201
|
Mejías-Aponte CA, Drouin C, Aston-Jones G. Adrenergic and noradrenergic innervation of the midbrain ventral tegmental area and retrorubral field: prominent inputs from medullary homeostatic centers. J Neurosci 2009; 29:3613-26. [PMID: 19295165 PMCID: PMC2731794 DOI: 10.1523/jneurosci.4632-08.2009] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/03/2008] [Accepted: 02/17/2009] [Indexed: 02/07/2023] Open
Abstract
Adrenergic agents modulate the activity of midbrain ventral tegmental area (VTA) neurons. However, the sources of noradrenergic and adrenergic inputs are not well characterized. Immunostaining for dopamine beta-hydroxylase revealed fibers within dopamine (DA) neuron areas, with the highest density in the retrorubral field (A8 cell group), followed by the VTA (A10 cell group), and very few fibers within substantia nigra compacta. A less dense, but a similar pattern of fibers was also found for the epinephrine marker, phenylethanolamine N-methyl transferase. Injection of the retrograde tracer wheat germ agglutinin-apo (inactivated) horseradish peroxidase conjugated to colloidal gold, or cholera toxin subunit b, revealed that the noradrenergic innervation of the A10 and A8 regions arise primarily from A1, A2, A5, and locus ceruleus neurons. Selective lesions of the ventral noradrenergic bundle confirmed a prominent innervation from A1 and A2 areas. Retrogradely labeled epinephrine neurons were found mainly in the C1 area. The identification of medullary noradrenergic and adrenergic afferents to DA neuron areas indicates new pathways for visceral-related inputs to reward-related areas in the midbrain.
Collapse
Affiliation(s)
- Carlos A. Mejías-Aponte
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Candice Drouin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, and
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
202
|
Abstract
Pharmacological and physiological phenomena suggest that cells somewhere inside the central nervous system are responsive to aldosterone. Here, we present the fundamental physiological limitations for aldosterone action in the brain, including its limited blood-brain barrier penetration and its substantial competition from glucocorticoids. Recently, a small group of neurons with unusual sensitivity to circulating aldosterone were identified in the nucleus of the solitary tract. We review the discovery and characterization of these neurons, which express the enzyme 11beta-hydroxysteroid dehydrogenase type 2, and consider alternative proposals regarding sites and mechanisms for mineralocorticoid action within the brain.
Collapse
Affiliation(s)
- Joel C Geerling
- Dept. of Anatomy and Neurobiology-Box 8108, Washington Univ. School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | |
Collapse
|
203
|
Negus SS, Rice KC. Mechanisms of withdrawal-associated increases in heroin self-administration: pharmacologic modulation of heroin vs food choice in heroin-dependent rhesus monkeys. Neuropsychopharmacology 2009; 34:899-911. [PMID: 18704098 PMCID: PMC2639629 DOI: 10.1038/npp.2008.127] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Opioid withdrawal can produce a constellation of physiological and behavioral signs, including an increase in opioid self-administration. Different mechanisms mediate different withdrawal signs, and the present study used pharmacologic tools to assess mechanisms underlying withdrawal-associated increases in opioid reinforcement. Five rhesus monkeys were rendered heroin dependent via daily 21-h heroin self-administration sessions. One hour after each heroin self-administration session, monkeys chose between heroin (0-0.1 mg/kg per injection) and food (1 g pellets) during 2-h choice sessions. Under these conditions, heroin maintained a dose-dependent increase in heroin choice, such that monkeys responded primarily for food when low heroin doses were available (0-0.01 mg/kg per injection) and primarily for heroin when higher heroin doses were available (0.032-0.1 mg/kg per injection). Periods of spontaneous withdrawal were intermittently introduced by omitting one 21-h heroin self-administration session, and test drugs were administered during these withdrawal periods. Untreated withdrawal robustly increased heroin choice during choice sessions. Withdrawal-associated increases in heroin choice were completely suppressed by the mu opioid agonist morphine (0.032-0.32 mg/kg/h, i.v.), but not by the alpha-2 noradrenergic agonist clonidine (0.01-0.1 mg/kg/h, i.v.), the dopamine/norepinephrine releaser amphetamine (0.032-0.1 mg/kg/h, i.v.), or the kappa-opioid antagonist 5'-guanidinonaltrindole (1.0 mg/kg, i.m.). The corticotropin-releasing factor 1 antagonist antalarmin (1.0-10 mg/kg per day, i.m.) produced a morphine-like suppression of withdrawal-associated increases in heroin choice in one of three monkeys. These results suggest that mechanisms of withdrawal-associated increases in the relative reinforcing efficacy of opioid agonists may be different from mechanisms of many other somatic, mood-related, and motivational signs of opioid withdrawal.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
204
|
Dyuizen I, Lamash N. Histo- and immunocytochemical detection of inducible NOS and TNF-α in the locus coeruleus of human opiate addicts. J Chem Neuroanat 2009; 37:65-70. [DOI: 10.1016/j.jchemneu.2008.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 10/13/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
|
205
|
Expression pattern of neural synaptic plasticity marker-Arc in different brain regions induced by conditioned drug withdrawal from acute morphine-dependent rats. Acta Pharmacol Sin 2009; 30:282-90. [PMID: 19262551 DOI: 10.1038/aps.2009.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM The immediate early gene Arc (activity-regulated cytoskeletal-associated protein) mRNA and protein are induced by strong synaptic activation and rapidly transported into dendrites, where they localize at active synaptic sites. Thus, the Arc mRNA and protein are proposed as a marker of neuronal reactivity to map the neural substrates that are recruited by various stimuli. In the present study, we examined the expression of Arc protein induced by conditioned naloxone-precipitated drug withdrawal in different brain regions of acute morphine-dependent rats. The objective of the present study was to address the specific neural circuits involved in conditioned place aversion (CPA) that has not yet been well characterized. METHODS Place aversion was elicited by conditioned naloxone-precipitated drug withdrawal following exposure to a single dose of morphine. An immunohistochemical method was employed to detect the expression of Arc, which was used as a plasticity marker to trace the brain areas that contribute to the formation of the place aversion. RESULTS Marked increases in Arc protein levels were found in the medial and lateral prefrontal cortex, the sensory cortex, the lateral striatum and the amygdala. This effect was more pronounced in the basolateral amygdala (BLA), the central nucleus of the amygdala (CeA), and the bed nucleus of the striatal terminals (BNST) when compared with the control group. CONCLUSION Our results suggest that these brain regions may play key roles in mediating the negative motivational component of opiate withdrawal.
Collapse
|
206
|
Role of enhanced noradrenergic transmission within the ventral bed nucleus of the stria terminalis in visceral pain-induced aversion in rats. Behav Brain Res 2009; 197:279-83. [DOI: 10.1016/j.bbr.2008.08.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/19/2008] [Accepted: 08/22/2008] [Indexed: 11/19/2022]
|
207
|
Greenwell TN, Walker BM, Cottone P, Zorrilla EP, Koob GF. The alpha1 adrenergic receptor antagonist prazosin reduces heroin self-administration in rats with extended access to heroin administration. Pharmacol Biochem Behav 2009; 91:295-302. [PMID: 18703080 PMCID: PMC2637926 DOI: 10.1016/j.pbb.2008.07.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/27/2008] [Accepted: 07/01/2008] [Indexed: 11/23/2022]
Abstract
Previous studies have reported that noradrenergic antagonists alleviate some of the symptoms of opiate withdrawal and dependence. Clinical studies also have shown that modification of the noradrenergic system may help protect patients from relapse. The present study tested the hypothesis that a dysregulated noradrenergic system has motivational significance in heroin self-administration of dependent rats. Prazosin, an alpha1-adrenergic antagonist (0.5, 1.0, 1.5 and 2.0 mg/kg, i.p.), was administered to adult male Wistar rats with a history of limited (1 h/day; short access) or extended (12 h/day; long access) access to intravenous heroin self-administration. Prazosin dose-dependently reduced heroin self-administration in long-access rats but not short-access rats, with 2 mg/kg of systemic prazosin significantly decreasing 1 h and 2 h heroin intake. Prazosin also reversed some changes in meal pattern associated with extended heroin access, including the taking of smaller and briefer meals (at 3 h), while also increasing total food intake and slowing the eating rate within meals (both 3 h and 12 h). Thus, prazosin appears to stimulate food intake in extended access rats by restoring meals to the normal size and duration. The data suggest that the alpha1 adrenergic system may contribute to mechanisms that promote dependence in rats with extended access.
Collapse
Affiliation(s)
- Thomas N Greenwell
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, United States.
| | | | | | | | | |
Collapse
|
208
|
Kash TL, Nobis WP, Matthews RT, Winder DG. Dopamine enhances fast excitatory synaptic transmission in the extended amygdala by a CRF-R1-dependent process. J Neurosci 2008; 28:13856-65. [PMID: 19091975 PMCID: PMC2630395 DOI: 10.1523/jneurosci.4715-08.2008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 11/21/2022] Open
Abstract
A common feature of drugs of abuse is their ability to increase extracellular dopamine levels in key brain circuits. The actions of dopamine within these circuits are thought to be important in reward and addiction-related behaviors. Current theories of addiction also posit a central role for corticotrophin-releasing factor (CRF) and an interaction between CRF and monoaminergic signaling. One region where drugs of abuse promote robust rises in extracellular dopamine levels is the bed nucleus of the stria terminalis (BNST), a CRF-rich component of the extended amygdala. We find that dopamine rapidly enhances glutamatergic transmission in the BNST through activation of a combination of D(1)- and D(2)-like receptors. This enhancement is activity-dependent and requires the downstream action of CRF receptor 1 (CRF-R1), suggesting that dopamine induces CRF release through a local network mechanism. Furthermore, we found that both in vivo and ex vivo cocaine induced a dopamine receptor and CRF-R1-dependent enhancement of a form of NMDA receptor-dependent short-term potentiation in the BNST. These data highlight a direct and rapid interaction between dopamine and CRF systems that regulates excitatory transmission and plasticity in a brain region key to reinforcement and reinstatement. Because a rise in extracellular dopamine levels in the BNST is a shared consequence of multiple classes of drugs of abuse, this suggests that the CRF-R1-dependent enhancement of glutamatergic transmission in this region may be a common key feature of substances of abuse.
Collapse
Affiliation(s)
| | | | - Robert T. Matthews
- Department of Molecular Physiology and Biophysics
- Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | - Danny G. Winder
- Department of Molecular Physiology and Biophysics
- Center for Molecular Neuroscience, and
- Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| |
Collapse
|
209
|
Abstract
The ventrolateral bed nucleus of the stria terminalis (BSTvl) receives direct input from two specific subpopulations of neurons in the nucleus tractus solitarius (NTS). It is heavily innervated by aldosterone-sensitive NTS neurons, which are selectively activated by sodium depletion, and by the A2 noradrenergic neurons, which are activated by visceral and immune- and stress-related stimuli. Here, we used a retrograde neuronal tracer to identify other brain sites that innervate the BSTvl. Five general brain regions contained retrogradely labeled neurons: cerebral cortex (infralimbic and insular regions), rostral forebrain structures (subfornical organ, organum vasculosum of the lamina terminalis, taenia tecta, nucleus accumbens, lateral septum, endopiriform nucleus, dorsal BST, substantia innominata, and, most prominently the amygdala--primarily its basomedial and central subnuclei), thalamus (central medial, intermediodorsal, reuniens, and, most prominently the paraventricular thalamic nucleus), hypothalamus (medial preoptic area, perifornical, arcuate, dorsomedial, parasubthalamic, and posterior hypothalamic nuclei), and brainstem (periaqueductal gray matter, dorsal and central superior raphe nuclei, parabrachial nucleus, pre-locus coeruleus region, NTS, and A1 noradrenergic neurons in the caudal ventrolateral medulla). In the arcuate hypothalamic nucleus, some retrogradely labeled neurons contained either agouti-related peptide or cocaine/amphetamine-regulated transcript. Of the numerous retrogradely labeled neurons in the perifornical hypothalamic area, few contained melanin-concentrating hormone or orexin. In the brainstem, many retrogradely labeled neurons were either serotoninergic or catecholaminergic. In summary, the BSTvl receives inputs from a variety of brain sites implicated in hunger, salt and water intake, stress, arousal, and reward.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
210
|
Koob GF, Le Moal M. Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci 2008; 363:3113-23. [PMID: 18653439 DOI: 10.1098/rstb.2008.0094] [Citation(s) in RCA: 432] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The conceptualization of drug addiction as a compulsive disorder with excessive drug intake and loss of control over intake requires motivational mechanisms. Opponent process as a motivational theory for the negative reinforcement of drug dependence has long required a neurobiological explanation. Key neurochemical elements involved in reward and stress within basal forebrain structures involving the ventral striatum and extended amygdala are hypothesized to be dysregulated in addiction to convey the opponent motivational processes that drive dependence. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission such as dopamine and opioid peptides in the ventral striatum, but also recruitment of brain stress systems such as corticotropin-releasing factor (CRF), noradrenaline and dynorphin in the extended amygdala. Acute withdrawal from all major drugs of abuse produces increases in reward thresholds, anxiety-like responses and extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence and to contribute to stress-induced relapse. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for the long hypothesized opponent motivational processes responsible for the negative reinforcement driving addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
211
|
Cannabinoid receptors in the bed nucleus of the stria terminalis control cortical excitation of midbrain dopamine cells in vivo. J Neurosci 2008; 28:10496-508. [PMID: 18923026 DOI: 10.1523/jneurosci.2291-08.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The endocannabinoid system is involved in multiple physiological functions including reward. Cannabinoids potently control the activity of midbrain dopamine cells, but the contribution of cortical projections in this phenomenon is unclear. We show that the bed nucleus of the stria terminalis (BNST) efficient relays cortical excitation to dopamine neurons of the ventral tegmental area (VTA). Anatomical and in vivo electrophysiological evidence demonstrate that excitatory projections arising exclusively from the infralimbic cortex converge on BNST neurons, which in turn project to and excite >80% VTA dopamine cells. At the ultrastructural level, cannabinoid type 1 receptors are detected within the BNST on axon terminals arising from the infralimbic cortex. We found that intra-BNST infusion of a cannabinoid agonist inhibits the firing of dopamine cells evoked by stimulation of the infralimbic cortex. Our data identify a new neuronal substrate for the actions of cannabinoids in the reward pathway.
Collapse
|
212
|
Koob GF. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology 2008; 56 Suppl 1:18-31. [PMID: 18725236 PMCID: PMC2637927 DOI: 10.1016/j.neuropharm.2008.07.043] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/27/2022]
Abstract
Drug addiction can be defined by a compulsion to seek and take drug, loss of control in limiting intake, and the emergence of a negative emotional state when access to the drug is prevented. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in reward and stress within the basal forebrain structures involving the ventral striatum and extended amygdala. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission, such as decreases in dopamine and opioid peptide function in the ventral striatum, but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Acute withdrawal from all major drugs of abuse produces increases in reward thresholds, increases in anxiety-like responses, and increases in extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of addiction. Other components of brain stress systems in the extended amygdala that interact with CRF and may contribute to the negative motivational state of withdrawal include norepinephrine, dynorphin, and neuropeptide Y. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement driving, at least in part, the compulsivity of addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| |
Collapse
|
213
|
Reti IM, Crombag HS, Takamiya K, Sutton JM, Guo N, Dinenna ML, Huganir RL, Holland PC, Baraban JM. Narp regulates long-term aversive effects of morphine withdrawal. Behav Neurosci 2008; 122:760-8. [PMID: 18729628 PMCID: PMC2562546 DOI: 10.1037/a0012514] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although long-lasting effects of drug withdrawal are thought to play a key role in motivating continued drug use, the mechanisms mediating this type of drug-induced plasticity are unclear. Because Narp is an immediate early gene product that is secreted at synaptic sites and binds to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, it has been implicated in mediating enduring forms of synaptic plasticity. In previous studies, the authors found that Narp is selectively induced by morphine withdrawal in the extended amygdala, a group of limbic nuclei that mediate aversive behavioral responses. Accordingly, in this study, the authors evaluate whether long-term aversive effects of morphine withdrawal are altered in Narp knockout (KO) mice. The authors found that acute physical signs of morphine withdrawal are unaffected by Narp deletion. However, Narp KO mice acquire and sustain more aversive responses to the environment conditioned with morphine withdrawal than do wild type (WT) controls. Paradoxically, Narp KO mice undergo accelerated extinction of this heightened aversive response. Taken together, these studies suggest that Narp modulates both acquisition and extinction of aversive responses to morphine withdrawal and, therefore, may regulate plasticity processes underlying drug addiction.
Collapse
Affiliation(s)
- Irving M Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Deyama S, Katayama T, Ohno A, Nakagawa T, Kaneko S, Yamaguchi T, Yoshioka M, Minami M. Activation of the beta-adrenoceptor-protein kinase A signaling pathway within the ventral bed nucleus of the stria terminalis mediates the negative affective component of pain in rats. J Neurosci 2008; 28:7728-36. [PMID: 18667605 PMCID: PMC6670369 DOI: 10.1523/jneurosci.1480-08.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/12/2008] [Accepted: 06/18/2008] [Indexed: 11/21/2022] Open
Abstract
Pain is an unpleasant sensory and emotional experience. The neural systems underlying the sensory component of pain have been studied extensively, but we are only beginning to understand those underlying its affective component. The bed nucleus of the stria terminalis (BNST) has been implicated in stress responses and negative affective states, such as anxiety, fear, and aversion. Recently, we demonstrated the crucial role of the BNST in the negative affective component of pain using the conditioned place aversion (CPA) test. In the present study, we investigated the involvement of the beta-adrenoceptor-protein kinase A (PKA) signaling pathway within the BNST, in particular, within the ventral part of the BNST (vBNST), in pain-induced aversion in male Sprague Dawley rats. In vivo microdialysis showed that extracellular noradrenaline levels within the vBNST were significantly increased by intraplantar formalin injection. Using the CPA test, we found that intra-vBNST injection of timolol, a beta-adrenoceptor antagonist, dose-dependently attenuated the intraplantar-formalin-induced CPA (F-CPA) without reducing nociceptive behaviors. Experiments with subtype-selective antagonists demonstrated the essential role of beta(2)-adrenoceptors in F-CPA. Intra-vBNST injection of isoproterenol, a beta-adrenoceptor agonist, dose-dependently produced CPA even in the absence of noxious stimulation. This isoproterenol-induced CPA was reversed by the coinjection of Rp-cyclic adenosine monophosphorothioate (Rp-cAMPS), a selective PKA inhibitor. Furthermore, intra-vBNST injection of Rp-cAMPS dose-dependently attenuated the F-CPA. Together, these results suggest that PKA activation within the vBNST via the enhancement of beta-adrenergic transmission is important for the negative affective component of pain.
Collapse
Affiliation(s)
- Satoshi Deyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan, and
| | - Takahiro Katayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Atsushi Ohno
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan, and
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan, and
| | - Taku Yamaguchi
- Deparment of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Mitsuhiro Yoshioka
- Deparment of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
215
|
Smith RJ, Aston-Jones G. Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Struct Funct 2008; 213:43-61. [PMID: 18651175 DOI: 10.1007/s00429-008-0191-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 07/02/2008] [Indexed: 12/19/2022]
Abstract
Studies reviewed here implicate the extended amygdala in the negative affective states and increased drug-seeking that occur during protracted abstinence from chronic drug exposure. Norepinephrine (NE) and corticotropin-releasing factor (CRF) signaling in the extended amygdala, including the bed nucleus of the stria terminalis, shell of the nucleus accumbens, and central nucleus of the amygdala, are generally involved in behavioral responses to environmental and internal stressors. Hyperactivity of stress response systems during addiction drives many negative components of drug abstinence. In particular, NE signaling from the nucleus tractus solitarius (NTS) to the extended amygdala, along with increased CRF transmission within the extended amygdala, are critical for the aversiveness of acute opiate withdrawal as well as stress-induced relapse of drug-seeking for opiates, cocaine, ethanol, and nicotine. NE and CRF transmission in the extended amygdala are also implicated in the increased anxiety that occurs during prolonged abstinence from chronic opiates, cocaine, ethanol, and cannabinoids. Many of these stress-associated behaviors are reversed by NE or CRF antagonists given systemically or locally within the extended amygdala. Finally, increased Fos activation in the extended amygdala and NTS is associated with the enhanced preference for drugs and decreased preference for natural rewards observed during protracted abstinence from opiates and cocaine, indicating that these areas are involved in the altered reward processing associated with addiction. Together, these findings suggest that involvement of the extended amygdala and its noradrenergic afferents in anxiety, stress-induced relapse, and altered reward processing reflects a common function for these circuits in stress modulation of drug-seeking.
Collapse
Affiliation(s)
- Rachel J Smith
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Ave., Suite 403 BSB, MSC 510, Charleston, SC 29425-5100, USA
| | | |
Collapse
|
216
|
Abstract
Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
217
|
Liu J, Pan H, Gold MS, Derendorf H, Bruijnzeel AW. Effects of fentanyl dose and exposure duration on the affective and somatic signs of fentanyl withdrawal in rats. Neuropharmacology 2008; 55:812-8. [PMID: 18634811 DOI: 10.1016/j.neuropharm.2008.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
Abstract
Fentanyl is a potent mu-opioid receptor agonist that is widely used for the treatment of chronic pain. The aim of the present study was to investigate the effect of the dose of fentanyl and the exposure duration on the affective and somatic signs of fentanyl withdrawal in rats. Fentanyl and saline were chronically administered via osmotic minipumps. A discrete-trial intracranial self-stimulation procedure was used to provide a measure of brain reward function and somatic signs were recorded from a checklist of opioid abstinence signs. The opioid receptor antagonist naloxone elevated the brain reward thresholds of the rats chronically treated with high doses of fentanyl (0.3 and 0.6mg/kg/day), but not those of rats treated with low doses of fentanyl (0.006 and 0.06mg/kg/day). Fentanyl had a dose-dependent effect on the naloxone-induced elevations in brain reward thresholds. On a similar note, the discontinuation of the administration of high doses of fentanyl was associated with elevations in brain reward thresholds and the discontinuation of the administration of low doses of fentanyl did not lead to an elevation in brain reward thresholds. The results also demonstrated that the duration of fentanyl administration does not affect naloxone-induced elevation in brain reward thresholds. In contrast, the somatic withdrawal syndrome gradually developed over time; maximum somatic signs were observed 120h after pump implantation. These studies suggest that the magnitude and duration of the negative affective signs of fentanyl withdrawal depend on the dose of fentanyl administered and not on the duration of fentanyl administration.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
218
|
Walker DL, Davis M. Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct 2008; 213:29-42. [DOI: 10.1007/s00429-008-0183-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
|
219
|
Zachariou V, Liu R, LaPlant Q, Xiao G, Renthal W, Chan GC, Storm DR, Aghajanian G, Nestler EJ. Distinct roles of adenylyl cyclases 1 and 8 in opiate dependence: behavioral, electrophysiological, and molecular studies. Biol Psychiatry 2008; 63:1013-21. [PMID: 18222416 PMCID: PMC2442273 DOI: 10.1016/j.biopsych.2007.11.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/21/2007] [Accepted: 11/26/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND Opiate dependence is a result of adaptive changes in signal transduction networks in several brain regions. Noradrenergic neurons of the locus coeruleus (LC) have provided a useful model system in which to understand the molecular basis of these adaptive changes. One of most robust signaling adaptations to repeated morphine exposure in this brain region is upregulation of adenylyl cyclase (AC) activity. Earlier work revealed the selective induction of two calmodulin-dependent AC isoforms, AC1 and AC8, after chronic morphine, but their role in opiate dependence has remained unknown. METHODS Whole cell recordings from LC slices, behavioral paradigms for dependence, and gene array technology have been used to dissect the role of AC1 and AC8 in chronic morphine responses. RESULTS Both AC1 and AC8 knockout mice exhibit reduced opiate dependence on the basis of attenuated withdrawal; however, partially distinct withdrawal symptoms were affected in the two lines. Loss of AC1 or AC8 also attenuated the electrophysiological effects of morphine on LC neurons: knockout of either cyclase attenuated the chronic morphine-induced enhancement of baseline firing rates as well as of regulation of neuronal firing by forskolin (an activator of ACs). The DNA microarray analysis revealed that both AC1 and AC8 affect gene regulation in the LC by chronic morphine and, in addition to common genes, each cyclase influences the expression of a distinct subset of genes. CONCLUSIONS Together, these findings provide fundamentally new insight into the molecular and cellular basis of opiate dependence.
Collapse
Affiliation(s)
- Venetia Zachariou
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Aston-Jones G, Kalivas PW. Brain norepinephrine rediscovered in addiction research. Biol Psychiatry 2008; 63:1005-6. [PMID: 18482610 PMCID: PMC2666333 DOI: 10.1016/j.biopsych.2008.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
Affiliation(s)
- Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
221
|
Glass MJ, Hegarty DM, Oselkin M, Quimson L, South SM, Xu Q, Pickel VM, Inturrisi CE. Conditional deletion of the NMDA-NR1 receptor subunit gene in the central nucleus of the amygdala inhibits naloxone-induced conditioned place aversion in morphine-dependent mice. Exp Neurol 2008; 213:57-70. [PMID: 18614169 DOI: 10.1016/j.expneurol.2008.04.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 12/14/2022]
Abstract
Preclinical behavioral pharmacological and neuropharmacological evidence indicates that the NMDA receptor plays an important role in opioid dependence, however, the neural substrates subserving these actions are poorly understood. The central nucleus of the amygdala (CeA) is a critical coordinator of autonomic, behavioral, and emotional systems impacted by opioids, however there is no evidence that the essential NMDA-NR1 (NR1) subunit gene in the amygdala plays a role in opioid dependence. To determine the role of the NR1 subunit gene in the amygdala with respect to physical and psychological opioid withdrawal, a spatial-temporal deletion of this gene was produced by microinjecting a recombinant adeno-associated virus (rAAV) expressing the GFP reporter and Cre recombinase (rAAV-GFP-Cre) into the CeA of adult "floxed" NR1 mice (fNR1). Amygdala microinjection of rAAV-GFP-Cre produced a decrease in NR1 gene expression and protein immunolabeling in postsynaptic sites of neurons without signs of compromised ultrastructural neuronal morphology. Amygdala NR1 gene deletion also did not affect locomotor, somatosensory, or sensory-motor behaviors. In addition, bilateral local NR1 gene deletion did not impact somatic or visceral withdrawal symptoms precipitated by naloxone in morphine-dependent mice. However, there was a significant deficit in the expression of an opioid withdrawal-induced conditioned place aversion in mice with amygdala NR1 deletion. These results indicate that functional amygdala NMDA receptors are involved in aversive psychological processes associated with opioid withdrawal. More generally, spatial-temporal deletion of the NR1 subunit by Cre-loxP technology is an effective means to elucidate the neurogenetic substrates of complex phenotypes associated with drug abuse.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Van Bockstaele EJ, Qian Y, Sterling RC, Page ME. Low dose naltrexone administration in morphine dependent rats attenuates withdrawal-induced norepinephrine efflux in forebrain. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1048-56. [PMID: 18367303 PMCID: PMC2701363 DOI: 10.1016/j.pnpbp.2008.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 02/04/2008] [Accepted: 02/12/2008] [Indexed: 11/24/2022]
Abstract
The administration of low dose opioid antagonists has been explored as a potential means of detoxification in opiate dependence. Previous results from our laboratory have shown that concurrent administration of low dose naltrexone in the drinking water of rats implanted with subcutaneous morphine pellets attenuates behavioral and biochemical signs of withdrawal in brainstem noradrenergic nuclei. Noradrenergic projections originating from the nucleus tractus solitarius (NTS) and the locus coeruleus (LC) have previously been shown to be important neural substrates involved in the somatic expression of opiate withdrawal. The hypothesis that low dose naltrexone treatment attenuates noradrenergic hyperactivity typically associated with opiate withdrawal was examined in the present study by assessing norepinephrine tissue content and norepinephrine efflux using in vivo microdialysis coupled to high performance liquid chromatography (HPLC) with electrochemical detection (ED). The frontal cortex (FC), amygdala, bed nucleus of the stria terminalis (BNST) and cerebellum were analyzed for tissue content of norepinephrine following withdrawal in morphine dependent rats. Naltrexone-precipitated withdrawal elicited a significant decrease in tissue content of norepinephrine in the BNST and amygdala. This decrease was significantly attenuated in the BNST of rats that received low dose naltrexone pre-treatment compared to controls. No significant difference was observed in the other brain regions examined. In a separate group of rats, norepinephrine efflux was assessed with in vivo microdialysis in the BNST or the FC of morphine dependent rats or placebo treated rats subjected to naltrexone-precipitated withdrawal that received either naltrexone in their drinking water (5 mg/L) or unadulterated water. Following baseline dialysate collection, withdrawal was precipitated by injection of naltrexone and sample collection continued for an additional 4 h. At the end of the experiment, animals were transcardially perfused and the brains were removed for verification of probe placement. Low dose naltrexone pre-treatment significantly attenuated withdrawal-induced increases of extracellular norepinephrine in the BNST, with a smaller effect in the FC. These findings suggest that alterations in norepinephrine release associated with withdrawal may be attenuated in forebrain targets of noradrenergic brainstem neurons that may underlie reduced behavioral signs of withdrawal following low dose naltrexone administration.
Collapse
Affiliation(s)
- Elisabeth J Van Bockstaele
- Thomas Jefferson University, Department of Neurosurgery, Farber Institute for Neurosciences, Philadelphia, PA 19107, United States.
| | | | | | | |
Collapse
|
223
|
Abstract
Although morphine induces both analgesia and dependence through mu-opioid receptors (MORs), the respective contributions of the intracellular effectors engaged by MORs remain unknown. To examine the contribution of G-protein-gated inwardly rectifying K(+) (GIRK, Kir3) channels to morphine dependence and analgesia, we quantified naloxone-precipitated withdrawal behavior and morphine analgesia using GIRK knock-out ((-/-)) mice. The morphine withdrawal syndrome was strongly attenuated, whereas morphine analgesia was mostly preserved in mice lacking both GIRK2 and GIRK3 (GIRK2/3(-/-) mice). In acute slices containing the locus ceruleus (LC) from GIRK2/3(-/-) mice, the increase in spontaneous firing typically associated with morphine withdrawal was absent. Moreover, although morphine elicited normal presynaptic inhibition in the LC, postsynaptic GIRK currents were completely abolished in GIRK2/3(-/-) mice. Altogether, these data suggested that morphine-evoked postsynaptic inhibition of the LC was required for the induction of dependence. Consistent with this hypothesis, morphine withdrawal behavior was rescued in GIRK2/3(-/-) mice by ablation of adrenergic fibers using the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine. Our data suggest that inhibition of adrenergic tone is required for the induction of dependence, and that channels containing GIRK2 and GIRK3 serve as an inhibitory gate.
Collapse
|
224
|
Zhang Z, Schulteis G. Withdrawal from acute morphine dependence is accompanied by increased anxiety-like behavior in the elevated plus maze. Pharmacol Biochem Behav 2008; 89:392-403. [PMID: 18308382 PMCID: PMC2323908 DOI: 10.1016/j.pbb.2008.01.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 11/17/2022]
Abstract
Pretreatment with a single moderate dose of morphine (e.g. 5.6-10 mg/kg) 4-24 hr prior to challenge with an opioid antagonist such as naloxone results in reliable expression of behaviors that resemble aversive or emotional consequences of withdrawal from chronic opioid exposure, including suppression of operant responding, elevations in brain reward thresholds, and conditioned place aversion. Repeated daily or weekly treatment with these same morphine doses results in a progressive increase in naloxone potency to elicit these withdrawal signs. The current study sought to determine whether increased anxiety-like behavior during withdrawal from chronic opioid dependence is also seen after acute morphine exposure, and progresses with repeated intermittent treatment. Male Wistar rats were handled and injected with either vehicle or morphine for 4 consecutive days. Three injection regimens were employed: Morphine Naive (4 vehicle injections), Acute Morphine (3 vehicle injections, 4th injection 5.6 or 10 mg/kg morphine), or Repeat Morphine (all 4 injections with 5.6 or 10 mg/kg morphine). Acute pretreatment with 5.6 mg/kg or 10 mg/kg morphine resulted in time-dependent increases in exploration of the open arms of the plus maze in naloxone-naive rats when tested at 2, 4 or 8 hr after the final pretreatment injection, with the effects at the higher dose appearing later (4 hr) than after the lower dose (2 hr). This pattern of results, in combination with a separate study which confirmed a significant anxiolytic-like effect of a low dose of morphine (0.56 mg/kg) administered 15 min prior to test, suggested that low residual morphine levels remaining in plasma at 2-4 hr after 5.6 and 10 mg/kg morphine may be sufficient to elicit anxiolytic-like effects. Repeat treatment with either dose of morphine resulted in a further increase in the magnitude and duration of this anxiolytic-like effect. These effects had dissipated by 8 hr post-morphine, and therefore precipitation of withdrawal by one of several doses of naloxone (0.10-3.3 mg/kg) was assessed in separate cohorts of rats 8 hr after the final pretreatment under Morphine Naïve, Acute Morphine, or Repeat Morphine conditions. Naloxone resulted in a significant dose-dependent expression of anxiety-like behavior with no effects on general activity after Acute Morphine pretreatment at either 5.6 or 10 mg/kg morphine. A further significant shift in naloxone potency was observed after Repeat Morphine pretreatment at the 10 mg/kg but not the 5.6 mg/kg dose. Thus, anxiety-like behavior is a prominent feature of the negative emotional consequences of naloxone-precipitated withdrawal from acute opioid dependence.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Department of Anesthesiology, UC San Diego School of Medicine and VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | |
Collapse
|
225
|
Ishida S, Shimosaka R, Kawasaki Y, Jin C, Kitamura Y, Araki H, Sendo T, Gomita Y. [Involvement of the amygdala on place aversion induced by naloxone in single-dose morphine-treated rats]. YAKUGAKU ZASSHI 2008; 128:395-403. [PMID: 18311059 DOI: 10.1248/yakushi.128.395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signs characteristic of opiate withdrawal symptoms can be precipitated by an opiate antagonist after short-term infusion or even a single dose of an opiate both in humans and in animals. This phenomenon has been referred to as acute dependence. In contrast to extensive studies on chronic dependence, less is known about the neural mechanisms mediating acute dependence. It will benefit the development of appropriate therapies to facilitate opiate abstinence and reduced craving to better understand the mechanisms underlying acute opiate dependence and to determine whether there are dissociation and similarity between the early and fully developed stages of dependence. In the present study, we examined the influence of c-Fos expression in the amygdala in acquisition of conditioned place aversion (CPA) induced by naloxone-precipitated withdrawal from a single morphine exposure 24 h earlier. The effect of microinjection into the central amygdaloid nucleus (CeA) of various kinds of glutamatergic neurotransmission inhibitors was also investigated. Findings showed that CeA displayed significant increase in c-Fos expression in the acquisition of CPA. Furthermore, CPA was attenuated significantly and dose-dependently by microinjection into CeA of all glutamatergic neurotransmission inhibitors (NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-hepten-5,10-imine maleate (MK-801), AMPA receptor antagonist 1-(4-aminophenyl)4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI52466), metabotropic glutamate receptor antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG), and glutamate release inhibitor riluzole). These findings suggest that CeA involves the acquisition of CPA induced by naloxone-precipitated withdrawal from a single morphine exposure, and the function of the glutamatergic system projected from the amygdala to nucleus accumbens plays a facilitative role in formation of morphine dependence.
Collapse
Affiliation(s)
- Shigeru Ishida
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, and Department of Hospital Pharmacy, Okayama University Hospital, Okayama City, Japan
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 2008; 154:384-96. [PMID: 18414400 DOI: 10.1038/bjp.2008.100] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A large range of neuroadaptations develop in response to chronic opioid exposure and these are thought to be more or less critical for expression of the major features of opioid addiction: tolerance, withdrawal and processes that may contribute to compulsive use and relapse. This review considers these adaptations at different levels of organization in the nervous system including tolerance at the mu-opioid receptor itself, cellular tolerance and withdrawal in opioid-sensitive neurons, systems tolerance and withdrawal in opioid-sensitive nerve networks, as well as synaptic plasticity in opioid sensitive nerve networks. Receptor tolerance appears to involve enhancement of mechanisms of receptor regulation, including desensitization and internalization. Adaptations causing cellular tolerance are more complex but several important processes have been identified including upregulation of cAMP/PKA and cAMP response element-binding signalling and perhaps the mitogen activated PK cascades in opioid sensitive neurons that might not only influence tolerance and withdrawal but also synaptic plasticity during cycles of intoxication and withdrawal. The potential complexity of network, or systems adaptations that interact with opioid-sensitive neurons is great but some candidate neuropeptide systems that interact with mu-opioid sensitive neurons may play a role in tolerance and withdrawal, as might activation of glial signalling. Implication of synaptic forms of learning such as long term potentiation and long term depression in opioid addiction is still in its infancy but this ultimately has the potential to identify specific synapses that contribute to compulsive use and relapse.
Collapse
Affiliation(s)
- M J Christie
- Pain Management Research Institute and Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia.
| |
Collapse
|
227
|
Wee S, Mandyam CD, Lekic DM, Koob GF. Alpha 1-noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. Eur Neuropsychopharmacol 2008; 18:303-11. [PMID: 17920248 PMCID: PMC2376122 DOI: 10.1016/j.euroneuro.2007.08.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/16/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022]
Abstract
In rodents, extended access to cocaine produces an escalation in cocaine self-administration that has face and construct validity for human compulsive drug intake. Here we report that rats with six-hour access (long access, LgA) to cocaine self-administration produced a higher breakpoint for cocaine using a progressive-ratio schedule than rats with one-hour access (short access, ShA), and prazosin (alpha 1 receptor antagonist) reduced the higher breakpoint for cocaine in LgA rats. Additionally, the number of neurons with alpha 1-adrenergic receptor-like immunoreactivity in the bed nucleus of stria terminalis (BNST) was found to be much lower in LgA rats than in ShA and drug-naive rats. In contrast, UK14304 (alpha 2 receptor agonist) and betaxolol (beta 1 receptor antagonist) had no effect on cocaine self-administration in either group. The data suggest that activation of the alpha 1-noradrenergic system, perhaps in the BNST, is associated with increased motivation for cocaine in rats with extended access.
Collapse
Affiliation(s)
- Sunmee Wee
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. <>
| | | | | | | |
Collapse
|
228
|
Walker BM, Rasmussen DD, Raskind MA, Koob GF. alpha1-noradrenergic receptor antagonism blocks dependence-induced increases in responding for ethanol. Alcohol 2008; 42:91-7. [PMID: 18358987 PMCID: PMC2587143 DOI: 10.1016/j.alcohol.2007.12.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/28/2007] [Accepted: 12/10/2007] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to test the hypothesis that blockade of alpha1-adrenergic receptors may suppress the excessive ethanol consumption associated with acute withdrawal in ethanol-dependent rats. Following the acquisition and stabilization of operant ethanol self-administration in male Wistar rats, dependence was induced in half the animals by subjecting them to a 4-week intermittent vapor exposure period in which animals were exposed to ethanol vapor for 14h/day. Subsequent to dependence induction, the effect of alpha1-noradrenergic receptor antagonist prazosin (0.0, 0.25, 0.5, 1, 1.5, and 2.0mg/kg IP) was tested on operant responding for ethanol in vapor-exposed and control rats during acute withdrawal. In ethanol-dependent animals, prazosin significantly suppressed responding at the 1.5 and 2.0mg/kg doses, whereas only the 2.0mg/kg dose was effective in nondependent animals, identifying an increase in the sensitivity to prazosin in dependent animals. Conversely, at the lowest dose tested (0.25mg/kg), prazosin increased responding in nondependent animals, which is consistent with the effect of anxiolytics on ethanol self-administration in nondependent animals. None of the doses tested reliably affected concurrent water self-administration. These results suggest the involvement of the noradrenergic system in the excessive alcohol drinking seen during acute withdrawal in ethanol-dependent rats.
Collapse
Affiliation(s)
- Brendan M Walker
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
229
|
Goehler LE, Park SM, Opitz N, Lyte M, Gaykema RPA. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun 2008; 22:354-66. [PMID: 17920243 PMCID: PMC2259293 DOI: 10.1016/j.bbi.2007.08.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/07/2007] [Accepted: 08/24/2007] [Indexed: 12/18/2022] Open
Abstract
The presence of certain bacteria in the gastrointestinal tract influences behavior and brain function. For example, challenge with live Campylobacter jejuni (C. jejuni), a common food-born pathogen, reduces exploration of open arms of the plus maze, consistent with anxiety-like behavior, and activates brain regions associated with autonomic function, likely via a vagal pathway. As yet, however, little is known regarding the interface of immune sensory signals with brain substrates that mediate changes in behavioral states. To address this issue, we challenged mice with either C. jejuni or saline, and 7-8h later assessed anxiety-like behavior using the open holeboard, and used immunohistochemical detection of the protein c-Fos as an activation marker in the brain. C. jejuni treatment was associated with increased avoidance of the center regions of the holeboard, compared to saline-treated controls. Exposure to the holeboard induced activation in multiple brain regions previously implicated in anxiety-like behavior, including the lateral septum (LS), paraventricular (PVN) and dorsomedial hypothalamic nuclei (DMH), basolateral and central nuclei of the amygdala (BLA, CEA), bed nucleus of the stria terminalis (BST) and periaquiductal grey (PAG), compared to homecage controls. In C. jejuni-treated animals c-Fos induction also occurred in autonomic regions, as previously reported. The PVN, BLA, parts of the BST, medial prefrontal (mPFC) and anterior cingulate responded to both C. jejuni treatment and the holeboard, suggesting a role for these regions in the enhanced anxiety-like behavior observed. In saline-treated animals, anxiety-like behavior was predicted by activation in the CEA and BLA, whereas in C. jejuni-treated animals, c-Fos expression in the BST predicted the degree of anxiety-like behavior. These findings implicate the PVN, amygdala and BST as interfaces between gastrointestinal pathogenic challenge and brain regions that mediate behavioral responses to stress, and reinforce these nuclei as anatomical substrates by which viscerosensory stimuli can influence behavior.
Collapse
Affiliation(s)
- Lisa E Goehler
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | | | |
Collapse
|
230
|
Dumont EC, Rycroft BK, Maiz J, Williams JT. Morphine produces circuit-specific neuroplasticity in the bed nucleus of the stria terminalis. Neuroscience 2008; 153:232-9. [PMID: 18343592 DOI: 10.1016/j.neuroscience.2008.01.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/27/2008] [Accepted: 01/28/2008] [Indexed: 11/19/2022]
Abstract
The bed nucleus of the stria terminalis (BST) is a brain structure located at the interface of the cortex and the cerebrospinal trunk. The BST is a cluster of nuclei organized in a complex intrinsic network that receives inputs from cortical and subcortical sources, and that sends a widespread top-down projection. There is growing evidence that the BST is a key component in the neurobiological basis of substance abuse. In the present study, the regulation of excitatory inputs onto identified neurons in the BST was examined in rats treated chronically with morphine. Neurons projecting to the ventral tegmental area (VTA) were identified by retrograde transport of fluorescent microspheres and recorded in the whole-cell voltage clamp configuration in brain slices. Selective excitatory inputs to these neurons were electrically evoked with electrodes placed in the medial and lateral aspects of the dorsal BST. The chronic morphine treatment selectively increased AMPA-dependent excitatory postsynaptic currents in a subset of inputs activated by dorso-lateral stimulation in the BST. Inputs activated by medial stimulation were not affected by morphine. Likewise, the inputs to neurons that did not project to the VTA were not changed by morphine. Altogether, these results extend the understanding of neuronal circuits intrinsically sensitive to drugs of abuse within the BST.
Collapse
Affiliation(s)
- E C Dumont
- Department of Anesthesiology and Center for Neuroscience Studies, Queen's University, 99 University Avenue, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | |
Collapse
|
231
|
Olsen CM, Huang Y, Goodwin S, Ciobanu DC, Lu L, Sutter TR, Winder DG. Microarray analysis reveals distinctive signaling between the bed nucleus of the stria terminalis, nucleus accumbens, and dorsal striatum. Physiol Genomics 2008; 32:283-98. [PMID: 17911379 DOI: 10.1152/physiolgenomics.00224.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify distinct transcriptional patterns between the major subcortical dopamine targets commonly studied in addiction we studied differences in gene expression between the bed nucleus of the stria terminalis (BNST), nucleus accumbens (NAc), and dorsal striatum (dStr) using microarray analysis. We first tested for differences in expression of genes encoding transcripts for common neurotransmitter systems as well as calcium binding proteins routinely used in neuroanatomical delineation of brain regions. This a priori method revealed differential expression of corticotropin releasing hormone ( Crh), the GABA transporter ( Slc6a1), and prodynorphin ( Pdyn) mRNAs as well as several others. Using a gene ontology tool, functional scoring analysis, and Ingenuity Pathway Analysis, we further identified several physiological pathways that were distinct among these brain regions. These two different analyses both identified calcium signaling, G-coupled protein receptor signaling, and adenylate cyclase-related signaling as significantly different among the BNST, NAc, and dStr. These types of signaling pathways play important roles in, amongst other things, synaptic plasticity. Investigation of differential gene expression revealed several instances that may provide insight into reported differences in synaptic plasticity between these brain regions. The results support other studies suggesting that crucial pathways involved in neurotransmission are distinct among the BNST, NAc, and dStr and provide insight into the potential use of pharmacological agents that may target region-specific signaling pathways. Furthermore, these studies provide a framework for future mouse-mouse comparisons of transcriptional profiles after behavioral/pharmacological manipulation.
Collapse
Affiliation(s)
- Christopher M Olsen
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | |
Collapse
|
232
|
ROGERS J, GHEE S, SEE R. The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience 2008; 151:579-88. [PMID: 18061358 PMCID: PMC2238688 DOI: 10.1016/j.neuroscience.2007.10.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/24/2007] [Accepted: 10/18/2007] [Indexed: 11/26/2022]
Abstract
Reinstatement of extinguished drug-seeking has been utilized in the study of the neural substrates of relapse to drugs of abuse, particularly cocaine. However, limited studies have examined the circuitry that drives the reinstatement of heroin-seeking behavior in the presence of conditioned cues, or by heroin itself. In order to test the hypothesis that the circuitry underlying reinstatement in heroin-experienced animals would show overlapping, yet distinct differences from cocaine-experienced animals, we used transient inhibition of several cortical, striatal, and limbic brain regions during reinstatement of heroin-seeking produced by heroin-paired cues, or by a single priming dose of heroin. Rats lever pressed for i.v. heroin discretely paired with a conditioned stimulus (CS) during daily 3-h sessions for a period of 2 weeks, followed by daily extinction of lever responding. Subsequent reinstatement of heroin-seeking was measured as lever responding in the absence of heroin reinforcement. The first set of reinstatement tests involved response-contingent CS presentations following bilateral intracranial infusion of either a combination of GABA receptor agonists (baclofen-muscimol, B/M) or vehicle (saline) into one of 13 different brain regions. The second set of reinstatement tests involved a single heroin injection (0.25 mg/kg, s.c.) following either B/M or vehicle infusions. Our results showed that vehicle-infused animals reinstated to both CS presentations and a priming injection of heroin, while B/M inactivation of several areas known to be important for the reinstatement of cocaine-seeking also attenuated heroin-seeking in response to CS presentations and/or a priming dose of heroin. However, as predicted, inactivation of areas previously shown to not affect cocaine-seeking significantly attenuated heroin-seeking, supporting the hypothesis that the circuitry underlying the reinstatement of heroin-seeking is more diffusely distributed than that for cocaine.
Collapse
Affiliation(s)
- J.L. ROGERS
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - S. GHEE
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - R.E. SEE
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
233
|
Koob GF. Hedonic Homeostatic Dysregulation as a Driver of Drug-Seeking Behavior. DRUG DISCOVERY TODAY. DISEASE MODELS 2008; 5:207-215. [PMID: 20054425 PMCID: PMC2801885 DOI: 10.1016/j.ddmod.2009.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug addiction can be defined by a compulsion to seek and take drug and loss of control in limiting intake, and the excessive drug taking derives from multiple motivational mechanisms. One such mechanism is the emergence of a negative emotional state when access to the drug is prevented, reflecting hedonic homeostatic dysregulation. Excessive drug taking then results in part via the construct of negative reinforcement. The negative emotional state that drives such negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in reward and stress within basal forebrain structures, including the ventral striatum and extended amygdala. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission, such as decreases in dopamine and opioid peptide function in the ventral striatum, but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Chronic exposure or extended access to self-administration of all major drugs of abuse produces during abstinence increases in reward thresholds, increases in aversive anxiety-like responses, increases in extracellular levels of CRF in the central nucleus of the amygdala, and increases in drug self-administration. CRF receptor antagonists block excessive drug intake produced by dependence. A combination of decreased reward system function and increased brain stress response system function is hypothesized to be responsible for hedonic homeostatic dysregulation that drives drug seeking behavior in dependence. Such hedonic dysregulation is hypothesized to extend into protracted abstinence to provide a residual negative emotional state that enhances the salience of cues eliciting drug seeking and relapse.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla California, USA
| |
Collapse
|
234
|
Abstract
Addiction is caused, in part, by powerful and long-lasting memories of the drug experience. Relapse caused by exposure to cues associated with the drug experience is a major clinical problem that contributes to the persistence of addiction. Here we present the accumulated evidence that drugs of abuse can hijack synaptic plasticity mechanisms in key brain circuits, most importantly in the mesolimbic dopamine system, which is central to reward processing in the brain. Reversing or preventing these drug-induced synaptic modifications may prove beneficial in the treatment of one of society's most intractable health problems.
Collapse
Affiliation(s)
- Julie A Kauer
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
235
|
Stone EA, Lin Y, Quartermain D. A final common pathway for depression? Progress toward a general conceptual framework. Neurosci Biobehav Rev 2007; 32:508-24. [PMID: 18023876 PMCID: PMC2265074 DOI: 10.1016/j.neubiorev.2007.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 11/29/2022]
Abstract
Functional neuroimaging studies of depressed patients have converged with functional brain mapping studies of depressed animals in showing that depression is accompanied by a hypoactivity of brain regions involved in positively motivated behavior together with a hyperactivity in regions involved in stress responses. Both sets of changes are reversed by diverse antidepressant treatments. It has been proposed that this neural pattern underlies the symptoms common to most forms of the depression, which are the loss of positively motivated behavior and increased stress. The paper discusses how this framework can organize diverse findings ranging from effects of monoamine neurotransmitters, cytokines, corticosteroids and neurotrophins on depression. The hypothesis leads to new insights concerning the relationship between the prolonged inactivity of the positive motivational network during a depressive episode and the loss of neurotrophic support, the potential antidepressant action of corticosteroid treatment, and to the key question of whether antidepressants act by inhibiting the activity of the stress network or by enhancing the activity of the positive motivational system.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
236
|
Schneider ER, Rada P, Darby RD, Leibowitz SF, Hoebel BG. Orexigenic peptides and alcohol intake: differential effects of orexin, galanin, and ghrelin. Alcohol Clin Exp Res 2007; 31:1858-65. [PMID: 17850217 DOI: 10.1111/j.1530-0277.2007.00510.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The question is which hypothalamic systems for food intake might play a role in ethanol intake and contribute to alcohol abuse. The peptide orexin was found to exhibit similar properties to galanin in its relation to dietary fat and may therefore be similar to galanin in having a stimulatory effect on alcohol intake. METHODS Rats were trained to drink 10% ethanol, implanted with brain cannulas, and then injected in the paraventricular nucleus (PVN), lateral hypothalamus (LH), or nucleus accumbens (NAc) with galanin, orexin-A, and for comparison, ghrelin. Ethanol, food, and water intake were measured at 1, 2, and 4 hours postinjection. RESULTS In the PVN, both orexin and galanin significantly increased ethanol intake, whereas ghrelin increased food intake. In the LH, orexin again induced ethanol intake, while ghrelin increased eating. In the NAc, orexin failed to influence ethanol intake but did stimulate food intake. CONCLUSIONS In ethanol-drinking rats, injection of orexin or galanin into the appropriate locus in the hypothalamus induced significant ethanol intake instead of food intake. Ghrelin, as a positive control, failed to influence ethanol intake at the same hypothalamic sites. In the NAc, as an anatomical control, orexin augmented eating but not ethanol intake. Thus orexin and galanin in the hypothalamus selectively stimulated ethanol intake at sites where other studies have shown that both ethanol and fat increase expression of the endogenous peptides. Thus, a neural circuit that evolved with the capability to augment food intake is apparently co-opted by ethanol and may serve as a potential positive feedback circuit for alcohol abuse.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Psychology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
237
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1032] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
238
|
Stone EA, Lehmann ML, Lin Y, Quartermain D. Reduced evoked fos expression in activity-related brain regions in animal models of behavioral depression. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1196-207. [PMID: 17513031 DOI: 10.1016/j.pnpbp.2007.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/21/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
A previous study showed that two mouse models of behavioral depression, immune system activation and depletion of brain monoamines, are accompanied by marked reductions in stimulated neural activity in brain regions involved in motivated behavior. The present study tested whether this effect is common to other depression models by examining the effects of repeated forced swimming, chronic subordination stress or acute intraventricular galanin injection - three additional models - on baseline or stimulated c-fos expression in several brain regions known to be involved in motor or motivational processes (secondary motor, M2, anterior piriform cortex, APIR, posterior cingulate gyrus, CG, nucleus accumbens, NAC). Each of the depression models was found to reduce the fos response stimulated by exposure to a novel cage or a swim stress in all four of these brain areas but not to affect the response of a stress-sensitive region (paraventricular hypothalamus, PVH) that was included for control purposes. Baseline fos expression in these structures was either unaffected or affected in an opposite direction to the stimulated response. Pretreatment with either desmethylimipramine (DMI) or tranylcypromine (tranyl) attenuated these changes. It is concluded that the pattern of a reduced neural function of CNS motor/motivational regions with an increased function of stress areas is common to 5 models of behavioral depression in the mouse and is a potential experimental analog of the neural activity changes occurring in the clinical condition.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University School of Medicine, 550 First Ave, New York, NY 10016, United States.
| | | | | | | |
Collapse
|
239
|
Abstract
Depression in humans and animal models has been found to be accompanied by a hypoactivity of brain regions involved in positively motivated behavior together with a hyperactivity in regions involved in stress responses. Both sets of changes are reversed by diverse antidepressant treatments. It has been proposed that this neural pattern underlies the symptoms common to most forms of depression, which are the loss of positively motivated behavior and the increase in stress. The present paper discusses how this framework can organize diverse findings on the multiple factors associated with this disorder. The hypothesis suggests new therapeutic strategies involving treatment with low-dose corticosteroids to suppress the stress network or with antagonists of alpha(1A)- and agonists of alpha(1B)-adrenoceptors to disinhibit or activate the positive motivational network, respectively.
Collapse
Affiliation(s)
- Eric A Stone
- Psychiatry, MHL HN510, NYU Medical Centre, New York, NY 10016, USA.
| |
Collapse
|
240
|
Geerling JC, Loewy AD. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex. J Comp Neurol 2007; 504:379-403. [PMID: 17663450 DOI: 10.1002/cne.21452] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salt intake is an established response to sodium deficiency, but the brain circuits that regulate this behavior remain poorly understood. We studied the activation of neurons in the nucleus of the solitary tract (NTS) and their efferent target nuclei in the pontine parabrachial complex (PB) in rats during sodium deprivation and after salt intake. After 8-day dietary sodium deprivation, immunoreactivity for c-Fos (a neuronal activity marker) increased markedly within the aldosterone-sensitive neurons of the NTS, which express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2). In the PB, c-Fos labeling increased specifically within two sites that relay signals from the HSD2 neurons to the forebrain--the pre-locus coeruleus and the innermost region of the external lateral parabrachial nucleus. Then, 1-2 hours after sodium-deprived rats ingested salt (a hypertonic 3% solution of NaCl), c-Fos immunoreactivity within the HSD2 neurons was virtually eliminated, despite a large increase in c-Fos activation in the surrounding NTS (including the A2 noradrenergic neurons) and area postrema. Also after salt intake, c-Fos activation increased within pontine nuclei that relay gustatory (caudal medial PB) and viscerosensory (rostral lateral PB) information from the NTS to the forebrain. Thus, sodium deficiency and salt intake stimulate separate subpopulations of neurons in the NTS, which then transmit this information to the forebrain via largely separate relay nuclei in the PB complex. These findings offer new perspectives on the roles of sensory information from the brainstem in the regulation of sodium appetite.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
241
|
Le Moal M, Koob GF. Drug addiction: pathways to the disease and pathophysiological perspectives. Eur Neuropsychopharmacol 2007; 17:377-93. [PMID: 17169534 DOI: 10.1016/j.euroneuro.2006.10.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/28/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Drug addiction is a medical condition, a chronic relapsing disease. As in other domains of experimental medicine, appropriate experimental investigations are needed in order to better understand the disease. However, to understand the diverse facets of drug effects and of the underlying pathophysiology it is necessary to keep in mind the complexity of the psychopathological processes. The main symptoms that characterize addiction correspond to expressions of dysfunctions within specific circuits and regions. Pathways to addiction are numerous and comorbidity and in the real world poly-drug use are common. Some of these aspects will be examined as well as the role of life events and stress. Theoretical considerations will be proposed [see also: Koob, G.F., & Le Moal, M.. 2005a. Neurobiology of Addiction. Elsevier. 570 pp] to account for the stages of the disease from impulse control disorder to compulsive disorders, for affective dynamics and for the relations between the symptoms and pathophysiology.
Collapse
Affiliation(s)
- Michel Le Moal
- Laboratoire Physiopathologie du Comportement - Inserm U.588, Institut François Magendie, 146 Rue Léo Saignat, 33077 Bordeaux Cedex, France.
| | | |
Collapse
|
242
|
Tong J, Hornykiewicz O, Furukawa Y, Kish SJ. Marked dissociation between high noradrenaline versus low noradrenaline transporter levels in human nucleus accumbens. J Neurochem 2007; 102:1691-1702. [PMID: 17484728 DOI: 10.1111/j.1471-4159.2007.04636.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently identified a noradrenaline-rich caudomedial subdivision of the human nucleus accumbens (NACS), implying a special function for noradrenaline in this basal forebrain area involved in motivation and reward. To establish whether the NACS, as would be expected, contains similarly high levels of other noradrenergic markers, we measured dopamine-beta-hydroxylase (DBH) and noradrenaline transporter in the accumbens and, for comparison, in 23 other brain regions in autopsied human brains by immunoblotting. Although the caudomedial NACS had high DBH levels similar to those in other noradrenaline-rich areas, the noradrenaline transporter concentration was low (only 11% of that in hypothalamus). Within the accumbens, transporter concentration in the caudal portion was only slightly (by 30%) higher than that in the rostral subdivisions despite sharply increasing rostrocaudal gradients of noradrenaline (15-fold) and DBH. In contrast, the rostrocaudal gradient in the accumbens for the serotonin transporter and serotonin were similar (2-fold increase). The caudomedial NACS thus appears to represent the only instance in human brain having a striking mismatch in high levels of a monoamine neurotransmitter versus low levels of its uptake transporter. This suggests that noradrenaline signalling is much less spatially and temporally restricted in the caudomedial accumbens than in other noradrenaline-rich brain areas.
Collapse
Affiliation(s)
- Junchao Tong
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, CanadaCenter for Brain Research, Medical University of Vienna, Spitalgasse, Vienna, AustriaMovement Disorders Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Oleh Hornykiewicz
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, CanadaCenter for Brain Research, Medical University of Vienna, Spitalgasse, Vienna, AustriaMovement Disorders Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yoshiaki Furukawa
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, CanadaCenter for Brain Research, Medical University of Vienna, Spitalgasse, Vienna, AustriaMovement Disorders Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, CanadaCenter for Brain Research, Medical University of Vienna, Spitalgasse, Vienna, AustriaMovement Disorders Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
243
|
Cecchi M, Capriles N, Watson SJ, Akil H. Beta1 adrenergic receptors in the bed nucleus of stria terminalis mediate differential responses to opiate withdrawal. Neuropsychopharmacology 2007; 32:589-99. [PMID: 16823388 DOI: 10.1038/sj.npp.1301140] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The negative physical and affective aspects of opioid abstinence contribute to the prolongation of substance abuse. Withdrawal treatment is successful only in a subset of subjects, yet little is known about the neurobiological causes of these individual differences. Here, we compare the somatic and motivational components of opioid withdrawal in animals with high reactivity (HR) vs low reactivity (LR) to novelty, a phenotype associated with differential vulnerability to drug abuse. During withdrawal, HR relative to LR showed increased teeth chattering and eye twitching episodes, somatic signs associated with adrenergic modulation. Given the role of noradrenergic circuitry of the extended amygdala in opioid withdrawal, we examined adrenergic receptor gene expression in the bed nucleus of stria terminalis (BST) and central nucleus of the amygdala. Relative to LR, HR rats exhibit a selective increase in beta(1) adrenergic receptor expression in lateral and medial BST. To uncover the functional relevance of this difference, we microinjected betaxolol, a selective beta(1) receptor antagonist, into dorsal BST and assessed somatic and affective responses during withdrawal. Betaxolol microinjection dose-dependently decreased teeth chattering episodes in HR to levels observed in LR animals. Moreover, the antagonist blocked conditioned place aversion, a measure of negative affect associated with withdrawal, in HR but not in LR animals. Our results reveal for the first time that reactivity to novelty predicts somatic and affective aspects of opiate dependence, and that beta(1) receptors in BST are implicated in opiate withdrawal but only in novelty-seeking individuals.
Collapse
Affiliation(s)
- Marco Cecchi
- Molecular and Behavioral Neuroscience Institute, The University of Michigan School of Medicine, Ann Arbor, MI 48109-0720, USA.
| | | | | | | |
Collapse
|
244
|
CRINER SH, LIU J, SCHULTEIS G. Rapid neuroadaptation in the nucleus accumbens and bed nucleus of the stria terminalis mediates suppression of operant responding during withdrawal from acute opioid dependence. Neuroscience 2007; 144:1436-46. [PMID: 17161915 PMCID: PMC1805631 DOI: 10.1016/j.neuroscience.2006.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 11/19/2022]
Abstract
Single injections of morphine induce a state of acute opioid dependence in humans and animals, measured as precipitated withdrawal when an antagonist is administered 4-24 h after morphine. Additional morphine exposure at daily or weekly intervals results in further increases in withdrawal severity, suggesting that acute opioid dependence reflects the early stages in the development of a chronic state of dependence. The current study evaluated the role of the nucleus accumbens (NAC), bed nucleus of stria terminalis (BNST), interstitial nucleus of posterior limb of the anterior commissure (IPAC), and central amygdala (CeA) in the expression of antagonist-precipitated suppression of operant responding for food as a measure of withdrawal from acute opioid dependence. Rats trained on a fixed-ratio 15 schedule received one or four daily injections of morphine, with the lipophobic opioid antagonist methylnaloxonium (16-2000 ng) infused into one of the brain regions or the lateral ventricle (i.c.v.) 4 h after the final morphine injection. After acute morphine methylnaloxonium was more potent upon infusion into the NAC (17.9-fold potency shift), BNST (6.8-fold) and CeA (5.5-fold) than it was upon i.c.v. administration. Following repeat morphine the NAC and BNST but not CeA continued to show greater sensitivity relative to i.c.v. infusion (12.9-, 8.7-, and 3.2-fold potency shifts, respectively). The IPAC was insensitive to methylnaloxonium after acute or repeat morphine at doses that reliably suppressed responding upon i.c.v. infusion (125-500 ng). Thus, among the components of extended amygdala examined in this study, rapid neuroadaptation within the nucleus accumbens and bed nucleus of the stria terminalis appear to play the most prominent role in antagonist-precipitated suppression of operant responding during the early stages in the development of opioid dependence.
Collapse
Affiliation(s)
- S. H. CRINER
- Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - J. LIU
- Department of Anesthesiology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - G. SCHULTEIS
- Department of Anesthesiology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego CA 92161, USA
| |
Collapse
|
245
|
Nagypál A, Wood RI. Region-specific mechanisms for testosterone-induced Fos in hamster brain. Brain Res 2007; 1141:197-204. [PMID: 17276422 PMCID: PMC1857344 DOI: 10.1016/j.brainres.2007.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/05/2007] [Accepted: 01/06/2007] [Indexed: 11/15/2022]
Abstract
Hamsters self-administer androgens. Previously, we determined that testosterone (T) activates select steroid- and opiate-sensitive brain regions. Is T-stimulated neuronal activation androgenic? Thirty-five castrated males with physiologic T replacement (n=7/group) were pre-treated with the androgen antagonist flutamide (15 mg/kg sc) or ethanol (0.25 ml) and infused into the lateral ventricle (ICV) for 4 h with 40 microg T (TF and TE, respectively) or 40 microl vehicle (VF and VE). To determine if androgens and opiates activate overlapping brain areas, 7 additional males received 20 mug morphine sulfate ICV following ethanol injection (ME). Immediately after ICV infusion, animals were perfused. Sixty-micrometer coronal brain slices were stained for Fos. Fos-positive neurons were counted in a 0.3-mm(2) area from 5 regions previously shown to express T-induced Fos: the posteromedial bed nucleus of the stria terminalis (BSTPM), posteromedial amygdala (MeP), lateral habenula (LHb), ventral tegmental area, and lateral pontine nucleus. T induced Fos in all areas reported previously (TE vs. VE, p<0.05), except LHb (p>0.05). Morphine induced Fos in all 5 brain regions (ME vs. VE, p<0.05), indicating that androgens and opiates activate overlapping brain regions. Flutamide alone did not induce Fos (VF vs. VE, p>0.05). Moreover, flutamide treatment blocked T-induced Fos expression only in the steroid-sensitive BSTPM, suggesting that androgens mediate neuronal activation in this area (mean+/-SEM: TF: 68.4+/-13.2 vs. TE: 137.9+/-17.6, p<0.05). The absence of flutamide effects on T-induced Fos in the steroid-sensitive MeP (TE: 210.6+/-50.0 vs. TF: 215.3+/-28.2, p>0.05) suggests that distinct mechanisms activate Fos in individual androgen-responsive nuclei.
Collapse
Affiliation(s)
| | - Ruth I. Wood
- Address all reprint requests and correspondence to Ruth I. Wood, Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, 1333 San Pablo St., BMT 401, Los Angeles, CA 90033. Telephone (323) 442-1980, Fax: (323) 442-3466, e-mail:
| |
Collapse
|
246
|
Olson VG, Griner NB, Heusner CL, Palmiter RD. Lack of neuropeptide Y attenuates the somatic signs of opiate withdrawal. Synapse 2006; 60:553-6. [PMID: 16952158 DOI: 10.1002/syn.20328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent evidence suggests that neuropeptide Y (NPY) may be involved in the neurobiological responses to drugs of abuse. This study was designed to assess the possible contribution of NPY to opiate withdrawal behaviors. Here we report that mice lacking the NPY gene show normal conditioned place aversion to opiate withdrawal, but show attenuated opiate withdrawal somatic signs.
Collapse
Affiliation(s)
- Valerie G Olson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
247
|
Harris GC, Aston-Jones G. Activation in extended amygdala corresponds to altered hedonic processing during protracted morphine withdrawal. Behav Brain Res 2006; 176:251-8. [PMID: 17123639 PMCID: PMC1809796 DOI: 10.1016/j.bbr.2006.10.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/06/2006] [Accepted: 10/07/2006] [Indexed: 12/28/2022]
Abstract
Previously we reported that during protracted morphine abstinence rats show reduced conditioned place preferences (CPP) for food-associated environments, compared to non-dependent subjects. To determine the brain regions involved in this altered reward behavior, we examined neural activation (as indexed by Fos-like proteins) induced by a preference test for a food-associated environment in 5-week morphine-abstinent versus non-dependent animals. The results indicate that elevated Fos expression in the anterior cingulate cortex (Cg) and basolateral amygdala (BLA) correlated positively with preference behavior in all groups. In contrast, Fos expression in stress-associated brain areas, including the ventral lateral bed nucleus of the stria terminalis (VL-BNST), central nucleus of the amygdala (CE), and noradrenergic (A2) neurons in the nucleus tractus solitarius (NTS) was significantly elevated only in morphine-abstinent animals. Furthermore, the number of Fos positive neurons in these areas was found to correlate negatively with food preference in abstinent animals. These results indicate that the altered hedonic processing during protracted morphine withdrawal leading to decreased preference for cues associated with natural rewards may involve heightened activity in stress-related brain areas of the extended amygdala and their medullary noradrenergic inputs.
Collapse
Affiliation(s)
| | - Gary Aston-Jones
- *Corresponding author, *Current address: Department of Neurosciences, Medical University of South Carolina, 403 BSB, 173 Ashley Ave, Charleston SC 29425, Phone: (843) 792-2005, Fax: (843) 792-4423,
| |
Collapse
|
248
|
Banihashemi L, Rinaman L. Noradrenergic inputs to the bed nucleus of the stria terminalis and paraventricular nucleus of the hypothalamus underlie hypothalamic-pituitary-adrenal axis but not hypophagic or conditioned avoidance responses to systemic yohimbine. J Neurosci 2006; 26:11442-53. [PMID: 17079674 PMCID: PMC6674526 DOI: 10.1523/jneurosci.3561-06.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 09/25/2006] [Accepted: 09/26/2006] [Indexed: 01/25/2023] Open
Abstract
The alpha2 adrenoceptor antagonist yohimbine (YO) increases transmitter release from adrenergic/noradrenergic (NA) neurons. Systemic YO activates the hypothalamic-pituitary-adrenal (HPA) axis, inhibits feeding, and supports conditioned flavor avoidance (CFA) in rats. To determine whether these effects require NA inputs to the bed nucleus of the stria terminalis (BNST), vehicle or saporin toxin conjugated to an antibody against dopamine beta hydroxylase (DSAP) was microinjected bilaterally into the BNST to remove its NA inputs. Subsequent tests failed to reveal any lesion effect on the ability of YO (5.0 mg/kg, i.p.) to inhibit food intake or to support CFA. Conversely, HPA axis responses to YO were significantly blunted in DSAP rats. In a terminal experiment, DSAP and control rats were perfused 90-120 min after intraperitoneal injection of YO or vehicle. Brains were processed to reveal Fos immunolabeling and lesion extent. NA fibers were markedly depleted in the BNST and medial parvocellular paraventricular hypothalamus (PVNmp) in DSAP rats, evidence for collateralized NA inputs to these regions. DSAP rats displayed significant loss of caudal medullary NA neurons, and markedly blunted Fos activation in the BNST and in corticotropin-releasing hormone-positive PVNmp neurons after YO. We conclude that a population of medullary NA neurons provides collateral inputs to the BNST and PVNmp, and that these inputs contribute importantly to Fos expression and HPA axis activation after YO treatment. Conversely, NA-mediated activation of BNST and PVNmp neurons is unnecessary for YO to inhibit food intake or support CFA, evidence for the sufficiency of other intact neural pathways in mediating those effects.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
249
|
Stone EA, Lehmann ML, Lin Y, Quartermain D. Depressive behavior in mice due to immune stimulation is accompanied by reduced neural activity in brain regions involved in positively motivated behavior. Biol Psychiatry 2006; 60:803-11. [PMID: 16814258 DOI: 10.1016/j.biopsych.2006.04.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 12/27/2022]
Abstract
BACKGROUND Immune stimulation inhibits positively motivated behavior and induces depressive illness. To help clarify the mechanism of these effects, neural activity in response to a positive stimulus was examined in brain regions associated with positively motivated activity defined on the basis of prior behavioral studies of central alpha1-adrenoceptor action. METHODS Mice pretreated with either lipopolysaccharide or, for comparison, reserpine were exposed to a motivating stimulus (fresh cage) and subsequently assayed for fos expression and mitogen-activated protein kinase (MAPK) phosphorylation, two measures associated with alpha1-adrenoceptor-dependent neural activity, in several positive-activity-related (motor, piriform, cingulate cortex, nucleus accumbens, locus coeruleus) and stress-related brain regions (paraventricular hypothalamus, bed nucleus stria terminalis). RESULTS Both lipopolysaccharide and reserpine pretreatment abolished fresh cage-induced fos expression and MAPK activation in the positive activity-related brain regions but enhanced these measures in the stress-related areas. CONCLUSIONS The results support the hypothesis that immune activation reduces alpha1-adrenoceptor-related signaling and neural activity in brain regions associated with positive activity while it increases these functions in stress-associated areas. It is suggested that neural activities of these two types of brain regions are mutually antagonistic and that a reciprocal shift toward the stress regions is a factor in the loss of positively motivated behaviors in sickness behavior and depressive illness.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
250
|
Stone EA, Quartermain D, Lin Y, Lehmann ML. Central alpha1-adrenergic system in behavioral activity and depression. Biochem Pharmacol 2006; 73:1063-75. [PMID: 17097068 DOI: 10.1016/j.bcp.2006.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/27/2006] [Accepted: 10/02/2006] [Indexed: 02/06/2023]
Abstract
Central alpha(1)-adrenoceptors are activated by norepinephrine (NE), epinephrine (EPI) and possibly dopamine (DA), and function in two fundamental and opposed types of behavior: (1) positively motivated exploratory and approach activities, and (2) stress reactions and behavioral inhibition. Brain microinjection studies have revealed that the positive-linked receptors are located in eight to nine brain regions spanning the neuraxis including the secondary motor cortex, piriform cortex, nucleus accumbens, preoptic area, lateral hypothalamic area, vermis cerebellum, locus coeruleus, dorsal raphe and possibly the C1 nucleus of the ventrolateral medulla, whereas the stress-linked receptors are present in at least three areas including the paraventricular nucleus of the hypothalamus, central nucleus of the amygdala and bed nucleus of the stria terminalis. Recent studies utilizing c-fos expression and mitogen-activated protein kinase activation have shown that various diverse models of depression in mice produce decreases in positive region-neural activity elicited by motivating stimuli along with increases in neural activity of stress areas. Both types of change are attenuated by various antidepressant agents. This has suggested that the balance of the two networks determines whether an animal displays depressive behavior. A central unresolved question concerns how the alpha(1)-receptors in the positive-activity and stress systems are differentially activated during the appropriate behavioral conditions and to what extent this is related to differences in endogenous ligands or receptor subtype distributions.
Collapse
Affiliation(s)
- Eric A Stone
- New York University School of Medicine, Department of Psychiatry, NYU Medical Center, MHL HN510, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | |
Collapse
|