201
|
Mushtaq S, Vickers A, Doumith M, Ellington MJ, Woodford N, Livermore DM. Activity of β-lactam/taniborbactam (VNRX-5133) combinations against carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother 2021; 76:160-170. [PMID: 33305800 DOI: 10.1093/jac/dkaa391] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Boronates are of growing interest as β-lactamase inhibitors. The only marketed analogue, vaborbactam, principally targets KPC carbapenemases, but taniborbactam (VNRX-5133, Venatorx) has a broader spectrum. METHODS MICs of cefepime and meropenem were determined combined with taniborbactam or avibactam for carbapenem-resistant UK isolates. β-Lactamase genes and porin alterations were sought by PCR or sequencing. RESULTS Taniborbactam potentiated partner β-lactams against: (i) Enterobacterales with KPC, other class A, OXA-48-like, VIM and NDM (not IMP) carbapenemases; and (ii) Enterobacterales inferred to have combinations of ESBL or AmpC activity and impermeability. Potentiation of cefepime (the partner for clinical development) by taniborbactam was slightly weaker than by avibactam for Enterobacterales with KPC or OXA-48-like carbapenemases, but MICs of cefepime/taniborbactam were similar to those of ceftazidime/avibactam, and the spectrum was wider. MICs of cefepime/taniborbactam nonetheless remained >8 + 4 mg/L for 22%-32% of NDM-producing Enterobacterales. Correlates of raised cefepime/taniborbactam MICs among these NDM Enterobacterales were a cefepime MIC >128 mg/L, particular STs and, for Escherichia coli only: (i) the particular blaNDM variant (even though published data suggest all variants are inhibited similarly); (ii) inserts in PBP3; and (iii) raised aztreonam/avibactam MICs. Little or no potentiation of cefepime or meropenem was seen for Pseudomonas aeruginosa and Acinetobacter baumannii with MBLs, probably reflecting slower uptake or stronger efflux. Potentiation of cefepime was seen for Stenotrophomonas maltophilia and Elizabethkingia meningoseptica, which have both chromosomal ESBLs and MBLs. CONCLUSIONS Taniborbactam broadly reversed cefepime or meropenem non-susceptibility in Enterobacterales and, less reliably, in non-fermenters.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - Michel Doumith
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - Matthew J Ellington
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London NW9 5EQ, UK.,Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
202
|
Giani T, Antonelli A, Sennati S, Di Pilato V, Chiarelli A, Cannatelli A, Gatsch C, Luzzaro F, Spanu T, Stefani S, Rossolini GM. Results of the Italian infection-Carbapenem Resistance Evaluation Surveillance Trial (iCREST-IT): activity of ceftazidime/avibactam against Enterobacterales isolated from urine. J Antimicrob Chemother 2021; 75:979-983. [PMID: 31958125 DOI: 10.1093/jac/dkz547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To assess the in vitro antibacterial activity of ceftazidime/avibactam against a recent Italian collection of carbapenem-resistant Enterobacterales (CRE) isolated from urine specimens. METHODS Consecutive Gram-negative isolates from urine specimens, collected from inpatients in five Italian hospitals during the period October 2016 to February 2017, were screened for CRE phenotype using chromogenic selective medium and identified using MALDI-TOF MS. Antimicrobial susceptibility testing was performed by reference broth microdilution (BMD) and, for ceftazidime/avibactam, also by Etest® CZA. Results were interpreted according to the EUCAST breakpoints. All confirmed CRE were subjected to real-time PCR targeting blaKPC-type, blaVIM-type, blaNDM-type and blaOXA-48-type carbapenemase genes. Non-MBL-producing isolates resistant to ceftazidime/avibactam were subjected to WGS and their resistome and clonality were analysed. RESULTS Overall, 318 non-replicate presumptive CRE were collected following screening of 9405 isolates of Enterobacterales (3.4%) on chromogenic selective medium. Molecular analysis revealed that 216 isolates were positive for a carbapenemase gene (of which 92.1%, 2.8%, 1.4% and 1.4% were positive for blaKPC-type, blaOXA-48-type, blaNDM-type and blaVIM-type, respectively). Against the confirmed carbapenemase-producing Enterobacterales (CPE), ceftazidime/avibactam was the most active compound, followed by colistin (susceptibility rates 91.6% and 69.4%, respectively). Compared with BMD, Etest® for ceftazidime/avibactam yielded consistent results (100% category agreement). All class B β-lactamase producers were resistant to ceftazidime/avibactam, while OXA-48 and KPC producers were susceptible, with the exception of seven KPC-producing isolates (4.2%). The latter exhibited an MIC of 16 to >32 mg/L, belonged to ST512, produced KPC-3 and showed alterations in the OmpK35 and Ompk36 porins. CONCLUSIONS Ceftazidime/avibactam showed potent in vitro activity against a recent Italian collection of CPE from urine.
Collapse
Affiliation(s)
- Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Samanta Sennati
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Adriana Chiarelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonio Cannatelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Christopher Gatsch
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, Lecco A. Manzoni Hospital, Lecco, Italy
| | - Teresa Spanu
- Institute of Microbiology, A. Gemelli University Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, section of Microbiology, University of Catania, Catania, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
203
|
Lâm TT, Nürnberg S, Claus H, Vogel U. Molecular epidemiology of imipenem resistance in invasive Haemophilus influenzae infections in Germany in 2016. J Antimicrob Chemother 2021; 75:2076-2086. [PMID: 32449913 DOI: 10.1093/jac/dkaa159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The carbapenems imipenem and meropenem play an important role in the empirical anti-infective treatment of critically ill patients. Carbapenem resistance in Haemophilus influenzae (Hi) has rarely been reported. OBJECTIVES We provide prevalence data for resistance to carbapenems from laboratory surveillance of invasive Hi infections in Germany in 2016. METHODS Phenotypic susceptibility testing against ampicillin, amoxicillin/clavulanate, cefotaxime and imipenem was carried out on 474 isolates from blood and CSF. The isolates were collected as part of the national laboratory surveillance programme. Imipenem-resistant strains were further tested for meropenem susceptibility. Molecular analysis was done by ftsI sequencing to detect mutations in PBP3, by acrR sequencing to detect alterations in the regulatory protein of the AcrAB-TolC efflux pump and by MLST. RESULTS No resistance to meropenem was detected. Cefotaxime resistance was rare (n = 3; 0.6%). Imipenem resistance was found in 64 strains (13.5%) using gradient agar diffusion and was confirmed in 26 isolates by broth microdilution (5.5%). Imipenem resistance occurred predominantly in Hi that were β-lactamase negative but ampicillin resistant and in those that were β-lactamase positive but nevertheless amoxicillin/clavulanate resistant. This finding suggested a β-lactamase-independent mechanism. Accordingly, sequence analysis of PBP3 identified previously described mutations. MLST of the imipenem-resistant strains, which were all non-typeable Hi, revealed a high diversity. CONCLUSIONS We conclude that imipenem, but not meropenem, resistance is frequent in Hi. It is likely to be supported by PBP3 mutations.
Collapse
Affiliation(s)
- Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| | - Sebastian Nürnberg
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| |
Collapse
|
204
|
Kazmierczak KM, de Jonge BLM, Stone GG, Sahm DF. Longitudinal analysis of ESBL and carbapenemase carriage among Enterobacterales and Pseudomonas aeruginosa isolates collected in Europe as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme, 2013-17. J Antimicrob Chemother 2021; 75:1165-1173. [PMID: 32040168 DOI: 10.1093/jac/dkz571] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine the spread of ESBLs and carbapenemases in Enterobacterales and Pseudomonas aeruginosa in Europe. METHODS 45 335 Gram-negative bacilli were collected in 18 European countries as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme from 2013 to 2017. Antimicrobial susceptibility was determined using broth microdilution, and 9546 isolates were screened for β-lactamase genes by PCR and sequencing. RESULTS ESBLs were identified in 35.5% of Klebsiella pneumoniae and 18.5% of Escherichia coli. ESBL carriage was lowest among isolates in Northern/Western Europe and highest in Eastern Europe. CTX-M-15 was the dominant ESBL in all countries except Greece, where SHV-type ESBLs were more common. Carbapenemases (KPC, OXA-48-like, GES, NDM and VIM) were found in 3.4% of Enterobacterales and were most common among K. pneumoniae (10.5% of those collected). Carbapenemase carriage was lowest in Northern/Western and highest in Southern Europe. KPC-positive Enterobacterales were most abundant but the percentages of OXA-48-like-, NDM- and VIM-positive isolates increased over time and were correlated with an increase in meropenem non-susceptibility. Carbapenemases (VIM, IMP, NDM and GES) were also identified in 5.1% of P. aeruginosa and were commonly found in Eastern Europe. Carbapenemase carriage and meropenem non-susceptibility among P. aeruginosa fluctuated over the 5 years studied and were not well correlated. CONCLUSIONS ESBL and carbapenemase carriage varied by species and European subregion. Meropenem non-susceptibility in European isolates of Enterobacterales can be attributed to carbapenemase carriage and is increasingly caused by MBLs and OXA-48-like carbapenemases. Carbapenemases or other β-lactamases are not a common cause of meropenem non-susceptibility in P. aeruginosa in Europe.
Collapse
Affiliation(s)
| | | | | | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, IL, USA
| |
Collapse
|
205
|
Chatzidimitriou M, Chatzivasileiou P, Sakellariou G, Kyriazidi M, Kavvada A, Chatzidimitriou D, Chatzopoulou F, Meletis G, Mavridou M, Rousis D, Katsifa E, Vagdatli E, Mitka S, Theodoros L. Ceftazidime/avibactam and eravacycline susceptibility of carbapenem-resistant Klebsiella pneumoniae in two Greek tertiary teaching hospitals. Acta Microbiol Immunol Hung 2021; 68:65-72. [PMID: 33522985 DOI: 10.1556/030.2021.01364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
The present study evaluated the carbapenem resistance mechanisms of Klebsiella pneumoniae strains isolated in two Greek tertiary teaching hospitals and their susceptibility to currently used and novel antimicrobial agents.Forty-seven carbapenem resistant K. pneumoniae strains were collected in G. Papanikolaou and Ippokrateio hospital of Thessaloniki between 2016 and 2018. Strain identification and antimicrobial susceptibility was conducted by Vitek 2 system (Biomérieux France). Susceptibility against new antimicrobial agents was examined by disk diffusion method. Polymerase chain reaction (PCR) was used to detect blaKPC, blaVIM, blaNDM and blaOXA-48 genes.The meropenem-EDTA and meropenem-boronic acid synergy test performed on the 24 K. pneumoniae strains demonstrated that 8 (33.3%) yielded positive for metallo-beta-lactamases (MBL) and 16 (66.6%) for K. pneumonia carbapenemases (KPC) production. Colistin demonstrated the highest in vitro activity (87.7%) among the 47 K. pneumoniae strains followed by gentamicin (76.5%) and tigecycline (51%). Among new antibiotics ceftazidime/avibactam showed the highest sensitivity (76.6%) in all strains followed by eravacycline (66.6%). The blaKPC gene was present in 30 strains (63.8%), the blaNDM in 11 (23.4%) and the blaVIM in 6 (12.8%). The blaOXA-48 gene was not detected.Well established antimicrobial agents such as colistin, gentamicin and tigecycline and novel antibiotics like ceftazidime/avibactam and eravacycline can be reliable options for the treatment of invasive infections caused by carbapenem-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Maria Chatzidimitriou
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | | | | | | | - Asimoula Kavvada
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | | | - Fani Chatzopoulou
- 2Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Meletis
- 2Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Mavridou
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | - Dimitris Rousis
- 2Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Katsifa
- 4General Teaching Hospital “G. Papanikolaou”, Thessaloniki, Greece
| | - Eleni Vagdatli
- 5General Teaching Hospital “Ippokrateio”, Thessaloniki, Greece
| | - Stella Mitka
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | | |
Collapse
|
206
|
Piazza A, Principe L, Comandatore F, Perini M, Meroni E, Mattioni Marchetti V, Migliavacca R, Luzzaro F. Whole-Genome Sequencing Investigation of a Large Nosocomial Outbreak Caused by ST131 H30Rx KPC-Producing Escherichia coli in Italy. Antibiotics (Basel) 2021; 10:718. [PMID: 34203731 PMCID: PMC8232337 DOI: 10.3390/antibiotics10060718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
KPC-producing Escherichia coli (KPC-Ec) remains uncommon, being mainly reported as the cause of sporadic episodes of infection rather than outbreak events. Here we retrospectively describe the dynamics of a large hospital outbreak sustained by KPC-Ec, involving 106 patients and 25 hospital wards, during a six-month period. Twenty-nine representative KPC-Ec isolates (8/29 from rectal swabs; 21/29 from other clinical specimens) have been investigated by Whole-Genome Sequencing (WGS). Outbreak isolates showed a multidrug-resistant profile and harbored several resistance determinants, including blaCTX-M-27, aadA5, dfrA17, sulI, gyrA1AB and parC1aAB. Phylogenomic analysis identified the ST131 cluster 1 (23/29 isolates), H30Rx clade C, as responsible for the epidemic event. A further two KPC-Ec ST131 clusters were identified: cluster 2 (n = 2/29) and cluster 3 (n = 1/29). The remaining KPC-Ec resulted in ST978 (n = 2/29) and ST1193 (n = 1/29), and were blaKPC-3 associated. The KPC-Ec ST131 cluster 1, originated in a previous KPC-Kp endemic context probably by plasmid transfer, and showed a clonal dissemination strategy. Transmission of the blaKPC gene to the globally disseminated high-risk ST131 clone represents a serious cause of concern. Application of WGS in outbreak investigations could be useful to better understand the evolution of epidemic events in order to address infection control and contrast interventions, especially when high-risk epidemic clones are involved.
Collapse
Affiliation(s)
- Aurora Piazza
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, 27100 Pavia, Italy;
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, S. Giovanni di Dio Hospital, 88900 Crotone, Italy;
| | - Francesco Comandatore
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy; (F.C.); (M.P.)
| | - Matteo Perini
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy; (F.C.); (M.P.)
| | - Elisa Meroni
- Microbiology and Virology Unit, A. Manzoni Hospital, 23900 Lecco, Italy; (E.M.); (F.L.)
| | | | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, 27100 Pavia, Italy;
| | - Francesco Luzzaro
- Microbiology and Virology Unit, A. Manzoni Hospital, 23900 Lecco, Italy; (E.M.); (F.L.)
| |
Collapse
|
207
|
Bonadonna L, Briancesco R, Coccia AM, Meloni P, Rosa GL, Moscato U. Microbial Air Quality in Healthcare Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6226. [PMID: 34207509 PMCID: PMC8296088 DOI: 10.3390/ijerph18126226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022]
Abstract
There is increasing evidence that indoor air quality and contaminated surfaces provide an important potential source for transmission of pathogens in hospitals. Airborne hospital microorganisms are apparently harmless to healthy people. Nevertheless, healthcare settings are characterized by different environmental critical conditions and high infective risk, mainly due to the compromised immunologic conditions of the patients that make them more vulnerable to infections. Thus, spread, survival and persistence of microbial communities are important factors in hospital environments affecting health of inpatients as well as of medical and nursing staff. In this paper, airborne and aerosolized microorganisms and their presence in hospital environments are taken into consideration, and the factors that collectively contribute to defining the infection risk in these facilities are illustrated.
Collapse
Affiliation(s)
- Lucia Bonadonna
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Rossella Briancesco
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Anna Maria Coccia
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Pierluigi Meloni
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Giuseppina La Rosa
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Umberto Moscato
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Section of Occupational Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
208
|
Cantón R, Loza E, Arcay RM, Cercenado E, Castillo FJ, Cisterna R, Gálvez-Benítez L, González Romo F, Hernández-Cabezas A, Rodríguez-Lozano J, Suárez-Barrenechea AI, Tubau F, Díaz-Regañón J, López-Mendoza D. Antimicrobial activity of ceftolozane-tazobactam against Enterobacterales and Pseudomonas aeruginosa recovered during the Study for Monitoring Antimicrobial Resistance Trends (SMART) program in Spain (2016-2018). REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2021; 34:228-237. [PMID: 33645948 PMCID: PMC8179940 DOI: 10.37201/req/019.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/17/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To analyse the susceptibility to ceftolozane-tazobactam and comparators in Enterobacterales and Pseudomonas aeruginosa isolates recovered from intraabdominal (IAI), urinary (UTI), respiratory (RTI) and bloodstream infection (BSI) in the SMART (Study for Monitoring Antimicrobial Resistance Trends) study. METHODS The susceptibility of 5,351 isolates collected in 11 Spanish hospitals (2016-2018) were analysed (EUCAST-2020 criteria) by broth microdilution and were phenotypically studied for the presence of extended-spectrum beta-lactamases (ESBL). Ceftolozane-tazobactam and/or carbapenem resistant isolates were genetically characterized for ESBL and carbapenemases. RESULTS Escherichia coli was the most frequent pathogen (49.3% IAI, 54.9% UTI, 16.7% RTI and 50% BSI), followed by Klebsiella pneumoniae (11.9%, 19.1%, 13.1% and 15.4%, respectively). P. aeruginosa was isolated in 9.3%, 5.6%, 32% and 9%, respectively. The frequency of isolates with ESBLs (2016-2017) was: 30.5% K. pneumoniae, 8.6% E. coli, 2.3% Klebsiella oxytoca and 0.7% Proteus mirabilis. Ceftolozane-tazobactam was very active against non-ESBL-(99.3% susceptible) and ESBL-(95.2%) producing E. coli being less active against K. pneumoniae (98% and 43.1%, respectively) isolates. CTX-M-15 was the most prevalent ESBL in E. coli (27.5%) and K. pneumoniae (51.9%) frequently associated with OXA-48-like carbapenemase. Overall, 93% of P. aeruginosa isolates were susceptible to ceftolozane-tazobactam, preserving this activity (>75%) in isolates resistant to other beta-lactams except in those resistant to meropenen or ceftazidime-avibactam. GES-5, PER-1, VIM-1/2 were the most prevalent enzymes in isolates resistant to ceftolozane-tazobactam. CONCLUSIONS Ceftolozane-tazobactam showed high activity rates against isolates recovered in the SMART study although it was affected in K. pneumoniae and P. aeruginosa isolates with ESBL and/or carbapenemases.
Collapse
Affiliation(s)
- R Cantón
- Rafael Cantón, Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Madrid. Carretera de Colmenar Km 9,1. 28034-Madrid. Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Ramette A, Gasser M, Nordmann P, Zbinden R, Schrenzel J, Perisa D, Kronenberg A. Temporal and regional incidence of carbapenemase-producing Enterobacterales, Switzerland, 2013 to 2018. ACTA ACUST UNITED AC 2021; 26. [PMID: 33860749 PMCID: PMC8167416 DOI: 10.2807/1560-7917.es.2021.26.15.1900760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IntroductionIn contrast to countries where carbapenemase-producing Enterobacterales (CPE) are endemic, only sporadic cases were reported in Switzerland until 2013. An aggravation of the epidemiological situation in neighbouring European countries indicated the need for a surveillance study in Switzerland.AimWe aimed to describe CPE distributions in Switzerland and identify epidemiological factors associated with changes in incidence.MethodsData on all human CPE isolates from 2013 to 2018 were collected by the Swiss Centre for Antibiotic Resistance (ANRESIS) and analysed for temporal and regional trends by Generalised Poisson regression. Isolates associated with infection or colonisation were included in a primary analysis; a secondary analysis included invasive isolates only. Statistical detection of regional clusters was performed with WHONET/SaTScan.ResultsWe analysed 731 CPE isolates, of which 325 (44.5%) were associated with screenings and 173 (23.7%) with infections. Yearly detection of CPE isolates increased considerably during the study period from 65 to 212. The most frequently isolated species were Klebsiella pneumoniae (54%) and Escherichia coli (28%). The most frequent genotypes were OXA-48 (43%), KPC (21%) and NDM (14%). In contrast to the French-speaking parts of Switzerland (West, Geneva) where OXA-48 were the predominant genotypes (around 60%), KPC was the most frequently detected genotype in the Italian-speaking region (63%). WHONET/SaTScan outbreak detection analysis identified seven clusters in five regions of Switzerland.ConclusionsIn a first continuous surveillance of CPE in Switzerland, we found that the epidemiological situation aggravated nationwide and that regional patterns of CPE genotypes mirrored the situation in neighbouring European countries.
Collapse
Affiliation(s)
- Alban Ramette
- These authors contributed equally to the manuscript.,Swiss Centre for Antibiotic Resistance (ANRESIS), Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Michael Gasser
- These authors contributed equally to the manuscript.,Swiss Centre for Antibiotic Resistance (ANRESIS), Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Patrice Nordmann
- Molecular and Medical Microbiology, Department of Medicine, University Fribourg, Fribourg, Switzerland
| | - Reinhard Zbinden
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jacques Schrenzel
- Laboratory of Bacteriology, Geneva University Hospitals, Geneva, Switzerland
| | - Damir Perisa
- Federal Office of Public Health, Division of Communicable Diseases, Bern, Switzerland
| | - Andreas Kronenberg
- Swiss Centre for Antibiotic Resistance (ANRESIS), Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
210
|
Isolation Procedure for CP E. coli from Caeca Samples under Review towards an Increased Sensitivity. Microorganisms 2021; 9:microorganisms9051105. [PMID: 34065518 PMCID: PMC8161246 DOI: 10.3390/microorganisms9051105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the increasing reports of carbapenemase-producing Enterobacteriaceae (CPE) from livestock in recent years, the European Reference Laboratory for Antimicrobial Resistances (EURL-AR) provided a protocol for their recovery from caecum and meat samples. This procedure exhibited limitations for the detection of CPE with low carbapenem MIC values. Therefore, it was modified by a second, selective enrichment in lysogeny broth with cefotaxime (CTX 1 mg/L) and with meropenem (MEM 0.125 mg/L) at 37 °C under microaerophilic conditions. By Real-time PCR, these enrichments are pre-screened for the most common carbapenemase genes. Another adaptation was the use of in-house prepared MacConkey agar with MEM and MEM+CTX instead of commercial selective agar. According to the EURL-method, we achieved 100% sensitivity and specificity using the in-house media instead of commercial agar, which decreased the sensitivity to ~75%. Comparing the method with and without the second enrichment, no substantial influence on sensitivity and specificity was detected. Nevertheless, this enrichment has simplified the CPE-isolation regarding the accompanying microbiota and the separation of putative colonies. In conclusion, the sensitivity of the method can be increased with slight modifications.
Collapse
|
211
|
Four-Hour Immunochromatographic Detection of Intestinal Carriage of Carbapenemase-Producing Enterobacteriaceae: a Validation Study. J Clin Microbiol 2021; 59:JCM.02973-20. [PMID: 33789958 DOI: 10.1128/jcm.02973-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
The increasing incidence of carbapenemase-producing Gram-negative bacilli (C-PGNB) represents a major public health challenge. Rapid detection of digestive colonization with C-PGNB is fundamental to control their spread. We performed the validation of a rapid protocol for C-PGNB detection directly on rectal swabs. We developed a protocol combining enrichment by a rapid selective subculture of the rectal swab medium and realization of a Resist-4 O.K.N.V. K-SeT test on the bacterial pellet obtained. The limit of detection and performances of this protocol were validated in vitro on 52 C-PGNB strains spiked on a calibrated sample suspension and confirmed in clinical settings on 144 rectal swabs sampled from patients with C-PGNB digestive colonization (n = 48) and controls (patients with extended-spectrum beta-lactamase [ESBL] colonization [n = 48] and without carbapenemase/ESBL [n = 48]). The protocol detected, with 100% sensitivity, the presence of the 15 OXA-48-, 14 KPC-, 13 NDM-, and 10 VIM-producing GNB from 103 CFU/ml. The limit of detection was 2 × 102 CFU/ml. Among the 48 C-PGNB-containing rectal swabs of the validation cohort, 46 were accurately detected. False negative were observed for 1 NDM-producing Acinetobacter baumannii strain and 1 OXA-48-producing Escherichia coli strain. The 96 control swabs were negative. Sensitivity and specificity for C-PGNB detection were 97.7% (95% confidence interval [CI], 87.7 to 100) and 100% (95% CI, 96.2 to 100). The negative likelihood ratio was 0.04 (95% CI, 0.01 to 0.16). Considering a C-PGNB digestive colonization prevalence between 0.01% and 0.1%, positive and negative predictive values were 100%. Our protocol is a rapid and low-cost method detecting accurately the digestive colonization with carbapenemase-producing Enterobacteriaceae in 4 h without any requirement for specific equipment.
Collapse
|
212
|
Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacterales in Animal Infection Models: a Current State of Affairs. Antimicrob Agents Chemother 2021; 65:AAC.02271-20. [PMID: 33782001 DOI: 10.1128/aac.02271-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) result in resistance to nearly all β-lactam antimicrobial agents, as determined by currently employed susceptibility testing methods. However, recently reported data demonstrate that variable and supraphysiologic zinc concentrations in conventional susceptibility testing media compared with physiologic (bioactive) zinc concentrations may be mediating discordant in vitro-in vivo MBL resistance. While treatment outcomes in patients appear suggestive of this discordance, these limited data are confounded by comorbidities and combination therapy. To that end, the goal of this review is to evaluate the extent of β-lactam activity against MBL-harboring Enterobacterales in published animal infection model studies and provide contemporary considerations to facilitate the optimization of current antimicrobials and development of novel therapeutics.
Collapse
|
213
|
Harris HC, Buckley AM, Spittal W, Ewin D, Clark E, Altringham J, Bentley K, Moura IB, Wilcox MH, Woodford N, Davies K, Chilton CH. The effect of intestinal microbiota dysbiosis on growth and detection of carbapenemase-producing Enterobacterales within an in vitro gut model. J Hosp Infect 2021; 113:1-9. [PMID: 33932556 DOI: 10.1016/j.jhin.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Carbapenemase-producing Enterobacterales (CPE) can colonize the gut and are of major clinical concern. Identification of CPE colonization is problematic; there is no gold-standard detection method, and the effects of antibiotic exposure and microbiota dysbiosis on detection are unknown. AIM Based on a national survey we selected four CPE screening assays in common use. We used a clinically reflective in vitro model of human gut microbiota to investigate the performance of each test to detect three different CPE strains under different, clinically relevant antibiotic exposures. METHODS Twelve gut models were seeded with a pooled faecal slurry and exposed to CPE either before, after, concomitant with, or in the absence of piperacillin-tazobactam (358 mg/L, 3 × daily, seven days). Total Enterobacterales and CPE populations were enumerated daily. Regular screening for CPE was performed using Cepheid Xpert® Carba-R molecular test, and with Brilliance™ CRE, Colorex™ mSuperCARBA and CHROMID® CARBA SMART agars. FINDINGS Detection of CPE when the microbiota are intact is problematic. Antibiotic exposure disrupts microbiota populations and allows CPE proliferation, increasing detection. The performances of assays varied, particularly with respect to different CPE strains. The Cepheid assay performed better than the three agar methods for detecting a low level of CPE within an intact microbiota, although performance of all screening methods was comparable when CPE populations increased in a disrupted microbiota. CONCLUSION CPE strains differed in their dynamics of colonization in an in vitro gut model and in their subsequent response to antibiotic exposure. This affected detection by molecular and screening methods, which has implications for the sensitivity of CPE screening in healthcare settings.
Collapse
Affiliation(s)
- H C Harris
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - A M Buckley
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - W Spittal
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - D Ewin
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - E Clark
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - J Altringham
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - K Bentley
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - I B Moura
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - M H Wilcox
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK; Department of Microbiology, Leeds Teaching Hospitals NHS Trust, The General Infirmary, Leeds, UK
| | - N Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI), Reference Unit, Microbiology Services - Colindale, Public Health England, UK
| | - K Davies
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK; Department of Microbiology, Leeds Teaching Hospitals NHS Trust, The General Infirmary, Leeds, UK
| | - C H Chilton
- Heath Care Associated Infection Research Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| |
Collapse
|
214
|
Chen HY, Jean SS, Lee YL, Lu MC, Ko WC, Liu PY, Hsueh PR. Carbapenem-Resistant Enterobacterales in Long-Term Care Facilities: A Global and Narrative Review. Front Cell Infect Microbiol 2021; 11:601968. [PMID: 33968793 PMCID: PMC8102866 DOI: 10.3389/fcimb.2021.601968] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
The emergence of carbapenem-resistant Enterobacterales (CRE) has become a major public health concern. Moreover, its colonization among residents of long-term care facilities (LTCFs) is associated with subsequent infections and mortality. To further explore the various aspects concerning CRE in LTCFs, we conducted a literature review on CRE colonization and/or infections in long-term care facilities. The prevalence and incidence of CRE acquisition among residents of LTCFs, especially in California, central Italy, Spain, Japan, and Taiwan, were determined. There was a significant predominance of CRE in LTCFs, especially in high-acuity LTCFs with mechanical ventilation, and thus may serve as outbreak centers. The prevalence rate of CRE in LTCFs was significantly higher than that in acute care settings and the community, which indicated that LTCFs are a vital reservoir for CRE. The detailed species and genomic analyses of CRE among LTCFs reported that Klebsiella pneumoniae is the primary species in the LTCFs in the United States, Spain, and Taiwan. KPC-2-containing K. pneumoniae strains with sequence type 258 is the most common sequence type of KPC-producing K. pneumoniae in the LTCFs in the United States. IMP-11- and IMP-6-producing CRE were commonly reported among LTCFs in Japan. OXA-48 was the predominant carbapenemase among LTCFs in Spain. Multiple risk factors associated with the increased risk for CRE acquisition in LTCFs were found, such as comorbidities, immunosuppressive status, dependent functional status, usage of gastrointestinal devices or indwelling catheters, mechanical ventilation, prior antibiotic exposures, and previous culture reports. A high CRE acquisition rate and prolonged CRE carriage duration after colonization were found among residents in LTCFs. Moreover, the patients from LTCFs who were colonized or infected with CRE had poor clinical outcomes, with a mortality rate of up to 75% in infected patients. Infection prevention and control measures to reduce CRE in LTCFs is important, and could possibly be controlled via active surveillance, contact precautions, cohort staffing, daily chlorhexidine bathing, healthcare-worker education, and hand-hygiene adherence.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Division of Infectious Disease, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine, Department of Emergency Medicine and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine and Center for Infection Control, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Yu Liu
- Division of Infectious Disease, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Disease, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
215
|
Morel CM, de Kraker MEA, Harbarth S. Surveillance of Resistance to New Antibiotics in an Era of Limited Treatment Options. Front Med (Lausanne) 2021; 8:652638. [PMID: 33954161 PMCID: PMC8091962 DOI: 10.3389/fmed.2021.652638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
As with any health threat, our ability to respond to the emergence and spread of antimicrobial resistance depends on our ability to understand the scale of the problem, magnitude, geographical spread, and trends over time. This is especially true for resistance emergence to newer antibiotics coming to the market as last-resort treatments. Yet current antibiotic surveillance systems are limited to monitoring resistance to commonly prescribed drugs that have been on the market for a long time. This qualitative study determined the essential elements and requirements of antimicrobial resistance surveillance for new antibiotics based on literature review, interviews and expert consensus. After an extensive mapping exercise, 10 experts participated in a modified Delphi consultation to identify consensus on all elements required for surveillance of resistance to novel antibiotics. The main findings indicate that there is a need for a two-phase system; an early alert system transitioning to routine surveillance, led by the public sector to gather and share essential data on resistance to newer antibiotics in a transparent manner. The system should be decentralized, run largely from national level, but be coordinated by an arm of an existing international public health institution. Priority should be given to monitoring emergence of resistance among already multi-drug resistant pathogens causing infections, over a broader selection of pathogens to maximize clinical impact. In conclusion, we cannot rely on current AMR surveillance systems to monitor resistance emergence to new antibiotics. A new, public system should be set-up, starting with a focus on detecting resistance emergence, but expanding to a more comprehensive surveillance as soon as there is regional spread of resistance to the new antibiotic. This article provides a framework based on expert agreement, which could guide future initiatives.
Collapse
Affiliation(s)
- Chantal M Morel
- University of Geneva Hospitals & Faculty of Medicine, Geneva, Switzerland.,University Hospital Bonn, Institute for Hygiene and Public Health, Bonn, Germany
| | - Marlieke E A de Kraker
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Stephan Harbarth
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland.,WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | | |
Collapse
|
216
|
Hites M. Minireview on Novel Anti-infectious Treatment Options and Optimized Drug Regimens for Sepsis. Front Med (Lausanne) 2021; 8:640740. [PMID: 33937283 PMCID: PMC8082150 DOI: 10.3389/fmed.2021.640740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction caused by a dysregulated response to infection is a major public health concern, as it is a leading cause of mortality and critical illness worldwide. Antibiotics are one of the cornerstones of the treatment of sepsis; administering appropriate antibiotics in a rapid fashion to obtain adequate drug concentrations at the site of the infection can improve survival of patients. Nevertheless, it is a challenge for clinicians to do so. Indeed, clinicians today are regularly confronted with infections due to very resistant pathogens, and standard dosage regimens of antibiotics often do not provide adequate antibiotic concentrations at the site of the infection. We provide a narrative minireview of different anti-infectious treatments currently available and suggestions on how to deliver optimized dosage regimens to septic patients. Particular emphasis will be made on newly available anti-infectious therapies.
Collapse
Affiliation(s)
- Maya Hites
- Clinic of Infectious Diseases, Cliniques Universitaires de Bruxelles (CUB)-Erasme Hospital, Brussels, Belgium
| |
Collapse
|
217
|
Mora-Guzmán I, Rubio-Perez I, Domingo-Garcia D, Martin-Perez E. Risk Factors for Intra-Abdominal Infections Caused by Carbapenemase-Producing Enterobacteriaceae in a Surgical Setting. Surg Infect (Larchmt) 2021; 22:864-870. [PMID: 33857380 DOI: 10.1089/sur.2020.472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: The aim of this study was to identify risk factors for acquisition of intra-abdominal infections (IAI) caused by carbapenemase-producing Enterobacteriaceae (CPE) in surgical patients. Methods: A matched case-control study was performed. We included all cases with CPE-related IAI acquired during admission to a general surgery department from January 2013 to December 2018, and they were matched with control subjects with IAI caused by non-resistant bacteria (ratio 1:3). Independent risk factors were obtained by logistic regression. Results: Forty patients with IAI-CPE were matched with 120 control subjects. Independent risk factors for acquisition of IAI-CPE were previous hospitalization (odds ratio [OR] 2.56; 95% confidence interval [CI] l 1.01-6.49; p = 0.047), digestive endoscopy (OR 4.11; 95% CI 1.40-12.07; p = 0.010), carbapenem therapy (OR 9.54; 95% CI 3.33-27.30; p < 0.001), and aminoglycoside use (OR 45.41; 95% CI 7.90-261.06; p < 0.001). Conclusions: Four clinical factors can identify patients at high-risk of IAI-CPE.
Collapse
Affiliation(s)
- Ismael Mora-Guzmán
- Department of General Surgery. Hospital General La Mancha Centro, Alcázar de San Juan, Spain
| | - Inés Rubio-Perez
- Department of General Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Diego Domingo-Garcia
- Department of Clinical Microbiology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Elena Martin-Perez
- Department of General Surgery, Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
218
|
Rodríguez OL, Sousa A, Pérez-Rodríguez MT, Martínez-Lamas L, Suárez RL, Martínez CT, Pino CP, Vidal FV, Pérez-Landeiro A, Casal MC. Mortality-related factors in patients with OXA-48 carbapenemase-producing Klebsiella pneumoniae bacteremia. Medicine (Baltimore) 2021; 100:e24880. [PMID: 33832068 PMCID: PMC8036053 DOI: 10.1097/md.0000000000024880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/02/2021] [Indexed: 01/05/2023] Open
Abstract
Carbapenemase-producing Enterobacterales constitute a serious public health threat; however, information on the oxacilinasa (OXA-48)-type is limited. The objective of the study was to evaluate the risk factors associated with 14-day mortality for patients with bacteremia due to OXA-48 carbapenemase-producing Klebsiella pneumoniae.We conducted a retrospective, single-center observational study of adult patients with K. pneumoniae bacteremia, classifying the strains as carbapenem-susceptible K. pneumoniae (CSKp) and carbapenem-resistant K. pneumoniae (CRKp). All of the CRKp strains were the OXA-48-type.The study included 202 cases of bacteremia: 114 due to CSKp and 88 due to CRKp. The clinical cure rate was higher for the patients with CSKp (85% vs 69% for CSKp and CRKp, respectively; P = .010), while the 14-day mortality rate was lower (13% vs 30%, P = .005). An INCREMENT-CPE score ≥7 (HR 3.05, 95% CI 1.50-6.25, P = .002) was the only independent factor associated with 14-day mortality for the patients with Klebsiella spp. bacteremia. Other factors related to 14-day mortality were a rapidly fatal prognosis (McCabe) (HR 7.1, 95% CI 2.75-18.37, P < .001), dementia (HR 5.9, 95% CI 2.0-7.43, P = .001), and a high-risk source of infection (HR 2.7, 95% CI 1.06-6.82, P = .038).The most important factors associated with 14-day mortality for the patients with K. pneumoniae bacteremia was an INCREMENT-CPE score ≥7, dementia, a McCabe score indicating a rapidly fatal prognosis and a high-risk source of infection. We found no relationship between a poorer outcome and CRKp isolation or inadequate antibiotic therapy.
Collapse
Affiliation(s)
- O. Lima Rodríguez
- Infectious Disease Unit, Internal Medicine Department, University Hospital Complex of Vigo
| | - A. Sousa
- Infectious Disease Unit, Internal Medicine Department, University Hospital Complex of Vigo
- Biomedical Research Institute Galicia Sur
| | - María Teresa Pérez-Rodríguez
- Infectious Disease Unit, Internal Medicine Department, University Hospital Complex of Vigo
- Biomedical Research Institute Galicia Sur
| | | | - R. Longueira Suárez
- Infectious Disease Unit, Internal Medicine Department, University Hospital Complex of Vigo
- Biomedical Research Institute Galicia Sur
| | - C. Taboada Martínez
- Infectious Disease Unit, Internal Medicine Department, University Hospital Complex of Vigo
| | - C. Portela Pino
- Infectious Disease Unit, Internal Medicine Department, University Hospital Complex of Vigo
| | | | | | - M. Crespo Casal
- Infectious Disease Unit, Internal Medicine Department, University Hospital Complex of Vigo
- Biomedical Research Institute Galicia Sur
| |
Collapse
|
219
|
Hu D, Li Y, Ren P, Tian D, Chen W, Fu P, Wang W, Li X, Jiang X. Molecular Epidemiology of Hypervirulent Carbapenemase-Producing Klebsiella pneumoniae. Front Cell Infect Microbiol 2021; 11:661218. [PMID: 33898334 PMCID: PMC8058458 DOI: 10.3389/fcimb.2021.661218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Objective To investigate the overall distributions of key virulence genes in Klebsiella pneumoniae, especially the hypervirulent blaKPC-positive K. pneumoniae (Hv-blaKPC(+)-KP). Methods A total of 521 complete genomes of K. pneumoniae from GenBank were collected and analyzed. Multilocus sequence typing, molecular serotyping, antibiotic-resistance, virulence genes and plasmid replicon typing were investigated. Results Positive rates of virulence genes highly varied, ranging from 2.9 (c-rmpA/A2) to 99.6% (entB). Totally 207 strains presented positive fimH, mrkD, entB and wzi and 190 showed positive fimH, mrkD, entB, irp2 and wzi, which were the two primary modes. A total of 94, 165 and 29 strains were denoted as hypervirulent K. pneumoniae (HvKP), blaKPC(+)-KP and Hv-blaKPC(+)-KP. ST11 accounted for 17 among the 29 Hv-blaKPC(+)-KP strains; Genes iucA, p-rmpA2 and p-rmpA were positive in 28, 26 and 18 Hv-blaKPC(+)-KP strains respectively. Among the 29 Hv-blaKPC(+)-KP strains exhibiting four super clusters from GenBank, IncHI1B plasmids carrying virulence genes and IncFII ones with blaKPC were responsible for both 23 strains respectively. Conclusions Positive rates of virulence genes vary remarkably in K. pneumoniae. Genes iucA, p-rmpA2 and p-rmpA were primary ones inducing Hv-blaKPC(+)-KP. IncHI1B plasmids carrying virulence genes and IncFII ones with blaKPC constitute the primary combination responsible for Hv-blaKPC(+)-KP. The making of Hv-blaKPC(+)-KP is mostly via blaKPC(+)-KP acquiring another plasmid harboring virulence genes.
Collapse
Affiliation(s)
- Dakang Hu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuming Li
- Department of Intensive Care Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Ren
- Zhejiang Provincial Demonstration Center of Laboratory Medicine Experimental Teaching, Wenzhou Medical University, Wenzhou, China
| | - Dongxing Tian
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjie Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Pan Fu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Microbiology, Children's Hospital of Fudan University, Shanghai, China
| | - Weiwen Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
220
|
Hameed MF, Chen Y, Wang Y, Shafiq M, Bilal H, Liu L, Ma J, Gu P, Ge H. Epidemiological Characterization of Colistin and Carbapenem Resistant Enterobacteriaceae in a Tertiary: A Hospital from Anhui Province. Infect Drug Resist 2021; 14:1325-1333. [PMID: 33854345 PMCID: PMC8040073 DOI: 10.2147/idr.s303739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/13/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Antimicrobial resistance, especially carbapenem resistance Enterobacteriaceae and plasmid mediated mobile colistin resistance, is a serious issue worldwide. This study was designed to determine the epidemiological characteristics of plasmid mediated colistin resistance and carbapenem resistant Enterobacteriaceae from tertiary A hospital located in Hefei, China. METHODS Totally, 158 carbapenems resistant Enterobacteriaceae (CRE) were screened for antibiotic susceptibility, mcr-1, extended spectrum β-lactamases (ESBLs), metallo-β-lactamases (MBLs), and fosfomycin resistance genes using PCR and sequencing. The sequence types were identified by multilocus sequence typing (MLST). Plasmid profiles were determined by PCR based replicon typing (PBRT), and the plasmid sizes were confirmed by southern blotting. RESULTS The isolates showed high MIC50 and MIC90 for all antimicrobials, except tigecycline, meropenem, and colistin. The main Carbapenemase genes were bla KPC-2 (90.5%), bla NDM-1(3.7%), bla OXA-48(5.6%) and fosA3 (14.5%). The bla CTXM-15 found 36.7%, mcr-1 (3.7%) recorded in six isolates. PBRT revealed bla KPC-2 in K. pneumoniae on IncR, IncFII, and IncA/C. bla NDM-1 in E. coli on IncFII, whereas in E. cloacae noticed on IncHI2 plasmid. mcr-1 was recorded among IncFIIK, IncFII, and IncF in E. coli, K. pneumoniae, and E. cloacae. Resistance genes (mcr-1, bla NDM-1, bla KPC-2) harboring plasmids are successfully trans-conjugant to EC-600. A high incidence of ST11 was observed in K. pneumoniae carbapenem resistant isolates. While in E. coli, multiple STs were identified. However, mcr-1 in ST23 was identified for the first time in Anhui Province. Among Enterobacter cloacae, ST270 detected carrying bla NDM-1. Southern-hybridization confirmed the plasmid sizes 35-150kb. CONCLUSION This study indicates the co-carrying of mcr-1, bla KPC-2, and bla NDM-1 among clinical isolates, the prevalence of different Enterobacteriaceae STs is alarming, especially in E. coli. Holding such a resistance profile is a threat for humans and animals, which may be transferred between the strains through plasmid transfusion. Persistent control actions are immediately necessary to combat this hazard.
Collapse
Affiliation(s)
- Muhammad Fazal Hameed
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| | - Yanan Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ying Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, People’s Republic of China
| | - Muhammad Shafiq
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Hazrat Bilal
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| | - Linqing Liu
- The Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, People’s Republic of China
| | - Jinming Ma
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| | - Pengying Gu
- The Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, People’s Republic of China
| | - Honghua Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
221
|
Zhao S, Kennedy S, Perry MR, Wilson J, Chase-Topping M, Anderson E, Woolhouse MEJ, Lockhart M. Epidemiology of and risk factors for mortality due to carbapenemase-producing organisms (CPO) in healthcare facilities. J Hosp Infect 2021; 110:184-193. [PMID: 33571557 PMCID: PMC8035079 DOI: 10.1016/j.jhin.2021.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Carbapenemase-producing organisms (CPO) have been largely responsible for the extensive spread of carbapenem resistance, and their prevalence is increasing in many parts of the world. AIM To evaluate clinical and molecular epidemiology and mortality associated with CPO among patients. METHODS All CPO from clinical and long-term healthcare surveillance cultures across Scotland in 2003-2017 were reviewed retrospectively. Polymerase chain reaction was used to detect genes coding for carbapenemases. A generalized linear mixed model was used to identify risk factors for mortality. FINDINGS In total, 290 individuals with CPO were identified. The overall incidence increased over time (P<0.001) from 0.02 to 1.38 per 100,000 population between 2003 and 2017. A total of 243 distinct CPO isolates were obtained from 269 isolations in 214 individuals with available metadata. The majority of the isolates were Enterobacterales (206/243, 84.8%), and Klebsiella pneumoniae (65/206, 31.6%) and Enterobacter cloacae (52/206, 25.2%) were the most common species. VIM (75/243, 30.9%) and NDM (56/243, 23.0%) were the most common carbapenemases. The crude 30-day mortality rate was 11.8% (25/211), while the case fatality rate was 5.7% (12/211). Age >60 years [adjusted odds ratio (aOR) 3.36, 95% confidence interval (CI) 1.06-10.63; P=0.033], presence of non-fermenters (aOR 4.88, 95% CI 1.64-14.47; P=0.005), and systemic infection or organ failure (aOR 4.21, 95% CI 1.38-12.81; P=0.032) were independently associated with 30-day mortality. CONCLUSION The incidence of CPO in Scotland is low but increasing. Awareness is required that inpatients aged >60 years, patients with systemic infection or organ failure, and patients presenting with non-fermenters are at higher risk of death from CPO.
Collapse
Affiliation(s)
- S Zhao
- Usher Institute, University of Edinburgh, Edinburgh, UK; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | | | - M R Perry
- Regional Infectious Diseases Unit, Western General Hospital, Edinburgh, UK
| | - J Wilson
- Antimicrobial Resistance and Healthcare Associated Infection Scotland, NHS National Services Scotland, Glasgow, UK
| | - M Chase-Topping
- Roslin Institute, University of Edinburgh, Edinburgh, UK; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - E Anderson
- NHS Greater Glasgow and Clyde, Glasgow, UK
| | - M E J Woolhouse
- Usher Institute, University of Edinburgh, Edinburgh, UK; Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
222
|
Sganga G, Baguneid M, Dohmen P, Giamarellos-Bourboulis EJ, Romanini E, Vozikis A, Eckmann C. Management of superficial and deep surgical site infection: an international multidisciplinary consensus. Updates Surg 2021; 73:1315-1325. [PMID: 33770411 PMCID: PMC8397635 DOI: 10.1007/s13304-021-01029-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Surgical site infections represent a considerable burden for healthcare systems. To obtain a consensus on the impact and future clinical and economic needs regarding SSI management in an era of multidrug resistance. A modified Delphi method was used to obtain consensus among experts from five European countries. The Delphi questionnaire was assembled by a steering committee, verified by a panel of experts and administered to 90 experts in 8 different surgical specialities (Abdominal, Cancer, Cardiac, General surgery, Orthopaedic, Thoracic, Transplant and Vascular and three other specialities (infectious disease, internal medicine microbiology). Respondents (n = 52) reached consensus on 62/73 items including that resistant pathogens are an increasing matter of concern and increase both treatment complexity and the length of hospital stay. There was strong positive consensus on the cost-effectiveness of early discharge (ED) programs, improvement of quality of life with ED and association between increased length of stay and economic burden to the hospital. However, established ED protocols were not widely available in their hospitals. Respondents expressed a positive consensus on the usefulness of antibiotics that allow ED. Surgeons are aware of their responsibility in an interdisciplinary team for the treatment of SSI, and of the impact of multidrug-resistant bacteria in the context of SSI. Reducing the length of hospital stays by applying ED protocols and implementing new treatment alternatives is crucial to reduce harm to patients and costs for the hospital.
Collapse
Affiliation(s)
- Gabriele Sganga
- Division of Emergency Surgery and Trauma, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Mohamed Baguneid
- School of Medical Sciences, University of Manchester, Manchester, UK
- Surgical Institute, Al Ain Hospital, Al Ain, United Arab Emirates
- College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Pascal Dohmen
- Department of Cardiac Surgery, Heart Center Rostock, University Medicine Rostock, Rostock, Germany
- Department of Cardiothoracic Surgery Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | | | - Emilio Romanini
- RomaPro Center for Hip and Knee Arthroplasty, Polo Sanitario San Feliciano, Via Enrico De Ossò 6, Rome, Italy
| | - Athanassios Vozikis
- Laboratory of Health Economics and Management, University of Piraeus, Piraeus, Greece
| | - Christian Eckmann
- Department of General, Visceral and Thoracic Surgery, Klinikum Hannoversch-Muenden, Goettingen University, Göttingen, Germany
| |
Collapse
|
223
|
Ochońska D, Klamińska-Cebula H, Dobrut A, Bulanda M, Brzychczy-Włoch M. Clonal Dissemination of KPC-2, VIM-1, OXA-48-Producing Klebsiella pneumoniae ST147 in Katowice, Poland. Pol J Microbiol 2021; 70:107-116. [PMID: 33815532 PMCID: PMC8008758 DOI: 10.33073/pjm-2021-010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/14/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an important bacterium of nosocomial infections. In this study, CRKP strains, which were mainly isolated from fecal samples of 14 patients in three wards of the hospital in the Silesia Voivodship, rapidly increased from February to August 2018. Therefore, we conducted microbiological and molecular studies of the CRKP isolates analyzed. Colonized patients had critical underlying diseases and comorbidities; one developed bloodstream infection, and five died (33.3%). Antibiotic susceptibilities were determined by the E-test method. A disc synergy test confirmed carbapenemase production. CTX-Mplex PCR evaluated the presence of resistance genes blaCTX-M-type, blaCTX-M-1, blaCTX-M-9, and the genes blaSHV, blaTEM, blaKPC-2, blaNDM-1, blaOXA-48, blaIMP, and blaVIM-1 was detected with the PCR method. Clonality was evaluated by Multi Locus Sequence Typing (MLST) and Pulsed Field Gel Electrophoresis (PFGE). Six (40%) strains were of XDR (Extensively Drug-Resistant) phenotype, and nine (60%) of the isolates exhibited MDR (Multidrug-Resistant) phenotype. The range of carbapenem minimal inhibitory concentrations (MICs, μg/mL) was as follows doripenem (16 to >32), ertapenem (> 32), imipenem (4 to > 32), and meropenem (> 32). PCR and sequencing confirmed the blaCTX-M-15, blaKPC-2, blaOXA-48, and blaVIM-1 genes in all strains. The isolates formed one large PFGE cluster (clone A). MLST assigned them to the emerging high-risk clone of ST147 (CC147) pandemic lineage harboring the blaOXA-48 gene. This study showed that the K. pneumoniae isolates detected in the multi-profile medical centre in Katowice represented a single strain of the microorganism spreading in the hospital environment.
Collapse
Affiliation(s)
- Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Hanna Klamińska-Cebula
- Department of Bacteriology, Leszek Giec Upper-Silesian Medical Centre of the Silesian Medical University in Katowice, Katowice, Poland
| | - Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Małgorzata Bulanda
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
224
|
Stercz B, Farkas FB, Tóth Á, Gajdács M, Domokos J, Horváth V, Ostorházi E, Makra N, Kocsis B, Juhász J, Ligeti B, Pongor S, Szabó D. The influence of antibiotics on transitory resistome during gut colonization with CTX-M-15 and OXA-162 producing Klebsiella pneumoniae ST15. Sci Rep 2021; 11:6335. [PMID: 33737655 PMCID: PMC7973416 DOI: 10.1038/s41598-021-85766-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Great efforts have been made to limit the transmission of carbapenemase-producing Enterobacteriaceae (CPE), however, the intestinal reservoir of these strains and its modulation by various antibiotics remain largely unexplored. Our aim was to assess the effects of antibiotic administration (ampicillin, ceftazidime, ciprofloxacin) on the establishment and elimination of intestinal colonization with a CTX-M-15 ESBL and OXA-162 carbapenemase producing Klebsiella pneumoniae ST15 (KP5825) in a murine (C57BL/6 male mice) model. Whole genome sequencing of KP5825 strain was performed on an Illumina MiSeq platform. Conjugation assays were carried out by broth mating method. In colonization experiments, 5 × 106 CFU of KP5825 was administered to the animals by orogastric gavage, and antibiotics were administered in their drinking water for two weeks and were changed every day. The gut colonization rates with KP5825 were assessed by cultivation and qPCR. In each of the stool samples, the gene copy number of blaOXA-162 and blaCTX-M-15 were determined by qPCR. Antibiotic concentrations in the stool were determined by high pressure liquid chromatography and a bioanalytical method. The KP5825 contained four different plasmid replicon types, namely IncFII(K), IncL, IncFIB and ColpVC. IncL (containing the blaOXA-162 resistance gene within a Tn1991.2 genetic element) and IncFII(K) (containing the blaCTX-M-15 resistance gene) plasmids were successfully conjugated. During ampicillin and ceftazidime treatments, colonization rate of KP5825 increased, while, ciprofloxacin treatments in both concentrations (0.1 g/L and 0.5 g/L) led to significantly decreased colonization rates. The gene copy number blaOXA-162 correlated with K. pneumoniae in vivo, while a major elevation was observed in the copy number of blaCTX-M-15 from the first day to the fifteenth day in the 0.5 g/L dose ceftazidime treatment group. Our results demonstrate that commonly used antibiotics may have diverse impacts on the colonization rates of intestinally-carried CPE, in addition to affecting the gene copy number of their resistance genes, thus facilitating their stable persistance and dissemination.
Collapse
Affiliation(s)
- Balázs Stercz
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4., 1089, Budapest, Hungary
| | - Ferenc B Farkas
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4., 1089, Budapest, Hungary
| | - Ákos Tóth
- Department of Bacteriology, Mycology and Parasitology, National Public Health Centre, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Márió Gajdács
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4., 1089, Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720, Szeged, Hungary
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4., 1089, Budapest, Hungary
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., 1111, Budapest, Hungary
- MTA-BME Computation Driven Chemistry Research Group, Szent Gellért tér 4., 1111, Budapest, Hungary
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4., 1089, Budapest, Hungary
| | - Nóra Makra
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4., 1089, Budapest, Hungary
| | - Béla Kocsis
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4., 1089, Budapest, Hungary
| | - János Juhász
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, Práter utca 50/A., 1083, Budapest, Hungary
| | - Balázs Ligeti
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, Práter utca 50/A., 1083, Budapest, Hungary
| | - Sándor Pongor
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, Práter utca 50/A., 1083, Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4., 1089, Budapest, Hungary.
| |
Collapse
|
225
|
Colonization Dynamics of Multidrug-Resistant Klebsiella pneumoniae Are Dictated by Microbiota-Cluster Group Behavior over Individual Antibiotic Susceptibility: A Metataxonomic Analysis. Antibiotics (Basel) 2021; 10:antibiotics10030268. [PMID: 33800048 PMCID: PMC8001907 DOI: 10.3390/antibiotics10030268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal carriage of multidrug-resistant (MDR) bacteria is one of the main risk factors for developing serious, difficult-to-treat infections. Given that there is currently no all-round solution to eliminate colonization with MDR bacteria, it is particularly important to understand the dynamic process of colonization to aid the development of novel decolonization strategies. The aim of our present study was to perform metataxonomic analyses of gut microbiota dynamics during colonization with an extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Klebsiella pneumoniae (ECKP) strain in mice; additionally, to ascertain the effects of antibiotic administration (ampicillin, ceftazidime, and ciprofloxacin) on the establishment and elimination of ECKP intestinal colonization. We have found that the phyla Bacteroidetes and Firmicutes were most dominant in all of the treatment groups; however, Bacteroidetes was more common in the groups treated with antibiotics compared to the control group. Significant differences were observed among the different antibiotic-treated groups in beta but not alpha diversity, implying that the difference is the relative abundance of some bacterial community members. Bacteria from the Lachnospiraceae family (including Agathobacter, Anaerostipes, Lachnoclostridium 11308, Lachnospiraceae UCG-004, Lachnospiraceae NK3A20 group 11318, Lachnospiraceae NK4A136 group 11319, Roseburia, and Tyzzerella) showed an inverse relationship with the carriage rate of the ECKP strain, whereas members of Enterobacteriaceae and the ECKP strain have shown a correlational relationship. Our results suggest that the composition of the microbial community plays a primary role in the MDR-colonization rate, whereas the antibiotic susceptibility of individual MDR strains affects this process to a lesser extent. Distinct bacterial families have associated into microbial clusters, collecting taxonomically close species to produce survival benefits in the gut. These associations do not develop at random, as they may be attributed to the presence of specific metabolomic networks. A new concept should be introduced in designing future endeavors for MDR decolonization, supplemented by knowledge of the composition of the host bacterial community and the identification of bacterial clusters capable of suppressing or enhancing the invader species.
Collapse
|
226
|
Briassoulis P, Briassoulis G, Christakou E, Machaira M, Kassimis A, Barbaressou C, Nikolaou F, Sdougka M, Gikas A, Ilia S. Active Surveillance of Healthcare-associated Infections in Pediatric Intensive Care Units: Multicenter ECDC HAI-net ICU Protocol (v2.2) Implementation, Antimicrobial Resistance and Challenges. Pediatr Infect Dis J 2021; 40:231-237. [PMID: 33565812 DOI: 10.1097/inf.0000000000002960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Surveillance is essential to all aspects of management of healthcare-associated infections (HAIs) in critically ill children, where data are limited. We conducted an active surveillance study to elucidate epidemiology, resistance, antimicrobial treatment practices and outcomes of pediatric intensive care unit-acquired HAIs in a southern European country. METHODS Four Greek pediatric intensive care unit encounters (153 patients, 2183 patient-days) during a 6-month period participated using the European Centre for Disease Prevention and Control HAI-net ICU (v2.2) protocol. Bloodstream infections and device-associated HAIs were recorded. Clinical severity, isolated pathogens, antimicrobial resistance and antibiotic prescriptions were collected on a daily basis. Mortality and excess length of stay due to HAI were also assessed. RESULTS Overall rate of HAIs was 18.3 per 1000 patient-days. Aggregate rates for device-associated HAI were: catheter-related bloodstream infection 2.32, intubation-associated pneumonia 10.5, and catheter-associated urinary tract infection 4.6 per 1000 device-days. Children with HAI (n = 28, 18.3%) had higher severity of illness (Pediatric Risk Mortality Score 7.5 vs. 4, P < 0.001), longer hospitalization (23 vs. 6 days, P < 0.001), but not higher mortality, compared with those without. Most frequent recovered pathogens were Klebsiella pneumoniae (40%), Pseudomonas aeruginosa (22.5%), Acinetobacter baumannii (12.5%), with respective carbapenem resistance 50%, 44% and 80%, and Staphylococcus aureus (12.5%). Total antibiotic use was 2142 days of treatment per 1000 patient-days. CONCLUSIONS Our study, based on the updated ECDC HAI-net ICU (v2.2) protocol, effectively addresses the significant burden of HAIs in critically ill children in Greece. Using a well-standardized system facilitates inter- and intra-countries reliable recordings and comparative assessments of infection control programs.
Collapse
Affiliation(s)
- Panagiotis Briassoulis
- From the PICU, University Hospital, Medical School, University of Crete, Heraklion, Greece
| | - George Briassoulis
- From the PICU, University Hospital, Medical School, University of Crete, Heraklion, Greece
| | | | - Maria Machaira
- PICU, Panagiotis and Aglaia Kyriakou Children's Hospital, Athens, Greece
| | | | | | - Filippia Nikolaou
- PICU, Panagiotis and Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Maria Sdougka
- PICU, Ippokrateio General Hospital, Thessaloniki, Greece
| | - Achilleas Gikas
- Infection Control Committee, University Hospital, Medical School, University of Crete, Heraklion, Greece
| | - Stavroula Ilia
- From the PICU, University Hospital, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
227
|
Knight GM, Glover RE, McQuaid CF, Olaru ID, Gallandat K, Leclerc QJ, Fuller NM, Willcocks SJ, Hasan R, van Kleef E, Chandler CIR. Antimicrobial resistance and COVID-19: Intersections and implications. eLife 2021; 10:e64139. [PMID: 33588991 PMCID: PMC7886324 DOI: 10.7554/elife.64139] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 01/08/2023] Open
Abstract
Before the coronavirus 2019 (COVID-19) pandemic began, antimicrobial resistance (AMR) was among the top priorities for global public health. Already a complex challenge, AMR now needs to be addressed in a changing healthcare landscape. Here, we analyse how changes due to COVID-19 in terms of antimicrobial usage, infection prevention, and health systems affect the emergence, transmission, and burden of AMR. Increased hand hygiene, decreased international travel, and decreased elective hospital procedures may reduce AMR pathogen selection and spread in the short term. However, the opposite effects may be seen if antibiotics are more widely used as standard healthcare pathways break down. Over 6 months into the COVID-19 pandemic, the dynamics of AMR remain uncertain. We call for the AMR community to keep a global perspective while designing finely tuned surveillance and research to continue to improve our preparedness and response to these intersecting public health challenges.
Collapse
Affiliation(s)
- Gwenan M Knight
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Centre for Mathematical Modelling of Infectious Diseases (CMMID), LSHTMLondonUnited Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, LSHTMLondonUnited Kingdom
- TB Centre, LSHTMLondonUnited Kingdom
| | - Rebecca E Glover
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Department of Health Services Research and Policy, Faculty of Public Health and Policy, LSHTMLondonUnited Kingdom
| | - C Finn McQuaid
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Centre for Mathematical Modelling of Infectious Diseases (CMMID), LSHTMLondonUnited Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, LSHTMLondonUnited Kingdom
- TB Centre, LSHTMLondonUnited Kingdom
| | - Ioana D Olaru
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, LSHTMLondonUnited Kingdom
- Biomedical Research and Training InstituteZambezi RiverZimbabwe
| | - Karin Gallandat
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, LSHTMLondonUnited Kingdom
| | - Quentin J Leclerc
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Centre for Mathematical Modelling of Infectious Diseases (CMMID), LSHTMLondonUnited Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, LSHTMLondonUnited Kingdom
| | - Naomi M Fuller
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Centre for Mathematical Modelling of Infectious Diseases (CMMID), LSHTMLondonUnited Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, LSHTMLondonUnited Kingdom
| | - Sam J Willcocks
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, LSHTMLondonUnited Kingdom
| | - Rumina Hasan
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Department of Pathology and Laboratory Medicine, Aga Khan UniversityKarachiPakistan
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, LSHTMLondonUnited Kingdom
| | - Esther van Kleef
- Department of Public Heath, Institute of Tropical MedicineAntwerpBelgium
| | - Clare IR Chandler
- AMR Centre, London School of Hygiene and Tropical Medicine (LSHTM)LondonUnited Kingdom
- Department of Global Health and Development, Faculty of Public Health and Policy, LSHTMLondonUnited Kingdom
| |
Collapse
|
228
|
Sun S, Gao H, Liu Y, Jin L, Wang R, Wang X, Wang Q, Yin Y, Zhang Y, Wang H. Co-existence of a novel plasmid-mediated efflux pump with colistin resistance gene mcr in one plasmid confers transferable multidrug resistance in Klebsiella pneumoniae. Emerg Microbes Infect 2021; 9:1102-1113. [PMID: 32401163 PMCID: PMC8284978 DOI: 10.1080/22221751.2020.1768805] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tigecycline is considered one of the last-resort antimicrobials for carbapenem-resistant K. pneumoniae. Plasmid-mediated tigecycline resistance remains largely unclear. Here, by utilizing whole genome sequencing, we report a plasmid-mediated tigecycline resistance mechanism, a 6,489 bp Resistance-nodulation-division family (RND) efflux pump (tmexCD1-toprJ1 pump), that confers transferable tigecycline resistance in K pneumoniae isolated from patients and chickens. In addition, we identified high prevalence of the plasmids co-harbouring both tmexCD1-toprJ1 pump and mcr (tmexCD1-mcr co-harbouring plasmid) from human in our nationwide collection. Even worse, the tmexCD1-toprJ1 and mcr co-harbouring plasmid was also co-existed with blaNDM-harbouring IncX3 plasmid in the same host, resulting in pandrug resistance. Phylogenetic analysis suggested that the plasmid-borne tmexCD1-toprJ1 originated from the chromosome of Aeromonas spp. through Tn5393-mediating translocation. Both plasmid-harbored tmexCD1-toprJ1 gene and mcr-8 likely originated from animal isolates and then spread to human. Our findings highlight a substantial threat of tmexCD1-toprJ1-mcr8 co-harbouring IncFIA/IncFII plasmid to public health due to their mobile resistance to both tigecycline and colistin, emphasizing an urgent need for further global surveillance on this plasmid.
Collapse
Affiliation(s)
- Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Hua Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
229
|
Ooi N, Lee VE, Chalam-Judge N, Newman R, Wilkinson AJ, Cooper IR, Orr D, Lee S, Savage VJ. Restoring carbapenem efficacy: a novel carbapenem companion targeting metallo-β-lactamases in carbapenem-resistant Enterobacterales. J Antimicrob Chemother 2021; 76:460-466. [PMID: 33152764 PMCID: PMC8600017 DOI: 10.1093/jac/dkaa455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The dissemination of MBLs compromises effective use of many β-lactams in the treatment of patients with life-threatening bacterial infections. Predicted global increases in the prevalence of MBL-producing carbapenem-resistant Enterobacterales (CRE) are being realized, yielding infections that are untreatable with existing therapies including newly approved β-lactam/β-lactamase inhibitor combinations. Developing MBL inhibitors (MBLIs) now is essential to address the growing threat that MBL-producing CRE pose to patients. METHODS A novel MBLI series was assessed by susceptibility testing and time-kill assays. Target activity and selectivity was evaluated using bacterial NDM, VIM and IMP enzyme assays and human matrix metallopeptidase enzyme assays, respectively, and cytotoxicity was assessed in HepG2 cells. In vivo efficacy of meropenem/MBLI combinations was evaluated in a mouse thigh infection model using an NDM-1-producing Escherichia coli strain. RESULTS Combination of MBLIs with carbapenems reduced MICs for NDM/IMP/VIM-producing Enterobacterales by up to 128-fold compared with the carbapenems alone. Supplementation of meropenem with the promising compound 272 reduced the MIC90 from 128 to 0.25 mg/L in a panel of MBL-producing CRE clinical isolates (n = 115). Compound 272 restored the bactericidal activity of meropenem and was non-cytotoxic, potentiating the antimicrobial action of meropenem through specific inhibition of NDM, IMP and VIM. In vivo efficacy was achieved in a mouse thigh infection model with meropenem/272 dosed subcutaneously. CONCLUSIONS We have developed a series of rationally designed MBLIs that restore activity of carbapenems against NDM/IMP/VIM-producing Enterobacterales. This series warrants further development towards a novel combination therapy that combats antibiotic-resistant organisms, which pose a critical threat to human health.
Collapse
Affiliation(s)
- Nicola Ooi
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | - Victoria E Lee
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | | | - Rebecca Newman
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | | | - Ian R Cooper
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | - David Orr
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | - Sally Lee
- Infex Therapeutics Ltd, Alderley Park, Macclesfield, Cheshire, UK
| | | |
Collapse
|
230
|
Rivera-Izquierdo M, Láinez-Ramos-Bossini AJ, Rivera-Izquierdo C, López-Gómez J, Fernández-Martínez NF, Redruello-Guerrero P, Martín-delosReyes LM, Martínez-Ruiz V, Moreno-Roldán E, Jiménez-Mejías E. OXA-48 Carbapenemase-Producing Enterobacterales in Spanish Hospitals: An Updated Comprehensive Review on a Rising Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:antibiotics10010089. [PMID: 33477731 PMCID: PMC7832331 DOI: 10.3390/antibiotics10010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) are significant contributors to the global public health threat of antimicrobial resistance. OXA-48-like enzymes and their variants are unique carbapenemases with low or null hydrolytic activity toward carbapenems but no intrinsic activity against expanded-spectrum cephalosporins. CPEs have been classified by the WHO as high-priority pathogens given their association with morbidity and mortality and the scarce number of effective antibiotic treatments. In Spain, the frequency of OXA-48 CPE outbreaks is higher than in other European countries, representing the major resistance mechanism of CPEs. Horizontal transfer of plasmids and poor effective antibiotic treatment are additional threats to the correct prevention and control of these hospital outbreaks. One of the most important risk factors is antibiotic pressure, specifically carbapenem overuse. We explored the use of these antibiotics in Spain and analyzed the frequency, characteristics and prevention of CPE outbreaks. Future antibiotic stewardship programs along with specific preventive measures in hospitalized patients must be reinforced and updated in Spain.
Collapse
Affiliation(s)
- Mario Rivera-Izquierdo
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Service of Preventive Medicine and Public Health, Hospital Clínico San Cecilio, 18016 Granada, Spain
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
- Correspondence:
| | | | - Carlos Rivera-Izquierdo
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Service of Ginecology and Obstetrics, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Jairo López-Gómez
- Service of Internal Medicine, San Cecilio University Hospital, 18016 Granada, Spain;
| | - Nicolás Francisco Fernández-Martínez
- Department of Preventive Medicine and Public Health, Reina Sofía University Hospital, 14004 Córdoba, Spain;
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), 14001 Córdoba, Spain
| | | | - Luis Miguel Martín-delosReyes
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
| | - Virginia Martínez-Ruiz
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health of Spain (CIBERESP), 28029 Madrid, Spain
| | - Elena Moreno-Roldán
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
| | - Eladio Jiménez-Mejías
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health of Spain (CIBERESP), 28029 Madrid, Spain
- Teaching and Research in Family Medicine SEMERGEN-UGR, University of Granada, 18016 Granada, Spain
| |
Collapse
|
231
|
Popa LI, Gheorghe I, Barbu IC, Surleac M, Paraschiv S, Măruţescu L, Popa M, Pîrcălăbioru GG, Talapan D, Niţă M, Streinu-Cercel A, Streinu-Cercel A, Oţelea D, Chifiriuc MC. Multidrug Resistant Klebsiella pneumoniae ST101 Clone Survival Chain From Inpatients to Hospital Effluent After Chlorine Treatment. Front Microbiol 2021; 11:610296. [PMID: 33584574 PMCID: PMC7873994 DOI: 10.3389/fmicb.2020.610296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022] Open
Abstract
In this paper we describe the transmission of a multi-drug resistant Klebsiella pneumoniae ST101 clone from hospital to wastewater and its persistence after chlorine treatment. Water samples from influents and effluents of the sewage tank of an infectious diseases hospital and clinical strains collected from the intra-hospital infections, during a period of 10 days prior to wastewater sampling were analyzed. Antibiotic resistant K. pneumoniae strains from wastewaters were recovered on selective media. Based on antibiotic susceptibility profiles and PCR analyses of antibiotic resistance (AR) genetic background, as well as whole-genome sequencing (Illumina MiSeq) and subsequent bioinformatic analyses, 11 ST101 K. pneumoniae strains isolated from hospital wastewater influent, wastewater effluent and clinical sector were identified as clonally related. The SNP and core genome analyses pointed out that five strains were found to be closely related (with ≤18 SNPs and identical cgMLST profile). The strains belonging to this clone harbored multiple acquired AR genes [blaCTX–M–15, blaOXA–48, blaOXA–1, blaSHV–106, blaTEM–150, aac(3)-IIa, aac(6′)-Ib-cr, oqxA10, oqxB17, fosA, catB3, dfrA14, tet(D)] and chromosomal mutations involved in AR (ΔmgrB, ΔompK35, amino acid substitutions in GyrA Ser83Tyr, Asp87Asn, ParC Ser80Tyr). Twenty-nine virulence genes involved in iron acquisition, biofilm and pili formation, adherence, and the type six secretion system – T6SS-III were identified. Our study proves the transmission of MDR K. pneumoniae from hospital to the hospital effluent and its persistence after the chlorine treatment, raising the risk of surface water contamination and further dissemination to different components of the trophic chain, including humans.
Collapse
Affiliation(s)
- Laura Ioana Popa
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Research Institute of the University of Bucharest, Bucharest, Romania.,Department of Bioinformatics, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Irina Gheorghe
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Research Institute of the University of Bucharest, Bucharest, Romania
| | - Marius Surleac
- Research Institute of the University of Bucharest, Bucharest, Romania.,National Institute for Infectious Diseases "Matei Bals", Bucharest, Romania
| | - Simona Paraschiv
- National Institute for Infectious Diseases "Matei Bals", Bucharest, Romania
| | - Luminiţa Măruţescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Research Institute of the University of Bucharest, Bucharest, Romania
| | - Marcela Popa
- Research Institute of the University of Bucharest, Bucharest, Romania
| | | | - Daniela Talapan
- National Institute for Infectious Diseases "Matei Bals", Bucharest, Romania
| | - Mihai Niţă
- National Research and Development Institute for Industrial Ecology (ECOIND), Bucharest, Romania
| | - Anca Streinu-Cercel
- National Institute for Infectious Diseases "Matei Bals", Bucharest, Romania.,Department II - Infectious Diseases, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Adrian Streinu-Cercel
- National Institute for Infectious Diseases "Matei Bals", Bucharest, Romania.,Department II - Infectious Diseases, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Dan Oţelea
- National Institute for Infectious Diseases "Matei Bals", Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
232
|
Barbadoro P, Bencardino D, Carloni E, Omiccioli E, Ponzio E, Micheletti R, Acquaviva G, Luciani A, Masucci A, Pocognoli A, Orecchioni F, D’Errico MM, Magnani M, Andreoni F. Carriage of Carbapenem-Resistant Enterobacterales in Adult Patients Admitted to a University Hospital in Italy. Antibiotics (Basel) 2021; 10:antibiotics10010061. [PMID: 33435256 PMCID: PMC7827735 DOI: 10.3390/antibiotics10010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
The emerging spread of carbapenemase-producing Enterobacterales (CPE) strains, in particular, Klebsiella pneumoniae and Escherichia coli, has become a significant threat to hospitalized patients. Carbapenemase genes are frequently located on plasmids than can be exchanged among clonal strains, increasing the antibiotic resistance rate. The aim of this study was to determine the prevalence of CPE in patients upon their admission and to analyze selected associated factors. An investigation of the antibiotic resistance and genetic features of circulating CPE was carried out. Phenotypic tests and molecular typing were performed on 48 carbapenemase-producing strains of K. pneumoniae and E. coli collected from rectal swabs of adult patients. Carbapenem-resistance was confirmed by PCR detection of resistance genes. All strains were analyzed by PCR-based replicon typing (PBRT) and multilocus sequence typing (MLST) was performed on a representative isolate of each PBRT profile. More than 50% of the strains were found to be multidrug-resistant, and the blaKPC gene was detected in all the isolates with the exception of an E. coli strain. A multireplicon status was observed, and the most prevalent profile was FIIK, FIB KQ (33%). MLST analysis revealed the prevalence of sequence type 512 (ST512). This study highlights the importance of screening patients upon their admission to limit the spread of CRE in hospitals.
Collapse
Affiliation(s)
- Pamela Barbadoro
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60122 Ancona, Italy; (P.B.); (E.P.); (R.M.); (G.A.); (A.L.); (M.M.D.)
- SOD Igiene Ospedaliera-AOU Ancona Associated Hospitals, 60126 Ancona, Italy
| | - Daniela Bencardino
- Department of Biomolecular Sciences, University of Urbino, 61029 Fano, Italy; (D.B.); (M.M.)
| | - Elisa Carloni
- Diatheva srl, 61030 Cartoceto, Italy; (E.C.); (E.O.)
| | | | - Elisa Ponzio
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60122 Ancona, Italy; (P.B.); (E.P.); (R.M.); (G.A.); (A.L.); (M.M.D.)
| | - Rebecca Micheletti
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60122 Ancona, Italy; (P.B.); (E.P.); (R.M.); (G.A.); (A.L.); (M.M.D.)
| | - Giorgia Acquaviva
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60122 Ancona, Italy; (P.B.); (E.P.); (R.M.); (G.A.); (A.L.); (M.M.D.)
| | - Aurora Luciani
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60122 Ancona, Italy; (P.B.); (E.P.); (R.M.); (G.A.); (A.L.); (M.M.D.)
| | - Annamaria Masucci
- SOS Microbiologia Laboratorio Analisi, AOU Ancona Associated Hospitals, 60126 Ancona, Italy; (A.M.); (A.P.); (F.O.)
| | - Antonella Pocognoli
- SOS Microbiologia Laboratorio Analisi, AOU Ancona Associated Hospitals, 60126 Ancona, Italy; (A.M.); (A.P.); (F.O.)
| | - Francesca Orecchioni
- SOS Microbiologia Laboratorio Analisi, AOU Ancona Associated Hospitals, 60126 Ancona, Italy; (A.M.); (A.P.); (F.O.)
| | - Marcello Mario D’Errico
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60122 Ancona, Italy; (P.B.); (E.P.); (R.M.); (G.A.); (A.L.); (M.M.D.)
- SOD Igiene Ospedaliera-AOU Ancona Associated Hospitals, 60126 Ancona, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, 61029 Fano, Italy; (D.B.); (M.M.)
| | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino, 61029 Fano, Italy; (D.B.); (M.M.)
- Correspondence: ; Tel.: +39-0722-3049-78
| |
Collapse
|
233
|
Touati A, Manseur L, Mehidi I, Mairi A. Epidemiological and Genetic Features of Plasmids Carrying blaNDM Genes: An In Silico Analysis with Emphasis on Replicon Types, and Resistome. Microb Drug Resist 2021; 27:1232-1242. [PMID: 33417812 DOI: 10.1089/mdr.2020.0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: New Delhi metallo-β-lactamase (NDM) is a metallo-β-lactamase that has been disseminated worldwide. Plasmids harboring the blaNDM gene belonged to many incompatibility groups, of which IncX3, IncF, and IncA/C were the most represented. This in silico study aimed at analyzing a set of 649 plasmids carrying NDM-type carbapenemase (pNDMs) previously assigned in GenBank. Materials and Methods: The selected plasmids were analyzed by ResFinder (antibiotic resistome identification), BacMet (metal/biocides resistome identification), PlasmidFinder/PLSDB (replicon typing), TAfinder (toxin-antitoxin system [TAS] identification), and OriTfinder (prediction of the transferability). Results: We found that Escherichia coli and Klebsiella pneumoniae amounted to about 68.6% of all reported species. The distribution of these plasmids by samples showed a diversity of origins. Many plasmids carried different genes encoding resistance to antibiotics, heavy metals, and biocides with different frequencies. The TAfinder allowed the identification of a TAS in 292 plasmids (45%). Twenty-four different incompatibility groups were predicted, of which IncX3 (34.2%; n = 222), IncC (10.9%, n = 71), and IncFII (9.9%, n = 64) were the most often described. Besides, 23.6% (n = 151) of pNDMs were recognized as multireplicon plasmids. Conclusion: This study has shown the importance of plasmids in the dissemination of the NDM carbapenemase and raises the importance of monitoring these elements to better understand the evolution of the antibiotic resistance threat.
Collapse
Affiliation(s)
- Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Lyticia Manseur
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Imene Mehidi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Assia Mairi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
234
|
Lipworth S, Vihta KD, Chau KK, Kavanagh J, Davies T, George S, Barker L, Vaughan A, Andersson M, Jeffery K, Oakley S, Morgan M, Peto TEA, Crook DW, Walker AS, Stoesser N. Ten years of population-level genomic Escherichia coli and Klebsiella pneumoniae serotype surveillance informs vaccine development for invasive infections. Clin Infect Dis 2021; 73:2276-2282. [PMID: 33411882 PMCID: PMC8677521 DOI: 10.1093/cid/ciab006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The incidence of bloodstream infections (BSIs) caused by Escherichia coli and Klebsiella pneumoniae is increasing, with substantial associated morbidity, mortality and antimicrobial resistance. Unbiased serotyping studies to guide vaccine target selection are limited. METHODS We conducted unselected, population-level genomic surveillance of bloodstream E. coli and Klebsiella pneumoniae isolates from 2008-2018 in Oxfordshire, UK. We supplemented this with an analysis of publicly available global sequencing data (n=3678). RESULTS We sequenced 3478 E. coli isolates (3278 passed quality control) and 556 K. pneumoniae isolates (535 (K-antigen) and 549 (O-antigen) passed quality control). The four most common E. coli O-antigens (O1/O2/O6/O25) were identified in 1499/3278 isolates; the incidence of these O-types increased over time (IRRy=1.14, 95% CI:1.11-1.16). These O-types accounted for 616/1434 multidrug resistant (MDR) and 173/256 extended-spectrum beta-lactamase(ESBL)-resistant isolates in Oxfordshire, but only 19/90 carbapenem-resistant isolates across all studies. For Klebsiella pneumoniae, the most common O-antigens (O2v2/O1v1/O3b/O1v2) accounted for 410/549 isolates; the incidence of BSIs caused by these also increased annually (IRRy=1.09; 95% CI:1.05-1.12). These O-types accounted for 122/148 MDR and 106/123 ESBL isolates in Oxfordshire and 557/734 carbapenem-resistant isolates across all studies. Conversely we observed substantial capsular antigen diversity. Analysis of 3678 isolates from global studies demonstrated the generalisability of these findings. For E. coli, based on serotyping, the ExPEC4V and ExPEC10V vaccines under investigation would cover 46% and 72% of Oxfordshire isolates respectively, and 47% and 71% of MDR isolates. CONCLUSIONS O-antigen targeted vaccines may be useful in reducing the morbidity, mortality and antimicrobial resistance associated with E. coli and K. pneumoniae BSIs.
Collapse
Affiliation(s)
- Samuel Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Kevin K Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Timothy Davies
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sophie George
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ali Vaughan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Oakley
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marcus Morgan
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Timothy E A Peto
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom.,NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom.,NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom.,NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
235
|
Zhou K, Xiao T, David S, Wang Q, Zhou Y, Guo L, Aanensen D, Holt KE, Thomson NR, Grundmann H, Shen P, Xiao Y. Novel Subclone of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 with Enhanced Virulence and Transmissibility, China. Emerg Infect Dis 2021; 26:289-297. [PMID: 31961299 PMCID: PMC6986851 DOI: 10.3201/eid2602.190594] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We aimed to clarify the epidemiologic and clinical importance of evolutionary events that occurred in carbapenem-resistant Klebsiella pneumoniae (CRKP). We collected 203 CRKP causing bloodstream infections in a tertiary hospital in China during 2013-2017. We detected a subclonal shift in the dominant clone sequence type (ST) 11 CRKP in which the previously prevalent capsular loci (KL) 47 had been replaced by KL64 since 2016. Patients infected with ST11-KL64 CRKP had a significantly higher 30-day mortality rate than other CRKP-infected patients. Enhanced virulence was further evidenced by phenotypic tests. Phylogenetic reconstruction demonstrated that ST11-KL64 is derived from an ST11-KL47-like ancestor through recombination. We identified a pLVPK-like virulence plasmid carrying rmpA and peg-344 in ST11-KL64 exclusively from 2016 onward. The pLVPK-like-positive ST11-KL64 isolates exhibited enhanced environmental survival. Retrospective screening of a national collection identified ST11-KL64 in multiple regions. Targeted surveillance of this high-risk CRKP clone is urgently needed.
Collapse
|
236
|
Li NN, Li W, Feng JX, Zhang WW, Zhang R, Du SH, Liu SY, Xue GH, Yan C, Cui JH, Zhao HQ, Feng YL, Gan L, Zhang Q, Chen C, Liu D, Yuan J. High alcohol-producing Klebsiella pneumoniae causes fatty liver disease through 2,3-butanediol fermentation pathway in vivo. Gut Microbes 2021; 13:1979883. [PMID: 34632939 PMCID: PMC8510565 DOI: 10.1080/19490976.2021.1979883] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
High alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut microbiota had been demonstrated to be the causative agent of fatty liver disease (FLD). However, the catabolic pathways for alcohol production in vivo remain unclear. Here, we characterized the genome of HiAlc and medium alcohol-producing (MedAlc) Kpn and constructed an adh (an essential gene encoding alcohol dehydrogenase) knock-out HiAlc Kpn W14 strain (W14Δadh) using CRISPR-Cas9 system. Subsequently, we established the mouse model via gavage administration of HiAlc Kpn W14 and W14 Δadh strains, respectively. Proteome and metabolome analysis showed that 10 proteins and six major metabolites involved in the 2,3-butanediol fermentation pathway exhibited at least a three-fold change or greater during intestinal growth. Compared with HiAlc Kpn W14-fed mice, W14Δadh-fed mice with weak alcohol-producing ability did not show apparent pathological changes at 4 weeks, although some steatotic hepatocytes were observed at 12 weeks. Our data demonstrated that carbohydrate substances are catabolized to produce alcohol and 2,3-butanediol via the 2,3-butanediol fermentation pathway in HiAlc Kpn, which could be a promising clinical diagnostic marker. The production of high amounts of endogenous alcohol is responsible for the observed steatosis effects in hepatocytes in vivo.
Collapse
Affiliation(s)
- Nan-Nan Li
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Wei Li
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Beijing, China
| | - Jun-Xia Feng
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Wei-Wei Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Shu-Heng Du
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Shi-Yu Liu
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Guan-Hua Xue
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Jing-Hua Cui
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Han-Qing Zhao
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Yan-Ling Feng
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Qun Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Chen Chen
- Biomedical inovation center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China, Beijing, China
| | - Jing Yuan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
237
|
Risk factors for carbapenemase-producing organisms among inpatients in Scotland: A national matched case–control study. Infect Control Hosp Epidemiol 2020; 42:968-977. [DOI: 10.1017/ice.2020.1351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractObjective:To determine risk factors for carbapenemase-producing organisms (CPOs) and to determine the prognostic impact of CPOs.Design:A retrospective matched case–control study.Patients:Inpatients across Scotland in 2010–2016 were included. Patients with a CPO were matched with 2 control groups by hospital, admission date, specimen type, and bacteria. One group comprised patients either infected or colonized with a non-CPO and the other group were general inpatients.Methods:Conditional logistic regression models were used to identify risk factors for CPO infection and colonization, respectively. Mortality rates and length of postisolation hospitalization were compared between CPO and non-CPO patients.Results:In total, 70 CPO infection cases (with 210 general inpatient controls and 121 non-CPO controls) and 34 CPO colonization cases (with 102 general inpatient controls and 60 non-CPO controls) were identified. Risk factors for CPO infection versus general inpatients were prior hospital stay (adjusted odds ratio [aOR], 4.05; 95% confidence interval [CI], 1.52–10.78; P = .005), longer hospitalization (aOR, 1.07; 95% CI, 1.04–1.10; P < .001), longer intensive care unit (ICU) stay (aOR, 1.41; 95% CI, 1.01–1.98; P = .045), and immunodeficiency (aOR, 3.68; 95% CI, 1.16–11.66; P = .027). Risk factors for CPO colonization were prior high-dependency unit (HDU) stay (aOR, 11.46; 95% CI, 1.27–103.09; P = .030) and endocrine, nutritional, and metabolic (ENM) diseases (aOR, 3.41; 95% CI, 1.02–11.33; P = .046). Risk factors for CPO infection versus non-CPO infection were prolonged hospitalization (aOR, 1.02; 95% CI, 1.00–1.03; P = .038) and HDU stay (aOR, 1.13; 95% CI, 1.02–1.26; P = .024). No differences in mortality rates were detected between CPO and non-CPO patients. CPO infection was associated with longer hospital stay than non-CPO infection (P = .041).Conclusions:A history of (prolonged) hospitalization, prolonged ICU or HDU stay; ENM diseases; and being immunocompromised increased risk for CPO. CPO infection was not associated with increased mortality but was associated with prolonged hospital stay.
Collapse
|
238
|
Parisio EM, Camarlinghi G, Coppi M, Niccolai C, Antonelli A, Nardone M, Vettori C, Giani T, Mattei R, Rossolini GM. Evaluation of the commercial AD fosfomycin test for susceptibility testing of multidrug-resistant Enterobacterales and Pseudomonas aeruginosa. Clin Microbiol Infect 2020; 27:S1198-743X(20)30725-4. [PMID: 33285277 DOI: 10.1016/j.cmi.2020.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To compare fosfomycin susceptibility testing with the commercial agar dilution (AD) test, AD Fosfomycin (Liofilchem, Roseto degli Abruzzi, Italy) and the reference AD method, using a collection of multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa clinical isolates. METHODS The collection included 119 carbapenemase-producing Enterobacterales, 53 Enterobacterales producing acquired AmpC-type and/or extended-spectrum β-lactamases and 38 carbapenemase-producing P. aeruginosa, including representatives of different high-risk clones. AD Fosfomycin and AD reference method (ISO 20776-1:2019) were performed starting from the same microbial suspension. Results were interpreted according to EUCAST clinical breakpoints (10.0). Essential agreement (EA), category agreement (CA) and error rates were calculated as described by the International Organization for Standardization. RESULTS Of 172 Enterobacterales, 143 (83.1%, including 92.9% (52 of 56) of the NDM-producers and 84.2% (48 of 57) of the KPC-producers) were susceptible to fosfomycin using reference AD. A CA of 91.9% (158 of 172; 95% CI 87.1%-95.3%) and an EA of 92.5% (136 of 147; 95% CI 87.4%-96.0%), respectively, were calculated for the commercial AD Fosfomycin test, with 9.8% (14 of 128) of major errors and no very major errors (0 of 29). Overall, 86.8% (33 of 38) of P. aeruginosa showed a fosfomycin MIC ≤128 mg/L using reference AD. An EA of 84.8% (95% CI 66.3%-92.0%) was calculated for the commercial AD Fosfomycin test, with a CA of 100% (95% CI 93.6%-100%) when considering a tentative breakpoint at 128 mg/L. CONCLUSIONS AD Fosfomycin showed an overall good concordance compared with reference AD.
Collapse
Affiliation(s)
- Eva Maria Parisio
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Giulio Camarlinghi
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.
| | - Claudia Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Maria Nardone
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Chiara Vettori
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Romano Mattei
- Clinical Chemistry and Microbiology Analysis Unit, San Luca Hospital, USL Toscana Nord Ovest, Lucca, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| |
Collapse
|
239
|
Nasiri MJ, Mirsaeidi M, Mousavi SMJ, Arshadi M, Fardsanei F, Deihim B, Davoudabadi S, Zamani S, Hajikhani B, Goudarzi H, Goudarzi M, Seghatoleslami ZS, Dabiri H, Tabarsi P. Prevalence and Mechanisms of Carbapenem Resistance in Klebsiella pneumoniae and Escherichia coli: A Systematic Review and Meta-Analysis of Cross-Sectional Studies from Iran. Microb Drug Resist 2020; 26:1491-1502. [DOI: 10.1089/mdr.2019.0440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | - Mania Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Deihim
- Department of Bacteriology and Virology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Sara Davoudabadi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Zamani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Seghatoleslami
- Department of Infectious Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical TB and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
240
|
Gajdács M, Ábrók M, Lázár A, Jánvári L, Tóth Á, Terhes G, Burián K. Detection of VIM, NDM and OXA-48 producing carbapenem resistant Enterobacterales among clinical isolates in Southern Hungary. Acta Microbiol Immunol Hung 2020; 67:209-215. [PMID: 33258795 DOI: 10.1556/030.2020.01181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
Infections caused by carbapenem-resistant Enterobacterales (CRE) present an important therapeutic problem, as there are limited number of effective therapeutic alternatives available. In this study, phenotypic and genotypic methods were used to characterize carbapenemase-production and other resistance-determinants (AmpC and ESBL-production, efflux pump-overexpression) in 50 isolates (Klebsiella spp. n = 35, Escherichia coli n = 12 and Enterobacter cloacae complex n = 3) collected at the Albert Szent-Györgyi Clinical Center (University of Szeged) between 2014 and 2017. Minimum inhibitory concentrations of meropenem, sulfamethoxazole/trimethoprim, tigecycline, amikacin, moxifloxacin, colistin and fosfomycin were also determined. 24% of isolates were AmpC-producers, while 30% carried blaCTX-M ESBL-genes. Carbapenemase-genes were detected in 18 (36%) of the tested isolates: in 2 isolates blaNDM, in 6 isolates blaOXA-48-like and in 12 isolates, blaVIM was detected by PCR. The species-distribution for isolates positive for carbapenemase-genes was the following: Klebsiella pneumoniae n = 11, Klebsiella oxytoca n = 1, E. coli n = 5, E. cloacae complex n = 1. Efflux pump-overexpression based on the PAβN-screening agar was shown in n = 3 of the tested strains. In nine isolates (18%), carbapenemase and ESBL-genes were detected simultaneously. Highest levels of resistance were noted for fosfomycin (74%) and moxifloxacin (70%), while all isolates were susceptible to colistin. Among applied phenotypic tests in this study the modified carbapenem inactivation method (mCIM) proved to be the most accurate one compared to that of PCR results.
Collapse
Affiliation(s)
- Márió Gajdács
- 1Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720 Szeged, Hungary
| | - Marianna Ábrók
- 2Institute of Clinical Microbiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary
| | - Andrea Lázár
- 2Institute of Clinical Microbiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary
| | - Laura Jánvári
- 3Department of Bacteriology, Mycology and Parasitology, National Public Health Centre, Albert Flórián út 2-6., 1097 Budapest, Hungary
| | - Ákos Tóth
- 3Department of Bacteriology, Mycology and Parasitology, National Public Health Centre, Albert Flórián út 2-6., 1097 Budapest, Hungary
| | - Gabriella Terhes
- 3Department of Bacteriology, Mycology and Parasitology, National Public Health Centre, Albert Flórián út 2-6., 1097 Budapest, Hungary
| | - Katalin Burián
- 2Institute of Clinical Microbiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary
- 4Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10., 6720 Szeged, Hungary
| |
Collapse
|
241
|
Berneking L, Both A, Berinson B, Hoffmann A, Lütgehetmann M, Aepfelbacher M, Rohde H. Performance of the BD Phoenix CPO detect assay for detection and classification of carbapenemase-producing organisms. Eur J Clin Microbiol Infect Dis 2020; 40:979-985. [PMID: 33245470 PMCID: PMC8084821 DOI: 10.1007/s10096-020-04094-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
Increasing worldwide, prevalence of carbapenem-resistant gram-negative bacteria demands urgent a need for rapid detection and accurate identification of carbapenemases. The BD Phoenix CPO detect (PCD) assay possesses an in-built capacity for parallel susceptibility testing and detection of carbapenemases. Here, the ability of the assay to detect and classify carbapenemase production was tested in a collection of carbapenem-resistant Enterobacterales and non-fermentative gram-negative rods. The ability of the PCD assay to detect and classify carbapenemases was investigated in a collection of 194 clinical, carbapenem-resistant isolates (Enterobacterales [n = 65]; non-fermentative gram-negative rods [n = 129]). AST results were compared to MICS determined by gradient diffusion to determine accuracy of the PCD assay. The accuracy of the PCD assay to detect carbapenemases was compared to the results of molecular isolate characterization using a LDT multiplex carbapenemase PCR assay. All 194 isolates classified as carbapenem-resistant by reference susceptibility testing were also classified correctly as CRO by the PCD assay. Performance analysis of the PCD assay to detect carbapenemase production revealed an overall sensitivity of 98.29% and specificity of 17.95% for the detection of carbapenemase production. For the classification of carbapenemases classes A, B, and D, the PCD correctly classified 79.17% Enterobacterales and 67.16% non-fermentative gram-negative rods. The PCD assay is a reliable tool for the detection of carbapenem resistance and allows for parallel analysis of carbapenemase production. However, while sensitivity is high, low specificity in carbapenemase detection and erroneous classification demands mandatory confirmation by alternative methods, especially in non-fermentative gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Berneking
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Benjamin Berinson
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Armin Hoffmann
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Marc Lütgehetmann
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Martin Aepfelbacher
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany.
| |
Collapse
|
242
|
Dziri O, Dziri R, Ali El Salabi A, Chouchani C. Carbapenemase Producing Gram-Negative Bacteria in Tunisia: History of Thirteen Years of Challenge. Infect Drug Resist 2020; 13:4177-4191. [PMID: 33262613 PMCID: PMC7699306 DOI: 10.2147/idr.s259562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022] Open
Abstract
The wide spread of multidrug-resistant bacteria, particularly carbapenem-resistant Gram-negative bacteria (CR-GNB), constitutes a major public health threat worldwide, owing to the limited therapeutic options. This review will describe and uncover the Tunisian experience in the challenge against carbapenem resistance. Indeed, we illuminate on the dissemination of CR-GNB in different hospitals, animals, and other natural environments in this country. We resumed the different carbapenemase variants detected from various bacterial species and mapped their regional distribution, basing on Tunisian published data during a period extended from 2006, the date of its first description in Tunisia, to February 2019. We also resumed the different mobile genetic elements implicated in their dissemination. This review shows that the majority of the research reports focused in the north and the coastal cities in spite of the fact that KPC and IMP carbapenemases were uncommonly detected in our country. However, VIM, NDM-1, and OXA-48 enzymes were usually reported with the predominance of OXA-48 among Enterobacteriaceae. Furthermore, OXA-23, OXA-51, and OXA-58 carbapenemases constituted the main mechanism conferring carbapenem resistance among Acinetobacter baumannii in Tunisia. Collaborative efforts and raising awareness of the threat of antibiotic resistance are required in order to minimize the spread of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Olfa Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, High Institute of Science and Technology of Environment, University of Carthage, Hammam-Lif, Tunisia
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Allaaeddin Ali El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya.,Infection Control and Patient Safety Office, New Marwa Hospital, Benghazi, Libya
| | - Chedly Chouchani
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, High Institute of Science and Technology of Environment, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
243
|
Holma T, Antikainen J, Haiko J. Evaluation of three molecular carbapenemase tests: Eazyplex SuperBug complete B, Novodiag CarbaR+, and Amplidiag CarbaR+MCR. J Microbiol Methods 2020; 180:106105. [PMID: 33217483 DOI: 10.1016/j.mimet.2020.106105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Carbapenemase-producing Gram-negative bacilli, i.e., Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter, are of increased concern for the public health around the world. There is urgent need for rapid and accurate tests in order to provide correct treatment and to prevent bacterial spread in healthcare settings. METHODS The aim of this study was to evaluate three commercial multiplex carbapenemase tests with CE-IVD marking: Eazyplex SuperBug complete B (AmplexDiagnostics), Novodiag CarbaR+ (Mobidiag), and Amplidiag CarbaR+MCR (Mobidiag). All these tests recognize KPC, NDM, OXA-48/181 group, VIM, OXA-23 group, and OXA-24/40 group, and Novodiag CarbaR+ and Amplidiag CarbaR+MCR additionally recognize IMP, OXA-51 group (with promoter located within ISAbaI), OXA-58 group, and MCR, and Amplidiag CarbaR+MCR further recognizes GES (carbapenemase-type only). RESULTS The sensitivities and specificities of these tests with bacterial isolates were 100%. The sensitivity directly from clinical samples was 100%, but the specificity was lower, which is simply explained by the higher sensitivity of the molecular methods compared with culture method. CONCLUSIONS Overall, these CE-IVD marked tests provide a good alternative in the detection of carbapenemase-producing organisms.
Collapse
Affiliation(s)
- Tanja Holma
- Helsinki University and Helsinki University Hospital, HUSLAB, Department of Clinical Microbiology, Helsinki, Finland
| | - Jenni Antikainen
- Helsinki University and Helsinki University Hospital, HUSLAB, Department of Clinical Microbiology, Helsinki, Finland
| | - Johanna Haiko
- Helsinki University and Helsinki University Hospital, HUSLAB, Department of Clinical Microbiology, Helsinki, Finland.
| |
Collapse
|
244
|
Tshitshi L, Manganyi MC, Montso PK, Mbewe M, Ateba CN. Extended Spectrum Beta-Lactamase-Resistant Determinants among Carbapenem-Resistant Enterobacteriaceae from Beef Cattle in the North West Province, South Africa: A Critical Assessment of Their Possible Public Health Implications. Antibiotics (Basel) 2020; 9:E820. [PMID: 33213050 PMCID: PMC7698526 DOI: 10.3390/antibiotics9110820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Carbapenems are considered to be the last resort antibiotics for the treatment of infections caused by extended-spectrum beta-lactamase (ESBL)-producing strains. The purpose of this study was to assess antimicrobial resistance profile of Carbapenem-resistant Enterobacteriaceae (CRE) isolated from cattle faeces and determine the presence of carbapenemase and ESBL encoding genes. A total of 233 faecal samples were collected from cattle and analysed for the presence of CRE. The CRE isolates revealed resistance phenotypes against imipenem (42%), ertapenem (35%), doripenem (30%), meropenem (28%), cefotaxime, (59.6%) aztreonam (54.3%) and cefuroxime (47.7%). Multidrug resistance phenotypes ranged from 1.4 to 27% while multi antibiotic resistance (MAR) index value ranged from 0.23 to 0.69, with an average of 0.40. Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Proteus mirabilis (P. mirabilis) and Salmonella (34.4, 43.7, 1.3 and 4.6%, respectively) were the most frequented detected species through genus specific PCR analysis. Detection of genes encoding carbapenemase ranged from 3.3% to 35% (blaKPC, blaNDM, blaGES, blaOXA-48, blaVIM and blaOXA-23). Furthermore, CRE isolates harboured ESBL genes (blaSHV (33.1%), blaTEM (22.5%), blaCTX-M (20.5%) and blaOXA (11.3%)). In conclusion, these findings indicate that cattle harbour CRE carrying ESBL determinants and thus, proper hygiene measures must be enforced to mitigate the spread of CRE strains to food products.
Collapse
Affiliation(s)
- Lungisile Tshitshi
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| | - Madira Coutlyne Manganyi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa;
| | - Peter Kotsoana Montso
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho 2735, South Africa;
| | - Moses Mbewe
- Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
245
|
Bassetti M, Di Pilato V, Giani T, Vena A, Rossolini GM, Marchese A, Giacobbe DR. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Future Microbiol 2020; 15:1489-1505. [PMID: 33140656 DOI: 10.2217/fmb-2020-0210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the last decades, there was an important paucity of agents for adequately treating infections due to metallo-β-lactamases-producing Gram-negative bacteria (MBL-GNB). Cefiderocol, a novel siderophore cephalosporin showing in vitro activity against MBL-GNB, has been recently marketed, and a combination of aztreonam and ceftazidime/avibactam has shown a possible favorable effect on survival of patients with severe MBL-GNB infections in observational studies. Other agents showing in vitro activity against MBL-GNB are currently in clinical development (e.g., cefepime/taniborbactam, LYS228, cefepime/zidebactam) that could be an important addition to our future armamentarium for severe MBL-GNB infections. Nonetheless, we should not discontinue our efforts to optimize the use of non-β-lactams agents, since they could remain an essential last-resort or alternative option in selected cases.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Tommaso Giani
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Antonio Vena
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Gian Maria Rossolini
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Anna Marchese
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Microbiology Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Daniele R Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
246
|
Izdebski R, Sitkiewicz M, Urbanowicz P, Krawczyk M, Brisse S, Gniadkowski M. Genomic background of the Klebsiella pneumoniae NDM-1 outbreak in Poland, 2012-18. J Antimicrob Chemother 2020; 75:3156-3162. [PMID: 32790858 DOI: 10.1093/jac/dkaa339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To characterize genomes of Klebsiella pneumoniae ST11 NDM-1 responsible for a countrywide outbreak in Poland and compare them phylogenetically with other Polish and international ST11 strains. METHODS Seventy-one carbapenemase-producing K. pneumoniae ST11 isolates from Poland, including 66 representatives of the NDM-1 epidemic from 2012-18, were sequenced using Illumina MiSeq. Additionally, three outbreak isolates were also sequenced using MinION. The clonality and phylogenetic analysis was done by core-genome MLST and SNP approaches. Resistomes, virulomes, K/O antigens and plasmid replicons were screened for. The detailed plasmid analysis was based on full assemblies using Oxford Nanopore Technologies data. RESULTS Chromosomes of the outbreak isolates formed an essentially homogeneous cluster (though accumulating SNPs gradually with time), differing remarkably from other Polish NDM-1/-5-, KPC-2- or OXA-48-producing K. pneumoniae ST11 strains. The cluster belonged to a clade with 72 additional isolates identified worldwide, including closely related NDM-1 producers from several countries, including organisms from Bulgaria and Greece. All these had KL24 and O2v1 antigens and the chromosomal yersiniabactin locus YbST230 residing in the ICEKp11 element. The specific blaNDM-1-carrying Tn125 transposon derivative, named Tn125A, was located in IncFII/pKPX-1- and/or IncR-like plasmids; however, the IncRs rearranged extensively during the outbreak, contributing to highly dynamic plasmid profiles and resistomes. CONCLUSIONS The K. pneumoniae ST11 NDM-1 genotype that has been expanding in Poland since 2012 is largely monoclonal and represents a novel international high-risk lineage that is also spreading in other countries.
Collapse
Affiliation(s)
- R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - M Sitkiewicz
- IT Department, National Medicines Institute, Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | | | - S Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
247
|
Oteo-Iglesias J, Pérez-Vázquez M, Sola Campoy P, Moure Z, Sánchez Romero I, Sánchez Benito R, Aznar E, Seral C, Paño-Pardo JR, Ávila A, Lara N, Bautista V, Aracil B, Campos J. Emergence of blood infections caused by carbapenemase-producing Klebsiella pneumoniae ST307 in Spain. J Antimicrob Chemother 2020; 75:3402-3405. [PMID: 32772085 DOI: 10.1093/jac/dkaa301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Sola Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Zaira Moure
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Isabel Sánchez Romero
- Servicio de Microbiología, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Esteban Aznar
- Laboratorio Central de Microbiología BR-Salud, Madrid, Spain
| | - Cristina Seral
- Servicio Microbiología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - José Ramón Paño-Pardo
- Servicio de Enfermedades Infecciosas, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Alicia Ávila
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - José Campos
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
248
|
De Pastena M, Paiella S, Azzini AM, Zaffagnini A, Scarlini L, Montagnini G, Maruccio M, Filippini C, Romeo F, Mazzariol A, Cascio GL, Bazaj A, Secchettin E, Bassi C, Salvia R. Antibiotic Prophylaxis with Piperacillin-Tazobactam Reduces Post-Operative Infectious Complication after Pancreatic Surgery: An Interventional, Non-Randomized Study. Surg Infect (Larchmt) 2020; 22:536-542. [PMID: 33095107 DOI: 10.1089/sur.2020.260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: This study aimed to evaluate the effectiveness of piperacillin-tazobactam as antibiotic prophylaxis in patients affected by a peri-ampullary tumor submitted to pancreatic surgery. Methods: A prospective, non-randomized, non-blinded, interventional study was conducted from January 2015 to March 2018. Patients were screened pre-operatively for Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBL-PE). During the baseline period (January 2015-October 2016), surgical prophylaxis was performed with ampicillin-sulbactam. In the intervention phase (November 2016-March 2018), patients received piperacillin-tazobactam. Statistical analysis was performed by univariable and multivariable analysis with logistic regression models. Results: Overall, 383 patients were included in the baseline period and 296 in the intervention period. The surveillance strategy identified 47 ESBL-PE carriers (14%) in the baseline phase and 29 (10%) in the intervention phase. In the baseline period, the patients had a higher rate of hospital-acquired infection (43% versus 33%; p = 0.004), superficial surgical site infection (SSI) (11% versus 2%; p < 0.001), and pneumonia (16% versus 9%; p = 0.006). After the logistic regression, the baseline group had an odds ratio to develop superficial SSI and pneumonia of 7.7 (95% confidence interval [CI] 3-20) and 1.8 (95% CI 1-3.3), respectively. The ESBL colonization increased the mortality rate significantly (8% versus 3%; p = 0.017). Conclusions: Adopting antibiotic prophylaxis based on piperacillin-tazobactam is associated with a reduction in post-operative SSI, particularly superficial-SSIs. Further randomized studies would be warranted to evaluate this antibiotic combination more extensively in preventive strategies.
Collapse
Affiliation(s)
- Matteo De Pastena
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Anna Maria Azzini
- Infectious Diseases Unit, Department of Diagnostic and Public Health, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Amina Zaffagnini
- Infectious Diseases Unit, Department of Diagnostic and Public Health, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Luigi Scarlini
- Infectious Diseases Unit, Department of Diagnostic and Public Health, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Greta Montagnini
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Martina Maruccio
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Chiara Filippini
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Francesco Romeo
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostic and Public Health, Microbiology Division, and Department of Pathology and Diagnostic, University of Verona, Verona, Italy.,Microbiology and Virology Operating Unit, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Giuliana Lo Cascio
- Department of Diagnostic and Public Health, Microbiology Division, and Department of Pathology and Diagnostic, University of Verona, Verona, Italy.,Microbiology and Virology Operating Unit, Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Alda Bazaj
- Department of Diagnostic and Public Health, Microbiology Division, and Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | - Erica Secchettin
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Bassi
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Roberto Salvia
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
249
|
Zhang G, Zhang M, Sun F, Zhou J, Wang Y, Zhu D, Chen Z, Chen Q, Chang Q, Liu H, Chai W, Pan H. Epidemiology, mortality and risk factors for patients with K. pneumoniae bloodstream infections: Clinical impact of carbapenem resistance in a tertiary university teaching hospital of Beijing. J Infect Public Health 2020; 13:1710-1714. [PMID: 33082112 DOI: 10.1016/j.jiph.2020.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study compared the epidemiology of carbapenem-resistant (CRKP) and carbapenem-sensitive (CSKP) K. pneumoniae bloodstream infections (BSIs), and assessed risk factors for 28-day mortality of patients with K. pneumoniae BSIs. METHODS A retrospective cohort study was conducted in a 2000-bed tertiary teaching hospital of Beijing between Jan 1st 2013 to Dec 31st, 2019. All patients with K. pneumoniae BSI were identified through the Hospital Information System. The endpoints included incidence rate, mortality and risk factors for mortality of patients with K. pneumoniae BSIs. RESULTS 496 patients with K. pneumoniae BSIs were included in the analysis, with 108 CRKP BSIs. The incidence rate of K. pneumoniae BSI was 10.6 (CI: 9.7, 11.6) per 100 000 patient-days, with the rate for CRKP BSI was 2.3 (95% CI: 1.9, 2.8). The 28-day mortality was 38.0% for CRKP BSI and 8.8% for CSKP BSI, respectively. Logistic analysis showed, higher Charlson Comorbidity Index score (OR = 1.26, 95%CI 1.12-1.43, p < 0.001), respiratory failure (OR = 2.73, 95%CI1.28-5.84, p = 0.010), renal failure (OR = 4.13, 95%CI1.93-8.83, p < 0.001), septic shock (OR = 8.77, 95%CI3.60-21.32, p < 0.001), mechanical ventilation (OR = 4.41, 95%CI1.59-12.25, p = 0.004) and CRKP infection (OR = 3.04, 95%CI1.28-7.22, p = 0.012) were independently associated with 28-day mortality. CONCLUSIONS Considerable incidence rate and remarkable mortality of patients with K. pneumoniae (especially CRKP) BSI was declared in the study. Patient conditions before (higher CCI) and after presentation (respiratory failure, renal failure, septic shock), and healthcare factors (mechanical ventilation and CRKP infection) were independently associated with 28-day mortality. Understanding these risks helps better establishment of infection control strategies.
Collapse
Affiliation(s)
- Guojie Zhang
- Department of Medical Affairs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meng Zhang
- Department of Medical Records, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fangyan Sun
- Department of Medical Affairs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiong Zhou
- Department of Medical Affairs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yao Wang
- Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dawei Zhu
- China Center for Health Development Studies, Peking University, Beijing 100191, China
| | - Zheng Chen
- Department of Medical Affairs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Chen
- Department of Medical Affairs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qing Chang
- Department of Medical Affairs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Haimin Liu
- Department of Medical Records, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wenzhao Chai
- Department of Medical Affairs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Hui Pan
- Department of Medical Affairs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
250
|
Rapid Detection and Characterization of Carbapenemases in Enterobacterales with a New Modified Carbapenem Inactivation Method, mCIMplus. J Clin Microbiol 2020; 58:JCM.01370-20. [PMID: 32878954 DOI: 10.1128/jcm.01370-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
The worldwide emergence and spread of antimicrobial resistance in Gram-negative bacteria are severely limiting therapeutic options and thus constitute a major public health threat. The timely accurate detection of carbapenemase producers and the determination of carbapenemase class according to the Ambler classification can guide antimicrobial therapy and facilitate infection control measures. A modified version of the carbapenemase inactivation method (CIM), mCIM, was described and approved by the CLSI in 2017. We evaluated the performance of a faster new mCIM-based assay, mCIMplus, which can detect carbapenemase activity within 8 h and characterize the carbapenemase according to the Ambler classification in 20 h. A panel of 137 isolates producing carbapenemases (GES, IMP, KPC, NDM, OXA-48, OXA-48-like, and VIM enzymes) and 22 non-carbapenemase-producing isolates was used to evaluate the performance of mCIMplus. We evaluated the detection of carbapenemase activity at 8 and 20 h. Carbapenemase class was determined, with specific inhibitors, at 20 h. The sensitivities of mCIMplus were 99.3% at 8 h and 98.5% at 20 h. Its specificity was 100% regardless of culture time. Based on a decision algorithm, this test successfully identified the carbapenemase class for 98.4% of the tested isolates (127/129). Characterization was correct for 100, 95, and 100% of Ambler class A, B, and D isolates, respectively. This test can, therefore, be used to detect carbapenemase activity within 8 h and to determine carbapenemase class within 20 h. It constitutes a very affordable (<€1 per isolate) and reliable technique requiring only basic laboratory equipment.
Collapse
|