201
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
202
|
Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast 2014; 2014:321209. [PMID: 24551460 PMCID: PMC3914553 DOI: 10.1155/2014/321209] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.
Collapse
|
203
|
Sylva M, Moorman AFM, van den Hoff MJB. Follistatin-like 1 in vertebrate development. ACTA ACUST UNITED AC 2014; 99:61-9. [PMID: 23723173 DOI: 10.1002/bdrc.21030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/08/2013] [Indexed: 11/11/2022]
Abstract
Follistatin-like 1 (Fstl1) is a member of the secreted protein acidic rich in cysteins (SPARC) family and has been implicated in many different signaling pathways, including bone morphogenetic protein (BMP) signaling. In many different developmental processes like, dorso-ventral axis establishment, skeletal, lung and ureter development, loss of function experiments have unveiled an important role for Fstl1. Fstl1 largely functions through inhibiting interactions with the BMP signaling pathway, although, in various disease models, different signaling pathways, like activation of pAKT, pAMPK, Na/K-ATPase, or innate immune responses, are linked to Fstl1. How Fstl1 inhibits BMP signaling remains unclear, although it is known that Fstl1 does not function through a scavenging mechanism, like the other known extracellular BMP inhibitors such as noggin. It has been proposed that Fstl1 interferes with BMP receptor complex formation and as such inhibits propagation of the BMP signal into the cell. Future challenges will encompass the identification of the factors that determine the mechanisms that underlie the fact that Fstl1 acts by interfering with BMP signaling during development, but through other signaling pathways during disease.
Collapse
Affiliation(s)
- M Sylva
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Meibergdreef 15 1105 AZ, Amsterdam, The Netherlands
| | | | | |
Collapse
|
204
|
Lluch A, Álvarez I, Muñoz M, Seguí MÁ, Tusquets I, García-Estévez L. Treatment innovations for metastatic breast cancer: Nanoparticle albumin-bound (NAB) technology targeted to tumors. Crit Rev Oncol Hematol 2014; 89:62-72. [DOI: 10.1016/j.critrevonc.2013.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/11/2013] [Accepted: 08/09/2013] [Indexed: 01/28/2023] Open
|
205
|
Abstract
SATB2 is a nuclear matrix-associated transcription factor and epigenetic regulator that is involved in osteoblastic differentiation and is also expressed in the glandular epithelial cells of the lower gastrointestinal tract. Recent studies have shown that, because of its relative specificity for osteoblastic differentiation, SATB2 immunostaining could potentially be a useful adjunct for assisting in the differential diagnosis of both benign and malignant osteogenic tumors. In addition, because SATB2 is also a highly sensitive and specific marker for colorectal adenocarcinomas, it could also serve as a complementary marker in the differential diagnosis of a carcinoma of unknown primary origin.
Collapse
|
206
|
Wheeler JB, Ikonomidis JS, Jones JA. Connective tissue disorders and cardiovascular complications: the indomitable role of transforming growth factor-beta signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 802:107-27. [PMID: 24443024 PMCID: PMC4410689 DOI: 10.1007/978-94-007-7893-1_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic root dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/therapeutic use
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Antibodies, Neutralizing/pharmacology
- Aortic Aneurysm, Thoracic/drug therapy
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/surgery
- Aortic Valve/pathology
- Aortic Valve/surgery
- Bicuspid Aortic Valve Disease
- Gene Expression Regulation
- Heart Defects, Congenital/drug therapy
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/surgery
- Heart Valve Diseases/drug therapy
- Heart Valve Diseases/genetics
- Heart Valve Diseases/pathology
- Heart Valve Diseases/surgery
- Humans
- Loeys-Dietz Syndrome/drug therapy
- Loeys-Dietz Syndrome/genetics
- Loeys-Dietz Syndrome/pathology
- Loeys-Dietz Syndrome/surgery
- Marfan Syndrome/drug therapy
- Marfan Syndrome/genetics
- Marfan Syndrome/pathology
- Marfan Syndrome/surgery
- Mutation
- Receptors, Transforming Growth Factor beta/genetics
- Signal Transduction/genetics
- Smad Proteins/genetics
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
Collapse
Affiliation(s)
- Jason B. Wheeler
- Division of Cardiothoracic Surgery, Medical University of South Carolina
| | - John S. Ikonomidis
- Division of Cardiothoracic Surgery, Medical University of South Carolina
| | - Jeffrey A. Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
207
|
Expression analysis of SPARC/osteonectin in oral squamous cell carcinoma patients: from saliva to surgical specimen. BIOMED RESEARCH INTERNATIONAL 2013; 2013:736438. [PMID: 24396828 PMCID: PMC3876772 DOI: 10.1155/2013/736438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/01/2013] [Indexed: 02/04/2023]
Abstract
Oral squamous cell carcinoma (OSCC) remains a significant cause of morbidity and mortality, with approximately 540,000 new cases annually worldwide. The molecular mechanisms related to the pathogenesis of this disease are still poorly understood. The discovery of a molecular marker that allows the early detection of this cancer, which can be easily identified in biological samples, such as saliva, without intervening in advanced stages, is a challenge. Numerous studies have identified a panel of molecular markers differently expressed in OSCC and normal oral mucosa. In particular, it was found an aberrant expression of matricellular glycoprotein SPARC. SPARC is involved in normal tissue remodeling, regulating the deposition of extracellular matrix, but also in neoplastic transformation. In fact, aberrant SPARC expression was detected both in stromal cells associated with cancer and in tumor cells. The aim of our study was the evaluation of SPARC on a retrospective series of 119 OSCC cases and the validation of the obtained data on a prospective series of 27 patients with OSCC, of whom we have previously collected saliva, and smeared material. The obtained results were correlated with each other and with clinical pathological parameters at our disposal. The study demonstrated a prognostic value of SPARC, especially with regard to its expression in the stroma surrounding OSCC (P < 0.05).
Collapse
|
208
|
Gong L, Zhou X, Wu Y, Zhang Y, Wang C, Zhou H, Guo F, Cui L. Proteomic analysis profile of engineered articular cartilage with chondrogenic differentiated adipose tissue-derived stem cells loaded polyglycolic acid mesh for weight-bearing area defect repair. Tissue Eng Part A 2013; 20:575-87. [PMID: 24044689 DOI: 10.1089/ten.tea.2013.0205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The present study was designed to investigate the possibility of full-thickness defects repair in porcine articular cartilage (AC) weight-bearing area using chondrogenic differentiated autologous adipose-derived stem cells (ASCs) with a follow-up of 3 and 6 months, which is successive to our previous study on nonweight-bearing area. The isolated ASCs were seeded onto the phosphoglycerate/polylactic acid (PGA/PLA) with chondrogenic induction in vitro for 2 weeks as the experimental group prior to implantation in porcine AC defects (8 mm in diameter, deep to subchondral bone), with PGA/PLA only as control. With follow-up time being 3 and 6 months, both neo-cartilages of postimplantation integrated well with the neighboring normal cartilage and subchondral bone histologically in experimental group, whereas only fibrous tissue in control group. Immunohistochemical and toluidine blue staining confirmed similar distribution of COL II and glycosaminoglycan in the regenerated cartilage to the native one. A vivid remolding process with repair time was also witnessed in the neo-cartilage as the compressive modulus significantly increased from 70% of the normal cartilage at 3 months to nearly 90% at 6 months, which is similar to our former research. Nevertheless, differences of the regenerated cartilages still could be detected from the native one. Meanwhile, the exact mechanism involved in chondrogenic differentiation from ASCs seeded on PGA/PLA is still unknown. Therefore, proteome is resorted leading to 43 proteins differentially identified from 20 chosen two-dimensional spots, which do help us further our research on some committed factors. In conclusion, the comparison via proteome provided a thorough understanding of mechanisms implicating ASC differentiation toward chondrocytes, which is further substantiated by the present study as a perfect supplement to the former one in nonweight-bearing area.
Collapse
Affiliation(s)
- Lunli Gong
- 1 Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Fontes-Oliveira CC, Busquets S, Fuster G, Ametller E, Figueras M, Olivan M, Toledo M, López-Soriano FJ, Qu X, Demuth J, Stevens P, Varbanov A, Wang F, Isfort RJ, Argilés JM. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation-contraction coupling together with additional muscle alterations. Muscle Nerve 2013; 49:233-48. [DOI: 10.1002/mus.23893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Cibely Cristine Fontes-Oliveira
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Gemma Fuster
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Elisabet Ametller
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Maite Figueras
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Mireia Olivan
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
| | - Francisco J. López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| | - Xiaoyan Qu
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Jeffrey Demuth
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Paula Stevens
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Alex Varbanov
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Feng Wang
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Robert J. Isfort
- Procter & Gamble; Mason Business Center; 8700 Mason-Montgomery Road Mason Ohio 45040 USA
| | - Josep M. Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia; Universitat de Barcelona; Diagonal 643 Barcelona 08028 Spain
- Institut de Biomedicina de la Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
210
|
Lee SH, Lee JA, Park HS, Song YS, Jang YJ, Kim JH, Lee YJ, Heo Y. Associations among SPARC mRNA expression in adipose tissue, serum SPARC concentration and metabolic parameters in Korean women. Obesity (Silver Spring) 2013; 21:2296-302. [PMID: 23666856 DOI: 10.1002/oby.20183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 11/12/2012] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Secreted protein acidic and rich in cysteine (SPARC) is expressed in most tissues and is also secreted by adipocytes. The associations of SPARC mRNA expression in visceral adipose tissue (VAT), subcutaneous abdominal adipose tissue (SAT), serum SPARC concentration, and metabolic parameters in Korean women are investigated. DESIGN AND METHODS This is a cross-sectional study. Fifty-eight women were recruited, of whom 15 women who underwent bariatric surgery for morbid obesity (BMI mean ± SD: 40.2±5.7 kg/m(2) ), 16 who underwent metabolic surgery for type 2 diabetes (BMI: 28.9±4.5 kg/m(2) ), and, as a control group, 27 who underwent gynecological surgery (BMI: 22.7±2.4 kg/m(2) ). Anthropometric variables, metabolic parameters, SPARC mRNA expression in adipose tissue, and serum SPARC concentration were measured. RESULTS In all subjects, SPARC mRNA expression was significantly higher in SAT than in VAT. Serum SPARC concentrations (mean ± SE) in morbidly obese subjects, subjects with type 2 diabetes, and normal weight subjects were 267.3±40.2 ng/mL, 130.4±33.0 ng/mL, and 53.1±2.8 ng/mL, respectively. SPARC mRNA in SAT was significantly correlated with BMI, whereas SPARC mRNA in VAT was significantly correlated with BMI and VAT area. Serum SPARC concentration was significantly correlated with BMI, waist circumference, total adipose tissue area, and SAT area. After BMI adjustment, serum SPARC concentration was significantly correlated with fasting insulin concentration and HOMA-IR score. Multivariate regression analysis showed that BMI and HOMA-IR were independently associated with serum SPARC concentration. CONCLUSIONS Serum SPARC concentration is significantly correlated with obesity indices and might be influenced by insulin resistance. These findings suggest that SPARC may contribute to the metabolic dysregulation associated with obesity in humans.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Adult
- Asian People
- Case-Control Studies
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/ethnology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/surgery
- Female
- Gene Expression
- Humans
- Metabolism/genetics
- Middle Aged
- Obesity, Morbid/ethnology
- Obesity, Morbid/genetics
- Obesity, Morbid/metabolism
- Obesity, Morbid/surgery
- Osteonectin/blood
- Osteonectin/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Young Adult
Collapse
Affiliation(s)
- S H Lee
- Department of Family Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
211
|
de Oliveira EMF, Martinez EF, Bossonaro JP, Ribeiro RC, de Araújo VC, Napimoga MH. In-vitro analysis of rhBMP-2 effects in human osteogenic cells. Can J Physiol Pharmacol 2013; 91:929-34. [PMID: 24117260 DOI: 10.1139/cjpp-2013-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the in vitro expression of bone-related proteins by osteoblasts in the presence of different concentrations of human recombinant bone morphogenetic protein-2 (rhBMP-2). Immortalized human fetal osteoblastic cell line 1.19 (hFOB) were exposed to different concentrations of rhBMP-2 (10, 50, or 100 ng/mL) for 72 h. Cell proliferation and viability (MTT assay), as well as the expression of fibronectin, osteonectin, and osteopontin were assessed by indirect immunofluorescence and Western blot. Neither of the 3 concentrations of rhBMP-2 caused statistically significant alterations in cell proliferation and viability, although the concentration of 100 ng/mL showed lower values for both assays after both 48 and 72 h of exposure. There was no alteration in the expression of noncollagenous proteins, as analyzed by immunofluorescence, when compared with the control group. Furthermore, in the Western blot assay we observed a statistically significant decrease in fibronectin and osteonectin at 100 ng rhBMP-2/mL (p < 0.05) by comparison with the medium alone. The expression of osteopontin decreased slightly in all 3 concentrations of rhBMP-2 tested; however, the change was not statistically significant (p > 0.05). In this in-vitro study, the tested concentrations of rhBMP-2 appeared to decrease the expression of important bone-related molecules in pre-osteoblast cells.
Collapse
Affiliation(s)
- Eder M F de Oliveira
- a Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
212
|
Xu Y, Yang L, Jiang X, Yu J, Yang J, Zhang H, Tai G, Yuan X, Liu F. Adenovirus-mediated coexpression of DCX and SPARC radiosensitizes human malignant glioma cells. Cell Mol Neurobiol 2013; 33:965-71. [PMID: 23846421 DOI: 10.1007/s10571-013-9963-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/03/2013] [Indexed: 12/30/2022]
Abstract
This study is designed to examine the radiosensitizing effects of coexpression of doublecortin (DCX) and secreted protein and rich in cysteine (SPARC). Previously, we showed that downregulation of SPARC by small interfering RNA increased radioresistance of U-87MG glioma cells. Therefore, overexpression of SPARC might increase radiosensitivity of glioma cells. But SPARC has been shown to promote glioma cell invasion both in vitro and vivo. In order to radiosensitize glioma cells without stimulating invasion, we chose DCX, which is a well-characterized anti-tumor gene, to coexpress with SPARC. An adenovirus-mediated double gene expression system was constructed and applied to U251 and A172 glioma cell lines. Our data showed that coexpression of DCX and SPARC collaboratively diminished radioresistance of glioma cells, interfered with cell cycle turnover and increased irradiation-induced apoptosis. In addition, transwell assay revealed that coexpression was able to counteract the invasion-promoting effects of SPARC, and even inhibited intrinsic invasion, evidenced by less invading cells in double gene overexpressed group than that of control adenovirus-treated group. In conclusion, genetic engineering combining two or more genes might be a more effective method to overcome radioresistance of glioma cells.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, No. 199 Ren'ai Street, Suzhou, 215123, China
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Schmitt A, Ehnert S, Ungefroren H, Döbele S, Nussler A. Response to the “Enhancement of Human Peripheral Blood Mononuclear Cell Transplantation-Mediated Bone Formation” by Yang et al. Cell Transplant 2013; 22:1955-7. [DOI: 10.3727/096368912x663514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Andreas Schmitt
- Department of Sports Orthopedics, Klinikum rechts der Isar of the TU Munich, Munich, Germany
- Department of Traumatology, Klinikum rechts der Isar of the TU Munich, Munich, Germany
| | - Sabrina Ehnert
- Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Stefan Döbele
- Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany
| | - Andreas Nussler
- Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany
| |
Collapse
|
214
|
Nakamura K, Nakano SI, Miyoshi T, Yamanouchi K, Nishihara M. Loss of SPARC in mouse skeletal muscle causes myofiber atrophy. Muscle Nerve 2013; 48:791-9. [PMID: 23424163 DOI: 10.1002/mus.23822] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The expression of secreted protein acidic and rich in cysteine (SPARC) in skeletal muscle decreases with age. Here, we examined the role of SPARC in skeletal muscle by reducing its expression. METHODS SPARC expression was suppressed by introducing short interfering RNA (siRNA) into mouse tibialis anterior muscle. Myofiber diameter, atrogin1, and muscle RING-finger protein 1 (MuRF1) expression, and tumor necrosis factor-α (TNFα) and transforming growth factor-β (TGFβ) signaling were then analyzed. RESULTS Reduced SPARC expression caused decreases in the diameter of myofibers, especially fast-type ones, accompanied by upregulation of atrogin1, but not MuRF1, at 10 days after siRNA transfection. The expression of TNFα and TGFβ and the phosphorylation status of p38 were not affected by SPARC knockdown, whereas Smad3 phosphorylation was increased at 2 days after siRNA transfection. CONCLUSIONS The loss of SPARC not only upregulates atrogin1 expression but also enhances TGFβ signaling, which may in turn cause muscle atrophy.
Collapse
Affiliation(s)
- Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
215
|
Downregulation of SPARC expression inhibits the invasion of human trophoblast cells in vitro. PLoS One 2013; 8:e69079. [PMID: 23935929 PMCID: PMC3720866 DOI: 10.1371/journal.pone.0069079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/04/2013] [Indexed: 01/10/2023] Open
Abstract
Successful pregnancy depends on the precise regulation of extravilloustrophoblast (EVT) invasion into the uterine decidua. SPARC (secreted protein acidic and rich in cysteine) is a matricellular glycoprotein that plays critical roles in the pathologies associated with obesity and diabetes, as well as tumorigenesis. The objective of this study was to investigate the role of SPARC in the process of trophoblast invasion which shares many similarities with tumor cell invasion. By Western blot, higher expression of SPARC was observed in mouse brain, ovary and uterus compared to other mouse tissues. Immunohistochemistry analysis revealed a spatio-temporal expression of SPARC in mouse uterus in the periimplantation period. At the implantation site of d8 pregnancy, SPARC mainly accumulated in the secondary decidua zone (SDZ), trophoblast cells and blastocyst. The expression of SPARC was also detected in human placental villi and trophoblast cell lines. In a Matrigel invasion assay, we found SPARC-specific RNA interference significantly reduced the invasion of human extravilloustrophoblast HTR8/SVneo cells. Microarray analysis revealed that SPARC depletion upregulated the expression of interleukin 11 (IL11), KISS1, insulin-like growth factor binding protein 4 (IGFBP4), collagen type I alpha 1 (COLIA1), matrix metallopeptidase 9 (MMP9), and downregulated the expression of the alpha polypeptide of chorionic gonadotropin (CGA), MMP1, gap junction protein alpha 1 (GJA1), et al. The gene array result was further validated by qRT-PCR and Western blot. The present data indicate that SPARC may play an important role in the regulation of normal placentation by promoting the invasion of trophoblast cells into the uterine decidua.
Collapse
|
216
|
A role for SPARC in the moderation of human insulin secretion. PLoS One 2013; 8:e68253. [PMID: 23840838 PMCID: PMC3695891 DOI: 10.1371/journal.pone.0068253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/26/2013] [Indexed: 01/03/2023] Open
Abstract
Aims/Hypothesis We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine)/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes. Methods We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS) in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines. Results SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05). SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01). Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01). Conclusions Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC’s modulation of obesity-induced insulin resistance in adipose tissue.
Collapse
|
217
|
Nishimoto K, Rainey WE, Bollag WB, Seki T. Lessons from the gene expression pattern of the rat zona glomerulosa. Mol Cell Endocrinol 2013; 371:107-13. [PMID: 23287491 PMCID: PMC3625490 DOI: 10.1016/j.mce.2012.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 12/24/2022]
Abstract
We recently identified hundreds of transcripts with differential expression in rat zona glomerulosa (zG) and zona fasciculata. Although the genes up-regulated in the zG may be playing important roles in aldosterone production, the relationship between most of these genes and aldosterone production has not been uncovered. Because aldosterone, in the presence of a high sodium diet, is now considered a significant cardiovascular risk factor, in this review we performed gene ontology and pathway analyses on the same microarray data to better define the genes that may influence zG function. Overall, we identified a number of genes that may be involved in aldosterone production through transforming growth factor β (TGF-β), WNT, calcium, potassium, and ACTH signaling pathways. The list of genes we present in the current report may become an important tool for researchers working on primary aldosteronism and aldosterone-related cardiovascular diseases.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
- Department of Urology, Tachikawa Hospital, Tokyo 190-8531, Japan
| | - William E. Rainey
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
- Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Tsugio Seki
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
- Corresponding author: Tsugio Seki, Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, 1120 15th Street, CA3064, Augusta, GA 30912; Tel., +1-706-721-1321; Fax., +1-706-721-7299
| |
Collapse
|
218
|
Lloyd-Burton S, Roskams AJ. SPARC-like 1 (SC1) is a diversely expressed and developmentally regulated matricellular protein that does not compensate for the absence of SPARC in the CNS. J Comp Neurol 2013; 520:2575-90. [PMID: 22173850 DOI: 10.1002/cne.23029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SPARC-like 1 (SC1) is a member of the SPARC family of matricellular proteins that has been implicated in the regulation of processes such as cell migration, proliferation, and differentiation. Here we show that SC1 exhibits remarkably diverse and dynamic expression in the developing and adult nervous system. During development, SC1 localizes to radial glia and pial-derived structures, including the vasculature, choroid plexus, and pial membranes. SC1 is not downregulated in postnatal development, but its expression shifts to distinct time windows in subtypes of glia and neurons, including astrocytes, large projection neurons, Bergmann glia, Schwann cells, and ganglionic satellite cells. In addition, SC1 expression levels and patterns are not altered in the SPARC null mouse, suggesting that SC1 does not compensate for the absence of SPARC. We conclude that SC1 and SPARC may share significant homology, but are likely to have distinct but complementary roles in nervous system development.
Collapse
Affiliation(s)
- Samantha Lloyd-Burton
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
219
|
Kang MH, Oh DJ, Kang JH, Rhee DJ. Regulation of SPARC by transforming growth factor β2 in human trabecular meshwork. Invest Ophthalmol Vis Sci 2013; 54:2523-32. [PMID: 23513064 DOI: 10.1167/iovs.12-11474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE An increased aqueous level of TGF-β2 has been found in many primary open-angle glaucoma patients. Secreted Protein, Acidic, and Rich in Cysteine (SPARC)-null mice have a lower intraocular pressure. The mechanistic relationship between SPARC and TGF-β2 in trabecular meshwork (TM) is unknown. We hypothesized that TGF-β2 upregulates SPARC expression in TM. METHODS Cultured TM cells were incubated with selective inhibitors for p38 MAP kinase (p38), Smad3, p42, JNK, RhoA, PI3K, or TGF-β2 receptor for 2 hours, and then TGF-β2 was added for 24 hours in serum-free media. Quantitative polymerase chain reaction (qPCR) and immunoblot analysis were performed. Immunofluorescent microscopy was used to determine nuclear translocation of signaling proteins. Ad5.hSPARC and Lentiviral shRNA for p38 and Smad3 were constructed, and infected human TM cells. RESULTS SPARC was upregulated by TGF-β2 in the human TM cells (3.8 ± 1.7-fold, n = 6, P = 0.01 for protein and 7.1 ± 3.7-fold, n = 6, P = 0.01 for mRNA), while upregulation of SPARC had no effect on TGF-β2. TGF-β2-induced SPARC expression was suppressed by inhibitors against p38 (-40.3 ± 20.9%, n = 10, P = 0.0001), Smad3 (-56.2 ± 18.9%, n = 10, P = 0.0001), JNK (-49.1 ± 24.6%, n = 10, P = 0.0001), and TGF-β2 receptor (-83.6 ± 14.4%, n = 6, P = 0.003). Phosphorylation and translocation of Smad3, p38, and MAPKAPK2 were detected at 30 minutes and 1 hour, respectively, following TGF-β2 treatment. Phosphorylation of JNK and c-jun was detected before TGF-β2 treatment. SPARC was suppressed 31 ± 13% (n = 5, P < 0.0001) by shRNA-p38 and 41 ± 3% (n = 5, P < 0.0001) by shRNA-Smad3. CONCLUSIONS TGF-β2 upregulates SPARC expression in human TM through Smad-dependent (Smad2/3) or -independent (p38) signaling pathways. SPARC may be a downstream regulatory node of TGF-β2-mediated IOP elevation.
Collapse
Affiliation(s)
- Min Hyung Kang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
220
|
Valenzuela CD, Allori AC, Reformat DD, Sailon AM, Allen RJ, Davidson EH, Alikhani M, Bromage TG, Ricci JL, Warren SM. Characterization of adipose-derived mesenchymal stem cell combinations for vascularized bone engineering. Tissue Eng Part A 2013; 19:1373-85. [PMID: 23343199 DOI: 10.1089/ten.tea.2012.0323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since bone repair and regeneration depend on vasculogenesis and osteogenesis, both of these processes are essential for successful vascularized bone engineering. Using adipose-derived stem cells (ASCs), we investigated temporal gene expression profiles, as well as bone nodule and endothelial tubule formation capacities, during osteogenic and vasculogenic ASC lineage commitment. Osteoprogenitor-enriched cell populations were found to express RUNX2, MSX2, SP7 (osterix), BGLAP (osteocalcin), SPARC (osteonectin), and SPP1 (osteopontin) in a temporally specific sequence. Irreversible commitment of ASCs to the osteogenic lineage occurred between days 6 and 9 of differentiation. Endothelioprogenitor-enriched cell populations expressed CD34, PECAM1 (CD31), ENG (CD105), FLT1 (Vascular endothelial growth factor [VEGFR1]), and KDR (VEGFR2). Capacity for microtubule formation was evident in as early as 3 days. Functional capacity was assessed in eight coculture combinations for both bone nodule and endothelial tubule formation, and the greatest expression of these end-differentiation phenotypes was observed in the combination of well-differentiated endothelial cells with less-differentiated osteoblastic cells. Taken together, our results demonstrate vascularized bone engineering utilizing ASCs is a promising enterprise, and that coculture strategies should focus on developing a more mature vascular network in combination with a less mature osteoblastic stromal cell.
Collapse
Affiliation(s)
- Cristian D Valenzuela
- Institute of Reconstructive Plastic Surgery Laboratories, New York University Langone Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Li B, Li F, Chi L, Zhang L, Zhu S. The expression of SPARC in human intracranial aneurysms and its relationship with MMP-2/-9. PLoS One 2013; 8:e58490. [PMID: 23516489 PMCID: PMC3597740 DOI: 10.1371/journal.pone.0058490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022] Open
Abstract
Objective SPARC is a key determinant of invasion and metastasis in some tumors, such as gliomas, melanomas and prostate tumors. SPARC can change the composition and structure of the matrix and promote angiogenesis; these effects are closely related to clinical stage and the prognosis of tumors such as meningiomas. However, little is known about the expression of SPARC in intracranial aneurysms. The goal of this study was to establish the role of SPARC in human intracranial aneurysms. Methods Thirty-one intracranial aneurysms were immunohistochemically stained for SPARC, MMP-2 and MMP-9. As controls, normal Circle of Willis arteries were similarly immunostained. All specimens were retrieved during autopsies and were embedded in paraffin. To evaluate the expression levels of SPARC, MMP-2 and MMP-9, western blotting was also performed in three available intracranial aneurysm specimens. The limited availability of fresh intracranial aneurysm tissue was the result of the majority of patients choosing endovascular embolization. Results The results showed that SPARC, MMP-2 and MMP-9 were strongly expressed in intracranial aneurysm tissues; however, these proteins were expressed minimally or not at all in normal Circle of Willis arteries. The western blot results showed that the expression levels of SPARC, MMP-2 and MMP-9 were significantly up-regulated in intracranial aneurysms relative to the expression levels in the normal Circle of Willis arteries. Data analysis showed that SPARC was significantly correlated with MMP-2 and MMP-9, also with age and risk factors but not with the Hunt-Hess grade or with sex. Conclusion The results indicate that SPARC is widely expressed in human intracranial aneurysms, and its expression correlates with MMP-2 and MMP-9 expression, age and risk factors but not with the Hunt-Hess grade. The results of this study suggest that SPARC has a pathogenic role in the alteration of the extracellular matrix of intracranial arteries during aneurysm formation.
Collapse
Affiliation(s)
- Bo Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China.
| | | | | | | | | |
Collapse
|
222
|
Lloyd-Burton SM, York EM, Anwar MA, Vincent AJ, Roskams AJ. SPARC regulates microgliosis and functional recovery following cortical ischemia. J Neurosci 2013; 33:4468-81. [PMID: 23467362 PMCID: PMC6704956 DOI: 10.1523/jneurosci.3585-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/12/2023] Open
Abstract
Secreted protein acidic rich in cysteine (SPARC) is a matricellular protein that modulates the activity of growth factors, cytokines, and extracellular matrix to play multiple roles in tissue development and repair, such as cellular adhesion, migration, and proliferation. Throughout the CNS, SPARC is highly localized in mature ramified microglia, but its role in microglia--in development or during response to disease or injury--is not understood. In the postnatal brain, immature amoeboid myeloid precursors only induce SPARC expression after they cease proliferation and migration, and transform into mature, ramified resting microglia. SPARC null/CX3CR1-GFP reporter mice reveal that SPARC regulates the distribution and branching of mature microglia, with significant differences between cortical gray and white matter in both controls and SPARC nulls. Following ischemic and excitotoxic lesion, reactive, hypertrophic microglia rapidly downregulate and release SPARC at the lesion, concomitant with reactive, hypertrophic perilesion astrocytes upregulating SPARC. After photothrombotic stroke in the forelimb sensorimotor cortex, SPARC nulls demonstrate enhanced microgliosis in and around the lesion site, which accompanies significantly enhanced functional recovery by 32 d after lesion. Microglia from SPARC nulls also intrinsically proliferate at a greater rate in vitro--an enhanced effect that can be rescued by the addition of exogenous SPARC. SPARC is thus a novel regulator of microglial proliferation and structure, and, in addition to regulating glioma progression, may play an important role in differently regulating the gray and white matter microglial responses to CNS lesion--and modulating behavioral recovery--after injury.
Collapse
Affiliation(s)
- Samantha M. Lloyd-Burton
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Elisa M. York
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Mohammad A. Anwar
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Adele J. Vincent
- Menzies Research Institute, University of Tasmania, Hobart, TAS 7000, Australia
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| |
Collapse
|
223
|
Klemenčič M, Novinec M, Maier S, Hartmann U, Lenarčič B. The heparin-binding activity of secreted modular calcium-binding protein 1 (SMOC-1) modulates its cell adhesion properties. PLoS One 2013; 8:e56839. [PMID: 23437253 PMCID: PMC3578922 DOI: 10.1371/journal.pone.0056839] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/15/2013] [Indexed: 02/04/2023] Open
Abstract
Secreted modular calcium-binding proteins 1 and 2 (SMOC-1 and SMOC-1) are extracellular calcium- binding proteins belonging to the BM-40 family of proteins. In this work we have identified a highly basic region in the extracellular calcium-binding (EC) domain of the SMOC-1 similar to other known glycosaminoglycan-binding motifs. Size-exclusion chromatography shows that full length SMOC-1 as well as its C-terminal EC domain alone bind heparin and heparan sulfate, but not the related chondroitin sulfate or dermatan sulfate glycosaminoglycans. Intrinsic tryptophan fluorescence measurements were used to quantify the binding of heparin to full length SMOC-1 and the EC domain alone. The calculated equilibrium dissociation constants were in the lower micromolar range. The binding site consists of two antiparallel alpha helices and mutagenesis experiments have shown that heparin-binding residues in both helices must be replaced in order to abolish heparin binding. Furthermore, we show that the SMOC-1 EC domain, like the SMOC-2 EC domain, supports the adhesion of epithelial HaCaT cells. Heparin-binding impaired mutants failed to support S1EC-mediated cell adhesion and together with the observation that S1EC in complex with soluble heparin attenuated cell adhesion we conclude that a functional and accessible S1EC heparin-binding site mediates adhesion of epithelial cells to SMOC-1.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Silke Maier
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
224
|
Ceinos RM, Torres-Nuñez E, Chamorro R, Novoa B, Figueras A, Ruane NM, Rotllant J. Critical Role of the Matricellular Protein SPARC in Mediating Erythroid Progenitor Cell Development in Zebrafish. Cells Tissues Organs 2012. [DOI: 10.1159/000343291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
225
|
Huang Y, Zhang J, Zhao YY, Jiang W, Xue C, Xu F, Zhao HY, Zhang Y, Zhao LP, Hu ZH, Yao ZW, Liu QY, Zhang L. SPARC expression and prognostic value in non-small cell lung cancer. CHINESE JOURNAL OF CANCER 2012; 31:541-8. [PMID: 23114088 PMCID: PMC3777514 DOI: 10.5732/cjc.012.10212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Secreted protein, acidic and rich in cysteine (SPARC) is expressed in numerous types of tumors and is suggested to have prognostic value. Moreover, because of its strong affinity for albumin, and hence albumin-bound drugs, SPARC has increasingly become a focus for research. In this study, we aimed to determine SPARC expression in patients with non-small cell lung cancer (NSCLC) and investigate the association of SPARC with disease prognosis. Tissue microarrays were constructed with specimens from 105 patients with NSCLC treated at Sun Yat-sen University Cancer Center, and immunohistochemical analysis was performed on these tissue microarrays to assess SPARC expression. Our results showed that SPARC expression status did not significantly relate with age, gender, and tumor stage. However, SPARC was expressed more frequently in squamous cell carcinoma than in adenocarcinoma (75% vs. 43.5%, P = 0.004). Patients with smoking history had higher SPARC expression than non-smokers (68.2% vs. 33.3%, P = 0.002). In both univariate and multivariate analyses, SPARC was a prognostic factor of overall survival (HR = 0.32; 95% CI: 0.16-0.65) but not disease-free survival. Our study indicates that SPARC expression is higher in squamous cell carcinoma than in adenocarcinoma in NSCLC. Most notably, SPARC can be used as a prognostic factor for NSCLC.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Oncology in South China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
SPARC promotes the development of erythroid progenitors. Exp Hematol 2012; 40:828-36. [DOI: 10.1016/j.exphem.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/26/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022]
|
227
|
Sousounis K, Tsonis PA. Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses. Hum Genomics 2012; 6:14. [PMID: 23244575 PMCID: PMC3563465 DOI: 10.1186/1479-7364-6-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022] Open
Abstract
In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | | |
Collapse
|
228
|
Baicu CF, Li J, Zhang Y, Kasiganesan H, Cooper G, Zile MR, Bradshaw AD. Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing. Am J Physiol Heart Circ Physiol 2012; 303:H1128-34. [PMID: 22942178 DOI: 10.1152/ajpheart.00482.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocardial fibrillar collagen is considered an important determinant of increased ventricular stiffness in pressure-overload (PO)-induced cardiac hypertrophy. Chronic PO was created in feline right ventricles (RV) by pulmonary artery banding (PAB) to define the time course of changes in fibrillar collagen content after PO using a nonrodent model and to determine whether this time course was dependent on changes in fibroblast function. Total, soluble, and insoluble collagen (hydroxyproline), collagen volume fraction (CVF), and RV end-diastolic pressure were assessed 2 days and 1, 2, 4, and 10 wk following PAB. Fibroblast function was assessed by quantitating the product of postsynthetic processing, insoluble collagen, and levels of SPARC (secreted protein acidic and rich in cysteine), a protein that affects procollagen processing. RV hypertrophic growth was complete 2 wk after PAB. Changes in RV collagen content did not follow the same time course. Two weeks after PAB, there were elevations in total collagen (control RV: 8.84 ± 1.03 mg/g vs. 2-wk PAB: 11.50 ± 0.78 mg/g); however, increased insoluble fibrillar collagen, as measured by CVF, was not detected until 4 wk after PAB (control RV CVF: 1.39 ± 0.25% vs. 4-wk PAB: 4.18 ± 0.87%). RV end-diastolic pressure was unchanged at 2 wk, but increased until 4 wk after PAB. RV fibroblasts isolated after 2-wk PAB had no changes in either insoluble collagen or SPARC expression; however, increases in insoluble collagen and in levels of SPARC were detected in RV fibroblasts from 4-wk PAB. Therefore, the time course of PO-induced RV hypertrophy differs significantly from myocardial fibrosis and diastolic dysfunction. These temporal differences appear dependent on changes in fibroblast function.
Collapse
Affiliation(s)
- Catalin F Baicu
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
David C, Nance JP, Hubbard J, Hsu M, Binder D, Wilson EH. Stabilin-1 expression in tumor associated macrophages. Brain Res 2012; 1481:71-8. [PMID: 22960114 DOI: 10.1016/j.brainres.2012.08.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/24/2012] [Accepted: 08/25/2012] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme is a very aggressive and common form of brain tumor. Current therapies consist of a combination of surgical removal, chemotherapy and radiation therapy. These drastic treatments still leave a current prognosis of median survival of less than 1 year. Lack of effectiveness of these treatments has left researchers looking for alternative forms of treatment. A significant alternative currently being investigated is the use of the immune system to potentially target and eliminate tumor cells directly. Stabilin-1, a scavenger receptor expressed by macrophages, has the potential in inhibiting tumor growth by binding and internalizing secreted protein acidic and rich in cysteine (SPARC). SPARC is known to be upregulated in the tumor microenvironment and is involved in extracellular matrix remodeling, cell proliferation and migration. Decreasing SPARC expression using siRNA has been shown to decrease tumor invasiveness and survival. We investigated the phenotype of stabilin-1 expressing immune cells in the tumor environment and demonstrated a transient population of alternatively activated macrophages expressing stabilin-1 in the tumor environment and the disappearance of that population as the tumor progresses.
Collapse
Affiliation(s)
- Clément David
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
230
|
McBride WJ, Kimpel MW, McClintick JN, Ding ZM, Hyytia P, Colombo G, Edenberg HJ, Lumeng L, Bell RL. Gene expression in the ventral tegmental area of 5 pairs of rat lines selectively bred for high or low ethanol consumption. Pharmacol Biochem Behav 2012; 102:275-85. [PMID: 22579914 PMCID: PMC3383357 DOI: 10.1016/j.pbb.2012.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/20/2012] [Accepted: 04/30/2012] [Indexed: 12/28/2022]
Abstract
The objective of this study was to determine if there are common innate differences in gene expression or gene pathways in the ventral tegmental area (VTA) among 5 different pairs of rat lines selectively bred for high (HEC) or low (LEC) ethanol consumption: (a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats; (b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (replicate line pairs 1 and 2); (c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats; and (d) Sardinian alcohol-preferring (sP) vs. alcohol-nonpreferring (sNP) rats. Microarray analysis revealed between 370 and 1340 unique named genes that significantly differed in expression between the individual line-pairs. Analysis using Gene Ontology (GO) and Ingenuity Pathways information indicated significant categories and networks in common for up to 3 line-pairs, but not for all 5 line-pairs; moreover, there were few genes in common in these categories and networks. ANOVA of the combined data for the 5 line-pairs indicated 1295 significant (p<0.01) differences in expression of named genes. Although no individual named gene was significant across all 5 line-pairs, there were 22 genes that overlapped in the same direction in 3 or 4 of the line-pairs. Overall, the findings suggest that (a) some biological categories or networks may be in common for subsets of line-pairs; and (b) regulation of different genes and/or combinations of multiple biological systems (e.g., transcription, synaptic function, intracellular signaling and protection against oxidative stress) within the VTA (possibly involving dopamine and glutamate) may be contributing to the disparate alcohol drinking behaviors of these line-pairs.
Collapse
Affiliation(s)
- William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Nakamura K, Nakano SI, Miyoshi T, Yamanouchi K, Matsuwaki T, Nishihara M. Age-related resistance of skeletal muscle-derived progenitor cells to SPARC may explain a shift from myogenesis to adipogenesis. Aging (Albany NY) 2012; 4:40-8. [PMID: 22289652 PMCID: PMC3292904 DOI: 10.18632/aging.100426] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging causes phenotypic changes in skeletal muscle progenitor cells (SMPCs) that lead to the loss of myogenicity and adipogenesis. Secreted protein acidic and rich in cysteine (SPARC), which is secreted from SMPCs, stimulates myogenesis and inhibits adipogenesis. The present study aimed to examine whether changes in SPARC expression, its signaling pathway, or both are involved in age-related phenotypic changes in SMPCs. SPARC expression levels were comparable in SMPCs derived from young and old rats. However, when SPARC expression was reduced by a SPARC-specific siRNA, SMPCs from young rats showed reduced myogenesis and increased adipogenesis. In striking contrast, old rats showed little changes in these functions. Recombinant SPARC was effective in inhibiting adipogenesis and promoting myogenesis of SMPCs from young rats but had no effect on SMPCs from old rats when endogenous SPARC levels were reduced by the SPARC-siRNA. Further, the level of integrin α5, a subunit of the putative SPARC receptor, was decreased in SMPCs from old rats, and its inhibition in SMPCs from young rats by siRNA reduced adipogenesis in response to SPARC. These results suggest that, although SPARC plays a role in regulating SMPC function, SMPCs become refractory to the action of SPARC with age. Our data may explain an age-related shift from myogenesis to adipogenesis, associated with sarcopenia.
Collapse
Affiliation(s)
- Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
232
|
Zhang Y, Yang B, Du Z, Bai T, Gao YT, Wang YJ, Lou C, Wang FM, Bai Y. Aberrant methylation of SPARC in human hepatocellular carcinoma and its clinical implication. World J Gastroenterol 2012; 18:2043-52. [PMID: 22563191 PMCID: PMC3342602 DOI: 10.3748/wjg.v18.i17.2043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/25/2011] [Accepted: 02/27/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the methylation status of secreted protein acidic and rich in cysteine (SPARC) in human hepatocellular carcinoma (HCC) and evaluate its clinical implication.
METHODS: The methylation status of SPARC was analyzed in one HCC cell line (SMMC-7721) and 60 pairs of HCC and corresponding nontumorous tissues by methylation-specific polymerase chain reaction and bisulfite sequencing. The expression of SPARC mRNA and protein were examined by reverse transcription polymerase chain reaction and immunohistochemistry, respectively. The correlations between the methylation status and the gene expression, the clinicopathological parameters, as well as the prognosis after surgery were analyzed.
RESULTS: In the SMMC-7721 cell line, the loss of SPARC expression was correlated with the aberrant methylation and could be reactivated by the demethylating agent 5-aza-2’-deoxycytidine. Methylation frequency of SPARC in HCC was significantly higher than that in the corresponding nontumorous tissues (45/60 vs 7/60, P < 0.001), and it was correlated with the pathological classification (P = 0.019). The downregulation of the SPARC mRNA expression in HCC was correlated with the SPARC methylation (P = 0.040). The patients with methylated SPARC had a poorer overall survival than those without methylated SPARC (28.0 mo vs 41.0 mo, P = 0.043).
CONCLUSION: Aberrant methylation is an important mechanism for SPARC inactivation in HCC and SPARC methylation may be a promising biomarker for the diagnosis and prognosis of HCC.
Collapse
|
233
|
Schmitt A, Ehnert S, Schyschka L, Buschner P, Kühnl A, Döbele S, Siebenlist S, Lucke M, Stöckle U, Nussler AK. Monocytes do not transdifferentiate into proper osteoblasts. ScientificWorldJournal 2012; 2012:384936. [PMID: 22623892 PMCID: PMC3353470 DOI: 10.1100/2012/384936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/11/2012] [Indexed: 11/17/2022] Open
Abstract
Recent publications suggested that monocytes might be an attractive cell type to transdifferentiate into various cellular phenotypes. Aim was, therefore, to evaluate the potential of blood monocytes to transdifferentiate into osteoblasts. Monocytes isolated from peripheral blood were subjected to two previously published treatments to obtain unique, multipotent cell fractions, named programmable cells of monocytic origin (PCMOs) and monocyte-derived mesenchymal progenitor cells (MOMPs). Subsequently, MOMPs and PCMOs were treated with osteogenic differentiation medium (including either vitamin D or dexamethasone) for 14 days. Regarding a variety of surface markers, no differences between MOMPs, PCMOs, and primary monocytes could be detected. The treatment with osteogenic medium neither resulted in loss of hematopoietic markers nor in adoption of mesenchymal phenotype in all cell types. No significant effect was observed regarding the expression of osteogenic transcription factors, bone-related genes, or production of mineralized matrix. Osteogenic medium resulted in activation of monocytes and appearance of osteoclasts. In conclusion, none of the investigated monocyte cell types showed any transdifferentiation characteristics under the tested circumstances. Based on our data, we rather see an activation and maturation of monocytes towards macrophages and osteoclasts.
Collapse
Affiliation(s)
- Andreas Schmitt
- Department of Traumatology, MRI, Technical University Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Hamrick MW. The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. BONEKEY REPORTS 2012; 1:60. [PMID: 23951457 DOI: 10.1038/bonekey.2012.60] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 01/17/2023]
Abstract
In vitro and in vivo studies provide evidence that a variety of growth factors and cytokines are actively secreted by muscle tissue. Muscle can therefore function as an endocrine and paracrine organ. These peptides characterize the muscle secretome, and many muscle-derived factors such as insulin-like growth factor-1, basic fibroblast growth factor, interleukin-15, myostatin and secreted protein acidic and rich in cysteine (osteonectin) are also known to have significant effects on bone metabolism. The factors secreted by muscle may vary according to muscle activity, in that muscle contraction, muscle atrophy or traumatic muscle injury can alter the type and relative abundance of particular factors released from muscle cells. The molecular and cellular pathways by which muscle-derived factors affect different types of bone cells (for example, osteoblasts, osteoclasts and osteocytes) are, however, poorly understood. Nevertheless, these findings further underscore the complex nature of muscle-bone interactions, and highlight the importance of integrating muscle biology and physiology into our understanding of bone growth, development and aging.
Collapse
Affiliation(s)
- Mark W Hamrick
- Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University , Augusta, GA, USA
| |
Collapse
|
235
|
Schultz CR, Golembieski WA, King DA, Brown SL, Brodie C, Rempel SA. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival. Mol Cancer 2012; 11:20. [PMID: 22480225 PMCID: PMC3349587 DOI: 10.1186/1476-4598-11-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/05/2012] [Indexed: 12/18/2022] Open
Abstract
Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting pAKT. 4) Combined inhibition of HSP27 and pAKT is more effective than TMZ treatment alone. Conclusions We conclude that inhibition of HSP27 alone, or in combination with pAKT inhibitor IV, may be an effective therapeutic approach to inhibit SPARC-induced glioma cell invasion and survival in SPARC-positive/PTEN-wildtype and SPARC-positive/PTEN-null tumors, respectively.
Collapse
Affiliation(s)
- Chad R Schultz
- The Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
236
|
Wei HY, Liu JL, Lv BJ, Xing L, Fu SY. SPARC modulates expression of extracellular matrix genes in human trabecular meshwork cells. Acta Ophthalmol 2012; 90:e138-43. [PMID: 22136411 DOI: 10.1111/j.1755-3768.2011.02283.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate the effects of secreted protein acidic and rich in cysteine (SPARC) on the expression of components of the extracellular matrix (ECM) in cultured human trabecular meshwork (TM) cells. METHODS Cultured human trabecular cells were transfected with small interfering RNAs (siRNAs) specific for the human SPARC gene. Protein and mRNA expressions of fibronectin (FN) and the α1chains of collagen I and collagen III were quantified. RESULTS After silencing of the SPARC gene by transfection of cells with SPARC siRNA, the expression of COL1A1 and COL3A1 mRNAs and proteins was significantly enhanced, as compared to that in the control group (all, p < 0.001). In contrast, SPARC siRNA significantly reduced the expression of FN and SPARC mRNAs and FN protein, as compared to that in the control group (all, p < 0.001.). CONCLUSIONS SPARC modulates the expression of several ECM genes in cultured human TM cells.
Collapse
Affiliation(s)
- Hai-Ying Wei
- Ophthalmology Department, the First Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150001, China
| | | | | | | | | |
Collapse
|
237
|
Weaver M, Workman G, Schultz CR, Lemke N, Rempel SA, Sage EH. Proteolysis of the matricellular protein hevin by matrix metalloproteinase-3 produces a SPARC-like fragment (SLF) associated with neovasculature in a murine glioma model. J Cell Biochem 2012; 112:3093-102. [PMID: 21688302 DOI: 10.1002/jcb.23235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The matricellular SPARC-family member hevin (Sparc-like 1/SPARCL-1/SC1/Mast9) contributes to neural development and alters tumor progression in a range of mammalian models. Based on sequence similarity, we hypothesized that proteolytic digestion of hevin would result in SPARC-like fragments (SLF) that affect the activity and/or location of these proteins. Incubation of hevin with matrix metalloproteinase-3 (MMP-3), a protease known to cleave SPARC, produced a limited number of peptides. Sequencing revealed the major proteolytic products to be SPARC-like in primary structure. In gliomas implanted into murine brain, a SLF was associated with SPARC in the neovasculature but not with hevin, the latter prominent in the astrocytes encompassed by infiltrating tumor. In this model of invasive glioma that involves MMP-3 activity, host-derived SLF was not observed in the extracellular matrix adjacent to tumor cells. In contrast, it occurred with its homolog SPARC in the angiogenic response to the tumor. We conclude that MMP-3-derived SLF is a marker of neovessels in glioma, where it could influence the activity of SPARC.
Collapse
Affiliation(s)
- Matt Weaver
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, Washington 98101, USA
| | | | | | | | | | | |
Collapse
|
238
|
Thomasy SM, Wood JA, Kass PH, Murphy CJ, Russell P. Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2012; 53:952-8. [PMID: 22247475 DOI: 10.1167/iovs.11-8526] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To determine the impact of substratum stiffness and latrunculin-B (Lat-B), on the expression of several matrix proteins that are associated with glaucoma. METHODS Human trabecular meshwork (HTM) cells were cultured on hydrogels possessing stiffness values mimicking those found in normal (5 kPa) and glaucomatous meshworks (75 kPa), or tissue culture polystyrene (TCP; >1 GPa). Cells were treated with 2.0 μM Lat-B in dimethyl sulfoxide (DMSO) or DMSO alone. RT-PCR was used to determine the impact of substratum stiffness and/or Lat-B treatment on the expression of secreted protein, acidic, cysteine rich (SPARC), myocilin, angiopoietin-like factor (ANGPTL)-7, and transglutaminase (TGM)-2. Immunofluorescence was used to assess changes in protein expression. RESULTS SPARC and myocilin mRNA expression were dramatically increased on the 75 kPa hydrogels and decreased on the 5 kPa hydrogels in comparison to TCP. In contrast, ANGPTL-7 mRNA and TGM-2 mRNA was decreased on the 75 kPa and 5 kPa hydrogels, respectively, in comparison with TCP. Treatment with Lat-B dramatically downregulated both SPARC and myocilin on 75 kPa hydrogels. In contrast, cells grown on TCP produced greater or similar amounts of SPARC and myocilin mRNA after Lat-B treatment. SPARC and myocilin protein expression paralleled changes in mRNA expression. CONCLUSIONS Substratum stiffness impacts HTM matrix gene and protein expression and modulates the impact of Lat-B treatment on the expression of these matrix proteins. Integrating the use of biologically relevant substratum stiffness in the conduction of in vitro experiments gives important insights into HTM cell response to drugs that may more accurately predict responses observed in vivo.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
239
|
Torres Nuñez E, Sobrino C, Neale PJ, Ceinos RM, Du S, Rotllant J. Molecular response to ultraviolet radiation exposure in fish embryos: implications for survival and morphological development. Photochem Photobiol 2012; 88:701-7. [PMID: 22242699 DOI: 10.1111/j.1751-1097.2012.01088.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UVR exposure is known to cause developmental defects in a variety of organisms including aquatic species but little is known about the underlying molecular mechanisms. In this work we used zebrafish (Danio rerio) embryos as a model system to characterize the UVR effects on fish species. Larval viability was measured for embryos exposed to several UVR spectral treatments by using a solar simulator lamp and an array of UV cutoff filters under controlled conditions in the laboratory. Survival rate and occurrence of development abnormalities, mainly caudal (posterior) notochord bending/torsion, were seriously affected in UV-exposed larvae reaching values of 53% and 72%, respectively, compared with non-UV-exposed larvae after 6 days postfertilization (dpf). In order to elucidate the molecular mechanisms involved, a matricellular glycoprotein named osteonectin and the expression of a DNA-repair related gene, p53, were studied in relation to UVR exposure. The results indicate that osteonectin and p53 expression were increased under UVR exposure due to wavelengths shorter than 335 nm (i.e. mainly UVB) and 350 nm (i.e. short UVA and UVB), respectively. Furthermore, parallel experiments with microinjections of osteonectin-capped RNA showed that malformations induced by osteonectin overexpression were similar to those observed after a UVR exposure. Consequently this study shows a potential role of osteonectin in morphological deformities induced by solar UV radiation in zebrafish embryos.
Collapse
|
240
|
Li C, Harper A, Puddick J, Wang W, McMahon C. Proteomes and signalling pathways of antler stem cells. PLoS One 2012; 7:e30026. [PMID: 22279561 PMCID: PMC3261186 DOI: 10.1371/journal.pone.0030026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/12/2011] [Indexed: 12/15/2022] Open
Abstract
As the only known example of complete organ regeneration in mammals, deer antler in the growing or velvet phase is of major interest in developmental biology. This regeneration event initiates from self-renewing antler stem cells that exhibit pluripotency. At present, it remains unclear how the activation and quiescence of antler stem cells are regulated. Therefore, in the present study proteins that were differentially expressed between the antler stem cells and somatic cells (facial periosteum) were identified by a gel-based proteomic technique, and analysed using Ingenuity Pathway Analysis software. Several molecular pathways (PI3K/Akt, ERK/MAPK, p38 MAPK, etc.) were found to be activated during proliferation. Also expressed were the transcription factors POU5F1, SOX2, NANOG and MYC, which are key markers of embryonic stem cells. Expression of these proteins was confirmed in both cultured cells and fresh tissues by Western blot analysis. Therefore, the molecular pathways and transcription factors identified in the current study are common to embryonic and adult stem cells. However, expression of embryonic stem cell transcription factors would suggest that antler stem cells are, potentially, an intermediary stem cell type between embryonic and the more specialized tissue-specific stem cells like those residing in muscle, fat or from a hematopoietic origin. The retention of this embryonic, pluripotent lineage may be of fundamental importance for the subsequent regenerative capacity of antlers.
Collapse
Affiliation(s)
- Chunyi Li
- Developmental Biology Group, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, China
| | - Anne Harper
- Developmental Biology Group, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Jonathan Puddick
- Waikato Mass Spectrometry Facility, University of Waikato, Hamilton, New Zealand
| | - Wenying Wang
- Developmental Biology Group, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Chris McMahon
- Developmental Biology Group, AgResearch Ltd, Ruakura Agricultural Centre, Hamilton, New Zealand
- * E-mail:
| |
Collapse
|
241
|
Odontogenic ameloblast-associated and amelotin are novel basal lamina components. Histochem Cell Biol 2012; 137:329-38. [PMID: 22231912 DOI: 10.1007/s00418-011-0901-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
Odontogenic ameloblast-associated (ODAM) and amelotin (AMTN) are secreted by maturation stage ameloblasts and accumulate at the interface with enamel where an atypical basal lamina (BL) is present. This study aimed at determining and quantifying the ultrastructural distribution of ODAM and AMTN at the cell-tooth interface. Ultrathin sections of enamel organs from the early to mid- and late maturation stage of amelogenesis were processed for immunogold labeling with antibodies against ODAM, AMTN or with the lectins wheat germ agglutinin, Helix pomatia agglutinin (HPA) and Ricinus communis I agglutinin. Immunolabeling showed that both ODAM and AMTN localized to the BL. Quantitative analyses indicated that at the beginning of maturation there is a concentration of ODAM on the cell side of the BL while AMTN appears more concentrated on the enamel side. In the late maturation stage, such differential distribution is no longer apparent. All three lectins are bound to the BL. Competitive incubation with native lectins did not affect the binding efficiency of ODAM; however, AMTN binding was significantly reduced after incubation with HPA. In conclusion, ODAM and AMTN are bona fide components of the BL associated with maturation stage ameloblasts and they organize into different subdomains during the early maturation stage. The data also suggest that the BL is a dynamic structure that rearranges its organization as enamel maturation advances. Finally, the abrogation of AMTN antibody labeling by HPA supports the presence of O-linked sugars in the molecule and/or its close association with other O-glycosylated molecules.
Collapse
|
242
|
Bradshaw AD. Diverse biological functions of the SPARC family of proteins. Int J Biochem Cell Biol 2012; 44:480-8. [PMID: 22249026 DOI: 10.1016/j.biocel.2011.12.021] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/09/2011] [Accepted: 12/27/2011] [Indexed: 12/14/2022]
Abstract
The SPARC family of proteins represents a diverse group of proteins that modulate cell interaction with the extracellular milieu. The eight members of the SPARC protein family are modular in nature. Each shares a follistatin-like domain and an extracellular calcium binding E-F hand motif. In addition, each family member is secreted into the extracellular space. Some of the shared activities of this family include, regulation of extracellular matrix assembly and deposition, counter-adhesion, effects on extracellular protease activity, and modulation of growth factor/cytokine signaling pathways. Recently, several SPARC family members have been implicated in human disease pathogenesis. This review discusses recent advances in the understanding of the functional roles of the SPARC family of proteins in development and disease.
Collapse
Affiliation(s)
- Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veteran's Administration, Charleston, SC, United States.
| |
Collapse
|
243
|
Lecca MR, Maag C, Berger EG, Hennet T. Fibrotic response in fibroblasts from congenital disorders of glycosylation. J Cell Mol Med 2012; 15:1788-96. [PMID: 21029365 PMCID: PMC4373368 DOI: 10.1111/j.1582-4934.2010.01187.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are characterized by a generalized underglycosylation of proteins. CDG is associated with multiple symptoms such as psychomotor retardation, hypotonia, hormonal disturbances, liver fibrosis and coagulopathies. The molecular basis of these symptoms is poorly understood considering the large extent of affected glycoproteins. To better understand the cellular responses to protein underglycosylation in CDG, we have investigated the differences in gene expression between healthy control and CDG fibroblasts by transcriptome comparison. This analysis revealed a strong induction of several genes encoding components of the extracellular matrix, such as collagens, COMP, IGFBP5 and biglycan. The extent of this response was confirmed at the protein level by showing increased production of collagen type-I for example. This fibrotic response of CDG fibroblasts was not paralleled by a differentiation to myofibroblasts and by increased TGF-β signalling. We could show that the addition of recombinant IGFBP5, one of the induced proteins in CDG, to healthy control fibroblasts increased the production of collagen type-I to levels similar to those found in CDG fibroblasts. The fibrotic response identified in CDG fibroblasts may account for the elevated tissue fibrosis, which is often encountered in CDG patients.
Collapse
Affiliation(s)
- M Rita Lecca
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
244
|
Bunge MB, Wood PM. Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:523-540. [PMID: 23098734 DOI: 10.1016/b978-0-444-52137-8.00032-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Transplantation of Schwann cells (SCs) has been extensively investigated as a therapeutic intervention in rodent models of spinal cord injury (SCI). Here we review both strengths and weaknesses of this approach and discuss additional strategies for maximizing the potential of SCs to repair the injured spinal cord. With no additional treatments, SCs were consistently shown to provide a bridge across the lesion site, supporting the ingrowth of sensory and propriospinal axons, to myelinate axons and to decrease the size of cavities formed after injury. Supraspinal axons did not, however, grow onto the bridge, axons failed to traverse the caudal SC-host cord interface and transplanted SC survival was poor. More recent studies have shown that the potential of SC transplantation as a therapeutic approach can be strongly enhanced by combining additional strategies . For example, combining SC transplantation with elevation of cAMP levels resulted in growth of brainstem axons into the SC graft and caudal to the lesion and in significant improvements in locomotion. Axon growth (and functional improvement) have been increased by strategies to raise neurotrophin levels, either by injection or by genetic modification of the SCs before transplantation. A major problem in maximizing SC potential in injured cord has been in achieving good integration of the transplanted cells with the adjacent cord parenchyma. Several previous studies suggested an ability of SCs to migrate extensively in CNS tissue when astroctyes were absent and to myelinate CNS axons. Furthermore, in some cases involving very limited injury, SCs migrated and integrated well even in the presence of host astrocytes. Consistent with these observations, treatments with an enzyme, chondroitinase, to modify the SC-astrocyte interface surrounding the graft, have shown much promise. Very new studies have shown that SCs derived from SC precursors show a higher ability to survive, integrate well with host tissue and support brainstem axon growth into and beyond the graft, confirming the innate promise of SCs in spinal cord repair. We review one clinical trial already underway in Iran testing SC transplantation in patients with SCI. Finally, we briefly describe a protocol, adaptable to the principles of good manufacturing practice, for generating large numbers of human SCs. Overall, the available evidence suggests that SCs, especially when used in combination with other treatments, offer one of the best hopes we have today of devising an effective treatment for spinal cord repair.
Collapse
Affiliation(s)
- Mary Bartlett Bunge
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | |
Collapse
|
245
|
Dejeans N, Pluquet O, Lhomond S, Grise F, Bouchecareilh M, Juin A, Meynard-Cadars M, Bidaud-Meynard A, Gentil C, Moreau V, Saltel F, Chevet E. Autocrine control of glioma cells adhesion/migration through Inositol Requiring enzyme 1α (IRE1α)-mediated cleavage of Secreted Protein Acidic Rich in Cysteine (SPARC) mRNA. J Cell Sci 2012; 125:4278-87. [DOI: 10.1242/jcs.099291] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is an organelle specialized for the folding and assembly of secretory and transmembrane proteins. ER homeostasis is often perturbed in tumor cells due to dramatic changes in solid tumor microenvironment, thereby leading to the activation of an adaptive mechanism named the Unfolded Protein Response (UPR). The activation of the UPR sensor IRE1α has been described to play an important role in tumor progression. However, the molecular events associated with this phenotype remain poorly characterized. In the present study, we examined the effects of IRE1α signaling on glioma cells adaptation to their microenvironment. We show that the characteristics of U87 cells migration are modified under conditions where IRE1α activity is impaired (DN_IRE1). This is linked to increased stress fiber formation and enhanced RhoA activity. Gene expression profiling also revealed that loss of functional IRE1α signaling mostly resulted in the up-regulation of genes encoding extracellular matrix proteins. Among these genes, SPARC, whose mRNA is a direct target of IRE1α endoribonuclease activity, was in part responsible for the phenotypic changes associated with IRE1α inactivation. Hence, our data demonstrate that IRE1α is a key regulator of SPARC expression in vitro in a glioma model. Our results also further support the critical role of IRE1α contribution to tumor growth and infiltration/invasion and extend the paradigm of secretome control in tumor microenvironment conditioning.
Collapse
|
246
|
|
247
|
Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet 2011; 89:773-81. [PMID: 22152679 DOI: 10.1016/j.ajhg.2011.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/12/2011] [Accepted: 11/03/2011] [Indexed: 12/16/2022] Open
Abstract
Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on a severe developmental dental defect that results in a dentin dysplasia phenotype with major microdontia, oligodontia, and shape abnormalities in a highly consanguineous family. Homozygosity mapping revealed a unique zone on 6q27-ter. The two affected children were found to carry a homozygous mutation in SMOC2. Knockdown of smoc2 in zebrafish showed pharyngeal teeth that had abnormalities reminiscent of the human phenotype. Moreover, smoc2 depletion in zebrafish affected the expression of three major odontogenesis genes: dlx2, bmp2, and pitx2.
Collapse
|
248
|
Wang JC, Sonnylal S, Arnett FC, De Crombrugghe B, Zhou X. Attenuation of expression of extracellular matrix genes with siRNAs to Sparc and Ctgf in skin fibroblasts of CTGF transgenic mice. Int J Immunopathol Pharmacol 2011; 24:595-601. [PMID: 21978691 DOI: 10.1177/039463201102400305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transgenic mice that over-express connective tissue growth factor (CTGF) in fibroblasts under the control of an enhancer/promoter element of the Col1a2 gene (Col1a2-CTGF) recapitulate multiorgan fibrosis similar to fibrosis observed in Scleroderma (SSc). In this study we investigate the regulation of secreted protein acidic and rich in cysteine (Sparc) and Ctgf siRNAs on the expression of several extracellular matrix components in the fibroblasts derived from Col1a2-CTGF transgenic mice. Three fibroblast lines were obtained from each of wide type C57BL/6 and CTGF transgenic C57BL/6, and were transfected with Sparc siRNA or Ctgf siRNA. Real-time quantitative RT-PCR and Western blotting were used to examine the transcription and protein levels of type I collagen, CTGF and SPARC. Student's t-tests were used to determine the significance of the results. Our results showed that Col1a2 and Ctgf increased expression at both transcriptional and translational levels in the fibroblasts from the Col1a2-CTGF transgenic mice compared with those in the fibroblasts from their normal wild-type littermate. The treatment with Sparc siRNA or Ctgf siRNA attenuated the mRNA and/or protein expression of the Col1a2, Ctgf and Sparc in these fibroblasts. Sparc and Ctgf siRNAs also showed a reciprocal inhibition at transcript levels. Therefore, our results indicated that both SPARC and CTGF appeared to be involved in the same biological pathway, and they have the potential to serve as a therapeutic target for fibrotic diseases such as SSc.
Collapse
Affiliation(s)
- J C Wang
- MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
249
|
SPARC Promotes Cathepsin B-Mediated Melanoma Invasiveness through a Collagen I/α2β1 Integrin Axis. J Invest Dermatol 2011; 131:2438-47. [DOI: 10.1038/jid.2011.239] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
250
|
Norheim F, Raastad T, Thiede B, Rustan AC, Drevon CA, Haugen F. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am J Physiol Endocrinol Metab 2011; 301:E1013-21. [PMID: 21828336 DOI: 10.1152/ajpendo.00326.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regular physical activity protects against several types of diseases. This may involve altered secretion of signaling proteins from skeletal muscle. Our aim was to identify the most abundantly secreted proteins in cultures of human skeletal muscle cells and to monitor their expression in muscles of strength-training individuals. A total of 236 proteins were detected by proteome analysis in medium conditioned by cultured human myotubes, which was narrowed down to identification of 18 classically secreted proteins expressed in skeletal muscle, using the SignalP 3.0 and Human Genome Expression Profile databases together with a published mRNA-based reconstruction of the human skeletal muscle secretome. For 17 of the secreted proteins, expression was confirmed at the mRNA level in cultured human myotubes as well as in biopsies of human skeletal muscles. RT-PCR analyses showed that 15 of the secreted muscle proteins had significantly enhanced mRNA expression in m. vastus lateralis and/or m. trapezius after 11 wk of strength training among healthy volunteers. For example, secreted protein acidic and rich in cysteine, a secretory protein in the membrane fraction of skeletal muscle fibers, was increased 3- and 10-fold in m. vastus lateralis and m. trapezius, respectively. Identification of proteins secreted by skeletal muscle cells in vitro facilitated the discovery of novel responses in skeletal muscles of strength-training individuals.
Collapse
Affiliation(s)
- Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|