201
|
Alakoskela JM, Vitovic P, Kinnunen PKJ. Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 2009; 4:1224-51. [PMID: 19551800 DOI: 10.1002/cmdc.200900052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic properties of lipid bilayers reflecting the chemical structures and organization of the constituent phospholipids are considered. The interactions of drugs with phospholipids are important in various processes, such as drug absorption, tissue distribution, and subcellular distribution. In addition, drug-lipid interactions may lead to changes in lipid-dependent protein activities, and further, to functional and morphological changes in cells, a prominent example being the phospholipidosis (PLD) induced by cationic amphiphilic drugs. Herein we briefly review drug-lipid interactions in general and the significance of these interactions in PLD in particular. We also focus on a potential causal connection between drug-induced PLD and steatohepatitis, which is induced by some cationic amphiphilic drugs.
Collapse
Affiliation(s)
- Juha-Matti Alakoskela
- Division of Biochemistry, Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland.
| | | | | |
Collapse
|
202
|
Mairhofer M, Steiner M, Salzer U, Prohaska R. Stomatin-like protein-1 interacts with stomatin and is targeted to late endosomes. J Biol Chem 2009; 284:29218-29. [PMID: 19696025 DOI: 10.1074/jbc.m109.014993] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The human stomatin-like protein-1 (SLP-1) is a membrane protein with a characteristic bipartite structure containing a stomatin domain and a sterol carrier protein-2 (SCP-2) domain. This structure suggests a role for SLP-1 in sterol/lipid transfer and transport. Because SLP-1 has not been investigated, we first studied the molecular and cell biological characteristics of the expressed protein. We show here that SLP-1 localizes to the late endosomal compartment, like stomatin. Unlike stomatin, SLP-1 does not localize to the plasma membrane. Overexpression of SLP-1 leads to the redistribution of stomatin from the plasma membrane to late endosomes suggesting a complex formation between these proteins. We found that the targeting of SLP-1 to late endosomes is caused by a GYXXPhi (Phi being a bulky, hydrophobic amino acid) sorting signal at the N terminus. Mutation of this signal results in plasma membrane localization. SLP-1 and stomatin co-localize in the late endosomal compartment, they co-immunoprecipitate, thus showing a direct interaction, and they associate with detergent-resistant membranes. In accordance with the proposed lipid transfer function, we show that, under conditions of blocked cholesterol efflux from late endosomes, SLP-1 induces the formation of enlarged, cholesterol-filled, weakly LAMP-2-positive, acidic vesicles in the perinuclear region. This massive cholesterol accumulation clearly depends on the SCP-2 domain of SLP-1, suggesting a role for this domain in cholesterol transfer to late endosomes.
Collapse
Affiliation(s)
- Mario Mairhofer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna A-1030, Austria
| | | | | | | |
Collapse
|
203
|
Rosenbaum AI, Rujoi M, Huang AY, Du H, Grabowski GA, Maxfield FR. Chemical screen to reduce sterol accumulation in Niemann-Pick C disease cells identifies novel lysosomal acid lipase inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1155-65. [PMID: 19699313 DOI: 10.1016/j.bbalip.2009.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/05/2009] [Accepted: 08/07/2009] [Indexed: 01/23/2023]
Abstract
Niemann-Pick C disease (NPC) is a lysosomal storage disorder causing abnormal accumulation of unesterified free cholesterol in lysosomal storage organelles. High content phenotypic microscopy chemical screens in both human and hamster NPC-deficient cells have identified several compounds that partially revert the NPC phenotype. Cell biological and biochemical studies show that several of these molecules inhibit lysosomal acid lipase, the enzyme that hydrolyzes LDL-derived triacylglycerol and cholesteryl esters. The effects of reduced lysosomal acid lipase activity in lowering cholesterol accumulation in NPC mutant cells were verified by RNAi-mediated knockdown of lysosomal acid lipase in NPC1-deficient human fibroblasts. This work demonstrates the utility of phenotypic cellular screens as a means to identify molecular targets for altering a complex process such as intracellular cholesterol trafficking and metabolism.
Collapse
Affiliation(s)
- Anton I Rosenbaum
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
204
|
Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes. Proc Natl Acad Sci U S A 2009; 106:14681-6. [PMID: 19706553 DOI: 10.1073/pnas.0902809106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholesterol is an important determinant of cardiac electrical properties. However, underlying mechanisms are still poorly understood. Here, we examine the hypothesis that cholesterol modulates the turnover of voltage-gated potassium channels based on previous observations showing that depletion of membrane cholesterol increases the atrial repolarizing current I(Kur). Whole-cell currents and single-channel activity were recorded in rat adult atrial myocytes (AAM) or after transduction with hKv1.5-EGFP. Channel mobility and expression were studied using fluorescence recovery after photobleaching (FRAP) and 3-dimensional microscopy. In both native and transduced-AAMs, the cholesterol-depleting agent MbetaCD induced a delayed ( approximately 7 min) increase in I(Kur); the cholesterol donor LDL had an opposite effect. Single-channel recordings revealed an increased number of active Kv1.5 channels upon MbetaCD application. Whole-cell recordings indicated that this increase was not dependent on new synthesis but on trafficking of existing pools of intracellular channels whose exocytosis could be blocked by both N-ethylmaleimide and nonhydrolyzable GTP analogues. Rab11 was found to coimmunoprecipitate with hKv1.5-EGFP channels and transfection with Rab11 dominant negative (DN) but not Rab4 DN prevented the MbetaCD-induced I(Kur) increase. Three-dimensional microscopy showed a decrease in colocalization of Kv1.5 and Rab11 in MbetaCD-treated AAM. These results suggest that cholesterol regulates Kv1.5 channel expression by modulating its trafficking through the Rab11-associated recycling endosome. Therefore, this compartment provides a submembrane pool of channels readily available for recruitment into the sarcolemma of myocytes. This process could be a major mechanism for the tuning of cardiac electrical properties and might contribute to the understanding of cardiac effects of lipid-lowering drugs.
Collapse
|
205
|
Rocha N, Kuijl C, van der Kant R, Janssen L, Houben D, Janssen H, Zwart W, Neefjes J. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. ACTA ACUST UNITED AC 2009; 185:1209-25. [PMID: 19564404 PMCID: PMC2712958 DOI: 10.1083/jcb.200811005] [Citation(s) in RCA: 545] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Late endosomes (LEs) have characteristic intracellular distributions determined by their interactions with various motor proteins. Motor proteins associated to the dynactin subunit p150(Glued) bind to LEs via the Rab7 effector Rab7-interacting lysosomal protein (RILP) in association with the oxysterol-binding protein ORP1L. We found that cholesterol levels in LEs are sensed by ORP1L and are lower in peripheral vesicles. Under low cholesterol conditions, ORP1L conformation induces the formation of endoplasmic reticulum (ER)-LE membrane contact sites. At these sites, the ER protein VAP (VAMP [vesicle-associated membrane protein]-associated ER protein) can interact in trans with the Rab7-RILP complex to remove p150(Glued) and associated motors. LEs then move to the microtubule plus end. Under high cholesterol conditions, as in Niemann-Pick type C disease, this process is prevented, and LEs accumulate at the microtubule minus end as the result of dynein motor activity. These data explain how the ER and cholesterol control the association of LEs with motor proteins and their positioning in cells.
Collapse
Affiliation(s)
- Nuno Rocha
- Division of Cell Biology, The Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Liu Z, Zhang S, Li H, Luan J, Wang Y, Wang L, Xiang J. Characterization and expression profile ofAmphiCD63encoding a novel member of TM4SF proteins from amphioxusBranchiostoma belcheri tsingtauense. ACTA ACUST UNITED AC 2009; 16:195-201. [PMID: 16147875 DOI: 10.1080/10425170500097883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study on CD antigen genes remains lacking in the cephalochordate amphioxus to date. In this report, the cDNA encoding CD63 was identified for the first time from the gut cDNA library of amphioxus Branchiostoma belcheri tsingtauense. Primary structural examination showed that the protein encoded by the cDNA contained four potential transmembrane domains characteristic of transmembrane 4 superfamily (TM4SF) proteins and a conserved CCG motif in the putative major extracellular loop. BLAST search revealed that the cDNA is closely associated with other known CD63 antigen genes, and it was thus designated AmphiCD63. Phylogenetic analysis indicated that AmphiCD63 is extremely close to vertebrate CD63, CD151 and CD53, suggesting they may have been evolved from a common ancestral gene. RT-PCR analysis exhibited that AmphiCD63 mRNA was abundant in muscle, ovary, foregut including hepatic caecum and hindgut, while it was present at considerably lower levels in notochord and gill and absent in testis.
Collapse
Affiliation(s)
- Zhenhui Liu
- Department of Marine Biology, Ocean University of China, Qingdao
| | | | | | | | | | | | | |
Collapse
|
207
|
Zhang WX, Frahm G, Morley S, Manor D, Atkinson J. Effect of bilayer phospholipid composition and curvature on ligand transfer by the alpha-tocopherol transfer protein. Lipids 2009; 44:631-41. [PMID: 19458973 PMCID: PMC9784539 DOI: 10.1007/s11745-009-3310-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 04/28/2009] [Indexed: 02/09/2023]
Abstract
We report here our preliminary investigations on the mechanism of alpha-TTP-mediated ligand transfer as assessed using fluorescence resonance energy transfer (FRET) assays. These assays monitor the movement of the model alpha-tocopherol fluorescent derivative ((R)-2,5,7,8-tetramethyl-chroman-2-[9-(7-nitro-benzo[1,2,5]oxadiazol-4-yl amino)-nonyl]-chroman-6-ol; NBD-Toc) from protein to acceptor vesicles containing the fluorescence quencher TRITC-PE. We have found that alpha-TTP utilizes a collisional mechanism of ligand transfer requiring direct protein-membrane contact, that rates of ligand transfer are greater to more highly curved lipid vesicles, and that such rates are insensitive to the presence of anionic phospholipids in the acceptor membrane. These results point to hydrophobic features of alpha-TTP dominating the binding energy between protein and membrane.
Collapse
Affiliation(s)
- Wen Xiao Zhang
- Department of Chemistry, Centre for Biotechnology, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada
| | | | | | | | | |
Collapse
|
208
|
Mesmin B, Maxfield FR. Intracellular sterol dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:636-45. [PMID: 19286471 PMCID: PMC2696574 DOI: 10.1016/j.bbalip.2009.03.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 01/17/2023]
Abstract
We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.
Collapse
Affiliation(s)
- Bruno Mesmin
- Department of Biochemistry, Weill Cornell Medical College 1300 York Avenue New York, NY 10065, USA
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College 1300 York Avenue New York, NY 10065, USA
| |
Collapse
|
209
|
Deficiency of niemann-pick type C-1 protein impairs release of human immunodeficiency virus type 1 and results in Gag accumulation in late endosomal/lysosomal compartments. J Virol 2009; 83:7982-95. [PMID: 19474101 DOI: 10.1128/jvi.00259-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) relies on cholesterol-laden lipid raft membrane microdomains for entry into and egress out of susceptible cells. In the present study, we examine the need for intracellular cholesterol trafficking pathways with respect to HIV-1 biogenesis using Niemann-Pick type C-1 (NPC1)-deficient (NPCD) cells, wherein these pathways are severely compromised, causing massive accumulation of cholesterol in late endosomal/lysosomal (LE/L) compartments. We have found that induction of an NPC disease-like phenotype through treatment of various cell types with the commonly used hydrophobic amine drug U18666A resulted in profound suppression of HIV-1 release. Further, NPCD Epstein-Barr virus-transformed B lymphocytes and fibroblasts from patients with NPC disease infected with a CD4-independent strain of HIV-1 or transfected with an HIV-1 proviral clone, respectively, replicated HIV-1 poorly compared to normal cells. Infection of the NPCD fibroblasts with a vesicular stomatitis virus G-pseudotyped strain of HIV-1 produced similar results, suggesting a postentry block to HIV-1 replication in these cells. Examination of these cells using confocal microscopy showed an accumulation and stabilization of Gag in LE/L compartments. Additionally, normal HIV-1 production could be restored in NPCD cells upon expression of a functional NPC1 protein, and overexpression of NPC1 increased HIV-1 release. Taken together, our findings demonstrate that intact intracellular cholesterol trafficking pathways mediated by NPC1 are needed for efficient HIV-1 production.
Collapse
|
210
|
Marijanovic Z, Caputo A, Campana V, Zurzolo C. Identification of an intracellular site of prion conversion. PLoS Pathog 2009; 5:e1000426. [PMID: 19424437 PMCID: PMC2673690 DOI: 10.1371/journal.ppat.1000426] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 04/13/2009] [Indexed: 01/01/2023] Open
Abstract
Prion diseases are fatal, neurodegenerative disorders in humans and animals and are characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrP(C)), denoted PrP(Sc), which represents the major component of infectious scrapie prions. Characterization of the mechanism of conversion of PrP(C) into PrP(Sc) and identification of the intracellular site where it occurs are among the most important questions in prion biology. Despite numerous efforts, both of these questions remain unsolved. We have quantitatively analyzed the distribution of PrP(C) and PrP(Sc) and measured PrP(Sc) levels in different infected neuronal cell lines in which protein trafficking has been selectively impaired. Our data exclude roles for both early and late endosomes and identify the endosomal recycling compartment as the likely site of prion conversion. These findings represent a fundamental step towards understanding the cellular mechanism of prion conversion and will allow the development of new therapeutic approaches for prion diseases.
Collapse
Affiliation(s)
- Zrinka Marijanovic
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris, France
| | - Anna Caputo
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli ‘Federico II’, Naples, Italy
| | - Vincenza Campana
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli ‘Federico II’, Naples, Italy
| |
Collapse
|
211
|
Schweitzer JK, Pietrini SD, D'Souza-Schorey C. ARF6-mediated endosome recycling reverses lipid accumulation defects in Niemann-Pick Type C disease. PLoS One 2009; 4:e5193. [PMID: 19365558 PMCID: PMC2664925 DOI: 10.1371/journal.pone.0005193] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 03/13/2009] [Indexed: 11/18/2022] Open
Abstract
In human Niemann-Pick Type C (NPC) disease, endosomal trafficking defects lead to an accumulation of free cholesterol and other lipids in late endosome/lysosome (LE/LY) compartments, a subsequent block in cholesterol esterification and significantly reduced cholesterol efflux out of the cell. Here we report that nucleotide cycling or cellular knockdown of the small GTP-binding protein, ARF6, markedly impacts cholesterol homeostasis. Unregulated ARF6 activation attenuates the NPC phenotype at least in part by decreasing cholesterol accumulation and restoring normal sphingolipid trafficking. These effects depend on ARF6-stimulated cholesterol efflux out of the endosomal recycling compartment, a major cell repository for free cholesterol. We also show that fibroblasts derived from different NPC patients displayed varying levels of ARF6 that is GTP-bound, which correlate with their response to sustained ARF6 activation. These studies support emerging evidence that early endocytic defects impact NPC disease and suggest that such heterogeneity in NPC disease could result in diverse responses to therapeutic interventions aimed at modulating the trafficking of lipids.
Collapse
Affiliation(s)
- Jill Kuglin Schweitzer
- Department of Biological Sciences and the Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sean D. Pietrini
- Department of Biological Sciences and the Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Crislyn D'Souza-Schorey
- Department of Biological Sciences and the Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
212
|
Neuropathology of the Mcoln1(-/-) knockout mouse model of mucolipidosis type IV. J Neuropathol Exp Neurol 2009; 68:125-35. [PMID: 19151629 DOI: 10.1097/nen.0b013e3181942cf0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The recently developed Mcoln1(-/-) knockout mouse provides a novel model for analyzing mucolipin 1 function and mucolipidosis type IV disease. Here we characterize the neuropathology of Mcoln1(-/-) mouse at the end stage. Evidence of ganglioside accumulation, including increases in GM2, GM3, and GD3 and redistribution of GM1, was found throughout the central nervous system (CNS) independent of significant cholesterol accumulation. Unexpectedly, colocalization studies using immunofluorescence confocal microscopy revealed that GM1 and GM2 were present in separate vesicles within individual neurons. While GM2 was significantly colocalized with LAMP2, consistent with late-endosomal/lysosomal processing, some GM2-immunoreactivity occurred in LAMP2-negative sites, suggesting involvement of other vesicular systems. P62/Sequestosome 1 (P62/SQSTM1) inclusions were also identified in the CNS of the Mcoln1(-/-) mouse, suggesting deficiencies in protein degradation. Glial cell activation was increased in brain, and there was evidence of reduced myelination in cerebral and cerebellar white matter tracts. Autofluorescent material accumulated throughout the brains of the knockout mice. Finally, axonal spheroids were prevalent in white matter tracts and Purkinje cell axons. This neuropathological characterization of the Mcoln1(-/-) mouse provides an important step in understanding how mucolipin 1 loss of function affects the CNS and contributes to mucolipidosis type IV disease.
Collapse
|
213
|
Walkley SU, Vanier MT. Secondary lipid accumulation in lysosomal disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:726-36. [PMID: 19111580 PMCID: PMC4382014 DOI: 10.1016/j.bbamcr.2008.11.014] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/11/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
Abstract
Lysosomal diseases are inherited metabolic disorders caused by defects in a wide spectrum of lysosomal and a few non-lysosomal proteins. In most cases a single type of primary storage material is identified, which has been used to name and classify the disorders: hence the terms sphingolipidoses, gangliosidoses, mucopolysaccharidoses, glycoproteinoses, and so forth. In addition to this primary storage, however, a host of secondary storage products can also be identified, more often than not having no direct link to the primary protein defect. Lipids - glycosphingolipids and phospholipids, as well as cholesterol - are the most ubiquitous and best studied of these secondary storage materials. While in the past typically considered nonspecific and nonconsequential features of these diseases, newer studies suggest direct links between secondary storage and disease pathogenesis and support the view that understanding all aspects of this sequestration process will provide important insights into the cell biology and treatment of lysosomal disease.
Collapse
Affiliation(s)
- Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, USA.
| | | |
Collapse
|
214
|
Cao J, Shen W, Chang Z, Shi Y. ALCAT1 is a polyglycerophospholipid acyltransferase potently regulated by adenine nucleotide and thyroid status. Am J Physiol Endocrinol Metab 2009; 296:E647-53. [PMID: 19106248 PMCID: PMC3734525 DOI: 10.1152/ajpendo.90761.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Acyl-CoA:lysocardiolipin acyltransferase-1 (ALCAT1) catalyzes acylation of lysocardiolipin back to cardiolipin, an important step in cardiolipin remodeling. The present study reports the catalytic properties of ALCAT1 in vitro and its regulation by thyroid hormone status in mouse liver and heart. Recombinant ALCAT1 expressed in Sf9 cells preferred basic pH conditions and did not require divalent cations or integrity of the subcellular membrane for its enzymatic activity. Recombinant ALCAT1 was potently inhibited by ADP and ATP, but not by adenosine nucleotide analogs or other nucleotides, such as UTP and GTP, suggesting that ALCAT1 does not require ATP hydrolysis for its enzyme activity. In addition to cardiolipin, ALCAT1 also catalyzed acylation of other members of the polyglycerophospholipid family, including phosphatidylglycerol, a precursor for cardiolipin synthesis, and bis(monoacylglycero)phosphate, a structural isomer of lysophosphatidylglycerol and a metabolic intermediate of cardiolipin. These findings suggest that ALCAT1 plays a role in the remodeling of other polyglycerophospholipids. In support of a regulatory role of ALCAT1 in cardiolipin remodeling in response to oxidative stress, ALCAT1 expression in liver and heart was significantly downregulated in mice with hypothyroidism and upregulated in mice treated with thyroid hormone, which is known to stimulate mitochondrial activity, oxidative stress, and cardiolipin remodeling.
Collapse
Affiliation(s)
- Jingsong Cao
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 Univ. Dr., H166, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
215
|
Newell-Litwa K, Salazar G, Smith Y, Faundez V. Roles of BLOC-1 and adaptor protein-3 complexes in cargo sorting to synaptic vesicles. Mol Biol Cell 2009; 20:1441-53. [PMID: 19144828 PMCID: PMC2649275 DOI: 10.1091/mbc.e08-05-0456] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 12/23/2008] [Accepted: 01/06/2009] [Indexed: 11/11/2022] Open
Abstract
Neuronal lysosomes and their biogenesis mechanisms are primarily thought to clear metabolites and proteins whose abnormal accumulation leads to neurodegenerative disease pathology. However, it remains unknown whether lysosomal sorting mechanisms regulate the levels of membrane proteins within synaptic vesicles. Using high-resolution deconvolution microscopy, we identified early endosomal compartments where both selected synaptic vesicle and lysosomal membrane proteins coexist with the adaptor protein complex 3 (AP-3) in neuronal cells. From these early endosomes, both synaptic vesicle membrane proteins and characteristic AP-3 lysosomal cargoes can be similarly sorted to brain synaptic vesicles and PC12 synaptic-like microvesicles. Mouse knockouts for two Hermansky-Pudlak complexes involved in lysosomal biogenesis from early endosomes, the ubiquitous isoform of AP-3 (Ap3b1(-/-)) and muted, defective in the biogenesis of lysosome-related organelles complex 1 (BLOC-1), increased the content of characteristic synaptic vesicle proteins and known AP-3 lysosomal proteins in isolated synaptic vesicle fractions. These phenotypes contrast with those of the mouse knockout for the neuronal AP-3 isoform involved in synaptic vesicle biogenesis (Ap3b2(-/-)), in which the content of select proteins was reduced in synaptic vesicles. Our results demonstrate that lysosomal and lysosome-related organelle biogenesis mechanisms regulate steady-state synaptic vesicle protein composition from shared early endosomes.
Collapse
Affiliation(s)
- Karen Newell-Litwa
- *Graduate Program in Biochemistry, Cell, and Developmental Biology
- Department of Cell Biology
| | | | - Yoland Smith
- Department of Neurology, Emory University, Atlanta, GA 30322
| | - Victor Faundez
- Department of Cell Biology
- Center for Neurodegenerative Diseases; and
| |
Collapse
|
216
|
Storch J, Xu Z. Niemann-Pick C2 (NPC2) and intracellular cholesterol trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:671-8. [PMID: 19232397 DOI: 10.1016/j.bbalip.2009.02.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 12/01/2022]
Abstract
Cholesterol is an important precursor for numerous biologically active molecules, and it plays a major role in membrane structure and function. Cholesterol can be endogenously synthesized or exogenously taken up via the endocytic vesicle system and subsequently delivered to post-endo/lysosomal sites including the plasma membrane and the endoplasmic reticulum. Niemann-Pick C (NPC) disease results in the accumulation of exogenously-derived cholesterol, as well as other lipids, in late endosomes and lysosomes (LE/LY). Identification of the two genes that underlie NPC disease, NPC1 and NPC2, has focused attention on the mechanisms by which lipids, in particular cholesterol, are transported out of the LE/LY compartment. This review discusses the role of the NPC2 protein in cholesterol transport, and the potential for concerted action of NPC1 and NPC2 in regulating normal intracellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
217
|
McIntosh AL, Atshaves BP, Huang H, Gallegos AM, Kier AB, Schroeder F. Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids 2008; 43:1185-208. [PMID: 18536950 PMCID: PMC2606672 DOI: 10.1007/s11745-008-3194-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/09/2008] [Indexed: 12/22/2022]
Abstract
Cholesterol itself has very few structural/chemical features suitable for real-time imaging in living cells. Thus, the advent of dehydroergosterol [ergosta-5,7,9(11),22-tetraen-3beta-ol, DHE] the fluorescent sterol most structurally and functionally similar to cholesterol to date, has proven to be a major asset for real-time probing/elucidating the sterol environment and intracellular sterol trafficking in living organisms. DHE is a naturally occurring, fluorescent sterol analog that faithfully mimics many of the properties of cholesterol. Because these properties are very sensitive to sterol structure and degradation, such studies require the use of extremely pure (>98%) quantities of fluorescent sterol. DHE is readily bound by cholesterol-binding proteins, is incorporated into lipoproteins (from the diet of animals or by exchange in vitro), and for real-time imaging studies is easily incorporated into cultured cells where it co-distributes with endogenous sterol. Incorporation from an ethanolic stock solution to cell culture media is effective, but this process forms an aqueous dispersion of DHE crystals which can result in endocytic cellular uptake and distribution into lysosomes which is problematic in imaging DHE at the plasma membrane of living cells. In contrast, monomeric DHE can be incorporated from unilamellar vesicles by exchange/fusion with the plasma membrane or from DHE-methyl-beta-cyclodextrin (DHE-MbetaCD) complexes by exchange with the plasma membrane. Both of the latter techniques can deliver large quantities of monomeric DHE with significant distribution into the plasma membrane. The properties and behavior of DHE in protein-binding, lipoproteins, model membranes, biological membranes, lipid rafts/caveolae, and real-time imaging in living cells indicate that this naturally occurring fluorescent sterol is a useful mimic for probing the properties of cholesterol in these systems.
Collapse
Affiliation(s)
- Avery L. McIntosh
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Barbara P. Atshaves
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Huan Huang
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| | - Adalberto M. Gallegos
- Department of Pathobiology Texas A&M University, TVMC College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology Texas A&M University, TVMC College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology Texas A&M University, TVMC College Station, TX 77843-4466
| |
Collapse
|
218
|
Morel E, Gruenberg J. Annexin A2 binding to endosomes and functions in endosomal transport are regulated by tyrosine 23 phosphorylation. J Biol Chem 2008; 284:1604-11. [PMID: 18990701 DOI: 10.1074/jbc.m806499200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The phospholipid-binding annexin A2 (AnxA2) is known to play a role in the regulation of membrane and actin dynamics, in particular in the endocytic pathway. The protein is present on early endosomes, where it regulates membrane traffic, including the biogenesis of multivesicular transport intermediates destined for late endosomes. AnxA2 membrane association depends on the protein N terminus and membrane cholesterol but does not involve the AnxA2 ligand p11/S100A10. However, the precise mechanisms that control AnxA2 membrane association and function are not clear. In the present study, we have investigated the role of AnxA2 N-terminal phosphorylation in controlling association to endosomal membranes and functions. We found that endosomal AnxA2 was partially tyrosine-phosphorylated and that mutation of Tyr-23 to Ala (AnxA2Y23A), but not of Ser-25 to Ala, impaired AnxA2 endosome association. We then found that the AnxA2Y23A mutant was unable to bind endosomes in vivo, whereas a phospho-mimicking AnxA2 mutant (Y23D) showed efficient endosome binding capacity. Similarly, we found that AnxA2Y23D interacted more efficiently with liposomes in vitro when compared with AnxA2Y23A. To investigate the role of Tyr-23 in vivo, AnxA2 was knocked down with small interfering RNAs, and then cells were recomplemented with RNA interference-resistant forms of the protein. Using this strategy, we could show that AnxA2Y23D, but not AnxA2Y23A, could restore early-to-late endosome transport after AnxA2 depletion. We conclude that phosphorylation of Tyr-23 is essential for proper endosomal association and function of AnxA2, perhaps because it stabilizes membrane-associated protein via a conformational change.
Collapse
Affiliation(s)
- Etienne Morel
- Department of Biochemistry, University of Geneva, Sciences II, 30 Quai E. Ansermet, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
219
|
Urano Y, Watanabe H, Murphy SR, Shibuya Y, Geng Y, Peden AA, Chang CCY, Chang TY. Transport of LDL-derived cholesterol from the NPC1 compartment to the ER involves the trans-Golgi network and the SNARE protein complex. Proc Natl Acad Sci U S A 2008; 105:16513-8. [PMID: 18946045 PMCID: PMC2575451 DOI: 10.1073/pnas.0807450105] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Indexed: 11/18/2022] Open
Abstract
Mammalian cells acquire cholesterol mainly from LDL. LDL enter the endosomes, allowing cholesteryl esters to be hydrolyzed by acid lipase. The hydrolyzed cholesterol (LDL-CHOL) enters the Niemann-Pick type C1 (NPC1)-containing endosomal compartment en route to various destinations. Whether the Golgi is involved in LDL-CHOL transport downstream of the NPC1 compartment has not been demonstrated. Using subcellular fractionation and immunoadsorption to enrich for specific membrane fractions, here we show that, when parental Chinese hamster ovary (CHO) cells are briefly exposed to (3)H-cholesteryl linoleate (CL) labeled-LDL, newly liberated (3)H-LDL-CHOL appears in membranes rich in trans-Golgi network (TGN) long before it becomes available for re-esterification at the endoplasmic reticulum (ER) or for efflux at the plasma membrane. In mutant cells lacking NPC1, the appearance of newly liberated (3)H-LDL-CHOL in the TGN-rich fractions is much reduced. We next report a reconstituted transport system that recapitulates the transport of LDL-CHOL to the TGN and to the ER. The transport system requires ATP and cytosolic factors and depends on functionality of NPC1. We demonstrate that knockdown by RNAi of 3 TGN-specific SNAREs (VAMP4, syntaxin 6, and syntaxin 16) reduces >/=50% of the LDL-CHOL transport in intact cells and in vitro. These results show that vesicular trafficking is involved in transporting a significant portion of LDL-CHOL from the NPC1-containing endosomal compartment to the TGN before its arrival at the ER.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| | - Hiroshi Watanabe
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| | - Stephanie R. Murphy
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| | - Yohei Shibuya
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| | - Yong Geng
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| | | | | | - Ta Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; and
| |
Collapse
|
220
|
Gastaldelli M, Imelli N, Boucke K, Amstutz B, Meier O, Greber UF. Infectious adenovirus type 2 transport through early but not late endosomes. Traffic 2008; 9:2265-78. [PMID: 18980614 DOI: 10.1111/j.1600-0854.2008.00835.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor-mediated endocytosis is a major gate for pathogens into cells. In this study, we analyzed the trafficking of human adenovirus type 2 and 5 (Ad2/5) and the escape-defective temperature-sensitive Ad2-ts1 mutant in epithelial cancer cells. Ad2/5 and Ad2-ts1 uptake into endosomes containing transferrin, major histocompatibility antigen 1 and the Rab5 effector early endosome antigen 1 (EEA1) involved dynamin, amphiphysin, clathrin and Eps15. Cointernalization experiments showed that most of the Ad2/5 and Ad2-ts1 visited the same EEA1-positive endosomes. In contrast to Ad2/5, Ad2-ts1 required functional Rab5 for endocytosis and lysosomal transport and was sensitive to the phosphatidyl-inositol-3 (PI3)-kinase inhibitor wortmannin or the ubiquitin-binding protein Hrs for sorting from early to late endosomes. Endosomal escape of Ad2 was not affected by incubation at 19 degrees C, which blocked membrane sorting in early endosomes and inhibited Ad2-ts1 transport to lysosomes. Unlike Semliki Forest Virus (SFV), sorting of Ad2-ts1 to late endosomes was independent of Rab7 and Ad2/5 infection independent of EEA1. The data indicate that Ad2/5 and Ad2-ts1 use an invariant machinery for clathrin-mediated uptake to early endosomes. We suggest that the infectious Ad2 particles are either directly released from early endosomes to the cytosol or sorted by a temperature-insensitive and PI3-kinase-independent mechanism to an escape compartment different from late endosomes or lysosomes.
Collapse
Affiliation(s)
- Michele Gastaldelli
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
221
|
Cholesterol regulation of rab-mediated sphingolipid endocytosis. Glycoconj J 2008; 26:705-10. [PMID: 18841464 DOI: 10.1007/s10719-008-9191-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/05/2008] [Accepted: 09/08/2008] [Indexed: 12/21/2022]
Abstract
Despite a tight regulation of its intracellular content, cholesterol is found accumulated in pathological conditions such as sphingolipidosis as well as after cell treatment with drugs like hydrophobic amines. Furthermore, cellular cholesterol increases when cultured cells approach confluence. Under these conditions, the endocytic pathways of plasma membrane sphingolipids are differently affected. In this short review, we will summarize recent results from our laboratory as well as those of other groups, indicating that the intracellular accumulation of cholesterol inhibits the dissociation of rab GTPases from the target membranes, causing the alteration of rab-mediated membrane traffic.
Collapse
|
222
|
Xu Z, Farver W, Kodukula S, Storch J. Regulation of sterol transport between membranes and NPC2. Biochemistry 2008; 47:11134-43. [PMID: 18823126 DOI: 10.1021/bi801328u] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Niemann-Pick disease type C (NPC) is caused by defects in either the NPC1 or NPC2 gene and is characterized by accumulation of cholesterol and glycolipids in the late endosome/lysosome compartment. NPC2 is an intralysosomal protein that binds cholesterol in vitro. Previous studies demonstrated rapid rates of cholesterol transfer from NPC2 to model membranes [Cheruku, S. R., et al. (2006) J. Biol. Chem. 281, 31594-31604]. To model the potential role of NPC2 as a lysosomal cholesterol export protein, in this study we used fluorescence spectroscopic approaches to examine cholesterol transfer from membranes to NPC2, assessing the rate, mechanism, and regulation of this transport step. In addition, we examined the effect of NPC2 on the rate and kinetic mechanism of intermembrane sterol transport, to model the movement of cholesterol from internal lysosomal membranes to the limiting lysosomal membrane. The results support the hypothesis that NPC2 plays an important role in endo/lysosomal cholesterol trafficking by markedly accelerating the rates of cholesterol transport. Rates of sterol transfer from and between membranes were increased by as much as 2 orders of magnitude by NPC2. The transfer studies indicate that the mechanism of NPC2 action involves direct interaction of the protein with membranes. Such interactions were observed directly using FTIR spectroscopy and protein tryptophan spectral shifts. Additionally, cholesterol transfer by NPC2 was found to be greatly enhanced by the unique lysosomal phospholipid lyso-bisphosphatidic acid (LBPA), suggesting an important role for LBPA in NPC2-mediated cholesterol trafficking.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
223
|
Luyet PP, Falguières T, Pons V, Pattnaik AK, Gruenberg J. The ESCRT-I subunit TSG101 controls endosome-to-cytosol release of viral RNA. Traffic 2008; 9:2279-90. [PMID: 18817529 DOI: 10.1111/j.1600-0854.2008.00820.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Like other enveloped viruses, vesicular stomatitis virus infects cells through endosomes. There, the viral envelope undergoes fusion with endosomal membranes, thereby releasing the nucleocapsid into the cytoplasm and allowing infection to proceed. Previously, we reported that the viral envelope fuses preferentially with the membrane of vesicles present within multivesicular endosomes. Then, these intra-endosomal vesicles (containing nucleocapsids) are transported to late endosomes, where back-fusion with the endosome limiting membrane delivers the nucleocapsid into the cytoplasm. In this study, we show that the tumor susceptibility gene 101 (Tsg101) subunit of the endosomal sorting complexes required for transport (ESCRT)-I complex, which mediates receptor sorting into multivesicular endosomes, is dispensable for viral envelope fusion with endosomal membranes and viral RNA transport to late endosomes but is necessary for infection. Our data indicate that Tsg101, in contrast to the ESCRT-0 component Hrs, plays a direct role in nucleocapsid release from within multivesicular endosomes to the cytoplasm, presumably by controlling the back-fusion process. We conclude that Tsg101, through selective interactions with its partners including Hrs and Alix, may link receptor sorting and lysosome targeting to the back-fusion process involved in viral capsid release.
Collapse
Affiliation(s)
- Pierre-Philippe Luyet
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
224
|
Bouvier J, Zemski Berry KA, Hullin-Matsuda F, Makino A, Michaud S, Geloën A, Murphy RC, Kobayashi T, Lagarde M, Delton-Vandenbroucke I. Selective decrease of bis(monoacylglycero)phosphate content in macrophages by high supplementation with docosahexaenoic acid. J Lipid Res 2008; 50:243-55. [PMID: 18809971 DOI: 10.1194/jlr.m800300-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is a unique phospholipid (PL) preferentially found in late endosomal membranes, where it forms specialized lipid domains. Recently, using cultured macrophages treated with anti-BMP antibody, we showed that BMP-rich domains are involved in cholesterol homeostasis. We had previously stressed the high propensity of BMP to accumulate docosahexaenoic acid (DHA), compared with other PUFAs. Because phosphatidylglycerol (PG) was reported as a precursor for BMP synthesis in RAW macrophages, we examined the effects of PG supplementation on both FA composition and amount of BMP in this cell line. Supplementation with dioleoyl-PG (18:1/18:1-PG) induced BMP accumulation, together with an increase of oleate proportion. Supplementation with high concentrations of didocosahexaenoyl-PG (22:6/22:6-PG) led to a marked enrichment of DHA in BMP, resulting in the formation of diDHA molecular species. However, the amount of BMP was selectively decreased. Similar effects were observed after supplementation with high concentrations of nonesterified DHA. Addition of vitamin E prevented the decrease of BMP and further increased its DHA content. Supplementation with 22:6/22:6-PG promoted BMP accumulation with an enhanced proportion of 22:6/22:6-BMP. DHA-rich BMP was significantly degraded after cell exposure to oxidant conditions, in contrast to oleic acid-rich BMP, which was not affected. Using a cell-free system, we showed that 22:6/22:6-BMP is highly oxidizable and partially protects cholesterol oxidation, compared with 18:1/18:1-BMP. Our data suggest that high DHA content in BMP led to specific degradation of this PL, possibly through the diDHA molecular species, which is very prone to peroxidation and, as such, a potential antioxidant in its immediate vicinity.
Collapse
Affiliation(s)
- Jérôme Bouvier
- Université de Lyon, UMR 870 Inserm, Insa-Lyon, UMR 1135 Inra, Univ Lyon 1, Hospices Civils de Lyon, IMBL, 69621, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Falguières T, Luyet PP, Bissig C, Scott CC, Velluz MC, Gruenberg J. In vitro budding of intralumenal vesicles into late endosomes is regulated by Alix and Tsg101. Mol Biol Cell 2008; 19:4942-55. [PMID: 18768755 DOI: 10.1091/mbc.e08-03-0239] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endosomes along the degradation pathway leading to lysosomes accumulate membranes in their lumen and thus exhibit a characteristic multivesicular appearance. These lumenal membranes typically incorporate down-regulated EGF receptor destined for degradation, but the mechanisms that control their formation remain poorly characterized. Here, we describe a novel quantitative biochemical assay that reconstitutes the formation of lumenal vesicles within late endosomes in vitro. Vesicle budding into the endosome lumen was time-, temperature-, pH-, and energy-dependent and required cytosolic factors and endosome membrane components. Our light and electron microscopy analysis showed that the compartment supporting the budding process was accessible to endocytosed bulk tracers and EGF receptor. We also found that the EGF receptor became protected against trypsin in our assay, indicating that it was sorted into the intraendosomal vesicles that were formed in vitro. Our data show that the formation of intralumenal vesicles is ESCRT-dependent, because the process was inhibited by the K173Q dominant negative mutant of hVps4. Moreover, we find that the ESCRT-I subunit Tsg101 and its partner Alix control intralumenal vesicle formation, by acting as positive and negative regulators, respectively. We conclude that budding of the limiting membrane toward the late endosome lumen, which leads to the formation of intraendosomal vesicles, is controlled by the positive and negative functions of Tsg101 and Alix, respectively.
Collapse
Affiliation(s)
- Thomas Falguières
- Biochemistry Department, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
226
|
Stabach PR, Devarajan P, Stankewich MC, Bannykh S, Morrow JS. Ankyrin facilitates intracellular trafficking of alpha1-Na+-K+-ATPase in polarized cells. Am J Physiol Cell Physiol 2008; 295:C1202-14. [PMID: 18768923 DOI: 10.1152/ajpcell.00273.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Defects in ankyrin underlie many hereditary disorders involving the mislocalization of membrane proteins. Such phenotypes are usually attributed to ankyrin's role in stabilizing a plasma membrane scaffold, but this assumption may not be accurate. We found in Madin-Darby canine kidney cells and in other cultured cells that the 25-residue ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase facilitates the entry of alpha(1),beta(1)-Na(+)-K(+)-ATPase into the secretory pathway and that replacement of the cytoplasmic domain of vesicular stomatitis virus G protein (VSV-G) with this ankyrin-binding sequence bestows ankyrin dependency on the endoplasmic reticulum (ER) to Golgi trafficking of VSV-G. Expression of the ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase alone as a soluble cytosolic peptide acts in trans to selectively block ER to Golgi transport of both wild-type alpha(1)-Na(+)-K(+)-ATPase and a VSV-G fusion protein that includes the ankyrin-binding sequence, whereas the trafficking of other proteins remains unaffected. Similar phenotypes are also generated by small hairpin RNA-mediated knockdown of ankyrin R or the depletion of ankyrin in semipermeabilized cells. These data indicate that the adapter protein ankyrin acts not only at the plasma membrane but also early in the secretory pathway to facilitate the intracellular trafficking of alpha(1)-Na(+)-K(+)-ATPase and presumably other selected proteins. This novel ankyrin-dependent assembly pathway suggests a mechanism whereby hereditary disorders of ankyrin may be manifested as diseases of membrane protein ER retention or mislocalization.
Collapse
Affiliation(s)
- Paul R Stabach
- Dept. of Pathology, Yale Univ., 310 Cedar St., New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
227
|
Aniento F, Gruenberg J. Subcellular fractionation of tissue culture cells. ACTA ACUST UNITED AC 2008; Chapter 4:4.3.1-4.3.21. [PMID: 18429269 DOI: 10.1002/0471140864.ps0403s32] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell fractionation techniques include some of the most important and widely used analytical tools in cell and molecular biology, and are essential for the development of cell-free assays that reconstitute complicated cellular processes. In addition to simple gradient systems, this unit discusses the immuno-purification of organelles, in particular endosomes. As antigens, purification can be achieved using endogenous or ectopically expressed proteins, provided that appropriate antibodies are available. Alternatively, tagged proteins can be used, when combined with anti-tag antibodies. Now that sequencing of the genomes of several organisms has been completed, biochemical strategies, and in particular fractionation and in vitro transport assays, are more necessary than ever to study the numerous protein and protein complexes that are being discovered.
Collapse
|
228
|
Jabs S, Quitsch A, Kkel R, Koch B, Tyynel J, Brade H, Glatzel M, Walkley S, Saftig P, Vanier MT, Braulke T. Accumulation of bis(monoacylglycero)phosphate and gangliosides in mouse models of neuronal ceroid lipofuscinosis. J Neurochem 2008; 106:1415-25. [DOI: 10.1111/j.1471-4159.2008.05497.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
229
|
Lafourcade C, Sobo K, Kieffer-Jaquinod S, Garin J, van der Goot FG. Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS One 2008; 3:e2758. [PMID: 18648502 PMCID: PMC2447177 DOI: 10.1371/journal.pone.0002758] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/20/2008] [Indexed: 01/06/2023] Open
Abstract
The lumen of endosomal organelles becomes increasingly acidic when going from the cell surface to lysosomes. Luminal pH thereby regulates important processes such as the release of internalized ligands from their receptor or the activation of lysosomal enzymes. The main player in endosomal acidification is the vacuolar ATPase (V-ATPase), a multi-subunit transmembrane complex that pumps protons from the cytoplasm to the lumen of organelles, or to the outside of the cell. The active V-ATPase is composed of two multi-subunit domains, the transmembrane V0 and the cytoplasmic V1. Here we found that the ratio of membrane associated V1/Vo varies along the endocytic pathway, the relative abundance of V1 being higher on late endosomes than on early endosomes, providing an explanation for the higher acidity of late endosomes. We also found that all membrane-bound V-ATPase subunits were associated with detergent resistant membranes (DRM) isolated from late endosomes, raising the possibility that association with lipid-raft like domains also plays a role in regulating the activity of the proton pump. In support of this, we found that treatment of cells with U18666A, a drug that leads to the accumulation of cholesterol in late endosomes, affected acidification of late endosome. Altogether our findings indicate that the activity of the vATPase in the endocytic pathway is regulated both by reversible association/dissociation and the interaction with specific lipid environments.
Collapse
Affiliation(s)
- Céline Lafourcade
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Komla Sobo
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Sylvie Kieffer-Jaquinod
- CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM U880, Grenoble, France
| | - Jérome Garin
- CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM U880, Grenoble, France
| | - F. Gisou van der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
230
|
Chevallier J, Chamoun Z, Jiang G, Prestwich G, Sakai N, Matile S, Parton RG, Gruenberg J. Lysobisphosphatidic acid controls endosomal cholesterol levels. J Biol Chem 2008; 283:27871-27880. [PMID: 18644787 DOI: 10.1074/jbc.m801463200] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most cell types acquire cholesterol by endocytosis of circulating low density lipoprotein, but little is known about the mechanisms of intra-endosomal cholesterol transport and about the primary cause of its aberrant accumulation in the cholesterol storage disorder Niemann-Pick type C (NPC). Here we report that lysobisphosphatidic acid (LBPA), an unconventional phospholipid that is only detected in late endosomes, regulates endosomal cholesterol levels under the control of Alix/AlP1, which is an LBPA-interacting protein involved in sorting into multivesicular endosomes. We find that Alix down-expression decreases both LBPA levels and the lumenal vesicle content of late endosomes. Cellular cholesterol levels are also decreased, presumably because the storage capacity of endosomes is affected and thus cholesterol clearance accelerated. Both lumenal membranes and cholesterol can be restored in Alix knockdown cells by exogenously added LBPA. Conversely, we also find that LBPA becomes limiting upon pathological cholesterol accumulation in NPC cells, because the addition of exogenous LBPA, but not of LBPA isoforms or analogues, partially reverts the NPC phenotype. We conclude that LBPA controls the cholesterol capacity of endosomes.
Collapse
Affiliation(s)
- Julien Chevallier
- Biochemistry, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | - Zeina Chamoun
- Biochemistry, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | - Guowei Jiang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84108-1257
| | - Glenn Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84108-1257
| | - Naomi Sakai
- Organic Chemistry, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | - Stefan Matile
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84108-1257
| | - Robert G Parton
- Institute for Molecular Bioscience and Center for Microscopy and Microanalysis, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Jean Gruenberg
- Biochemistry, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
231
|
Aniento F, Gruenberg J. Subcellular fractionation of tissue culture cells. ACTA ACUST UNITED AC 2008; Chapter 8:Unit 8.1C. [PMID: 18432914 DOI: 10.1002/0471142735.im0801cs57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Development of cell fractionation techniques over the last few decades has provided the means to analyze the composition and properties of purified cellular elements. In particular, subcellular fractionation is essential for the development of cell-free assays that reconstitute complicated cellular processes. These assays have provided new and important tools to understand the molecular mechanisms of complex cellular functions, permitting these functions to be studied in the test tube as a series of biochemical reactions. The protocols in this unit describe fractionation of tissue culture cells to immunoisolate early and late endosomes under conditions where these compartments retain their capacity to support membrane transport in vitro.
Collapse
|
232
|
Cataldo AM, Mathews PM, Boiteau AB, Hassinger LC, Peterhoff CM, Jiang Y, Mullaney K, Neve RL, Gruenberg J, Nixon RA. Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:370-84. [PMID: 18535180 DOI: 10.2353/ajpath.2008.071053] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endocytic dysfunction is an early pathological change in Alzheimer's disease (AD) and Down's syndrome (DS). Using primary fibroblasts from DS individuals, we explored the interactions among endocytic compartments that are altered in AD and assessed their functional consequences in AD pathogenesis. We found that, like neurons in both AD and DS brains, DS fibroblasts exhibit increased endocytic uptake, fusion, and recycling, and trafficking of lysosomal hydrolases to rab5-positive early endosomes. Moreover, late endosomes identified using antibodies to rab7 and lysobisphosphatidic acid increased in number and appeared as enlarged, perinuclear vacuoles, resembling those in neurons of both AD and DS brains. In control fibroblasts, similar enlargement of rab5-, rab7-, and lysobisphosphatidic acid-positive endosomes was induced when endocytosis and endosomal fusion were increased by expression of either a rab5 or an active rab5 mutant, suggesting that persistent endocytic activation results in late endocytic dysfunction. Conversely, expression of a rab5 mutant that inhibits endocytic uptake reversed early and late endosomal abnormalities in DS fibroblasts. Our results indicate that DS fibroblasts recapitulate the neuronal endocytic dysfunction of AD and DS, suggesting that increased trafficking from early endosomes can account, in part, for downstream endocytic perturbations that occur in neurons in both AD and DS brains.
Collapse
Affiliation(s)
- Anne M Cataldo
- Laboratory for Molecular Neuropathology, Mailman Research Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Tubek S, Grzanka P, Tubek I. The role of zinc in thrombosis and pulmonary embolism in the course of antiphospholipid syndrome (APS)--short review. Biol Trace Elem Res 2008; 122:193-6. [PMID: 18172583 DOI: 10.1007/s12011-007-8077-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/27/2007] [Indexed: 01/20/2023]
Abstract
Antiphospholipid antibodies may occur in the course of various diseases, but its presence is not necessarily associated with clinical symptoms. Zinc has multiple biological roles. For example, it stabilizes the cell's membrane and regulates its functions by influencing the synthesis of phospholipids and its distribution. The present review focuses on the possible associations between zinc and antiphospholipid antibodies and with the symptoms of antiphospholipid syndrome.
Collapse
Affiliation(s)
- Sławomir Tubek
- Faculty of Physical Education and Physiotherapy, Institute of Technology, Prószkowska Street 76, 45-758, Opole, Poland.
| | | | | |
Collapse
|
234
|
Retra K, Bleijerveld OB, van Gestel RA, Tielens AGM, van Hellemond JJ, Brouwers JF. A simple and universal method for the separation and identification of phospholipid molecular species. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1853-62. [PMID: 18470873 DOI: 10.1002/rcm.3562] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
One of the major challenges in lipidomics is to obtain as much information about the lipidome as possible. Here, we present a simple yet universal high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) method to separate molecular species of all phospholipid classes in one single run. The method is sensitive, robust and allows lipid profiling using full scan mass spectrometry, as well as lipid class specific scanning in positive and negative ionisation mode. This allows high-throughput processing of samples for lipidomics, even if different types of MS analysis are required. Excellent separation of isobaric and even isomeric species is achieved, and original levels of lyso-lipids can be determined without interference from lyso-lipids formed from diacyl species by source fragmentation. As examples of application of this method, more than 400 phospholipid species were identified and quantified in crude phospholipid extracts from rat liver and the parasitic helminth Schistosoma mansoni.
Collapse
Affiliation(s)
- Kim Retra
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
235
|
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008; 108:1517-49. [PMID: 18426241 DOI: 10.1021/cr078203u] [Citation(s) in RCA: 1562] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
236
|
Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect Immun 2008; 76:2872-81. [PMID: 18426873 DOI: 10.1128/iai.00129-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chlamydiae are obligate intracellular bacterial pathogens that replicate solely within a membrane-bound vacuole termed an inclusion. Within the confines of the inclusion, the replicating bacteria acquire amino acids, nucleotides, and other precursors from the host cell. Trafficking from CD63-positive multivesicular bodies to the inclusion was previously identified as a novel interaction that provided essential precursors for the maintenance of a productive intracellular infection. The present study analyzes the direct delivery of resident protein and lipid constituents of multivesicular bodies to the intracellular chlamydiae. The manipulation of this trafficking pathway with an inhibitor of multivesicular body transport and the delivery of exogenous antibodies altered protein and cholesterol acquisition and delayed the maturation of the chlamydial inclusion. Although inhibitor studies and ultrastructural analyses confirmed a novel interaction between CD63-positive multivesicular bodies and the intracellular chlamydiae, neutralization with small interfering RNAs and anti-CD63 Fab fragments revealed that CD63 itself was not required for this association. These studies confirm CD63 as a constituent in multivesicular body-to-inclusion transport; however, other requisite components of these host cell compartments must control the delivery of key nutrients that are essential to intracellular bacterial development.
Collapse
|
237
|
Ishizaki R, Shin HW, Mitsuhashi H, Nakayama K. Redundant roles of BIG2 and BIG1, guanine-nucleotide exchange factors for ADP-ribosylation factors in membrane traffic between the trans-Golgi network and endosomes. Mol Biol Cell 2008; 19:2650-60. [PMID: 18417613 DOI: 10.1091/mbc.e07-10-1067] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BIG2 and BIG1 are closely related guanine-nucleotide exchange factors (GEFs) for ADP-ribosylation factors (ARFs) and are involved in the regulation of membrane traffic through activating ARFs and recruiting coat protein complexes, such as the COPI complex and the AP-1 clathrin adaptor complex. Although both ARF-GEFs are associated mainly with the trans-Golgi network (TGN) and BIG2 is also associated with recycling endosomes, it is unclear whether BIG2 and BIG1 share some roles in membrane traffic. We here show that knockdown of both BIG2 and BIG1 by RNAi causes mislocalization of a subset of proteins associated with the TGN and recycling endosomes and blocks retrograde transport of furin from late endosomes to the TGN. Similar mislocalization and protein transport block, including furin, were observed in cells depleted of AP-1. Taken together with previous reports, these observations indicate that BIG2 and BIG1 play redundant roles in trafficking between the TGN and endosomes that involves the AP-1 complex.
Collapse
Affiliation(s)
- Ray Ishizaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
238
|
Abstract
BMP [bis(monoacylglycero)phosphate] is an acidic phospholipid and a structural isomer of PG (phosphatidylglycerol), consisting of lysophosphatidylglycerol with an additional fatty acid esterified to the glycerol head group. It is thought to be synthesized from PG in the endosomal/lysosomal compartment and is found primarily in multivesicular bodies within the same compartment. In the present study, we investigated the effect of lysosomal storage on BMP in cultured fibroblasts from patients with eight different LSDs (lysosomal storage disorders) and plasma samples from patients with one of 20 LSDs. Using ESI-MS/MS (electrospray ionization tandem MS), we were able to demonstrate either elevations or alterations in the individual species of BMP, but not of PG, in cultured fibroblasts. All affected cell lines, with the exception of Fabry disease, showed a loss of polyunsaturated BMP species relative to mono-unsaturated species, and this correlated with the literature reports of lysosomal dysfunction leading to elevations of glycosphingolipids and cholesterol in affected cells, processes thought to be critical to the pathogenesis of LSDs. Plasma samples from patients with LSDs involving storage in macrophages and/or with hepatomegaly showed an elevation in the plasma concentration of the C(18:1)/C(18:1) species of BMP when compared with control plasmas, whereas disorders involving primarily the central nervous system pathology did not. These results suggest that the release of BMP is cell/tissue-specific and that it may be useful as a biomarker for a subset of LSDs.
Collapse
|
239
|
Abstract
Cholesterol is an essential structural component in the cell membranes of most vertebrates. The biophysical properties of cholesterol and the enzymology of cholesterol metabolism provide the basis for how cells handle cholesterol and exchange it with one another. A tightly controlled--but only partially characterized--network of cellular signalling and lipid transfer systems orchestrates the functional compartmentalization of this lipid within and between organellar membranes. This largely dictates the exchange of cholesterol between tissues at the whole body level. Increased understanding of these processes and their integration at the organ systems level provides fundamental insights into the physiology of cholesterol trafficking.
Collapse
Affiliation(s)
- Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, Haartmaninkatu 8, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
240
|
Lipid homeostasis in macrophages – Implications for atherosclerosis. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2008; 160:93-125. [DOI: 10.1007/112_2008_802] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
241
|
Chander A, Chen XL, Naidu DG. A role for diacylglycerol in annexin A7-mediated fusion of lung lamellar bodies. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:1308-18. [PMID: 17765009 PMCID: PMC2100037 DOI: 10.1016/j.bbalip.2007.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
Lung surfactant secretion in alveolar type II cells occurs following lamellar body fusion with plasma membrane. Annexin A7 is a Ca2+-dependent membrane-binding protein that is postulated to promote membrane fusion during exocytosis in some cell types including type II cells. Since annexin A7 preferably binds to lamellar body membranes, we postulated that specific lipids could modify the mode of annexin A7 interaction with membranes and its membrane fusion activity. Initial studies with phospholipid vesicles containing phosphatidylserine and other lipids showed that certain lipids affected protein interaction with vesicle membranes as determined by change in protein tryptophan fluorescence, protein interaction with trans membranes, and by protein sensitivity to limited proteolysis. The presence of signaling lipids, diacylglycerol or phosphatidylinositol-4,5-bisphosphate, as minor components also modified the lipid vesicle effect on these characteristics and membrane fusion activity of annexin A7. In vitro incubation of lamellar bodies with diacylglycerol or phosphatidylinositol-4,5-bisphosphate caused their enrichment with either lipid, and increased the annexin A7 and Ca2+-mediated fusion of lamellar bodies. Treatment of isolated lung lamellar bodies with phosphatidylinositol- or phosphatidylcholine phospholipase C to increase diacylglycerol, without or with preincubation with phosphatidylinositol-4,5-bisphosphate, augmented the fusion activity of annexin A7. Thus, increased diacylglycerol in lamellar bodies following cell stimulation with secretagogues may enhance membrane fusion activity of annexin A7.
Collapse
Affiliation(s)
- Avinash Chander
- Division of Neonatology and the Brady Laboratory, Department of Pediatrics, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | | | |
Collapse
|
242
|
Taub N, Teis D, Ebner HL, Hess MW, Huber LA. Late endosomal traffic of the epidermal growth factor receptor ensures spatial and temporal fidelity of mitogen-activated protein kinase signaling. Mol Biol Cell 2007; 18:4698-710. [PMID: 17881733 PMCID: PMC2096590 DOI: 10.1091/mbc.e07-02-0098] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling is regulated by assembling distinct scaffold complexes at the plasma membrane and on endosomes. Thus, spatial resolution might be critical to determine signaling specificity. Therefore, we investigated whether epidermal growth factor receptor (EGFR) traffic through the endosomal system provides spatial information for MAPK signaling. To mislocalize late endosomes to the cell periphery we used the dynein subunit p50 dynamitin. The peripheral translocation of late endosomes resulted in a prolonged EGFR activation on late endosomes and a slow down in EGFR degradation. Continuous EGFR signaling from late endosomes caused sustained extracellular signal-regulated kinase and p38 signaling and resulted in hyperactivation of nuclear targets, such as Elk-1. In contrast, clustering late endosomes in the perinuclear region by expression of dominant active Rab7 delayed the entry of the EGFR into late endosomes, which caused a delay in EGFR degradation and a sustained MAPK signaling. Surprisingly, the activation of nuclear targets was reduced. Thus, we conclude that appropriate trafficking of the activated EGFR through endosomes controls the spatial and temporal regulation of MAPK signaling.
Collapse
Affiliation(s)
- N Taub
- Division of Cell Biology, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
243
|
Besson N, Hullin-Matsuda F, Makino A, Murate M, Lagarde M, Pageaux JF, Kobayashi T, Delton-Vandenbroucke I. Selective incorporation of docosahexaenoic acid into lysobisphosphatidic acid in cultured THP-1 macrophages. Lipids 2007; 41:189-96. [PMID: 17707985 DOI: 10.1007/s11745-006-5087-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lysobisphosphatidic acid (LBPA) is highly accumulated in specific domains of the late endosome and is involved in the biogenesis and function of this organelle. Little is known about the biosynthesis and metabolism of this lipid. We examined its FA composition and the incorporation of exogenous FA into LBPA in the human monocytic leukemia cell line THP-1. The LBPA FA composition in THP-1 cells exhibits an elevated amount of oleic acid (18:1n-9) and enrichment of PUFA, especially DHA (22:6n-3). DHA supplemented to the medium was efficiently incorporated into LBPA. In contrast, arachidonic acid (20:4n-6) was hardly esterified to LBPA under the same experimental conditions. The turnover of DHA in LBPA was similar to that in other phospholipids. Specific incorporation of DHA into LBPA was also observed in baby hamster kidney fibroblasts, although LBPA in these cells contains very low endogenous levels of DHA in normal growth conditions. Our resuIts, together with published observations, suggest that the specific incorporation of DHA into LBPA is a common phenomenon in mammalian cells. The physiological significance of DHA-enriched LBPA is discussed.
Collapse
Affiliation(s)
- Nelly Besson
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 585, Institut National des Sciences Appliquées (INSA)-Lyon, Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Sobo K, Le Blanc I, Luyet PP, Fivaz M, Ferguson C, Parton RG, Gruenberg J, van der Goot FG. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking. PLoS One 2007; 2:e851. [PMID: 17786222 PMCID: PMC1952175 DOI: 10.1371/journal.pone.0000851] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 08/15/2007] [Indexed: 11/24/2022] Open
Abstract
Background Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. Methodology/Principal Findings Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2–3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. Conclusions/Significance These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation.
Collapse
Affiliation(s)
- Komla Sobo
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Le Blanc
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Marc Fivaz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Charles Ferguson
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - F. Gisou van der Goot
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
245
|
Hullin-Matsuda F, Kawasaki K, Delton-Vandenbroucke I, Xu Y, Nishijima M, Lagarde M, Schlame M, Kobayashi T. De novo biosynthesis of the late endosome lipid, bis(monoacylglycero)phosphate. J Lipid Res 2007; 48:1997-2008. [PMID: 17558022 DOI: 10.1194/jlr.m700154-jlr200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is a unique lipid enriched in the late endosomes participating in the trafficking of lipids and proteins through this organelle. The de novo biosynthesis of BMP has not been clearly demonstrated. We investigated whether phosphatidylglycerol (PG) and cardiolipin (CL) could serve as precursors of de novo BMP synthesis using two different cellular models: CHO cells deficient in phosphatidylglycerophosphate (PGP) synthase, the enzyme responsible for the first step of PG synthesis; and human lymphoblasts from patients with Barth syndrome (BTHS), characterized by mutations in tafazzin, an enzyme implicated in the deacylation-reacylation cycle of CL. The biosynthesis of both PG and BMP was reduced significantly in the PGP synthase-deficient CHO mutants. Furthermore, overexpression of PGP synthase in the deficient mutants induced an increase of BMP biosynthesis. In contrast to CHO mutants, BMP biosynthesis and its fatty acid composition were not altered in BTHS lymphoblasts. Our results thus suggest that in mammalian cells, PG, but not CL, is a precursor of the de novo biosynthesis of BMP. Despite the decrease of de novo synthesis, the cellular content of BMP remained unchanged in CHO mutants, suggesting that other pathway(s) than de novo biosynthesis are also used for BMP synthesis.
Collapse
|
246
|
Takahashi M, Murate M, Fukuda M, Sato SB, Ohta A, Kobayashi T. Cholesterol controls lipid endocytosis through Rab11. Mol Biol Cell 2007; 18:2667-77. [PMID: 17475773 PMCID: PMC1924824 DOI: 10.1091/mbc.e06-10-0924] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular cholesterol increases when cells reach confluency in Chinese hamster ovary (CHO) cells. We examined the endocytosis of several lipid probes in subconfluent and confluent CHO cells. In subconfluent cells, fluorescent lipid probes including poly(ethylene glycol)derivatized cholesterol, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol, and fluorescent sphingomyelin analogs were internalized to pericentriolar recycling endosomes. This accumulation was not observed in confluent cells. Internalization of fluorescent lactosylceramide was not affected by cell confluency, suggesting that the endocytosis of specific membrane components is affected by cell confluency. The crucial role of cellular cholesterol in cell confluency-dependent endocytosis was suggested by the observation that the fluorescent sphingomyelin was transported to recycling endosomes when cellular cholesterol was depleted in confluent cells. To understand the molecular mechanism(s) of cell confluency- and cholesterol-dependent endocytosis, we examined intracellular distribution of rab small GTPases. Our results indicate that rab11 but not rab4, altered intracellular localization in a cell confluency-associated manner, and this alteration was dependent on cell cholesterol. In addition, the expression of a constitutive active mutant of rab11 changed the endocytic route of lipid probes from early to recycling endosomes. These results thus suggest that cholesterol controls endocytic routes of a subset of membrane lipids through rab11.
Collapse
Affiliation(s)
- Miwa Takahashi
- *Frontier Research System
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Mitsunori Fukuda
- Fukuda Initiative Research Unit, and
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Satoshi B. Sato
- *Frontier Research System
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; and
| | - Akinori Ohta
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihide Kobayashi
- *Frontier Research System
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Institut National de la Santé et de la Recherche Médicale U870, Institut National de la Recherche Agronomique U1235, Institut National des Sciences Appliquées de Lyon, University Lyon 1 and Hospices Civils de Lyon, 69621 Villeurbanne, France
| |
Collapse
|
247
|
Konan YN, Chevallier J, Gurny R, Allémann E. Encapsulation of p-THPP into Nanoparticles: Cellular Uptake, Subcellular Localization and Effect of Serum on Photodynamic Activity¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0770638eopinc2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
248
|
Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH, Jin HK. Bone Marrow-Derived Mesenchymal Stem Cells Promote Neuronal Networks with Functional Synaptic Transmission After Transplantation into Mice with Neurodegeneration. Stem Cells 2007; 25:1307-16. [PMID: 17470534 DOI: 10.1634/stemcells.2006-0561] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that bone marrow-derived MSCs (BM-MSCs) improve neurological deficits when transplanted into animal models of neurological disorders. However, the precise mechanism by which this occurs remains unknown. Herein we demonstrate that BM-MSCs are able to promote neuronal networks with functional synaptic transmission after transplantation into Niemann-Pick disease type C (NP-C) mouse cerebellum. To address the mechanism by which this occurs, we used gene microarray, whole-cell patch-clamp recordings, and immunohistochemistry to evaluate expression of neurotransmitter receptors on Purkinje neurons in the NP-C cerebellum. Gene microarray analysis revealed upregulation of genes involved in both excitatory and inhibitory neurotransmission encoding subunits of the ionotropic glutamate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA) GluR4 and GABA(A) receptor beta2. We also demonstrated that BM-MSCs, when originated by fusion-like events with existing Purkinje neurons, develop into electrically active Purkinje neurons with functional synaptic formation. This study provides the first in vivo evidence that upregulation of neurotransmitter receptors may contribute to synapse formation via cell fusion-like processes after BM-MSC transplantation into mice with neurodegenerative disease. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jae-Sung Bae
- Departments of Physiology, College of Medicine, Kyungpook National University, Korea
| | | | | | | | | | | | | |
Collapse
|
249
|
Falcón-Pérez JM, Dell'Angelica EC. Zinc transporter 2 (SLC30A2) can suppress the vesicular zinc defect of adaptor protein 3-depleted fibroblasts by promoting zinc accumulation in lysosomes. Exp Cell Res 2007; 313:1473-83. [PMID: 17349999 PMCID: PMC1885236 DOI: 10.1016/j.yexcr.2007.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/26/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
Zinc accumulation in the lumen of cytoplasmic vesicles is one of the mechanisms by which cells can store significant amounts of this essential but potentially toxic biometal. Previous studies had demonstrated reduced vesicular zinc levels in fibroblasts from mutant mice deficient in adaptor protein 3 (AP-3), a complex involved in protein trafficking to late endosomes and lysosomes. We have observed a similar phenotype in the human fibroblastoid cell line, M1, upon small interference RNA-mediated AP-3 knockdown. A survey of the expression and localization of zinc transporter (ZnT) family members identified ZnT2, ZnT3, and ZnT4 as likely mediators of vesicular zinc accumulation in M1 cells. Expression of green fluorescence protein (GFP)-tagged ZnT2 and ZnT3 promoted accumulation of vesicular zinc as visualized using the indicator zinquin. Moreover, GFP-ZnT2 overexpression elicited a significant accumulation of zinc within mature lysosomes, which in untransfected M1 cells contained little or no chelatable zinc, and restored the zinc storage capability of AP-3-deficient cells. These results suggest that ZnT2 can facilitate vesicular zinc accumulation independently of AP-3 function, and validate the M1 fibroblastoid line as a human cell culture system amenable to the study of vesicular zinc regulation using techniques compatible with functional genomic approaches.
Collapse
Affiliation(s)
- Juan M Falcón-Pérez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
250
|
Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 2007; 26:313-24. [PMID: 17245426 PMCID: PMC1783450 DOI: 10.1038/sj.emboj.7601511] [Citation(s) in RCA: 502] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 11/28/2006] [Indexed: 12/25/2022] Open
Abstract
Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other.
Collapse
Affiliation(s)
- Kassidy K Huynh
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | | - Cameron C Scott
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Anatoly Malevanets
- Center for Computational Biology, The Hospital for Sick Children, Toronto, Canada
| | - Paul Saftig
- Biochemical Institute, University of Kiel, Kiel, Germany
| | - Sergio Grinstein
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|