201
|
Xia L, Gu R, Zhang D, Luo Y. Anxious Individuals Are Impulsive Decision-Makers in the Delay Discounting Task: An ERP Study. Front Behav Neurosci 2017; 11:5. [PMID: 28174528 PMCID: PMC5258725 DOI: 10.3389/fnbeh.2017.00005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Impulsivity, which is linked to a wide range of psychiatric disorders, is often characterized by a preference for immediate but smaller rewards over delayed but larger rewards. However, debate exists on the relationship between anxiety and impulsivity. Here we use event-related potential (ERP) components as biomarkers in the temporal discounting task to examine the effect of anxiety on inter-temporal decision-making. Our behavioral results indicated that the high trait anxiety (HTA) group made significantly more immediate choices than the low trait anxiety (LTA) group. Compared with the LTA group, shorter response time was associated with immediate rewards in the HTA group. Furthermore, previous studies have demonstrated three ERP components that are associated with impulsivity and/or delay discounting. First, the N1 is an early sensory component involved in selective attention and attention processing for goal-directed actions. Second, the reward positivity (RewP) reflects reward-related dopaminergic activity and encodes reward values. Third, the P3 is regarded as a measure of motivational significance in the decision-making literature. Accordingly, this study found in the immediate-option-evoked ERPs that the HTA group had a larger N1 than the LTA group did. For the delayed-option-evoked ERPs, the HTA group had larger N1 and RewP for the immediate choice than the LTA group did, while the LTA group had a larger P3 for the delayed choice than the HTA group did. These results support the notion that anxiety individuals are impulsive decision-makers in the Delay Discounting Task.
Collapse
Affiliation(s)
- Lisheng Xia
- College of Information Engineering, Shenzhen UniversityShenzhen, China
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Dandan Zhang
- Institute of Affective and Social Neuroscience, Shenzhen UniversityShenzhen, China
| | - Yuejia Luo
- Institute of Affective and Social Neuroscience, Shenzhen UniversityShenzhen, China
- Department of Psychology, Southern Medical UniversityGuangzhou, China
- Shenzhen Institute of NeuroscienceShenzhen, China
| |
Collapse
|
202
|
Bruinenberg VM, van der Goot E, van Vliet D, de Groot MJ, Mazzola PN, Heiner-Fokkema MR, van Faassen M, van Spronsen FJ, van der Zee EA. The Behavioral Consequence of Phenylketonuria in Mice Depends on the Genetic Background. Front Behav Neurosci 2016; 10:233. [PMID: 28066199 PMCID: PMC5167755 DOI: 10.3389/fnbeh.2016.00233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
To unravel the role of gene mutations in the healthy and the diseased state, countless studies have tried to link genotype with phenotype. However, over the years, it became clear that the strain of mice can influence these results. Nevertheless, identical gene mutations in different strains are often still considered equals. An example of this, is the research done in phenylketonuria (PKU), an inheritable metabolic disorder. In this field, a PKU mouse model (either on a BTBR or C57Bl/6 background) is often used to examine underlying mechanisms of the disease and/or new treatment strategies. Both strains have a point mutation in the gene coding for the enzyme phenylalanine hydroxylase which causes toxic concentrations of the amino acid phenylalanine in blood and brain, as found in PKU patients. Although the mutation is identical and therefore assumed to equally affect physiology and behavior in both strains, no studies directly compared the two genetic backgrounds to test this assumption. Therefore, this study compared the BTBR and C57Bl/6 wild-type and PKU mice on PKU-relevant amino acid- and neurotransmitter-levels and at a behavioral level. The behavioral paradigms were selected from previous literature on the PKU mouse model and address four domains, namely (1) activity levels, (2) motor performance, (3) anxiety and/or depression-like behavior, and (4) learning and memory. The results of this study showed comparable biochemical changes in phenylalanine and neurotransmitter concentrations. In contrast, clear differences in behavioral outcome between the strains in all four above-mentioned domains were found, most notably in the learning and memory domain. The outcome in this domain seem to be primarily due to factors inherent to the genetic background of the mouse and much less by differences in PKU-specific biochemical parameters in blood and brain. The difference in behavioral outcome between PKU of both strains emphasizes that the consequence of the PAH mutation is influenced by other factors than Phe levels alone. Therefore, future research should consider these differences when choosing one of the genetic strains to investigate the pathophysiological mechanism underlying PKU-related behavior, especially when combined with new treatment strategies.
Collapse
Affiliation(s)
- Vibeke M Bruinenberg
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Els van der Goot
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Danique van Vliet
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen Groningen, Netherlands
| | - Martijn J de Groot
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen Groningen, Netherlands
| | - Priscila N Mazzola
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands; Department of Pediatrics, Beatrix Children's Hospital, University Medical Center GroningenGroningen, Netherlands
| | | | - Martijn van Faassen
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, Netherlands
| | - Francjan J van Spronsen
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen Groningen, Netherlands
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| |
Collapse
|
203
|
How age, sex and genotype shape the stress response. Neurobiol Stress 2016; 6:44-56. [PMID: 28229108 PMCID: PMC5314441 DOI: 10.1016/j.ynstr.2016.11.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a different perception to stressors and the setting of distinct coping strategies that will lead to individual differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of such intrinsic factors to the modulation of the stress response based on experimental rodent models of response to stress and discuss to what extent that knowledge can be potentially translated to humans. Effect of age in the stress response. Effect of sex in the stress response. Effect of genotype in the stress response.
Collapse
|
204
|
Almeida-Suhett CP, Graham A, Chen Y, Deuster P. Behavioral changes in male mice fed a high-fat diet are associated with IL-1β expression in specific brain regions. Physiol Behav 2016; 169:130-140. [PMID: 27876639 DOI: 10.1016/j.physbeh.2016.11.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/18/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
High-fat diet (HFD)-induced obesity is associated with not only increased risk of metabolic and cardiovascular diseases, but cognitive deficit, depression and anxiety disorders. Obesity also leads to low-grade peripheral inflammation, which plays a major role in the development of metabolic alterations. Previous studies suggest that obesity-associated central inflammation may underlie the development of neuropsychiatric deficits, but further research is needed to clarify this relationship. We used 48 male C57BL/6J mice to investigate whether chronic consumption of a high-fat diet leads to increased expression of interleukin-1β (IL-1β) in the hippocampus, amygdala and frontal cortex. We also determined whether IL-1β expression in those brain regions correlates with changes in the Y-maze, open field, elevated zero maze and forced swim tests. After 16weeks on dietary treatments, HFD mice showed cognitive impairment on the Y-maze test, greater anxiety-like behavior during the open field and elevated zero maze tests, and increased depressive-like behavior in the forced swim test. Hippocampal and amygdalar expression of IL-1β were significantly higher in HFD mice than in control mice fed a standard diet (SD). Additionally, hippocampal GFAP and Iba1 immunoreactivity were increased in HFD mice when compared to SD controls. Cognitive performance negatively correlated with level of IL-1β in the hippocampus and amygdala whereas an observed increase in anxiety-like behavior was positively correlated with higher expression of IL-1β in the amygdala. However, we observed no association between depressive-like behavior and IL-1β expression in any of the brain regions investigated. Together our data provide evidence that mice fed a HFD exhibit cognitive deficits, anxiety and depressive-like behaviors. Our results also suggest that increased expression of IL-1β in the hippocampus and amygdala may be associated with the development of cognitive deficits and anxiety-like behavior, respectively.
Collapse
Affiliation(s)
- Camila P Almeida-Suhett
- Military and Emergency Medicine, Consortium for Health and Military Performance, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Alice Graham
- Military and Emergency Medicine, Consortium for Health and Military Performance, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yifan Chen
- Military and Emergency Medicine, Consortium for Health and Military Performance, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Patricia Deuster
- Military and Emergency Medicine, Consortium for Health and Military Performance, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
205
|
Vasilopoulou CG, Constantinou C, Giannakopoulou D, Giompres P, Margarity M. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice. Physiol Behav 2016; 164:284-91. [DOI: 10.1016/j.physbeh.2016.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
206
|
Farfán-García ED, Pérez-Rodríguez M, Espinosa-García C, Castillo-Mendieta NT, Maldonado-Castro M, Querejeta E, Trujillo-Ferrara JG, Soriano-Ursúa MA. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice. Toxicol Appl Pharmacol 2016; 307:130-137. [PMID: 27495897 DOI: 10.1016/j.taap.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥200mg/kg, and involving granular cell damage at doses of 400mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system.
Collapse
Affiliation(s)
- E D Farfán-García
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - M Pérez-Rodríguez
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - C Espinosa-García
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana (UAM), 09310 Ciudad de México, Mexico
| | - N T Castillo-Mendieta
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - M Maldonado-Castro
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - E Querejeta
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - J G Trujillo-Ferrara
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico
| | - M A Soriano-Ursúa
- Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico.
| |
Collapse
|
207
|
Bai Y, Liu H, Huang B, Wagle M, Guo S. Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish. BMC Neurosci 2016; 17:63. [PMID: 27633776 PMCID: PMC5025543 DOI: 10.1186/s12868-016-0298-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/07/2016] [Indexed: 01/29/2023] Open
Abstract
Background Larval zebrafish, with a simple and transparent vertebrate brain composed of ~100 K neurons, is well suited for deciphering entire neural circuit activity underlying behavior. Moreover, their small body size (~4–5 mm in length) is compatible with 96-well plates, making larval zebrafish amenable to high content screening. Despite these attractive features, there is a scarcity of behavioral characterizations in larval zebrafish compared to other model organisms as well as adult zebrafish. Results In this study, we have characterized the physiological and behavioral responses of larval zebrafish to several easily amenable stimuli, including heat, cold, UV, mechanical disturbance (MD), and social isolation (SI). These stimuli are selected based on their perceived aversive nature to larval zebrafish. Using a light/dark choice paradigm, in which larval zebrafish display an innate dark avoidance behavior (i.e. scotophobia), we find that heat, cold and UV stimuli significantly enhance their dark avoidance with heat having the most striking effect, whereas MD and SI have little influence on the behavior. Surprisingly, using the cortisol assay, a physiological measure of stress, we uncover that all stimuli but heat and SI significantly increase the whole body cortisol levels. Conclusion These results identify a series of stressors that can be easily administered to larval zebrafish. Those stimuli that elicit differential responses at behavioral and physiological levels warrant further studies at circuit levels to understand the underlying mechanisms. The findings that various stressors enhance while anxiolytics attenuate dark avoidance further reinforce that the light/dark preference behavior in larval zebrafish is fear/anxiety-associated.
Collapse
Affiliation(s)
- Yiming Bai
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Harrison Liu
- Graduate Program in Bioengineering, University of California, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Bo Huang
- Graduate Program in Bioengineering, University of California, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, CA, USA.
| | - Su Guo
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China. .,Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, CA, USA.
| |
Collapse
|
208
|
Walz N, Mühlberger A, Pauli P. A Human Open Field Test Reveals Thigmotaxis Related to Agoraphobic Fear. Biol Psychiatry 2016; 80:390-7. [PMID: 26876946 DOI: 10.1016/j.biopsych.2015.12.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 11/14/2015] [Accepted: 12/06/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Thigmotaxis refers to a specific behavior of animals (i.e., to stay close to walls when exploring an open space). Such behavior can be assessed with the open field test (OFT), which is a well-established indicator of animal fear. The detection of similar open field behavior in humans may verify the translational validity of this paradigm. Enhanced thigmotaxis related to anxiety may suggest the relevance of such behavior for anxiety disorders, especially agoraphobia. METHODS A global positioning system was used to analyze the behavior of 16 patients with agoraphobia and 18 healthy individuals with a risk for agoraphobia (i.e., high anxiety sensitivity) during a human OFT and compare it with appropriate control groups (n = 16 and n = 19). We also tracked 17 patients with agoraphobia and 17 control participants during a city walk that involved walking through an open market square. RESULTS Our human OFT triggered thigmotaxis in participants; patients with agoraphobia and participants with high anxiety sensitivity exhibited enhanced thigmotaxis. This behavior was evident in increased movement lengths along the wall of the natural open field and fewer entries into the center of the field despite normal movement speed and length. Furthermore, participants avoided passing through the market square during the city walk, indicating again that thigmotaxis is related to agoraphobia. CONCLUSIONS This study is the first to our knowledge to verify the translational validity of the OFT and to reveal that thigmotaxis, an evolutionarily adaptive behavior shown by most species, is related to agoraphobia, a pathologic fear of open spaces, and anxiety sensitivity, a risk factor for agoraphobia.
Collapse
Affiliation(s)
- Nora Walz
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg
| | - Andreas Mühlberger
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg; Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg.
| |
Collapse
|
209
|
Adongo DW, Mante PK, Edem Kukuia KK, Ameyaw EO, Woode E, Azi IH. Anxiolytic-like effect of the leaves of Pseudospondias microcarpa (A. Rich.) Engl. in mice. J Basic Clin Physiol Pharmacol 2016; 27:533-46. [PMID: 27124674 DOI: 10.1515/jbcpp-2015-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 03/24/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pseudospondias microcarpa is a plant used for managing various diseases including CNS disorders. Previous studies showed sedative and anticonvulsant effects, suggesting possible anxiolytic activity. This study therefore assessed the anxiolytic effects of P. microcarpa hydroethanolic leaf extract (PME) in mice. METHODS In the present study, anxiolytic-like effect of the extract in behavioural paradigms of anxiety - the elevated plus maze (EPM), light/dark box (LDB), social interaction test and stress-induced hyperthermia (SIH) - was evaluated. RESULTS Mice treated with PME (30-300 mg kg-1, p.o.) exhibited anxiolytic-like activity similar to diazepam in all the anxiety models used. The extract increased open arm activity (p<0.05) in the EPM as well as increasing the time spent in the lit area in relation to the time spent in the dark area of the LDB. Sociability and preference for social novelty significantly (p<0.05-0.001) increased in mice treated with PME. In the SIH paradigm in mice, both PME and the benzodiazepine receptor agonist, diazepam, significantly (p<0.05) reduced the stress-induced increase in rectal temperature. The extract did not impair motor coordination and balance in the beam walk test. CONCLUSIONS Results of the present study indicate that PME possesses anxiolytic-like effects in mice.
Collapse
|
210
|
Zolotarev YA, Kovalev GI, Kost NV, Voevodina ME, Sokolov OY, Dadayan AK, Kondrakhin EA, Vasileva EV, Bogachuk AP, Azev VN, Lipkin VM, Myasoedov NF. Anxiolytic activity of the neuroprotective peptide HLDF-6 and its effects on brain neurotransmitter systems in BALB/c and C57BL/6 mice. J Psychopharmacol 2016; 30:922-35. [PMID: 27464742 DOI: 10.1177/0269881116660705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study is focused on a new amide derivative of the peptide HLDF-6 (Thr-Gly-Glu-Asn-His-Arg). This hexapeptide is a fragment of Human Leukaemia Differentiation Factor (HLDF). It displays a broad range of nootropic and neuroprotective activities. We showed, for the first time, that the peptide HLDF-6-amide has high anxiolytic activity. We used 'open field' and 'elevated plus maze' tests to demonstrate anxiolytic effects of HLDF-6-amide (0.1 and 0.3 mg/kg intranasally), which were comparable to those of the reference drug diazepam (0.5 mg/kg). Five daily equipotent doses of HLDF-6-amide selectively mitigated anxiety and increased the density of NMDA receptors in the hippocampus of stress-susceptible BALB/c mice, and had no effect on stress-resilient C57BL/6 mice. The subchronic administration of HLDF-6-amide showed no effect on the density of GABAA and nicotine receptors but was accompanied by a nonselective decrease of the 5-HT2A serotonin receptor density in frontal cortex of both strains. The mechanism of the specific anxiolytic activity of HLDF-6-amide may include its action on the NMDA-glutamatergic receptor system of the hippocampus and on serotonin 5-HT2A-receptors in the prefrontal cortex. The psychotropic activity of HLDF-6-amide is promising for its introduction to medical practice as a highly effective anxiolytic medicine for mental and neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anna P Bogachuk
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vyacheslav N Azev
- Branch of Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS, Pushchino, Moscow Region, Russia
| | - Valery M Lipkin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
211
|
The absence of 5-HT 4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT 1A autoreceptor. Neuropharmacology 2016; 111:47-58. [PMID: 27586007 DOI: 10.1016/j.neuropharm.2016.08.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/15/2016] [Accepted: 08/27/2016] [Indexed: 02/08/2023]
Abstract
Preclinical studies support a critical role of 5-HT4 receptors (5-HT4Rs) in depression and anxiety, but their influence in depression- and anxiety-like behaviours and the effects of antidepressants remain partly unknown. We evaluated 5-HT4R knockout (KO) mice in different anxiety and depression paradigms and mRNA expression of some neuroplasticity markers (BDNF, trkB and Arc) and the functionality of 5-HT1AR. Moreover, the implication of 5-HT4Rs in the behavioural and molecular effects of chronically administered fluoxetine was assessed in naïve and olfactory bulbectomized mice (OBX) of both genotypes. 5-HT4R KO mice displayed few specific behavioural impairments including reduced central activity in the open-field (anxiety), and decreased sucrose consumption and nesting behaviour (anhedonia). In these mice, we measured increased levels of BDNF and Arc mRNA and reduced levels of trkB mRNA in the hippocampus, and a desensitization of 5-HT1A autoreceptors. Chronic administration of fluoxetine elicited similar behavioural effects in WT and 5-HT4R KO mice on anxiety-and depression-related tests. Following OBX, locomotor hyperactivity and anxiety were similar in both genotypes. Interestingly, chronic fluoxetine failed to reverse this OBX-induced syndrome in 5-HT4R KO mice, a response associated with differential effects in hippocampal neuroplasticity biomarkers. Fluoxetine reduced hippocampal Arc and BDNF mRNA expressions in WT but not 5-HT4R KO mice subjected to OBX. These results demonstrate that the absence of 5-HT4Rs triggers adaptive changes that could maintain emotional states, and that the behavioural and molecular effects of fluoxetine under pathological depression appear to be critically dependent on 5-HT4Rs.
Collapse
|
212
|
Hendershott TR, Cronin ME, Langella S, McGuinness PS, Basu AC. Effects of environmental enrichment on anxiety-like behavior, sociability, sensory gating, and spatial learning in male and female C57BL/6J mice. Behav Brain Res 2016; 314:215-25. [PMID: 27498148 DOI: 10.1016/j.bbr.2016.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/29/2022]
Abstract
The influence of housing on cognition and emotional regulation in mice presents a problem for the study of genetic and environmental risk factors for neuropsychiatric disorders: standard laboratory housing may result in low levels of cognitive function or altered levels of anxiety that leave little room for assessment of deleterious effects of experimental manipulations. The use of enriched environment (EE) may allow for the measurement of a wider range of performance in cognitive domains. Cognitive and behavioral effects of EE in male mice have not been widely reproduced, perhaps due to variability in the application of enrichment protocols, and the effects of EE in female mice have not been widely studied. We have developed an EE protocol using common laboratory equipment that, without a running wheel for exercise, results in significant cognitive and behavioral effects relative to standard laboratory housing conditions. We compared male and female wild-type C57BL/6J mice reared from weaning age in an EE to those reared in a standard environment (SE), using common measures of anxiety-like behavior, sensory gating, sociability, and spatial learning and memory. Sex was a significant factor in relevant elevated plus maze (EPM) measures, and bordered on significance in a social interaction (SI) assay. Effects of EE on anxiety-like behavior and sociability were indicative of a general increase in exploratory activity. In male and female mice, EE resulted in reduced prepulse inhibition (PPI) of the acoustic startle response, and enhanced spatial learning and use of spatially precise strategies in a Morris water maze task.
Collapse
Affiliation(s)
- Taylor R Hendershott
- Department of Psychology, College of the Holy Cross, 1 College Street, Worcester, MA 01610, United States
| | - Marie E Cronin
- Department of Psychology, College of the Holy Cross, 1 College Street, Worcester, MA 01610, United States
| | - Stephanie Langella
- Department of Psychology, College of the Holy Cross, 1 College Street, Worcester, MA 01610, United States
| | - Patrick S McGuinness
- Department of Psychology, College of the Holy Cross, 1 College Street, Worcester, MA 01610, United States
| | - Alo C Basu
- Department of Psychology, College of the Holy Cross, 1 College Street, Worcester, MA 01610, United States.
| |
Collapse
|
213
|
Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. Int J Neuropsychopharmacol 2016; 19:pyw020. [PMID: 26912607 PMCID: PMC5006193 DOI: 10.1093/ijnp/pyw020] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pauline Luczynski
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Karen-Anne McVey Neufeld
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Clara Seira Oriach
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland.
| |
Collapse
|
214
|
Vahid-Ansari F, Lagace DC, Albert PR. Persistent post-stroke depression in mice following unilateral medial prefrontal cortical stroke. Transl Psychiatry 2016; 6:e863. [PMID: 27483381 PMCID: PMC5022078 DOI: 10.1038/tp.2016.124] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/20/2016] [Accepted: 05/05/2016] [Indexed: 01/10/2023] Open
Abstract
Post-stroke depression (PSD) is a common outcome following stroke that is associated with poor recovery. To develop a preclinical model of PSD, we targeted a key node of the depression-anxiety circuitry by inducing a unilateral ischemic lesion to the medial prefrontal cortex (mPFC) stroke. Microinjection of male C57/BL6 mice with endothelin-1 (ET-1, 1600 pmol) induced a small (1 mm(3)) stroke consistently localized within the left mPFC. Compared with sham control mice, the stroke mice displayed a robust behavioral phenotype in four validated tests of anxiety including the elevated plus maze, light-dark, open-field and novelty-suppressed feeding tests. In addition, the stroke mice displayed depression-like behaviors in both the forced swim and tail suspension test. In contrast, there was no effect on locomotor activity or sensorimotor function in the horizontal ladder, or cylinder and home cage activity tests, indicating a silent stroke due to the absence of motor abnormalities. When re-tested at 6 weeks post stroke, the stroke mice retained both anxiety and depression phenotypes. Surprisingly, at 6 weeks post stroke the lesion site was infiltrated by neurons, suggesting that the ET-1-induced neuronal loss in the mPFC was reversible over time, but was insufficient to promote behavioral recovery. In summary, unilateral ischemic lesion of the mPFC results in a pronounced and persistent anxiety and depression phenotype with no evident sensorimotor deficits. This precise lesion of the depression circuitry provides a reproducible model to study adaptive cellular changes and preclinical efficacy of novel interventions to alleviate PSD symptoms.
Collapse
Affiliation(s)
- F Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - D C Lagace
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H-8M5, Canada E-mail:
| | - P R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5, Canada. E-mail:
| |
Collapse
|
215
|
Fuentes IM, Walker NK, Pierce AN, Holt BR, Di Silvestro ER, Christianson JA. Neonatal maternal separation increases susceptibility to experimental colitis and acute stress exposure in male mice. IBRO Rep 2016; 1:10-18. [PMID: 28164167 PMCID: PMC5289700 DOI: 10.1016/j.ibror.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Experiencing early life stress can result in maladjusted stress response via dysregulation of the hypothalamic-pituitary-adrenal axis and serves as a risk factor for developing chronic pelvic pain disorders. We investigated whether neonatal maternal separation (NMS) would increase susceptibility to experimental colitis or exposure to acute or chronic stress. Male mice underwent NMS from postnatal day 1-21 and as adults were assessed for open field behavior, hindpaw sensitivity, and visceromotor response (VMR) to colorectal distension (CRD). VMR was also measured before and after treatment with intracolonic trinitrobenzene sulfonic acid (TNBS) or exposure to acute or chronic water avoidance stress (WAS). Myeloperoxidase (MPO) activity, proinflammatory gene and corticotropin-releasing factor (CRF) receptor expression were measured in distal colon. Baseline VMR was not affected by NMS, but undergoing CRD increased anxiety-like behaviors and mechanical hindpaw sensitivity of NMS mice. Treatment with TNBS dose-dependently decreased body weight and survival only in NMS mice. Following TNBS treatment, IL-6 and artemin mRNA levels were decreased in the distal colon of NMS mice, despite increased MPO activity. A single WAS exposure increased VMR during CRD in NMS mice and increased IL-6 mRNA and CRF2 protein levels in the distal colon of naïve mice, whereas CRF2 protein levels were heightened in NMS colon both at baseline and post-WAS exposure. Taken together, these results suggest that NMS in mice disrupts inflammatory- and stress-induced gene expression in the colon, potentially contributing towards an exaggerated response to specific stressors later in life.
Collapse
Affiliation(s)
- Isabella M Fuentes
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Natalie K Walker
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Angela N Pierce
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Briana R Holt
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Elizabeth R Di Silvestro
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
216
|
Abstract
Contemporary biological psychiatry uses experimental animal models to increase our understanding of affective disorder pathogenesis. Modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the mechanisms of action is possible through animal models. Primarily developed with rats, animal models in anxiety have been adapted with mixed success for mice, easy-to-use mammals with better genetic possibilities than rats. In this review, we focus on the three most common animal models of anxiety in mice used in the screening of anxiolytics. Both conditioned and unconditioned models are described, in order to represent all types of animal models of anxiety. Behavioral studies require careful attention to variable parameters linked to environment, handling, or paradigms; this is also discussed. Finally, we focus on the consequences of re-exposure to the apparatus. Test-retest procedures can provide new answers, but should be intensively studied in order to revalidate the entire paradigm as an animal model of anxiety.
Collapse
|
217
|
Lemon JA, Aksenov V, Samigullina R, Aksenov S, Rodgers WH, Rollo CD, Boreham DR. A multi-ingredient dietary supplement abolishes large-scale brain cell loss, improves sensory function, and prevents neuronal atrophy in aging mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:382-404. [PMID: 27199101 DOI: 10.1002/em.22019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J A Lemon
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - V Aksenov
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - R Samigullina
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - S Aksenov
- Department of Pathology, New York-Presbyterian/Queens Hospital, 56-45 Main Street, Flushing, New York, 11355
| | - W H Rodgers
- Department of Pathology, New York-Presbyterian/Queens Hospital, 56-45 Main Street, Flushing, New York, 11355
| | - C D Rollo
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
| | - D R Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton ON, Canada, L8S 4K1
- Medical Sciences Division, Northern Ontario School of Medicine, 935 Ramsey Lake Road, Sudbury ON, Canada, P3E 2C6
| |
Collapse
|
218
|
Hrncic D, Mikić J, Rasic-Markovic A, Velimirović M, Stojković T, Obrenović R, Rankov-Petrović B, Šušić V, Djuric D, Petronijević N, Stanojlovic O. Anxiety-related behavior in hyperhomocysteinemia induced by methionine nutritional overload in rats: role of the brain oxidative stress. Can J Physiol Pharmacol 2016; 94:1074-1082. [PMID: 27389677 DOI: 10.1139/cjpp-2015-0581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to examine the effects of a methionine-enriched diet on anxiety-related behavior in rats and to determine the role of the brain oxidative status in these alterations. Adult male Wistar rats were fed from the 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing with standard diet: 7.7 g/kg). Rats were tested in open field and light-dark tests and afterwards oxidative status in the different brain regions were determined. Hyperhomocysteinemia induced by methionine-enriched diet in this study decreased the number of rearings, as well as the time that these animals spent in the center of the open field, but increased index of thigmotaxy. Oxidative status was selectively altered in the examined regions. Lipid peroxidation was significantly increased in the cortex and nc. caudatus of rats developing hyperhomocysteinemia, but unaltered in the hippocampus and thalamus. Based on the results of this research, it could be concluded that hyperhomocysteinemia induced by methionine nutritional overload increased anxiety-related behavior in rats. These proanxiogenic effects could be, at least in part, a consequence of oxidative stress in the rat brain.
Collapse
Affiliation(s)
- Dragan Hrncic
- a Institute of Medical Physiology "Richard Burian", Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Jelena Mikić
- a Institute of Medical Physiology "Richard Burian", Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Aleksandra Rasic-Markovic
- a Institute of Medical Physiology "Richard Burian", Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Milica Velimirović
- b Institute of Clinical and Medical Biochemistry, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Tihomir Stojković
- b Institute of Clinical and Medical Biochemistry, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Radmila Obrenović
- c Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Rankov-Petrović
- a Institute of Medical Physiology "Richard Burian", Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Veselinka Šušić
- d Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Dragan Djuric
- a Institute of Medical Physiology "Richard Burian", Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Nataša Petronijević
- b Institute of Clinical and Medical Biochemistry, Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| | - Olivera Stanojlovic
- a Institute of Medical Physiology "Richard Burian", Belgrade University Faculty of Medicine, 11000 Belgrade, Serbia
| |
Collapse
|
219
|
Setrouk E, Hubault B, Vankemmel F, Zambrowski O, Nazeyrollas P, Delemer B, Durlach V, Ducasse A, Arndt C. Circadian disturbance and idiopathic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2016; 254:2175-2181. [DOI: 10.1007/s00417-016-3378-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/17/2016] [Accepted: 05/02/2016] [Indexed: 12/29/2022] Open
|
220
|
The role of anxiety in vulnerability for self-injurious behaviour: studies in a rodent model. Behav Brain Res 2016; 311:201-209. [PMID: 27217100 DOI: 10.1016/j.bbr.2016.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/04/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022]
Abstract
Self-injurious behaviour (SIB) is a debilitating characteristic that is highly prevalent in autism and other neurodevelopmental disorders. Pathological anxiety is also common, and there are reports of comorbid anxiety and self-injury in some children. We have investigated potential interactions between anxiety and self-injury, using a rat model of pemoline-induced self-biting. In one experiment, rats were pre-screened for trait anxiety by measuring expression of anxiety-related behaviour on the elevated plus maze and open field emergence test. The rats were then treated with pemoline once daily for ten days, and vulnerability for pemoline-induced self-injury was evaluated. This revealed modest correlations between innate levels of anxiety-related behaviour in the open field test (time in the start box, and latency to enter the open field), and vulnerability for pemoline-induced self-biting (total duration of self-injurious oral contact, and total size of tissue injury). Measures in the elevated plus maze were not significantly correlated with vulnerability for pemoline-induced self-injury. In a second experiment, rats were treated with the beta-carboline FG 7142 twice daily, during 5days of treatment with pemoline. The rats that were treated with this anxiogenic drug exhibited greater duration of self-injurious oral contact, and larger injuries than vehicle-treated controls did. Overall, these results suggest that anxiety may contribute to the etiology and/or expression of self-injurious behaviour, and indicate that further research is warranted.
Collapse
|
221
|
Hawk MA, Ritchie GD, Henderson KA, Knostman KAB, Roche BM, Ma ZJ, Matthews CM, Sabourin CL, Wakayama EJ, Sabourin PJ. Neurobehavioral and Cardiovascular Effects of Potassium Cyanide Administered Orally to Mice. Int J Toxicol 2016; 35:604-15. [PMID: 27170681 DOI: 10.1177/1091581816646974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Food and Drug Administration Animal Rule requires evaluation of cardiovascular and central nervous system (CNS) effects of new therapeutics. To characterize an adult and juvenile mouse model, neurobehavioral and cardiovascular effects and pathology of a single sublethal but toxic, 8 mg/kg, oral dose of potassium cyanide (KCN) for up to 41 days postdosing were investigated. This study describes the short- and long-term sensory, motor, cognitive, and behavioral changes associated with oral dosing of a sublethal but toxic dose of KCN utilizing functional observation battery and Tier II CNS testing in adult and juvenile mice of both sexes. Selected tissues (histopathology) were evaluated for changes associated with KCN exposure with special attention to brain regions. Telemetry (adult mice only) was used to evaluate cardiovascular and temperature changes. Neurobehavioral capacity, sensorimotor responsivity or spontaneous locomotor activity, and rectal temperature were significantly reduced in adult and juvenile mice at 30 minutes post-8 mg/kg KCN dose. Immediate effects of cyanide included bradycardia, adverse electrocardiogram arrhythmic events, hypotension, and hypothermia with recovery by approximately 1 hour for blood pressure and heart rate effects and by 2 hours for body temperature. Lesions consistent with hypoxia, such as mild acute tubular necrosis in the kidneys corticomedullary junction, were the only histopathological findings and occurred at a very low incidence. The mouse KCN intoxication model indicates rapid and completely reversible effects in adult and juvenile mice following a single oral 8 mg/kg dose. Neurobehavioral and cardiovascular measurements can be used in this animal model as a trigger for treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carol L Sabourin
- Department of Health and Human Services (HHS), Office of the Assistant Secretary for Preparedness and Response (ASPR), The Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - Edward J Wakayama
- Department of Health and Human Services (HHS), Office of the Assistant Secretary for Preparedness and Response (ASPR), The Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | | |
Collapse
|
222
|
Zhang LL, Liu HQ, Yu XH, Zhang Y, Tian JS, Song XR, Han B, Liu AJ. The Combination of Scopolamine and Psychostimulants for the Prevention of Severe Motion Sickness. CNS Neurosci Ther 2016; 22:715-22. [PMID: 27160425 DOI: 10.1111/cns.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND AIMS Severe motion sickness is a huge obstacle for people conducting precise aviation, marine or emergency service tasks. The combination of scopolamine and d-amphetamine is most effective in preventing severe motion sickness. However, this combination is not included in any present pharmacopoeia due to the abuse liability of d-amphetamine. We wanted to find a combination to replace it for the treatment of severe motion sickness. METHODS AND RESULTS We compared the efficacy of scopolamine, diphenhydramine, and granisetron (representing three classes of drugs) with different doses, and found that scopolamine was the most effective one. We also found scopolamine inhibited central nervous system at therapeutic doses and caused anxiety. Then, we combined it with different doses of psychostimulants (d-amphetamine, modafinil, caffeine) to find the best combination for motion sickness. The efficacy of scopolamine with modafinil (1 + 10 mg/kg) was equivalent to that of scopolamine with d-amphetamine (1 + 1 mg/kg); This combination also excited central nervous system and abolished the anxiety caused by scopolamine. CONCLUSIONS The optimal dose ratio of scopolamine and modafinil is 1:10. This combination is beneficial for motion sickness and can abolish the side effects of scopolamine. So, it might be a good replacement of scopolamine and d-amphetamine for severe motion sickness.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hong-Qi Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xu-Hong Yu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ying Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jia-Sheng Tian
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xu-Rui Song
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Ai-Jun Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
223
|
Myers B, Carvalho-Netto E, Wick-Carlson D, Wu C, Naser S, Solomon MB, Ulrich-Lai YM, Herman JP. GABAergic Signaling within a Limbic-Hypothalamic Circuit Integrates Social and Anxiety-Like Behavior with Stress Reactivity. Neuropsychopharmacology 2016; 41:1530-9. [PMID: 26442601 PMCID: PMC4832014 DOI: 10.1038/npp.2015.311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/21/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
The posterior hypothalamic nucleus (PH) stimulates autonomic stress responses. However, the role of the PH in behavioral correlates of psychiatric illness, such as social and anxiety-like behavior, is largely unexplored, as is the neurochemistry of PH connectivity with limbic and neuroendocrine systems. Thus, the current study tested the hypothesis that GABAergic signaling within the PH is a critical link between forebrain behavior-regulatory nuclei and the neuroendocrine hypothalamus, integrating social and anxiety-related behaviors with physiological stress reactivity. To address this hypothesis, GABAA receptor pharmacology was used to locally inhibit or disinhibit the PH immediately before behavioral measures of social and anxiety-like behavior in rats. Limbic connectivity of the PH was then established by simultaneous co-injection of anterograde and retrograde tracers. Further, the role of PH GABAergic signaling in neuroendocrine stress responses was tested via inhibition/disinhibition of the PH. These studies determined a prominent role for the PH in the expression of anxiety-related behaviors and social withdrawal. Histological analyses revealed divergent stress-activated limbic input to the PH, emanating predominantly from the prefrontal cortex, lateral septum, and amygdala. PH projections also targeted both parvicellular and magnocellular peptidergic neurons in the paraventricular and supraoptic hypothalamus. Further, GABAA receptor pharmacology determined an excitatory effect of the PH on neuroendocrine responses to stress. These data indicate that the PH represents an important stress-integrative center, regulating behavioral processes and connecting the limbic forebrain with neuroendocrine systems. Moreover, the PH appears to be uniquely situated to have a role in stress-related pathologies associated with limbic-hypothalamic dysfunction.
Collapse
Affiliation(s)
- Brent Myers
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA, Tel: +1 513 5583029, Fax: +1 513 558 9104, E-mail:
| | - Eduardo Carvalho-Netto
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Dayna Wick-Carlson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Christine Wu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Sam Naser
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
224
|
Barbosa DF, Lima CFD. EFEITOS DO EXERCÍCIO FÍSICO EM COMPORTAMENTOS RELACIONADOS COM A ANSIEDADE EM RATOS. REV BRAS MED ESPORTE 2016. [DOI: 10.1590/1517-869220162202056634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introdução: Os efeitos do exercício físico são associados à redução da ansiedade e à manutenção desse estado por diversas horas. Contudo, poucos trabalhos têm investigado os efeitos do exercício agudo sobre a ansiedade. Objetivo: Investigar o efeito agudo da intensidade do exercício físico sobre comportamento relacionado com a ansiedade em modelos animais. Métodos: Cinquenta e seis ratos Wistar machos foram distribuídos aleatoriamente em oito grupos: controle, 0%, 5% e 50% de carga correspondente ao peso corporal dos animais. Os grupos foram submetidos a um protocolo de natação que consistiu na realização de 30 minutos de exercício para os grupos 0% e 5% e dez sessões de dez saltos intercalados por um minuto de descanso para o grupo 50%. Após a natação, os animais foram expostos aos testes de campo aberto e labirinto em cruz elevado. Os dados foram avaliados estatisticamente pela One-way ANOVA e teste post hoc de Bonferroni, adotando-se P<0,05. Resultados: Na análise dos dados no teste de campo aberto foram encontradas diferenças significativas nas medidas de cruzamento (F(3,20) = 9,60; p < 0,01), ocorrendo um aumento de cruzamentos do grupo 5% (81,2 ± 14,8) com relação ao grupo controle (45,0 ± 8,7). Foi encontrada diferença significativa no percentual de entrada nos braços abertos (F(3,28) = 5,63; p < 0,01), havendo uma diminuição no grupo 50% (25,4 ± 17,0) com relação ao grupo controle (46,8 ± 9,1). Conclusão: A prática de exercício físico na intensidade de 5% apresentou efeitos ansiolíticos, enquanto na intensidade de 50%, apresentou efeitos ansiogênicos.
Collapse
|
225
|
Malki K, Tosto MG, Pain O, Sluyter F, Mineur YS, Crusio WE, de Boer S, Sandnabba KN, Kesserwani J, Robinson E, Schalkwyk LC, Asherson P. Comparative mRNA analysis of behavioral and genetic mouse models of aggression. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:427-36. [PMID: 26888158 DOI: 10.1002/ajmg.b.32424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 11/06/2022]
Abstract
Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors.
Collapse
Affiliation(s)
- Karim Malki
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Maria G Tosto
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom.,Laboratory for Cognitive Investigations and Behavioral Genetics, Tomsk State University, Tomsk, Russia
| | - Oliver Pain
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom.,Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Frans Sluyter
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Yann S Mineur
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Wim E Crusio
- Aquitaine Institute for Cognitive and Integrative Neuroscience, University of Bordeaux, Bordeaux, France.,CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, Bordeaux, France
| | - Sietse de Boer
- Groningen Institute for Evolutionary LifeSciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kenneth N Sandnabba
- Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
| | - Jad Kesserwani
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Edward Robinson
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Leonard C Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Philip Asherson
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
226
|
Ennaceur A, Chazot PL. Preclinical animal anxiety research - flaws and prejudices. Pharmacol Res Perspect 2016; 4:e00223. [PMID: 27069634 PMCID: PMC4804324 DOI: 10.1002/prp2.223] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.
Collapse
Affiliation(s)
| | - Paul L. Chazot
- School of Biological and Biomedical SciencesDurham UniversityDurhamUK
| |
Collapse
|
227
|
Peng X, Lin J, Zhu Y, Liu X, Zhang Y, Ji Y, Yang X, Zhang Y, Guo N, Li Q. Anxiety-related behavioral responses of pentylenetetrazole-treated zebrafish larvae to light-dark transitions. Pharmacol Biochem Behav 2016; 145:55-65. [PMID: 27019459 DOI: 10.1016/j.pbb.2016.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/19/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Pentylenetetrazole (PTZ), γ-aminobutyrate (GABA) antagonist, is a convulsant drug, known to induce anxiety and seizures in zebrafish. Changes in the mobility of zebrafish under light-dark transitions reflect anxiety level, serving as a useful behavioral readout. The effects of PTZ treatment have yet to be assayed in this manner. Zebrafish larvae (AB strain) at both 5dpf (days post-fertilization) and 7dpf were treated with different concentrations of PTZ. General locomotor activity and thigmotaxis were analyzed under continuous illumination (normal conditions) or alternating light-dark cycles (stressful conditions). Zebrafish larvae of 5dpf and 7dpf exhibited different sensitivities to PTZ. Anxiety level, measured in terms of response to illumination transitions under the influence of PTZ, demonstrated contrasting tendencies. Dark-light transitions dramatically increased the locomotor activity of zebrafish larvae receiving 8mM PTZ which was indicative of anxiety. This study suggests that PTZ increases the susceptibility by activating the neuron, which perhaps makes light change easier to influence the anxiety level of larvae. We provide useful evidence for putative anti-anxiety drug screening.
Collapse
Affiliation(s)
- Xiaolan Peng
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yingdong Zhu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Xiuyun Liu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yongxia Ji
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Xue Yang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | - Ning Guo
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
228
|
Saunders PA, Franco T, Sottas C, Maurice T, Ganem G, Veyrunes F. Masculinised Behaviour of XY Females in a Mammal with Naturally Occuring Sex Reversal. Sci Rep 2016; 6:22881. [PMID: 26964761 PMCID: PMC4786791 DOI: 10.1038/srep22881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
Most sex differences in phenotype are controlled by gonadal hormones, but recent work on laboratory strain mice that present discordant chromosomal and gonadal sex showed that sex chromosome complement can have a direct influence on the establishment of sex-specific behaviours, independently from gonads. In this study, we analyse the behaviour of a rodent with naturally occurring sex reversal: the African pygmy mouse Mus minutoides, in which all males are XY, while females are of three types: XX, XX* or X*Y (the asterisk represents an unknown X-linked mutation preventing masculinisation of X*Y embryos). X*Y females show typical female anatomy and, interestingly, have greater breeding performances. We investigate the link between sex chromosome complement, behaviour and reproductive success in females by analysing several behavioural features that could potentially influence their fitness: female attractiveness, aggressiveness and anxiety. Despite sex chromosome complement was not found to impact male mate preferences, it does influence some aspects of both aggressiveness and anxiety: X*Y females are more aggressive than the XX and XX*, and show lower anxiogenic response to novelty, like males. We discuss how these behavioural differences might impact the breeding performances of females, and how the sex chromosome complement could shape the differences observed.
Collapse
Affiliation(s)
- Paul A Saunders
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| | - Thomas Franco
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| | - Camille Sottas
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| | - Tangui Maurice
- INSERM U1198, Université de Montpellier, Inserm, EPHE, France
| | - Guila Ganem
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| |
Collapse
|
229
|
Rao RM, Sadananda M. Influence of State and/or Trait Anxieties of Wistar Rats in an Anxiety Paradigm. Ann Neurosci 2016; 23:44-50. [PMID: 27536021 PMCID: PMC4934415 DOI: 10.1159/000443555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022] Open
Abstract
Systematic individual differences between male Wistar rats can be detected in paradigms such as the elevated plus maze (EPM), which is a widely used behavioral paradigm that measures fear-motivated avoidance behavior. It has been extensively used to assess anxiety profiles with face, construct and predictive validities. During a typical EPM test, animals actively avoid the open arms in favour of the closed arms. We investigated whether individuals carry inherent trait anxiety profiles and whether perturbations of different intensities influence anxiety measures. Inherent anxiety levels and coping strategies following stress have become critical determinants in pre-disposition to other neuropsychiatric disorders and affect biomedical interventions in individuals. One group of rats was screened on EPM and in the activity box. Another set of rats were randomly divided into groups and subjected to perturbations of acute and sub-chronic isolation or restraint and tested in the EPM. Based on open-arm time in the EPM, low or high anxiety profiles were identified with significant differences in all measures. Perturbations of different intensities induced differential anxiety measures as expressed in the EPM. Anxiety levels were significantly reduced in sub-chronic restrained subjects, while isolation did not show marked difference. Anxiety profiles become evident from broad sample sizes and could constitute a critical limiting factor in personalized treatments. Stress-induced anxiety disorders could implicate comorbidity to other neuropsychiatric disorders in individuals. Coping strategies come to the fore in repeated sub-chronic perturbations indicating adaptive responses to the stressor, while acute perturbation enhances expression of anxiety behaviors.
Collapse
Affiliation(s)
- Rashmi Madhava Rao
- Brain Research Laboratory, Biotechnology Division, Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, India
| | - Monika Sadananda
- Brain Research Laboratory, Biotechnology Division, Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, India
| |
Collapse
|
230
|
Feng S, Liu W, Zuo S, Xie T, Deng H, Zhang Q, Zhong B. Impaired function of the intestinal barrier in a novel sub-health rat model. Mol Med Rep 2016; 13:3459-65. [PMID: 26957295 PMCID: PMC4805077 DOI: 10.3892/mmr.2016.4978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 08/27/2015] [Indexed: 11/06/2022] Open
Abstract
Sub-health is a state featuring a deterioration in physiological function between health and illness, and the sub-health condition has surfaced as life-threatening in humans. The aim of the present study was to establish a sub-health model in rats, and investigate the function of the intestinal barrier in the sub-health rats and rats following intervention. To establish a sub‑health model, the rats were subjected to a high‑fat and sugar diet, motion restriction and chronic stress. Their serum glucose and triglyceride levels, immune function and adaptability were then measured. The levels of diamine oxidase and D‑lactic acid in the plasma were analyzed as markers of the intestinal permeability. The protein and mRNA expression levels of anti‑apoptotic YWHAZ in the colonic tissue was detected using immunohistochemical and reverse transcription‑quantitative polymerase chain reaction analyses In the present study, the sub‑health rat model was successfully established, and sub‑health factors increased the intestinal permeability and reduced the expression of YWHAZ. Providing sub‑health rats with normal living conditions did not improve the function of the intestinal barrier. In conclusion, the results of the present study demonstrated that intestinal disorders in the sub‑health rat model may result from the damage caused by reduce intestinal barrier function as well as the decreased expression levels of YWHAZ. Additionally, rats in the sub‑health condition did not recover following subsequent exposure to normal living conditions, suggesting that certain exercises or medical intervention may be necessary to improve sub-health symptoms.
Collapse
Affiliation(s)
- Sisi Feng
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Weidong Liu
- Department of Clinical Laboratory, Hunan Guangxiu Hospital, Changsha, Hunan 410000, P.R. China
| | - Shengnan Zuo
- Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Tingyan Xie
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Deng
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiuhuan Zhang
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
231
|
Miller RL, Yan Z, Maher C, Zhang H, Gudsnuk K, McDonald J, Champagne FA. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression and DNA methylation of the Bdnf gene. ACTA ACUST UNITED AC 2016; 5:11-18. [PMID: 27088078 DOI: 10.1016/j.nepig.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prenatal exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with sustained effects on the brain and behavior in offspring. However, the mechanisms have yet to be determined. We hypothesized that prenatal exposure to ambient PAH in mice would be associated with impaired neurocognition, increased anxiety, altered cortical expression of Bdnf and Grin2b, and greater DNA methylation of Bdnf. Our results indicated that during open-field testing, prenatal PAH exposed offspring spent more time immobile and less time exploring. Females produced more fecal boli. Offspring prenatally exposed to PAH displayed modest reductions in overall exploration of objects. Further, prenatal PAH exposure was associated with lower cortical expression of Grin2b and Bdnf in males, and greater Bdnf IV promoter methylation. Epigenetic differences within the Bdnf IV promoter correlated with Bdnf gene expression, but not with the observed behavioral outcomes, suggesting that additional targets may account for these PAH-associated effects.
Collapse
Affiliation(s)
- Rachel L Miller
- Department of Medicine, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA; Department of Pediatrics, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA; Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA
| | - Zhonghai Yan
- Department of Medicine, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA
| | - Christina Maher
- Department of Medicine, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hanjie Zhang
- Department of Medicine, PH8E-101, 630 W. 168 St, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kathryn Gudsnuk
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY, 10027, USA
| | - Jacob McDonald
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque NM, 87108, USA
| | - Frances A Champagne
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY, 10027, USA
| |
Collapse
|
232
|
Henriques-Alves AM, Queiroz CM. Ethological Evaluation of the Effects of Social Defeat Stress in Mice: Beyond the Social Interaction Ratio. Front Behav Neurosci 2016; 9:364. [PMID: 26869895 PMCID: PMC4737906 DOI: 10.3389/fnbeh.2015.00364] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/19/2015] [Indexed: 11/13/2022] Open
Abstract
In rodents, repeated exposure to unavoidable aggression followed by sustained sensory treat can lead to prolonged social aversion. The chronic social defeat stress model explores that phenomenon and it has been used as an animal model for human depression. However, some authors have questioned whether confounding effects may arise as the model also boosts anxiety-related behaviors. Despite its wide acceptance, most studies extract limited information from the behavior of the defeated animal. Often, the normalized occupancy around the social stimulus, the interaction zone, is taken as an index of depression. We hypothesized that this parameter is insufficient to fully characterize the behavioral consequences of this form of stress. Using an ethological approach, we showed that repeated social defeat delayed the expression of social investigation in long (10 min) sessions of social interaction. Also, the incidence of defensive behaviors, including stretched-attend posture and high speed retreats, was significantly higher in defeated mice in comparison to controls. Interestingly, a subpopulation of defeated mice showed recurrent and non-habituating stretched-attend posture and persistent flights during the entire session. Two indexes were created based on defensive behaviors to show that only recurrent flights correlates with sucrose intake. Together, the present study corroborates the idea that this model of social stress can precipitate a myriad of behaviors not readily disentangled. We propose that long sessions (>150 s) and detailed ethological evaluation during social interaction tests are necessary to provide enough information to correctly classify defeated animals in terms of resilience and susceptibility to social defeat stress.
Collapse
Affiliation(s)
| | - Claudio M Queiroz
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
233
|
Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain 2016; 9:11. [PMID: 26822304 PMCID: PMC4730600 DOI: 10.1186/s13041-016-0191-9] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Background Aging is considered to be associated with progressive changes in the brain and its associated sensory, motor, and cognitive functions. A large number of studies comparing young and aged animals have reported differences in various behaviors between age-cohorts, indicating behavioral dysfunctions related to aging. However, relatively little is known about behavioral changes from young adulthood to middle age, and the effect of age on behavior during the early stages of life remains to be understood. In order to investigate age-related changes in the behaviors of mice from young adulthood to middle age, we performed a large-scale analysis of the behavioral data obtained from our behavioral test battery involving 1739 C57BL/6J wild-type mice at 2–12 months of age. Results Significant behavioral differences between age groups (2–3-, 4–5-, 6–7-, and 8–12-month-old groups) were found in all the behavioral tests, including the light/dark transition, open field, elevated plus maze, rotarod, social interaction, prepulse inhibition, Porsolt forced swim, tail suspension, Barnes maze, and fear conditioning tests, except for the hot plate test. Compared with the 2–3-month-old group, the 4–5- and 6–7-month-old groups exhibited decreased locomotor activity to novel environments, motor function, acoustic startle response, social behavior, and depression-related behavior, increased prepulse inhibition, and deficits in spatial and cued fear memory. For most behaviors, the 8–12-month-old group showed similar but more pronounced changes in most of these behaviors compared with the younger age groups. Older groups exhibited increased anxiety-like behavior in the light/dark transition test whereas those groups showed seemingly decreased anxiety-like behavior measured by the elevated plus maze test. Conclusions The large-scale analysis of behavioral data from our battery of behavioral tests indicated age-related changes in a wide range of behaviors from young adulthood to middle age in C57BL/6J mice, though these results might have been influenced by possible confounding factors such as the time of day at testing and prior test experience. Our results also indicate that relatively narrow age differences can produce significant behavioral differences during adulthood in mice. These findings provide an insight into our understanding of the neurobiological processes underlying brain function and behavior that are subject to age-related changes in early to middle life. The findings also indicate that age is one of the critical factors to be carefully considered when designing behavioral tests and interpreting behavioral differences that might be induced by experimental manipulations. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0191-9) contains supplementary material, which is available to authorized users.
Collapse
|
234
|
Acute fluoxetine exposure alters crab anxiety-like behaviour, but not aggressiveness. Sci Rep 2016; 6:19850. [PMID: 26806870 PMCID: PMC4726416 DOI: 10.1038/srep19850] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Aggression and responsiveness to noxious stimuli are adaptable traits that are ubiquitous throughout the animal kingdom. Like vertebrate animals, some invertebrates have been shown to exhibit anxiety-like behaviour and altered levels of aggression that are modulated by the neurotransmitter serotonin. To investigate whether this influence of serotonin is conserved in crabs and whether these behaviours are sensitive to human antidepressant drugs; the striped shore crab, Pachygrapsus crassipes, was studied using anxiety (light/dark test) and aggression (mirror test) paradigms. Crabs were individually exposed to acute doses of the selective serotonin reuptake inhibitor, fluoxetine (5 or 25 mg/L), commonly known as Prozac®, followed by behavioural testing. The high dose of fluoxetine significantly decreased anxiety-like behaviour but had no impact on mobility or aggression. These results suggest that anxiety-like behaviour is more sensitive to modulation of serotonin than is aggressiveness in the shore crab.
Collapse
|
235
|
Marty V, Labialle S, Bortolin-Cavaillé ML, Ferreira De Medeiros G, Moisan MP, Florian C, Cavaillé J. Deletion of the miR-379/miR-410 gene cluster at the imprintedDlk1-Dio3locus enhances anxiety-related behaviour. Hum Mol Genet 2016; 25:728-39. [DOI: 10.1093/hmg/ddv510] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022] Open
|
236
|
Peterlik D, Flor PJ, Uschold-Schmidt N. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders. Curr Neuropharmacol 2016; 14:514-39. [PMID: 27296643 PMCID: PMC4983752 DOI: 10.2174/1570159x13666150515234920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/04/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders.
Collapse
Affiliation(s)
| | - Peter J Flor
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| | - Nicole Uschold-Schmidt
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
237
|
Li X, Li X, Chen D, Guo JL, Feng DF, Sun MZ, Lu Y, Chen DY, Zhao X, Feng XZ. Evaluating the biological impact of polyhydroxyalkanoates (PHAs) on developmental and exploratory profile of zebrafish larvae. RSC Adv 2016. [DOI: 10.1039/c6ra04329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this study, we employed zebrafish as an animal model to evaluate the biological effect of polyhydroxyalkanoates (PHAs) on early developmentviamorphological, physiological, and behavioural analyses.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Medicinal Chemical Biology
- The Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Xu Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation
- Department of Histology and Embryology
- School of Medicine
- Nankai University
- Tianjin 300071
| | - Di Chen
- The Institute of Robotics and Automatic Information Systems
- Nankai University
- Tianjin 300071
- China
| | | | - Dao-Fu Feng
- Department of General Surgery
- Tianjin Medical University General Hospital
- Tianjin
- China
| | - Ming-Zhu Sun
- The Institute of Robotics and Automatic Information Systems
- Nankai University
- Tianjin 300071
- China
| | - Yun Lu
- TEDA Hospital
- Tianjin 300457
- China
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation
- Department of Histology and Embryology
- School of Medicine
- Nankai University
- Tianjin 300071
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems
- Nankai University
- Tianjin 300071
- China
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology
- The Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| |
Collapse
|
238
|
Hölter SM, Einicke J, Sperling B, Zimprich A, Garrett L, Fuchs H, Gailus-Durner V, Hrabé de Angelis M, Wurst W. Tests for Anxiety-Related Behavior in Mice. ACTA ACUST UNITED AC 2015; 5:291-309. [PMID: 26629773 DOI: 10.1002/9780470942390.mo150010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phenotyping of inbred mouse strains and genetically modified mouse models for characteristics related to neuropsychiatric diseases includes assessing their anxiety-related behavior. A variety of tests have been developed to measure anxiety in laboratory rodents and these tests have been placed under scrutiny over the years concerning their validity. Here we describe the most widely used tests for anxiety in mice. The protocols we present are established methods used in the German Mouse Clinic (GMC), with which alterations in anxiety could successfully be discovered in mouse mutants. Moreover, since baseline anxiety levels in mice are easily influenced by a great variety of disturbances, we carefully outline the critical parameters that need to be considered.
Collapse
Affiliation(s)
- Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany.,German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Jan Einicke
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany.,German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Bettina Sperling
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany.,German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Annemarie Zimprich
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany.,German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany.,German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany
| | - Martin Hrabé de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany.,Technische Universität München, Lehrstuhl für Experimentelle Genetik, Munich, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich, Germany.,Technische Universität München, Lehrstuhl für Entwicklungsgenetik, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Site Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
239
|
Reprint of "Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration". Pharmacol Biochem Behav 2015; 139 Pt B:141-8. [DOI: 10.1016/j.pbb.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/07/2015] [Accepted: 05/25/2015] [Indexed: 01/23/2023]
|
240
|
Kim JD, Park KE, Ishida J, Kako K, Hamada J, Kani S, Takeuchi M, Namiki K, Fukui H, Fukuhara S, Hibi M, Kobayashi M, Kanaho Y, Kasuya Y, Mochizuki N, Fukamizu A. PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. SCIENCE ADVANCES 2015; 1:e1500615. [PMID: 26665171 PMCID: PMC4672763 DOI: 10.1126/sciadv.1500615] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/21/2015] [Indexed: 06/02/2023]
Abstract
The development of vertebrate neurons requires a change in membrane phosphatidylcholine (PC) metabolism. Although PC hydrolysis is essential for enhanced axonal outgrowth mediated by phospholipase D (PLD), less is known about the determinants of PC metabolism on dendritic arborization. We show that protein arginine methyltransferase 8 (PRMT8) acts as a phospholipase that directly hydrolyzes PC, generating choline and phosphatidic acid. We found that PRMT8 knockout mice (prmt8 (-/-)) displayed abnormal motor behaviors, including hindlimb clasping and hyperactivity. Moreover, prmt8 (-/-) mice and TALEN-induced zebrafish prmt8 mutants and morphants showed abnormal phenotypes, including the development of dendritic trees in Purkinje cells and altered cerebellar structure. Choline and acetylcholine levels were significantly decreased, whereas PC levels were increased, in the cerebellum of prmt8 (-/-) mice. Our findings suggest that PRMT8 acts both as an arginine methyltransferase and as a PC-hydrolyzing PLD that is essential for proper neurological functions.
Collapse
Affiliation(s)
- Jun-Dal Kim
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | - Kyung-Eui Park
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | - Koichiro Kako
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan
| | - Juri Hamada
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | - Shuichi Kani
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Miki Takeuchi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan
| | - Kana Namiki
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Masahiko Hibi
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
- AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan
| |
Collapse
|
241
|
Behavioral characterization of CD36 knockout mice with SHIRPA primary screen. Behav Brain Res 2015; 299:90-6. [PMID: 26628208 DOI: 10.1016/j.bbr.2015.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 11/24/2022]
Abstract
CD36 is a member of the class B scavenger receptor family of cell surface proteins, which plays a major role in fatty acid, glucose and lipid metabolism. Besides, CD36 functions as a microglial surface receptor for amyloid beta peptide. Regarding this, we suggest CD36 might also contribute to neuropsychiatric disease. The aim of this study was to achieve a behavioral phenotype of CD36 knockout (CD36(-/-)) mice. We characterized the behavior of CD36(-/-) mice and C57BL/6J mice by subjecting them to a series of tests, which include SHIRPA primary behavioral screen test, 1% sucrose preference test, elevated plus-maze test, open-field test and forced swimming test. The results showed that CD36(-/-) mice traversed more squares, emitted more defecation, exhibited higher tail elevation and had more aggressive behaviors than C57BL/6J mice. The CD36(-/-) mice spent more time and traveled longer distance in periphery zone in the open-field test. Meanwhile, the numbers that CD36(-/-) mice entered in the open arms of elevated plus-maze were reduced. These findings suggest that CD36(-/-) mice present an anxious phenotype and might be involved in neuropsychiatric disorders.
Collapse
|
242
|
Nunes MA, Schöwe NM, Monteiro-Silva KC, Baraldi-Tornisielo T, Souza SIG, Balthazar J, Albuquerque MS, Caetano AL, Viel TA, Buck HS. Chronic Microdose Lithium Treatment Prevented Memory Loss and Neurohistopathological Changes in a Transgenic Mouse Model of Alzheimer's Disease. PLoS One 2015; 10:e0142267. [PMID: 26605788 PMCID: PMC4659557 DOI: 10.1371/journal.pone.0142267] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/20/2015] [Indexed: 12/28/2022] Open
Abstract
The use of lithium is well established in bipolar disorders and the benefits are being demonstrated in neurodegenerative disorders. Recently, our group showed that treatment with microdose lithium stabilized the cognitive deficits observed in Alzheimer's disease (AD) patients. In order to verify the lithium microdose potential in preventing the disease development, the aim of this work was to verify the effects of chronic treatment with microdose lithium given before and after the appearance of symptoms in a mouse model of a disease similar to AD. Transgenic mice (Cg-Tg(PDGFB-APPSwInd)20Lms/2J) and their non-transgenic litter mate genetic controls were treated with lithium carbonate (0.25mg/Kg/day in drinking water) for 16 or 8 months starting at two and ten months of age, respectively [corrected]. Similar groups were treated with water. At the end of treatments, both lithium treated transgenic groups and non-transgenic mice showed no memory disruption, different from what was observed in the water treated transgenic group. Transgenic mice treated with lithium since two months of age showed decreased number of senile plaques, no neuronal loss in cortex and hippocampus and increased BDNF density in cortex, when compared to non-treated transgenic mice. It is suitable to conclude that these data support the use of microdose lithium in the prevention and treatment of Alzheimer's disease, once the neurohistopathological characteristics of the disease were modified and the memory of transgenic animals was maintained.
Collapse
Affiliation(s)
- Marielza Andrade Nunes
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, R. Dr. Cesario Motta Junior, 61, 11° andar, São Paulo, SP 01221–020, Brazil
- Research Group on Neuropharmacology of Aging—ReGNA, Sao Paulo, Brazil
| | - Natalia Mendes Schöwe
- Graduation Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, 05508–900 São Paulo, Brazil
- Research Group on Neuropharmacology of Aging—ReGNA, Sao Paulo, Brazil
| | - Karla Cristina Monteiro-Silva
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, R. Dr. Cesario Motta Junior, 61, 11° andar, São Paulo, SP 01221–020, Brazil
| | - Ticiana Baraldi-Tornisielo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, R. Dr. Cesario Motta Junior, 61, 11° andar, São Paulo, SP 01221–020, Brazil
- Research Group on Neuropharmacology of Aging—ReGNA, Sao Paulo, Brazil
| | - Suzzanna Ingryd Gonçalves Souza
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, R. Dr. Cesario Motta Junior, 61, 11° andar, São Paulo, SP 01221–020, Brazil
| | - Janaina Balthazar
- Graduation Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, 05508–900 São Paulo, Brazil
| | - Marilia Silva Albuquerque
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, R. Dr. Cesario Motta Junior, 61, 11° andar, São Paulo, SP 01221–020, Brazil
- Research Group on Neuropharmacology of Aging—ReGNA, Sao Paulo, Brazil
| | - Ariadiny Lima Caetano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, R. Dr. Cesario Motta Junior, 61, 11° andar, São Paulo, SP 01221–020, Brazil
- Research Group on Neuropharmacology of Aging—ReGNA, Sao Paulo, Brazil
| | - Tania Araujo Viel
- Graduation Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, 05508–900 São Paulo, Brazil
- School of Arts, Sciences and Humanities, Universidade de São Paulo, Av. Arlindo Bettio, 1000, São Paulo, SP 03828–080, Brazil
- Research Group on Neuropharmacology of Aging—ReGNA, Sao Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, R. Dr. Cesario Motta Junior, 61, 11° andar, São Paulo, SP 01221–020, Brazil
- Research Group on Neuropharmacology of Aging—ReGNA, Sao Paulo, Brazil
| |
Collapse
|
243
|
Troxell-Smith SM, Tutka MJ, Albergo JM, Balu D, Brown JS, Leonard JP. Foraging decisions in wild versus domestic Mus musculus: What does life in the lab select for? Behav Processes 2015; 122:43-50. [PMID: 26548716 DOI: 10.1016/j.beproc.2015.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/11/2015] [Accepted: 10/26/2015] [Indexed: 11/28/2022]
Abstract
What does domestication select for in terms of foraging and anti-predator behaviors? We applied principles of patch use and foraging theory to test foraging strategies and fear responses of three strains of Mus musculus: wild-caught, control laboratory, and genetically modified strains. Foraging choices were quantified using giving-up densities (GUDs) under three foraging scenarios: (1) patches varying in microhabitat (covered versus open), and initial resource density (low versus high); (2) daily variation in auditory cues (aerial predators and control calls); (3) patches with varying seed aggregations. Overall, both domestic strains harvested significantly more food than wild mice. Each strain revealed a significant preference for foraging under cover compared to the open, and predator calls had no detectable effects on foraging. Both domestic strains biased their harvest toward high quality patches; wild mice did not. In terms of exploiting favorable and avoiding unfavorable distributions of seeds within patches, the lab strain performed best, the wild strain worst, and the mutant strain in between. Our study provides support for hypothesis that domestic animals have more energy-efficient foraging strategies than their wild counterparts, but retain residual fear responses. Furthermore, patch-use studies can reveal the aptitudes and priorities of both domestic and wild animals.
Collapse
Affiliation(s)
- Sandra M Troxell-Smith
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Michal J Tutka
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jessica M Albergo
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deebika Balu
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Joel S Brown
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - John P Leonard
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
244
|
van der Kooij MA, Grosse J, Zanoletti O, Papilloud A, Sandi C. The effects of stress during early postnatal periods on behavior and hippocampal neuroplasticity markers in adult male mice. Neuroscience 2015; 311:508-18. [PMID: 26548415 DOI: 10.1016/j.neuroscience.2015.10.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022]
Abstract
Infancy is a critical period for brain development. Emerging evidence indicates that stress experienced during that period can have long-term programming effects on the brain and behavior. However, whether different time periods represent different vulnerabilities to the programming of different neurobehavioral domains is not yet known. Disrupted maternal care is known to interfere with neurodevelopmental processes and may lead to the manifestation of behavioral abnormalities in adulthood. Mouse dams confronted with insufficient bedding/nesting material have been shown to provide fragmented maternal care to their offspring. Here, we compared the impact of this model of early-life stress (ELS) during different developmental periods comprising either postnatal days (PNDs) 2-9 (ELS-early) or PND 10-17 (ELS-late) on behavior and hippocampal cell adhesion molecules in male mice in adulthood. ELS-early treatment caused a permanent reduction in bodyweight, whereas this reduction only occurred transiently during juvenility in ELS-late mice. Anxiety was only affected in ELS-late mice, while cognition and sociability were equally impaired in both ELS-treated groups. We analyzed hippocampal gene expression of the γ2 subunit of the GABAa receptor (Gabrg2) and of genes encoding cell adhesion molecules. Gabrg2 expression was increased in the ventral hippocampus in ELS-late-treated animals and was correlated with anxiety-like behavior in the open-field (OF) test. ELS-early-treated animals exhibited an increase in nectin-1 expression in the dorsal hippocampus, and this increase was associated with the social deficits seen in these animals. Our findings highlight the relevance of developmental age on stress-induced long-term behavioral alterations. They also suggest potential links between early stress-induced alterations in hippocampal Gabrg2 expression and the developmental programming of anxiety and between changes in hippocampal nectin-1 expression and stress-induced social impairments.
Collapse
Affiliation(s)
- M A van der Kooij
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland; Johannes Gutenberg University Medical Centre, Department of Psychiatry and Psychotherapy and Focus Program Translational Neurosciences, Mainz, Germany
| | - J Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland
| | - O Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland
| | - A Papilloud
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytèchnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
245
|
Voluntary exercise enhances activity rhythms and ameliorates anxiety- and depression-like behaviors in the sand rat model of circadian rhythm-related mood changes. Physiol Behav 2015; 151:441-7. [DOI: 10.1016/j.physbeh.2015.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/14/2015] [Accepted: 08/01/2015] [Indexed: 11/22/2022]
|
246
|
The Association of Amyloid-β Protein Precursor With α- and β-Secretases in Mouse Cerebral Cortex Synapses Is Altered in Early Alzheimer’s Disease. Mol Neurobiol 2015; 53:5710-21. [DOI: 10.1007/s12035-015-9491-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
|
247
|
Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci 2015; 18:1394-404. [PMID: 26404714 DOI: 10.1038/nn.4101] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022]
Abstract
Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.
Collapse
Affiliation(s)
- Gwendolyn G Calhoon
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
248
|
Brachetta V, Schleich CE, Zenuto RR. Short-term anxiety response of the subterranean rodent Ctenomys talarum to odors from a predator. Physiol Behav 2015; 151:596-603. [PMID: 26343773 DOI: 10.1016/j.physbeh.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 01/11/2023]
Affiliation(s)
- V Brachetta
- Laboratorio de Ecofisiología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC 1245, 7600 Mar del Plata, Argentina.
| | | | | |
Collapse
|
249
|
Magno LDP, Fontes A, Gonçalves BMN, Gouveia A. Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration. Pharmacol Biochem Behav 2015; 135:169-76. [DOI: 10.1016/j.pbb.2015.05.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/07/2015] [Accepted: 05/25/2015] [Indexed: 12/01/2022]
|
250
|
Lyudyno VI, Tsikunov SG, Abdurasulova IN, Kusov AG, Klimenko VM. Modification of Anxious Behavior after Psychogenic Trauma and Treatment with Galanin Receptor Antagonist. Bull Exp Biol Med 2015. [PMID: 26201907 DOI: 10.1007/s10517-015-2958-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Effects of blockage of central galanin receptors on anxiety manifestations were studied in rats with psychogenic trauma. Psychogenic trauma was modeled by exposure of a group of rats to the situation when the partner was killed by a predator. Antagonist of galanin receptors was intranasally administered before stress exposure. Animal behavior was evaluated using the elevated-plus maze test, free exploratory paradigm, and open-field test. Psychogenic trauma was followed by an increase in anxiety level and appearance of agitated behavior. Blockage of galanin receptors aggravated behavioral impairment, which manifested in the pathological anxious reactions - manifestations of hypervigilance and hyperawareness. The results suggest that endogenous pool of galanin is involved into prevention of excessive CNS response to stressful stimuli typical of posttraumatic stress disorder.
Collapse
Affiliation(s)
- V I Lyudyno
- Research Institute of Experimental Medicine, the North-Western Division of Russian Academy of Medical sciences, St. Petersburg, Russia,
| | | | | | | | | |
Collapse
|