CSM) was superior to medical therapy alone (MTA) as a means of achieving albuminuria remission at 2-year follow-up in patients with obesity and early diabetic kidney disease (DKD). In the present study, we assessed the urinary 1H-NMR metabolome in a subgroup of patients from both arms of the MOMS RCT at baseline and 6-month follow-up. Whilst CSM and MTA both reduced the urinary excretion of sugars, CSM generated a distinctive urinary metabolomic profile characterised by increases in host–microbial co-metabolites (N-phenylacetylglycine, trimethylamine N-oxide, and 4-aminobutyrate (GABA)) and amino acids (arginine and glutamine). Furthermore, reductions in aromatic amino acids (phenylalanine and tyrosine), as well as branched-chain amino acids (BCAAs) and related catabolites (valine, leucine, 3-hydroxyisobutyrate, 3-hydroxyisovalerate, and 3-methyl-2-oxovalerate), were observed following CSM but not MTA. Improvements in BMI did not correlate with improvements in metabolic and renal indices following CSM. Conversely, urinary metabolites changed by CSM at 6 months were moderately to strongly correlated with improvements in blood pressure, glycaemia, triglycerides, and albuminuria up to 24 months following treatment initiation, highlighting the potential involvement of these shifts in the urinary metabolomic profile in the metabolic and renoprotective effects of CSM.
Collapse
Affiliation(s)
- William P. Martin
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (W.P.M.); (C.W.l.R.)
| | - Daniel Malmodin
- Swedish NMR Centre, University of Gothenburg, 40530 Gothenburg, Sweden; (D.M.); (A.P.)
| | - Anders Pedersen
- Swedish NMR Centre, University of Gothenburg, 40530 Gothenburg, Sweden; (D.M.); (A.P.)
| | - Martina Wallace
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Lars Fändriks
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Cristina M. Aboud
- The Centre for Obesity and Diabetes, Oswaldo Cruz German Hospital, São Paulo 01333-010, Brazil; (C.M.A.); (T.B.Z.P.); (L.P.C.d.S.); (A.C.C.d.C.S.); (R.V.C.)
| | - Tarissa B. Zanata Petry
- The Centre for Obesity and Diabetes, Oswaldo Cruz German Hospital, São Paulo 01333-010, Brazil; (C.M.A.); (T.B.Z.P.); (L.P.C.d.S.); (A.C.C.d.C.S.); (R.V.C.)
| | - Lívia P. Cunha da Silveira
- The Centre for Obesity and Diabetes, Oswaldo Cruz German Hospital, São Paulo 01333-010, Brazil; (C.M.A.); (T.B.Z.P.); (L.P.C.d.S.); (A.C.C.d.C.S.); (R.V.C.)
| | - Ana C. Calmon da Costa Silva
- The Centre for Obesity and Diabetes, Oswaldo Cruz German Hospital, São Paulo 01333-010, Brazil; (C.M.A.); (T.B.Z.P.); (L.P.C.d.S.); (A.C.C.d.C.S.); (R.V.C.)
| | - Ricardo V. Cohen
- The Centre for Obesity and Diabetes, Oswaldo Cruz German Hospital, São Paulo 01333-010, Brazil; (C.M.A.); (T.B.Z.P.); (L.P.C.d.S.); (A.C.C.d.C.S.); (R.V.C.)
| | - Carel W. le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (W.P.M.); (C.W.l.R.)
- Diabetes Research Group, Ulster University, Coleraine BT52 1SA, UK
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (W.P.M.); (C.W.l.R.)
- Correspondence:
| |
Collapse
|
249
|
Research Priorities for Kidney-Related Research-An Agenda to Advance Kidney Care: A Position Statement From the National Kidney Foundation. Am J Kidney Dis 2022; 79:141-152. [PMID: 34627932 DOI: 10.1053/j.ajkd.2021.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023]
Abstract
Despite the high prevalence and economic burden of chronic kidney disease (CKD) in the United States, federal funding for kidney-related research, prevention, and education activities under the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) remains substantially lower compared to other chronic diseases. More federal support is needed to promote critical research that will expand knowledge of kidney health and disease, develop new and effective therapies, and reduce health disparities. In 2021, the National Kidney Foundation (NKF) convened 2 Research Roundtables (preclinical and clinical research), comprising nephrology leaders from prominent US academic institutions and the pharmaceutical industry, key bodies with expertise in research, and including individuals with CKD and their caregivers and kidney donors. The goal of these roundtables was to identify priorities for preclinical and clinical kidney-related research. The research priorities identified by the Research Roundtables and presented in this position statement outline attainable opportunities for groundbreaking and critically needed innovations that will benefit patients with kidney disease in the next 5-10 years. Research priorities fall within 4 preclinical science themes (expand data science capability, define kidney disease mechanisms and utilize genetic tools to identify new therapeutic targets, develop better models of human disease, and test cell-specific drug delivery systems and utilize gene editing) and 3 clinical science themes (expand number and inclusivity of clinical trials, develop and test interventions to reduce health disparities, and support implementation science). These priorities in kidney-related research, if supported by additional funding by federal agencies, will increase our understanding of the development and progression of kidney disease among diverse populations, attract additional industry investment, and lead to new and more personalized treatments.
Collapse
|
250
|
Guedes M, Pecoits-Filho R. Can we cure diabetic kidney disease? Present and future perspectives from a nephrologist's point of view. J Intern Med 2022; 291:165-180. [PMID: 34914852 DOI: 10.1111/joim.13424] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) worldwide, contributing to a great burden across a variety of patient-reported and clinical outcomes. New interventions for DKD management have been established in recent years, unleashing a novel paradigm, in which kidney-dedicated trials yield informative and robust data to guide optimal clinical management. After unprecedented results from groundbreaking randomized controlled trials were released, a new scenario of evidence-based recommendations has evolved for the management of diabetic patients with CKD. The current guidelines place great emphasis on multidimensional and interdisciplinary approaches, but the challenges of implementation are just starting and will be pivotal to optimize clinical results and to understand the new threshold for residual risk in DKD. We thereby provide an updated review on recent advances in DKD management based on new guideline recommendations, summarizing recent evidence while projecting the landscape for innovative ongoing initiatives in the field. Specifically, we review current insights on the natural history, epidemiology, pathogenesis, and therapeutics of DKD, mapping the new scientific information into the recently released Kidney Disease - Improving Global Outcomes Guidelines translating results from major novel randomized controlled trials to the clinical practice. Additionally, we approach the landscape of new therapeutics in the field, summarizing ongoing phase IIb and III trials focused on DKD. Finally, reflecting on the past and looking into the future, we highlight unmet needs in the current DKD management based on real-world evidence and offer a nephrologist's perspective into the challenge of fostering continuous improvement on clinical and patient-reported outcomes for individuals living with DKD.
Collapse
Affiliation(s)
- Murilo Guedes
- School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Parana, Brazil
| | - Roberto Pecoits-Filho
- School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Parana, Brazil.,DOPPS Program Area, Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| |
Collapse
|