201
|
Gouvêa VN, Cooke RF, Marques RS. Impacts of stress-induced inflammation on feed intake of beef cattle. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.962748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Livestock animals are often exposed to unavoidable stressful situations during their productive life that triggers stress-induced inflammatory responses, which are known to influence their nutrient requirements and feed intake. Decreased growth performance and immunocompetence of stressed livestock are often the main consequence of reduced feed intake. Because feed intake is usually reduced in animals experiencing stress conditions, concentrations of certain nutrients in the diets typically need to be increased to meet the requirements of the animals. Therefore, understanding the mechanisms that control feed intake in animals experiencing stress-induced inflammation is essential for increasing intake, milk or meat production, feed efficiency, and animal health. This review highlights the hormones regulating feed intake in ruminants and how stress-induced inflammation affect these hormones at local and systemic levels. The mechanism of feed intake regulation in ruminants is extremely complex and involves multiple controls. The liver is an important sensor of energy status in animals under homeostatic conditions, which transmits signals to brain feeding centers that modulate appetite. However, the physiologic consequences associated with different stressors will rearrange the hierarchy of mechanisms controlling feed intake compared to animals under homeostatic conditions, and other tissues (e.g., intestines), systems (e.g., endocrine and lymphatic) hormones (e.g., leptin and ghrelin) will directly affect intake regulation during stress and inflammatory conditions. It is suggested that the immune system can interact with the central nervous system to modulate feed intake. As example, stress events elicit numerous stressors that increase circulating proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-8, and acute-phase proteins (APP), and the magnitude of these responses are negatively correlated with feed intake. A direct effect of these cytokines on rumen microbial fermentation and intestinal barrier function was also reported and might indirectly affect intake regulation in ruminants. This review describes the main hormones and proinflammatory cytokines involved in stress-induced inflammation and how they can directly or indirectly affect intake regulation in ruminants. Understanding the mechanisms controlling feed intake in ruminants will help producers to implement management and feed strategies to optimize productivity and profitability in stressed livestock species.
Collapse
|
202
|
The Effect of the Restrictive Ketogenic Diet on the Body Composition, Haematological and Biochemical Parameters, Oxidative Stress and Advanced Glycation End-Products in Young Wistar Rats with Diet-Induced Obesity. Nutrients 2022; 14:nu14224805. [PMID: 36432492 PMCID: PMC9692653 DOI: 10.3390/nu14224805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past few years, the interest in the application of the ketogenic diet (KD) for obesity management is growing. Although many studies have been performed on the effects of KD, the metabolic and physiological impact of KD is still not fully understood. Therefore, this study aimed to evaluate the effect of calorie-restricted KD on the body weight and composition, oxidative stress, and advanced glycation end products (AGEs) assessed in an animal model with young Wistar rats. KD was followed for 4 weeks in maturity after an obesity-inducing high-fat diet during adolescence, resulting in a slowing down of the weight gain but higher adiposity compared to a standard diet. Increased adiposity resulted in an deterioration of liver parameters, suggesting negative changes in this organ. No adverse effects of KD were determined in haematological parameters in young rats. KD did not affect AGEs; however, a decrease in oxidative stress was observed. Based on the presented results, it can be concluded that KD applied for weight loss in obesity induced in adolescence may reduce oxidative stress without compromising the haematological status; however, caution may be required to control adiposity, glucose level and liver health. Thus, KD therapy should be carefully controlled, especially in young subjects.
Collapse
|
203
|
Park S, Oh S, Kim EK. Glucagon-like peptide-1 analog liraglutide leads to multiple metabolic alterations in diet-induced obese mice. J Biol Chem 2022; 298:102682. [PMID: 36356900 PMCID: PMC9730228 DOI: 10.1016/j.jbc.2022.102682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Liraglutide, a glucagon-like peptide-1 analog, has beneficial metabolic effects in patients with type 2 diabetes and obesity. Although the high efficacy of liraglutide as an anti-diabetic and anti-obesity drug is well known, liraglutide-induced metabolic alterations in diverse tissues remain largely unexplored. Here, we report the changes in metabolic profiles induced by a 2-week subcutaneous injection of liraglutide in diet-induced obese mice fed a high-fat diet for 8 weeks. Our comprehensive metabolomic analyses of the hypothalamus, plasma, liver, and skeletal muscle showed that liraglutide intervention led to various metabolic alterations in comparison with diet-induced obese or nonobese mice. We found that liraglutide remarkably coordinated not only fatty acid metabolism in the hypothalamus and skeletal muscle but also amino acid and carbohydrate metabolism in plasma and liver. Comparative analyses of metabolite dynamics revealed that liraglutide rewired intertissue metabolic correlations. Our study points to a previously unappreciated metabolic alteration by liraglutide in several tissues, which may underlie its therapeutic effects within and across the tissues.
Collapse
Affiliation(s)
- Seokjae Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sungjoon Oh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,For correspondence: Eun-Kyoung Kim
| |
Collapse
|
204
|
Morina IY, Mikhrina AL, Mikhailova EV, Vataev SI, Hismatullina ZR, Romanova IV. Analysis of the Hypothalamic Orexinergic System in Rats with Different Forms of Genetically Determined Epilepsy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
205
|
Les approches thérapeutiques non invasives de l’obésité : hier, aujourd’hui et demain. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
206
|
Omoto ACM, do Carmo JM, Nelson B, Aitken N, Dai X, Moak S, Flynn E, Wang Z, Mouton AJ, Li X, Hall JE, da Silva AA. Central Nervous System Actions of Leptin Improve Cardiac Function After Ischemia–Reperfusion: Roles of Sympathetic Innervation and Sex Differences. J Am Heart Assoc 2022; 11:e027081. [DOI: 10.1161/jaha.122.027081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Therapeutic strategies for preventing paradoxical reperfusion injury after myocardial ischemia are limited. We tested whether central nervous system actions of leptin induce important protective effects on cardiac function and metabolism after myocardial ischemia/reperfusion (I/R) injury, the role of cardiac sympathetic innervation in mediating these effects, and whether there are major sex differences in the cardioprotective effects of chronic central nervous system leptin infusion.
Methods and Results
Myocardial I/R was induced by temporary ligation of the left descending coronary artery in male and female Wistar rats instrumented with intracerebroventricular cannula in the lateral ventricle. Vehicle or leptin (0.62 μg/h) infusion was started immediately after reperfusion and continued for 28 days using osmotic minipumps connected to the intracerebroventricular cannula. Cardiac function was assessed by echocardiography, ventricular pressures, and exercise performance. Intracerebroventricular leptin treatment markedly attenuated cardiac dysfunction post‐I/R as evidenced by improved ejection fraction (56.7±1.9 versus 22.6%±1.1%), maximal rate of left ventricle rise (11 680±2122 versus 5022±441 mm Hg) and exercise performance (−4.2±7.9 versus −68.2±3.8 Δ%) compared with vehicle‐treated rats. Intracerebroventricular leptin infusion reduced infarct size in females, but not males, when compared with ad‐lib fed or pair‐fed saline‐treated rats. Intracerebroventricular leptin treatment also increased cardiac NAD
+
/NADH content (≈10‐fold) and improved mitochondrial function when compared with vehicle treatment. Cervical ganglia denervation did not attenuate the cardiac protective effects of leptin after I/R injury.
Conclusions
These data indicate that leptin, via its central nervous system actions, markedly improves overall heart function and mitochondrial metabolism after I/R injury regardless of sex, effects that are largely independent of cardiac sympathetic innervation.
Collapse
Affiliation(s)
- Ana C. M. Omoto
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Benjamin Nelson
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Nikaela Aitken
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuemei Dai
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Sydney Moak
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Elizabeth Flynn
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Zhen Wang
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alan J. Mouton
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuan Li
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - John E. Hall
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| |
Collapse
|
207
|
Shobatake R, Ota H, Takahashi N, Ueno S, Sugie K, Takasawa S. The Impact of Intermittent Hypoxia on Metabolism and Cognition. Int J Mol Sci 2022; 23:12957. [PMID: 36361741 PMCID: PMC9654766 DOI: 10.3390/ijms232112957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022] Open
Abstract
Intermittent hypoxia (IH), one of the primary pathologies of sleep apnea syndrome (SAS), exposes cells throughout the body to repeated cycles of hypoxia/normoxia that result in oxidative stress and systemic inflammation. Since SAS is epidemiologically strongly correlated with type 2 diabetes/insulin resistance, obesity, hypertension, and dyslipidemia included in metabolic syndrome, the effects of IH on gene expression in the corresponding cells of each organ have been studied intensively to clarify the molecular mechanism of the association between SAS and metabolic syndrome. Dementia has recently been recognized as a serious health problem due to its increasing incidence, and a large body of evidence has shown its strong correlation with SAS and metabolic disorders. In this narrative review, we first outline the effects of IH on the expression of genes related to metabolism in neuronal cells, pancreatic β cells, hepatocytes, adipocytes, myocytes, and renal cells (mainly based on the results of our experiments). Next, we discuss the literature regarding the mechanisms by which metabolic disorders and IH develop dementia to understand how IH directly and indirectly leads to the development of dementia.
Collapse
Affiliation(s)
- Ryogo Shobatake
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
- Department of Neurology, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara 630-8305, Japan
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Hiroyo Ota
- Department Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Nobuyuki Takahashi
- Department of Neurology, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara 630-8305, Japan
| | - Satoshi Ueno
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| |
Collapse
|
208
|
Nishiyama M, Iwasaki Y, Makino S. Animal Models of Cushing's Syndrome. Endocrinology 2022; 163:6761324. [PMID: 36240318 DOI: 10.1210/endocr/bqac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/19/2022]
Abstract
Endogenous Cushing's syndrome is characterized by unique clinical features and comorbidities, and progress in the analysis of its genetic pathogenesis has been achieved. Moreover, prescribed glucocorticoids are also associated with exogenous Cushing's syndrome. Several animal models have been established to explore the pathophysiology and develop treatments for Cushing's syndrome. Here, we review recent studies reporting animal models of Cushing's syndrome with different features and complications induced by glucocorticoid excess. Exogenous corticosterone (CORT) administration in drinking water is widely utilized, and we found that CORT pellet implantation in mice successfully leads to a Cushing's phenotype. Corticotropin-releasing hormone overexpression mice and adrenal-specific Prkar1a-deficient mice have been developed, and AtT20 transplantation methods have been designed to examine the medical treatments for adrenocorticotropic hormone-producing pituitary neuroendocrine tumors. We also review recent advances in the molecular pathogenesis of glucocorticoid-induced complications using animal models.
Collapse
Affiliation(s)
- Mitsuru Nishiyama
- Health Care Center, Kochi University, Kochi city, Kochi 780-8520, Japan
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
| | - Yasumasa Iwasaki
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka city, Mie 510-0293Japan
| | - Shinya Makino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
- Department of Internal Medicine, Osaka Gyomeikan Hospital, Osaka city, Osaka 554-0012Japan
| |
Collapse
|
209
|
Barrea L, Salzano C, Pugliese G, Laudisio D, Frias-Toral E, Savastano S, Colao A, Muscogiuri G. The challenge of weight loss maintenance in obesity: a review of the evidence on the best strategies available. Int J Food Sci Nutr 2022; 73:1030-1046. [PMID: 36245260 DOI: 10.1080/09637486.2022.2130186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Long-term weight loss maintenance represents a big challenge for the management of obesity. This narrative review aims to provide an overview of the main endocrine mechanisms involved in weight regain in subjects with obesity and to review the current evidence on the best lifestyle approaches, including diet and physical activity. Weight regain after weight loss occurs in about 50% of subjects with obesity in the absence of lifestyle changes. The primary endocrine mechanism responsible for weight regain involves the brain-gut axis, which encourages food intake and thus weight regain through the secretion and action of several gastrointestinal hormones, such as ghrelin, leptin and cholecystokinin. Several evidence reported changes of secretion of these hormones during weight loss and weight loss maintenance programs. Endurance training is the most effective physical activity to lose and keep weight loss; the association of endurance with resistance training is recommended for remodelling body shape.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Ciro Salzano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy
| | - Daniela Laudisio
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy
| | - Evelyn Frias-Toral
- Clinical Research Associate Professor for Palliative Care Residency from Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
210
|
Diéguez E, Nieto-Ruiz A, Martín-Pérez C, Sepúlveda-Valbuena N, Herrmann F, Jiménez J, De-Castellar R, Catena A, García-Santos JA, Bermúdez MG, Campoy C. Association study between hypothalamic functional connectivity, early nutrition, and glucose levels in healthy children aged 6 years: The COGNIS study follow-up. Front Nutr 2022; 9:935740. [PMID: 36313089 PMCID: PMC9597646 DOI: 10.3389/fnut.2022.935740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Breastfeeding (BF) is the gold standard in infant nutrition; knowing how it influences brain connectivity would help understand the mechanisms involved, which would help close the nutritional gap between infant formulas and breast milk. We analyzed potential long-term differences depending on the diet with an experimental infant formula (EF), compared to a standard infant formula (SF) or breastfeeding (BF) during the first 18 months of life on children's hypothalamic functional connectivity (FC) assessed at 6 years old. A total of 62 children participating in the COGNIS randomized clinical trial (Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02094547) were included in this study. They were randomized to receive an SF (n = 22) or a bioactive nutrient-enriched EF (n = 20). BF children were also included as a control study group (BF: n = 20). Brain function was evaluated using functional magnetic resonance imaging (fMRI) and mean glucose levels were collected through a 24-h continuous glucose monitoring (CGM) device at 6 years old. Furthermore, nutrient intake was also analyzed during the first 18 months of life and at 6 years old through 3-day dietary intake records. Groups fed with EF and BF showed lower FC between the medial hypothalamus (MH) and the anterior cingulate cortex (ACC) in comparison with SF-fed children. Moreover, the BF children group showed lower FC between the MH and the left putamen extending to the middle insula, and higher FC between the MH and the inferior frontal gyrus (IFG) compared to the EF-fed children group. These areas are key regions within the salience network, which is involved in processing salience stimuli, eating motivation, and hedonic-driven desire to consume food. Indeed, current higher connectivity found on the MH-IFG network in the BF group was associated with lower simple sugars acceptable macronutrient distribution ranges (AMDRs) at 6 months of age. Regarding linoleic acid intake at 12 months old, a negative association with this network (MH-IFG) only in the BF group was found. In addition, BF children showed lower mean glucose levels compared to SF-fed children at 6 years old. Our results may point out a possible relationship between diet during the first 18 months of life and inclined proclivity for hedonic eating later in life.
Collapse
Affiliation(s)
- Estefanía Diéguez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Ana Nieto-Ruiz
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Cristina Martín-Pérez
- Psychology Department, Faculty of Education, University of Valladolid, Segovia, Spain
| | - Natalia Sepúlveda-Valbuena
- Nutrition and Biochemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Florian Herrmann
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Jesús Jiménez
- Ordesa Laboratories, S.L., Sant Boi de Llobregat, Spain
| | | | - Andrés Catena
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain
| | - José Antonio García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Mercedes G. Bermúdez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain,EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain,National Network of Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III (Granada's Node), Madrid, Spain,*Correspondence: Cristina Campoy
| |
Collapse
|
211
|
Hironao KY, Ashida H, Yamashita Y. Black soybean seed coat polyphenol ameliorates the abnormal feeding pattern induced by high-fat diet consumption. Front Nutr 2022; 9:1006132. [PMID: 36299984 PMCID: PMC9589235 DOI: 10.3389/fnut.2022.1006132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
High-fat diet (HFD) consumption induces chronic inflammation and microglial accumulation in the mediobasal hypothalamus (MBH), the central regulator of feeding behavior and peripheral metabolism. As a result, the diurnal feeding rhythm is disrupted, leading to the development of obesity. Diet-induced obesity (DIO) can be prevented by restoring the normal feeding pattern. Therefore, functional foods and drugs that ameliorate hypothalamic inflammation and restore the normal feeding pattern may prevent or ameliorate DIO. Numerous functional foods and food-derived compounds with anti-obesity effects have been identified; however, few studies have been performed that assessed their potential to prevent the HFD-induced hypothalamic inflammation and disruption of feeding rhythm. In the present study, we found that polyphenols derived from black soybean seed coat (BE) significantly ameliorated the accumulation of activated microglia and pro-inflammatory cytokine expression in the arcuate nucleus of the hypothalamus of HFD-fed mice, and restored their feeding pattern to one comparable to that of standard diet-fed mice, thereby ameliorating DIO. Furthermore, cyanidin 3-O-glucoside—the principal anthocyanin in BE—was found to be a strong candidate mediator of these effects. This is the first study to show that BE has the potential to provide a variety of beneficial effects on health, which involve amelioration of the HFD-induced hypothalamic inflammation and abnormal feeding pattern. The results of this study provide new evidence for the anti-obesity effects of black soybean polyphenols.
Collapse
|
212
|
Al-Massadi O, Parini P, Fernø J, Luquet S, Quiñones M. Metabolic actions of the growth hormone-insulin growth factor-1 axis and its interaction with the central nervous system. Rev Endocr Metab Disord 2022; 23:919-930. [PMID: 35687272 DOI: 10.1007/s11154-022-09732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
The growth hormone/insulin growth factor-1 axis is a key endocrine system that exerts profound effects on metabolism by its actions on different peripheral tissues but also in the brain. Growth hormone together with insulin growth factor-1 perform metabolic adjustments, including regulation of food intake, energy expenditure, and glycemia. The dysregulation of this hepatic axis leads to different metabolic disorders including obesity, type 2 diabetes or liver disease. In this review, we discuss how the growth hormone/insulin growth factor-1 axis regulates metabolism and its interactions with the central nervous system. Finally, we state our vision for possible therapeutic uses of compounds based in the components of this hepatic axis.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706, Santiago de Compostela, Spain.
| | - Paolo Parini
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Stockholm, Sweden
- Department of Medicine, Metabolism Unit, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Patient Area Nephrology and Endocrinology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France
| | - Mar Quiñones
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706, Santiago de Compostela, Spain.
- Unité de Biologie Fonctionnelle et Adaptative, Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France.
| |
Collapse
|
213
|
Dardente H, Lomet D, Desmarchais A, Téteau O, Lasserre O, Gonzalez AA, Dubois E, Beltramo M, Elis S. Impact of food restriction on the medio-basal hypothalamus of intact ewes as revealed by a large-scale transcriptomics study. J Neuroendocrinol 2022; 34:e13198. [PMID: 36168278 DOI: 10.1111/jne.13198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Didier Lomet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Sébastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
214
|
Ranea-Robles P, Lund J, Clemmensen C. The physiology of experimental overfeeding in animals. Mol Metab 2022; 64:101573. [PMID: 35970448 PMCID: PMC9440064 DOI: 10.1016/j.molmet.2022.101573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Body weight is defended by strong homeostatic forces. Several of the key biological mechanisms that counteract weight loss have been unraveled over the last decades. In contrast, the mechanisms that protect body weight and fat mass from becoming too high remain largely unknown. Understanding this aspect of energy balance regulation holds great promise for curbing the obesity epidemic. Decoding the physiological and molecular pathways that defend against weight gain can be achieved by an intervention referred to as 'experimental overfeeding'. SCOPE OF THE REVIEW In this review, we define experimental overfeeding and summarize the studies that have been conducted on animals. This field of research shows that experimental overfeeding induces a potent and prolonged hypophagic response that seems to be conserved across species and mediated by unidentified endocrine factors. In addition, the literature shows that experimental overfeeding can be used to model the development of non-alcoholic steatohepatitis and that forced intragastric infusion of surplus calories lowers survival from infections. Finally, we highlight studies indicating that experimental overfeeding can be employed to study the transgenerational effects of a positive energy balance and how dietary composition and macronutrient content might impact energy homeostasis and obesity development in animals. MAJOR CONCLUSIONS Experimental overfeeding of animals is a powerful yet underappreciated method to investigate the defense mechanisms against weight gain. This intervention also represents an alternative approach for studying the pathophysiology of metabolic liver diseases and the links between energy balance and infection biology. Future research in this field could help uncover why humans respond differently to an obesogenic environment and reveal novel pathways with therapeutic potential against obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
215
|
Si R, Pan D, Wang Z, Chen Y, Cao J. Regulation of the central melanocortin system on energy balance in mammals and birds. Neuropeptides 2022; 95:102267. [PMID: 35752067 DOI: 10.1016/j.npep.2022.102267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
Agouti-related protein/neuropeptide Y (AgRP/NPY) neurons promote feeding, while proopiomelanocortin/cocaine- and amphetamine-regulated transcript (POMC/CART) neurons and melanocortin receptor neurons inhibit feeding; these three types of neurons play vital roles in regulating feeding. The central melanocortin system composed of these neurons is critical for the regulation of food intake and energy metabolism. It regulates energy intake and consumption by activating or inhibiting the activities of AgRP/NPY neurons and POMC/CART neurons and then affects the feeding behaviour of animals to maintain the energy balance. Meanwhile, organisms can also positively or negatively regulate energy homeostasis through the negative feedback of the neuron system. With further studies, understanding of the process and factors involved in the energy balance regulation of mammals and birds can be improved, which will provide a favourable scientific basis to reduce costs and improve meat production in production and breeding.
Collapse
Affiliation(s)
- Rongrong Si
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Deng Pan
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
216
|
Shuck B, Hart JL, Walker KL, Rai J, Srivastava S, Srivastava S, Rai S, Bhatnagar A, Keith RJ. Workplace Culture and Biomarkers of Health Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11920. [PMID: 36231223 PMCID: PMC9565767 DOI: 10.3390/ijerph191911920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 05/03/2023]
Abstract
Workplace culture has been studied for impact on health risk; however, connections with robust biologic markers of health remain to be established. We examined associations between the work environment and urinary levels of catecholamines and their metabolites as biomarkers of sympathetic nervous system activity, indicative of stress. We recruited participants (n = 219; 2018-2019) from a cardiovascular risk cohort to investigate workplace culture, well-being, and stress. Participants completed seven questionnaires. Urine samples were used to measure catecholamines and their metabolites by LC/MS/MS. Pearson correlation and linear regression models were used after adjusting for demographics and creatinine. Participants reporting higher well-being had lower urinary levels of dopamine, serotonin, and 3-methoxytyramine. Participants reporting a more engaged and more positive workplace had lower levels of dopamine and 3-methoxytyramine. Reported workplace isolation was correlated with higher levels of dopamine and 3-methoxytyramine. Given correlations between catecholamines, we used 3-methoxytyramine for linear regression. In fully adjusted models, in environments with a more positive culture, levels of 3-methoxytyramine remained lower (β = -0.065 ± 0.025, p = 0.01) and indicated a positive association between workplace isolation and 3-methoxytyramine (β = 0.064 ± 0.030, p = 0.04). These findings are consistent with an important relationship between workplace environment and sympathetic nervous system activity.
Collapse
Affiliation(s)
- Brad Shuck
- College of Education and Human Development, University of Louisville, Suite #346, Louisville, KY 40292, USA
| | - Joy L. Hart
- Department of Communication, College of Arts and Sciences, University of Louisville, Louisville, KY 40292, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Kandi L. Walker
- Department of Communication, College of Arts and Sciences, University of Louisville, Louisville, KY 40292, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Jayesh Rai
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Shweta Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Sanjay Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
- Division of Environmental Medicine, School of Medicine, Louisville, KY 40202, USA
| | - Shesh Rai
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
- Division of Environmental Medicine, School of Medicine, Louisville, KY 40202, USA
- Brown Cancer Center, Biostatistics and Bioinformatics Facility, University of Louisville, Louisville, KY 40202, USA
- Biostatistics and Informatics Core, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
- Division of Environmental Medicine, School of Medicine, Louisville, KY 40202, USA
| | - Rachel J. Keith
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
- Division of Environmental Medicine, School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
217
|
Dos Santos Neves L, Oliveira RKG, Dos Santos LS, Ribeiro IO, Medeiros JMB, de Matos RJB. Modulation of hypothalamic AMPK and hypothalamic neuropeptides in the control of eating behavior: A systematic review. Life Sci 2022; 309:120947. [PMID: 36096244 DOI: 10.1016/j.lfs.2022.120947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 12/09/2022]
Abstract
Eating behavior is regulated by central and peripheral signals, which interact to modulate the response to nutrient intake. Central control is mediated by the hypothalamus through neuropeptides that activate the orexigenic and anorexigenic pathways. Energy homeostasis depends on the efficiency of these regulatory mechanisms. This neuroendocrine regulation of hunger and appetite can be modulated by nutritional sensors such as adenosine monophosphate-activated protein kinase (AMPK). Thus, this systematic review discusses the literature on correlations between AMPK and hypothalamic neuropeptides regarding control of eating behavior. Lilacs, PubMed/Medline, ScienceDirect, and Web of Science were searched for articles published from 2009 to 2021 containing combinations of the following descriptors: "eating behavior," "hypothalamus," "neuropeptide," and "AMPK." Of the 1330 articles found initially, 27 were selected after application of the inclusion and exclusion criteria. Of the selected articles, 15 reported decreased AMPK activity, due to interventions using angiotensin II infusion, fructose, glucose, cholecystokinin, leptin, or lipopolysaccharide (LPS) injection; dietary control through a low-protein diet or a high-fat diet (60 % fat); induction of hyperthyroidism; or injection of AMPK inhibitors. Seven studies showed a decrease in neuropeptide Y (NPY) through CV4 AICAR administration; fructose, glucose, leptin, or angiotensin II injections; or infusion of LPS from Escherichia coli and liver kinase B1 (LKB1) overexpression. Eleven studies reported a decrease in food consumption due to a decrease in AMPK activity and/or hypothalamic neuropeptides such as NPY. The results indicate that there is a relationship between AMPK and the control of eating behavior: a decrease in AMPK activity due to a dietary or non-dietary stimulus is associated with a consequent decrease in food intake. Furthermore, AMPK activity can be modulated by glucose, thyroid hormones, estradiol, leptin, and ghrelin.
Collapse
Affiliation(s)
- Letycia Dos Santos Neves
- Vitoria Academic Center, Federal University of Pernambuco, Rua do Alto do Reservoir, S/N, Bela Vista, CEP 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Renata Kelly Gomes Oliveira
- Vitoria Academic Center, Federal University of Pernambuco, Rua do Alto do Reservoir, S/N, Bela Vista, CEP 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Lucimeire Santana Dos Santos
- Federal University of Bahia, School of Nutrition, Rua Basilio da Gama, s/n, Campus Canela, CEP: 40.110-907 Salvador, BA, Brazil
| | - Ingrid Oliveira Ribeiro
- Federal University of Bahia, School of Nutrition, Rua Basilio da Gama, s/n, Campus Canela, CEP: 40.110-907 Salvador, BA, Brazil
| | - Jairza Maria Barreto Medeiros
- Federal University of Bahia, School of Nutrition, Rua Basilio da Gama, s/n, Campus Canela, CEP: 40.110-907 Salvador, BA, Brazil
| | - Rhowena Jane Barbosa de Matos
- Health Sciences Center, Federal University of Recôncavo of Bahia, Avenida Carlos Amaral, 1015, Cajueiro, CEP 44574-490 Santo Antônio de Jesus, BA, Brazil.
| |
Collapse
|
218
|
Gupta P, Kumar S. Sarcopenia and Endocrine Ageing: Are They Related? Cureus 2022; 14:e28787. [PMID: 36225400 PMCID: PMC9533189 DOI: 10.7759/cureus.28787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
|
219
|
Wang Q, Zhang B, Stutz B, Liu ZW, Horvath TL, Yang X. Ventromedial hypothalamic OGT drives adipose tissue lipolysis and curbs obesity. SCIENCE ADVANCES 2022; 8:eabn8092. [PMID: 36044565 PMCID: PMC9432828 DOI: 10.1126/sciadv.abn8092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/14/2022] [Indexed: 05/31/2023]
Abstract
The ventromedial hypothalamus (VMH) is known to regulate body weight and counterregulatory response. However, how VMH neurons regulate lipid metabolism and energy balance remains unknown. O-linked β-d-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), catalyzed by O-GlcNAc transferase (OGT), is considered a cellular sensor of nutrients and hormones. Here, we report that genetic ablation of OGT in VMH neurons inhibits neuronal excitability. Mice with VMH neuron-specific OGT deletion show rapid weight gain, increased adiposity, and reduced energy expenditure, without significant changes in food intake or physical activity. The obesity phenotype is associated with adipocyte hypertrophy and reduced lipolysis of white adipose tissues. In addition, OGT deletion in VMH neurons down-regulates the sympathetic activity and impairs the sympathetic innervation of white adipose tissues. These findings identify OGT in the VMH as a homeostatic set point that controls body weight and underscore the importance of the VMH in regulating lipid metabolism through white adipose tissue-specific innervation.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Bichen Zhang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Bernardo Stutz
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhong-Wu Liu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
220
|
Porro M, Kundrotaite E, Mellor DD, Munialo CD. A narrative review of the functional components of human breast milk and their potential to modulate the gut microbiome, the consideration of maternal and child characteristics, and confounders of breastfeeding, and their impact on risk of obesity later in life. Nutr Rev 2022; 81:597-609. [PMID: 36048515 DOI: 10.1093/nutrit/nuac072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nutritional exposure and, therefore, the metabolic environment during early human development can affect health later in life. This can go beyond the nutrients consumed; there is evidence that the development and modulation of the gut microbiome during early life can affect human growth, development, and health, and the gut microbiome is associated with the risk of obesity later in life. The primary aim of this review was to evaluate existing evidence, to identify the components of human breast milk, which may modulate the gut microbiome, and to assess the impact of the gut microbiome on the risk of becoming obese later in life. This review also considers maternal and child characteristics, and confounders of breastfeeding and how they impact on the infant gut microbiome. Current evidence supports a positive association between fecal, branched short-chain fatty acids and human milk oligosaccharide diversity and a gut microbiome associated with better metabolic health. A negative correlation was found between microbiome diversity and human milk oligosaccharide evenness, which was associated with a greater fat mass and percentage of fat. The components of human breast milk, including oligosaccharides, probiotics, milk fat globule membrane, and adiponectin, were hypothesized to positively influence infant growth and body weight by modulating the microbial diversity and composition of the gut. Maternal diet, timing and duration of breast feeding, and the mode of delivery were all shown to affect the human milk microbiota. However, more experimental studies with long follow-up are required to shed light on the governing mechanisms linking breast milk components with a diverse infant microbiome and healthier body weight later in life.
Collapse
Affiliation(s)
- Margherita Porro
- School of Life Sciences, Coventry University, Coventry, United Kingdom.,Mondelēz UK R&D Limited, Bournville, Birmingham, United Kingdom
| | - Elena Kundrotaite
- School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Duane D Mellor
- Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Claire D Munialo
- School of Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
221
|
Evidence for the Neuronal Expression and Secretion of Adiponectin. Cells 2022; 11:cells11172725. [PMID: 36078135 PMCID: PMC9454681 DOI: 10.3390/cells11172725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Abstract
Peripheral adiponectin acts on the hypothalamus to inhibit energy expenditure and increase food intake through its receptors AdipoR1 and adipoR2. The hypothalamic expression of adiponectin is poorly documented. We hypothesize that whether hypothalamic adiponectin is confirmed, its expression and secretion could be regulated as peripheral adiponectin. Thus, in the present work, we aim to determine whether adiponectin is expressed in the hypothalamus and in two neuronal cell lines and investigate the potential mechanisms regulating its neuronal expression. Using immunohistochemistry, we show that adiponectin is expressed in the mediobasal hypothalamic neurons of mice. Adiponectin expression is also evidenced in two neuronal cell lines mHypo POMC (an adult mouse hypothalamic cell line) and SH-SY5Y (human neuroblastoma). The neuronal expression of adiponectin is increased in response to rosiglitazone treatment (a PPARγ agonist) and FGF21 and is decreased in insulin-resistant neurons. Furthermore, we show that adiponectin expressed by mHypo POMC neurons is secreted in a culture medium. Adiponectin also diminished the resistin-induced IL6 expression in SIMA9 cells, a microglia cell line. In conclusion, we evidenced the hypothalamic expression of adiponectin and its regulation at the neuronal level.
Collapse
|
222
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
223
|
Zaia CTBV, Uchôa ET, Santos AATD, Ribeiro RCDA, Batista ACS, Crespigio J, Utida L, Moura GB, Brownlow ML, Garnica-Siqueira MC, Reis WL, Antunes-Rodrigues J, Zaia DAM. Vasoactive intestinal peptide promotes hypophagia and metabolic changes: role of paraventricular hypothalamic nucleus and nitric oxide. Brain Res Bull 2022; 189:102-110. [PMID: 36029978 DOI: 10.1016/j.brainresbull.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 11/02/2022]
Abstract
Vasoactive intestinal peptide (VIP), a neuromodulator present in the hypothalamus, plays an important role in the regulation of food intake. Paraventricular nucleus of the hypothalamus (PVN) is involved in ingestive responses and regulates the nitric oxide (NO) pathway. The main objectives of this study were to investigate metabolic changes established after different doses and times of VIP microinjection on the PVN, and the effect of VIP microinjection on the PVN on food intake and the role of NO in this control. In anesthetized rats, increased blood plasma glucose and insulin levels were observed following the doses of 40 and 80ng/g of body weight. At the dose of 40ng/g, VIP promoted hyperglycemia and hyperinsulinemia 5, 10, and 30min after microinjection, and increased free fatty acids and total lipids plasma levels after 5min, and triglycerides after 10min. In awake animals, once again, VIP administration increased plasmatic levels of glucose, free fatty acids, corticosterone, and insulin 10min after the microinjection. Moreover, VIP promoted hypophagia in the morning and night periods, and L-arginine (L-Arg) and monosodium glutamate (MSG) or a combination of both attenuated VIP-induced reduction on food intake. In addition, nitrate concentration in the PVN was decreased after VIP microinjection. Our data show that the PVN participates in the anorexigenic and metabolic effects of VIP, and that VIP-induced hypophagia is likely mediated by reduction of NO.
Collapse
Affiliation(s)
- Cássia Thaïs Bussamra Vieira Zaia
- Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina; Londrina, PR, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | - Ernane Torres Uchôa
- Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina; Londrina, PR, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | | | - Rachel Cezar de Andrade Ribeiro
- Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina; Londrina, PR, Brazil
| | - Ana Carolina Seidel Batista
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Jefferson Crespigio
- Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina; Londrina, PR, Brazil
| | - Lawrence Utida
- Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina; Londrina, PR, Brazil
| | - Galiano Brazuna Moura
- Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina; Londrina, PR, Brazil
| | - Milene Lara Brownlow
- Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina; Londrina, PR, Brazil
| | | | - Wagner Luis Reis
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina; Florianópolis, SC, Brazil
| | - Jose Antunes-Rodrigues
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo; Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
224
|
Yeste N, Pérez-Valle J, Heras-Molina A, Pesántez-Pacheco JL, Porrini E, González-Bulnes A, Bassols A. A High-Fat Diet Modifies Brain Neurotransmitter Profile and Hippocampal Proteome and Morphology in an IUGR Pig Model. Nutrients 2022; 14:nu14163440. [PMID: 36014946 PMCID: PMC9416793 DOI: 10.3390/nu14163440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine Growth Restriction (IUGR) hinders the correct growth of the fetus during pregnancy due to the lack of oxygen or nutrients. The developing fetus gives priority to brain development ("brain sparing"), but the risk exists of neurological and cognitive deficits at short or long term. On the other hand, diets rich in fat exert pernicious effects on brain function. Using a pig model of spontaneous IUGR, we have studied the effect on the adult of a long-term high-fat diet (HFD) on the neurotransmitter profile in several brain areas, and the morphology and the proteome of the hippocampus. Our hypothesis was that animals affected by IUGR (born with low birth weight) would present a different susceptibility to an HFD when they become adults, compared with normal birth-weight animals. Our results indicate that HFD affected the serotoninergic pathway, but it did not provoke relevant changes in the morphology of the hippocampus. Finally, the proteomic analysis revealed that, in some instances, NBW and LBW individuals respond to HFD in different ways. In particular, NBW animals presented changes in oxidative phosphorylation and the extracellular matrix, whereas LBW animals presented differences in RNA splicing, anterograde and retrograde transport and the mTOR pathway.
Collapse
Affiliation(s)
- Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jorge Pérez-Valle
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Ana Heras-Molina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - José Luis Pesántez-Pacheco
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Avda, Doce de Octubre, Cuenca 010220, Ecuador
| | - Esteban Porrini
- Departamento de Medicina Interna, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
225
|
da Silva RKB, de Vasconcelos DAA, da Silva AVE, da Silva RPB, de Oliveira Neto OB, Galindo LCM. Effects of maternal high-fat diet on the hypothalamic components related to food intake and energy expenditure in mice offspring. Life Sci 2022; 307:120880. [PMID: 35963301 DOI: 10.1016/j.lfs.2022.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Maternal exposure to a high-fat diet (HFD) during pregnancy and lactation has been related to changes in the hypothalamic circuits involved in the regulation of food intake. Furthermore, maternal HFD during the critical period of development can alter the offspring's metabolic programming with long-term repercussions. This study systematically reviewed the effects of HFD consumption during pre-pregnancy, pregnancy and/or lactation. The main outcomes evaluated were food intake; body weight; cellular or molecular aspects of peptides and hypothalamic receptors involved in the regulation of energy balance in mice. Two independent authors performed a search in the electronic databases Medline/PubMed, LILACS, Web of Science, EMBASE, SCOPUS and Sigle via Open Gray. Included were experimental studies of mice exposed to HFD during pregnancy and/or lactation that evaluated body composition, food intake, energy expenditure and hypothalamic components related to energy balance. Internal validity was assessed using the SYRCLE risk of bias. The Kappa index was measured to analyze the agreement between reviewers. The PRISMA statement was used to report this systematic review. Most studies demonstrated that there was a higher body weight, body fat deposits and food intake, as well as alterations in the expression of hypothalamic neuropeptides in offspring that consumed HFD. Therefore, the maternal diet can affect the phenotype and metabolism of the offspring, in addition to harming the hypothalamic circuits and favoring the orexigenic pathways.
Collapse
Affiliation(s)
- Regina Katiuska Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Diogo Antonio Alves de Vasconcelos
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil
| | | | - Roxana Patrícia Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | | | - Lígia Cristina Monteiro Galindo
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Anatomy, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
226
|
A Simulation Analysis and Screening of Deleterious Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) in Sheep LEP Gene. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7736485. [PMID: 35978633 PMCID: PMC9377880 DOI: 10.1155/2022/7736485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Leptin is a polypeptide hormone produced in the adipose tissue and governs many processes in the body. Recently, polymorphisms in the LEP gene revealed a significant change in body weight regulation, energy balance, food intake, and reproductive hormone secretion. This study considers its crucial role in the regulation of the economically important traits of sheep. Several computational tools, including SIFT, Predict SNP2, SNAP2, and PROVEAN, have been used to screen out the deleterious nsSNPs. Following the screening of 11 nsSNPs in the sheep genome, 5 nsSNPs, T86M (C → T), D98N (G → A), N136T (A → C), R142Q (G → A), and P157Q (C → A), were predicted to have a significant deleterious effect on the LEP protein function, leading to phenotypic difference. The analysis of proteins’ stability change due to amino acid substitution using the I-stable, SDM, and DynaMut consistently confirmed that three nsSNPs (T86M (C → T), D98N (G → A), and P157Q (C → A)) increased protein stability. It is suggested that these three nsSNPs may enhance the evolvability of LEP protein, which is vital for the evolutionary adaptation of sheep. Our findings demonstrate that the five nsSNPs reported in this study might be responsible for sheep’s structural and functional modifications of LEP protein. This is the first comprehensive report on the sheep LEP gene. It narrow downs the candidate nsSNPs for in vitro experiments to facilitate the development of reliable molecular markers for associated traits.
Collapse
|
227
|
Effect of Ghrelin on the Cardiovascular System. BIOLOGY 2022; 11:biology11081190. [PMID: 36009817 PMCID: PMC9405061 DOI: 10.3390/biology11081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Ghrelin is an octanoylated peptide that was initially isolated from rat and human stomachs in the process of searching for an endogenous ligand to the orphan growth hormone secretagogue receptor (GHS-R), a G-protein-coupled receptor. Exogenous or endogenous ghrelin secreted from the stomach binds to GHS-R on gastric vagal nerve terminals, and the signals are transmitted to the central nervous system via the vagal afferent nerve to facilitate growth hormone (GH) secretion, feeding, sympathetic inhibition, parasympathetic activation, and anabolic effects. Ghrelin also binds directly to the pituitary GHS-R and stimulates GH secretion. Ghrelin has beneficial effects on the cardiovascular system, including cardioprotective effects such as anti-heart failure, anti-arrhythmic, and anti-inflammatory actions, and it enhances vascular activity via GHS-R-dependent stimulation of GH/IGF-1 (insulin-like growth factor-1) and modulation of the autonomic nervous system. The anti-heart failure effects of ghrelin could be useful as a new therapeutic strategy for chronic heart failure. Abstract Ghrelin, an n-octanoyl-modified 28-amino-acid-peptide, was first discovered in the human and rat stomach as an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Ghrelin-GHS-R1a signaling regulates feeding behavior and energy balance, promotes vascular activity and angiogenesis, improves arrhythmia and heart failure, and also protects against cardiovascular disease by suppressing cardiac remodeling after myocardial infarction. Ghrelin’s cardiovascular protective effects are mediated by the suppression of sympathetic activity; activation of parasympathetic activity; alleviation of vascular endothelial dysfunction; and regulation of inflammation, apoptosis, and autophagy. The physiological functions of ghrelin should be clarified to determine its pharmacological potential as a cardiovascular medication.
Collapse
|
228
|
Zhu Z, Gu Y, Zeng C, Yang M, Yu H, Chen H, Zhang B, Cai H. Olanzapine-induced lipid disturbances: A potential mechanism through the gut microbiota-brain axis. Front Pharmacol 2022; 13:897926. [PMID: 35991866 PMCID: PMC9388751 DOI: 10.3389/fphar.2022.897926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Long-term use of olanzapine can induce various side effects such as lipid metabolic disorders, but the mechanism remains to be elucidated. The gut microbiota-brain axis plays an important role in lipid metabolism, and may be related to the metabolic side effects of olanzapine. Therefore, we explored the mechanism by which olanzapine-induced lipid disturbances through the gut microbiota-brain axis. Methods: Sprague Dawley rats were randomly divided into two groups, which underwent subphrenic vagotomy and sham surgery. Then the two groups were further randomly divided into two subgroups, one was administered olanzapine (10 mg/kg/day) by intragastric administration, and the other was administered normal saline by intragastric administration (4 ml/kg/day) for 2 weeks. The final changes in lipid parameters, gut microbes and their metabolites, and orexin-related neuropeptides in the hypothalamus were investigated among the different groups. Results: Olanzapine induced lipid disturbances as indicated by increased weight gain, elevated ratio of white adipose tissue to brown adipose tissue, as well as increased triglyceride and total cholesterol. Olanzapine also increased the Firmicutes/Bacteroides (F/B) ratio in the gut, which was even aggravated by subphrenic vagotomy. In addition, olanzapine reduced the abundance of short-chain fatty acids (SCFAs) metabolism related microbiome and 5-hydroxytryptamine (5-HT) levels in the rat cecum, and increased the gene and protein expression of the appetite-related neuropeptide Y/agouti-related peptide (NPY/AgRP) in the hypothalamus. Conclusion: The abnormal lipid metabolism caused by olanzapine may be closely related to the vagus nerve-mediated gut microbiota-brain axis.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yuxiu Gu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Man Yang
- School of Pharmacy, Changsha Medical University, Changsha, China
| | - Hao Yu
- School of Pharmacy, Hunan University of Medicine, Changsha, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
229
|
Rajkhowa B, Mehan S, Sethi P, Prajapati A, Suri M, Kumar S, Bhalla S, Narula AS, Alshammari A, Alharbi M, Alkahtani N, Alghamdi S, Kalfin R. Activating SIRT-1 Signalling with the Mitochondrial-CoQ10 Activator Solanesol Improves Neurobehavioral and Neurochemical Defects in Ouabain-Induced Experimental Model of Bipolar Disorder. Pharmaceuticals (Basel) 2022; 15:ph15080959. [PMID: 36015107 PMCID: PMC9415079 DOI: 10.3390/ph15080959] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by mood fluctuations that range from depressive lows to manic highs. Several studies have linked the downregulation of SIRT-1 (silent mating type information regulation-2 homologs) signaling to the onset of BD and other neurological dysfunctions. This research aimed to look into the neuroprotective potential of Solanesol (SNL) in rats given ICV-Ouabain injections, focusing on its effect on SIRT-1 signaling activation in the brain. Ouabain, found in hypothalamic and medullary neurons, is an endogenous inhibitor of brain Na+/K+ ATPase. The inhibition of brain Na+/K+ ATPase by Ouabain may also result in changes in neurotransmission within the central nervous system. SNL is a Solanaceae family active phytoconstituent produced from the plant Nicotiana tabacum. SNL is used as a precursor for the production of CoQ10 (Coenzyme Q10), a powerful antioxidant and neuroprotective compound. In the current study, lithium (Li), an important mood stabilizer drug, was used as a control. This study looked at the neuroprotective potential of SNL at dosages of 40 and 80 mg/kg in ICV-OUA injections that caused BD-like neurobehavioral and neurochemical defects in Wistar rats. Wistar rats were placed into eight groups (n = 6) and administered 1 mM/0.5 µL ICV-OUA injections for three days. Neurochemical assessments were done in rat brain homogenates, CSF, and blood plasma samples at the end of the experiment protocol schedule. Long-term SNL and lithium administration have been shown to decrease the number of rearing and crossings and reduce time spent in the center, locomotor activities, and immobility time. Solansesol treatment gradually raises the amount of Na+/K+ ATPase, limiting the severity of behavioural symptoms. These findings also revealed that SNL increases the levels of SIRT-1 in CSF, blood plasma, and brain homogenate samples. Moreover, in rat brain homogenates and blood plasma samples, SNL modulates apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic). Mitochondrial-ETC complex enzymes, including complex-I, II, IV, V, and CoQ10, were also restored following long-term SNL treatment. Furthermore, SNL lowered inflammatory cytokines (TNF-α, IL-1β) levels while restoring neurotransmitter levels (serotonin, dopamine, glutamate, and acetylcholine) and decreasing oxidative stress markers. Histological examinations also validated Solanesol’s protective effect. As a result, our findings suggest that SNL, as a SIRT-1 signalling activator, may be a promising therapeutic approach for BD-like neurological dysfunctions.
Collapse
Affiliation(s)
- Bidisha Rajkhowa
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
- Correspondence: ; Tel.: +91-8059889909
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Nora Alkahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Saeed Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
230
|
Smith JA, Eikenberry SA, Scott KA, Baumer-Harrison C, de Lartigue G, de Kloet AD, Krause EG. Oxytocin and cardiometabolic interoception: Knowing oneself affects ingestive and social behaviors. Appetite 2022; 175:106054. [PMID: 35447163 DOI: 10.1016/j.appet.2022.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023]
Abstract
Maintaining homeostasis while navigating one's environment involves accurately assessing and interacting with external stimuli while remaining consciously in tune with internal signals such as hunger and thirst. Both atypical social interactions and unhealthy eating patterns emerge as a result of dysregulation in factors that mediate the prioritization and attention to salient stimuli. Oxytocin is an evolutionarily conserved peptide that regulates attention to exteroceptive and interoceptive stimuli in a social environment by functioning in the brain as a modulatory neuropeptide to control social behavior, but also in the periphery as a hormone acting at oxytocin receptors (Oxtr) expressed in the heart, gut, and peripheral ganglia. Specialized sensory afferent nerve endings of Oxtr-expressing nodose ganglia cells transmit cardiometabolic signals via the Vagus nerve to integrative regions in the brain that also express Oxtr(s). These brain regions are influenced by vagal sensory pathways and coordinate with external events such as those demanding attention to social stimuli, thus the sensations related to cardiometabolic function and social interactions are influenced by oxytocin signaling. This review investigates the literature supporting the idea that oxytocin mediates the interoception of cardiovascular and gastrointestinal systems, and that the modulation of this awareness likewise influences social cognition. These concepts are then considered in relation to Autism Spectrum Disorder, exploring how atypical social behavior is comorbid with cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Sophia A Eikenberry
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Karen A Scott
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Caitlin Baumer-Harrison
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA
| | - Annette D de Kloet
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
231
|
Speakman JR, Elmquist JK. Obesity: an evolutionary context. LIFE METABOLISM 2022; 1:10-24. [PMID: 36394061 PMCID: PMC9642988 DOI: 10.1093/lifemeta/loac002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
People completely lacking body fat (lipodystrophy/lipoatrophy) and those with severe obesity both show profound metabolic and other health issues. Regulating levels of body fat somewhere between these limits would, therefore, appear to be adaptive. Two different models might be contemplated. More traditional is a set point (SP) where the levels are regulated around a fixed level. Alternatively, dual-intervention point (DIP) is a system that tolerates fairly wide variation but is activated when critically high or low levels are breached. The DIP system seems to fit our experience much better than an SP, and models suggest that it is more likely to have evolved. A DIP system may have evolved because of two contrasting selection pressures. At the lower end, we may have been selected to avoid low levels of fat as a buffer against starvation, to avoid disease-induced anorexia, and to support reproduction. At the upper end, we may have been selected to avoid excess storage because of the elevated risks of predation. This upper limit of control seems to have malfunctioned because some of us deposit large fat stores, with important negative health effects. Why has evolution not protected us against this problem? One possibility is that the protective system slowly fell apart due to random mutations after we dramatically reduced the risk of being predated during our evolutionary history. By chance, it fell apart more in some people than others, and these people are now unable to effectively manage their weight in the face of the modern food glut. To understand the evolutionary context of obesity, it is important to separate the adaptive reason for storing some fat (i.e. the lower intervention point), from the nonadaptive reason for storing lots of fat (a broken upper intervention point). The DIP model has several consequences, showing how we understand the obesity problem and what happens when we attempt to treat it.
Collapse
Affiliation(s)
- John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental biology, Chinese Academy of Sciences, Beijing, China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China
| | - Joel K Elmquist
- Departments of Internal Medicine and Pharmacology, Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
232
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
233
|
d-Allulose Inhibits Ghrelin-Responsive, Glucose-Sensitive and Neuropeptide Y Neurons in the Arcuate Nucleus and Central Injection Suppresses Appetite-Associated Food Intake in Mice. Nutrients 2022; 14:nu14153117. [PMID: 35956293 PMCID: PMC9370451 DOI: 10.3390/nu14153117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
d-allulose, a rare sugar, has sweetness with few calories. d-allulose regulates feeding and glycemia, and ameliorates hyperphagia, obesity and diabetes. All these functions involve the central nervous system. However, central mechanisms underlying these effects of d-allulose remain unknown. We recently reported that d-allulose activates the anorexigenic neurons in the hypothalamic arcuate nucleus (ARC), the neurons that respond to glucagon-like peptide-1 and that express proopiomelanocortin. However, its action on the orexigenic neurons remains unknown. This study investigated the effects of d-allulose on the ARC neurons implicated in hunger, by measuring cytosolic Ca2+ concentration ([Ca2+]i) in single neurons. d-allulose depressed the increases in [Ca2+]i induced by ghrelin and by low glucose in ARC neurons and inhibited spontaneous oscillatory [Ca2+]i increases in neuropeptide Y (NPY) neurons. d-allulose inhibited 10 of 35 (28%) ghrelin-responsive, 18 of 60 (30%) glucose-sensitive and 3 of 8 (37.5%) NPY neurons in ARC. Intracerebroventricular injection of d-allulose inhibited food intake at 20:00 and 22:00, the early dark phase when hunger is promoted. These results indicate that d-allulose suppresses hunger-associated feeding and inhibits hunger-promoting neurons in ARC. These central actions of d-allulose represent the potential of d-allulose to inhibit the hyperphagia with excessive appetite, thereby counteracting obesity and diabetes.
Collapse
|
234
|
Phung HM, Jang D, Trinh TA, Lee D, Nguyen QN, Kim CE, Kang KS. Regulation of appetite-related neuropeptides by Panax ginseng: A novel approach for obesity treatment. J Ginseng Res 2022; 46:609-619. [PMID: 35818423 PMCID: PMC9270656 DOI: 10.1016/j.jgr.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity is a primary factor provoking various chronic disorders, including cardiovascular disease, diabetes, and cancer, and causes the death of 2.8 million individuals each year. Diet, physical activity, medications, and surgery are the main therapies for overweightness and obesity. During weight loss therapy, a decrease in energy stores activates appetite signaling pathways under the regulation of neuropeptides, including anorexigenic [corticotropin-releasing hormone, proopiomelanocortin (POMC), cholecystokinin (CCK), and cocaine- and amphetamine-regulated transcript] and orexigenic [agouti-related protein (AgRP), neuropeptide Y (NPY), and melanin-concentrating hormone] neuropeptides, which increase food intake and lead to failure in attaining weight loss goals. Ginseng and ginsenosides reverse these signaling pathways by suppressing orexigenic neuropeptides (NPY and AgRP) and provoking anorexigenic neuropeptides (CCK and POMC), which prevent the increase in food intake. Moreover, the results of network pharmacology analysis have revealed that constituents of ginseng radix, including campesterol, beta-elemene, ginsenoside Rb1, biotin, and pantothenic acid, are highly correlated with neuropeptide genes that regulate energy balance and food intake, including ADIPOQ, NAMPT, UBL5, NUCB2, LEP, CCK, GAST, IGF1, RLN1, PENK, PDYN, and POMC. Based on previous studies and network pharmacology analysis data, ginseng and its compounds may be a potent source for obesity treatment by regulating neuropeptides associated with appetite.
Collapse
Affiliation(s)
- Hung Manh Phung
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Dongyeop Jang
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Tuy An Trinh
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Quynh Nhu Nguyen
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Ki Sung Kang
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
235
|
Ghosh-Swaby OR, Reichelt AC, Sheppard PAS, Davies J, Bussey TJ, Saksida LM. Metabolic hormones mediate cognition. Front Neuroendocrinol 2022; 66:101009. [PMID: 35679900 DOI: 10.1016/j.yfrne.2022.101009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Recent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease. Here we review the evidence that eating behaviours and metabolic hormones-particularly ghrelin, leptin, and insulin-are key players in the delicate regulation of neural plasticity and cognition. Caloric restriction and antidiabetic therapies, both of which affect metabolic hormone levels can restore metabolic homeostasis and enhance cognitive function. Thus, metabolic hormone pathways provide a promising target for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Olivia R Ghosh-Swaby
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada
| | - Amy C Reichelt
- Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, Australia
| | - Paul A S Sheppard
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Timothy J Bussey
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Lisa M Saksida
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
236
|
Wu J, Fu J, Huang ZJ, Xie SH, Tang B, Wu X, Tong ZG, Wu BW, Pan CB, Yang YQ, Ding H, Li SY, Qi JL, Hong T. Postoperative hypothalamic damage predicts postoperative weight gain in patients with adult-onset craniopharyngioma. Obesity (Silver Spring) 2022; 30:1357-1369. [PMID: 35707874 DOI: 10.1002/oby.23447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to recapitulate the change trajectory of postoperative weight and investigate the association between postoperative hypothalamic damage and weight gain and hypothalamic obesity (HO) in patients with adult-onset craniopharyngioma. METHODS The data of 96 patients with surgically treated primary adult-onset craniopharyngioma were retrospectively analyzed. The association between postoperative hypothalamic damage based on magnetic resonance images or endoscopic observation and postoperative weight gain and HO was determined by multivariable logistic regression. RESULTS Forty-seven (49.0%) patients and 18 (18.8%) patients experienced clinically meaningful weight gain (≥5%) and HO at last follow-up, respectively. Postoperative weight significantly increased during the first 6 months following surgery, followed by stabilization. Both grade 2 postoperative hypothalamus damage, as evaluated by the magnetic resonance imaging classification system of Müller et al., and higher scores based on the Roth et al. hypothalamic lesion score were significantly associated with postoperative weight gain of ≥5% (p = 0.005 and p = 0.002) and with HO (p = 0.001 and p = 0.008). Additionally, bilateral hypothalamic injury as evaluated by the Hong et al. hypothalamic injury pattern based on endoscopic observation (p = 0.008) could predict postoperative weight gain ≥5%. CONCLUSIONS Significant postoperative weight gain is common in patients with adult-onset craniopharyngioma. Postoperative hypothalamic damage can predict clinically meaningful weight gain and HO.
Collapse
Affiliation(s)
- Jie Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Fu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhong Jian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shen Hao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Gao Tong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Wen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cheng Bing Pan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - You Qing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Han Ding
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shao Yang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jia Long Qi
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
237
|
Kim J, Lee N, Suh SB, Jang S, Kim S, Kim DG, Park JK, Lee KW, Choi SY, Lee CH. Metformin ameliorates olanzapine-induced disturbances in POMC neuron number, axonal projection, and hypothalamic leptin resistance. BMB Rep 2022. [PMID: 35651327 PMCID: PMC9252891 DOI: 10.5483/bmbrep.2022.55.6.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antipsychotics have been widely accepted as a treatment of choice for psychiatric illnesses such as schizophrenia. While atypical antipsychotics such as aripiprazole are not associated with obesity and diabetes, olanzapine is still widely used based on the anticipation that it is more effective in treating severe schizophrenia than aripiprazole, despite its metabolic side effects. To address metabolic problems, metformin is widely prescribed. Hypothalamic proopiomelanocortin (POMC) neurons have been identified as the main regulator of metabolism and energy expenditure. Although the relation between POMC neurons and metabolic disorders is well established, little is known about the effects of olanzapine and metformin on hypothalamic POMC neurons. In the present study, we investigated the effect of olanzapine and metformin on the hypothalamic POMC neurons in female mice. Olanzapine administration for 5 days significantly decreased Pomc mRNA expression, POMC neuron numbers, POMC projections, and induced leptin resistance before the onset of obesity. It was also observed that coadministration of metformin with olanzapine not only increased POMC neuron numbers and projections but also improved the leptin response of POMC neurons in the olanzapine-treated female mice. These findings suggest that olanzapine-induced hypothalamic POMC neuron abnormality and leptin resistance, which can be ameliorated by metformin administration, are the possible causes of subsequent hyperphagia.
Collapse
Affiliation(s)
- Jaedeok Kim
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Nayoung Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Sang Bum Suh
- University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sooyeon Jang
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Saeha Kim
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Dong-Gyu Kim
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Jong Kook Park
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Keun-Wook Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
238
|
Davoudi P, Do DN, Colombo SM, Rathgeber B, Miar Y. Application of Genetic, Genomic and Biological Pathways in Improvement of Swine Feed Efficiency. Front Genet 2022; 13:903733. [PMID: 35754793 PMCID: PMC9220306 DOI: 10.3389/fgene.2022.903733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the significant improvement of feed efficiency (FE) in pigs over the past decades, feed costs remain a major challenge for producers profitability. Improving FE is a top priority for the global swine industry. A deeper understanding of the biology underlying FE is crucial for making progress in genetic improvement of FE traits. This review comprehensively discusses the topics related to the FE in pigs including: measurements, genetics, genomics, biological pathways and the advanced technologies and methods involved in FE improvement. We first provide an update of heritability for different FE indicators and then characterize the correlations of FE traits with other economically important traits. Moreover, we present the quantitative trait loci (QTL) and possible candidate genes associated with FE in pigs and outline the most important biological pathways related to the FE traits in pigs. Finally, we present possible ways to improve FE in swine including the implementation of genomic selection, new technologies for measuring the FE traits, and the potential use of genome editing and omics technologies.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie M Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
239
|
TRPV1-Mediated Sensing of Sodium and Osmotic Pressure in POMC Neurons in the Arcuate Nucleus of the Hypothalamus. Nutrients 2022; 14:nu14132600. [PMID: 35807782 PMCID: PMC9268643 DOI: 10.3390/nu14132600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The central melanocortin system conducted by anorexigenic pro-opiomelanocortin (POMC) neurons and orexigenic agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus (ARC) not only regulates feeding behavior but also blood pressure. Excessive salt intake raises the Na+ concentration ([Na+]) in the cerebrospinal fluid (CSF) and worsens hypertension. The blood–brain barrier is immature in the ARC. Therefore, both AgRP and POMC neurons in the ARC have easy access to the electrolytes in the blood and can sense changes in their concentrations. However, the sensitivity of AgRP and POMC neurons to Na+ remains unclear. This study aimed to explore how the changes in the extracellular Na+ concentration ([Na+]) influence these neurons by measuring the cytosolic Ca2+ concentration ([Ca2+]i) in the single neurons isolated from the ARC that were subsequently immunocytochemically identified as AgRP or POMC neurons. Both AgRP and POMC neurons responded to increases in both [Na+] and osmolarity in C57BL/6 mice. In contrast, in transient receptor potential vanilloid 1 (TRPV1) knockout (KO) mice, POMC neurons failed to respond to increases in both [Na+] and osmolarity, while they responded to high glucose and angiotensin II levels with increases in [Ca2+]i. Moreover, in KO mice fed a high-salt diet, the expression of POMC was lower than that in wild-type mice. These results demonstrate that changes in [Na+] and osmolarity are sensed by the ARC POMC neurons via the TRPV1-dependent mechanism.
Collapse
|
240
|
Morita S, Sakamaki A, Koyama K, Shibata O, Owaki T, Oda C, Kimura A, Nakaya T, Ohbuchi K, Nahata M, Fujitsuka N, Sakai N, Abe H, Kamimura K, Terai S. Daisaikoto improves fatty liver and obesity in melanocortin-4 receptor gene-deficient mice via the activation of brown adipose tissue. Sci Rep 2022; 12:10105. [PMID: 35710868 PMCID: PMC9203505 DOI: 10.1038/s41598-022-14371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Melanocortin 4 receptor gene-knockout (MC4R-KO) mice are known to develop obesity with a high-fat diet. Meanwhile, daisaikoto, one of Kampo medicines, is a drug that is expected to have therapeutic effects on obesity. Here, we report the efficacy of daisaikoto in MC4R-KO mice. Eight-week-old MC4R-KO male mice (n = 12) were divided into three groups as follows: the SD group, which is fed with a standard diet; the HFD group, fed a high-fat diet; and the DSK group, fed with a high-fat diet containing 10% of daisaikoto. After the four-week observation period, mice in each group were sacrificed and samples were collected. The body weights at 12 weeks were significantly higher in the HFD group than in the other groups, indicating that daisaikoto significantly reduced body weight gain and fat deposition of the liver. The metabolome analysis indicated that degradation of triglycerides and fatty acid oxidation in the liver were enhanced by daisaikoto administration. In MC4R-KO mice, the cytoplasm and uncoupling protein 1 expression of brown adipose tissue was decreased; however, it was reversed in the DSK group. In conclusion, daisaikoto has potentially improved fatty liver and obesity, making it a useful therapeutic agent for obesity and fatty liver.
Collapse
Affiliation(s)
- Shinichi Morita
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Kyutaro Koyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Osamu Shibata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takashi Owaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Chiyumi Oda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Taiki Nakaya
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., 3586, Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., 3586, Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586, Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586, Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.,Department of General Medicine, School of Medicine, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|
241
|
Ishiguro H, Kibret BG, Horiuchi Y, Onaivi ES. Potential Role of Cannabinoid Type 2 Receptors in Neuropsychiatric and Neurodegenerative Disorders. Front Psychiatry 2022; 13:828895. [PMID: 35774086 PMCID: PMC9237241 DOI: 10.3389/fpsyt.2022.828895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is composed of the two canonical receptor subtypes; type-1 cannabinoid (CB1R) and type 2 receptor (CB2R), endocannabinoids (eCBs) and enzymes responsible for the synthesis and degradation of eCBs. Recently, with the identification of additional lipid mediators, enzymes and receptors, the expanded ECS called the endocannabinoidome (eCBome) has been identified and recognized. Activation of CB1R is associated with a plethora of physiological effects and some central nervous system (CNS) side effects, whereas, CB2R activation is devoid of such effects and hence CB2Rs might be utilized as potential new targets for the treatment of different disorders including neuropsychiatric disorders. Previous studies suggested that CB2Rs were absent in the brain and they were considered as peripheral receptors, however, recent studies confirmed the presence of CB2Rs in different brain regions. Several studies have now focused on the characterization of its physiological and pathological roles. Studies done on the role of CB2Rs as a therapeutic target for treating different disorders revealed important putative role of CB2R in neuropsychiatric disorders that requires further clinical validation. Here we provide current insights and knowledge on the potential role of targeting CB2Rs in neuropsychiatric and neurodegenerative disorders. Its non-psychoactive effect makes the CB2R a potential target for treating CNS disorders; however, a better understanding of the fundamental pharmacology of CB2R activation is essential for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
| | - Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
242
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
243
|
Shao YQ, Fan L, Wu WY, Zhu YJ, Xu HT. A developmental switch between electrical and neuropeptide communication in the ventromedial hypothalamus. Curr Biol 2022; 32:3137-3145.e3. [PMID: 35659861 DOI: 10.1016/j.cub.2022.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 12/29/2022]
Abstract
Dissecting neural connectivity patterns within local brain regions is an essential step to understanding the function of the brain.1 Neural microcircuits in brain regions, such as the neocortex and the hippocampus, have been extensively studied.2 By contrast, the microcircuit in the hypothalamus remains largely uncharacterized. The hypothalamus is crucial for animals' survival and reproduction.3 Knowledge of how different hypothalamic nuclei coordinate with each other and outside brain regions for hypothalamus-related functions has been significantly advanced.4-9 Although there are limited studies on the neural microcircuit in the lateral hypothalamus (LHA)10,11 and the suprachiasmatic nucleus (SCN),12,13 the patterns of neural microcircuits in most of the given hypothalamic nuclei remain largely unknown. This study applied combinatory approaches to address the local neural circuit pattern in the ventromedial hypothalamus (VMH) and other hypothalamic nuclei. We discovered a unique neural circuit design in the VMH. Neurons in the VMH were electrically coupled at the early postnatal stage like ones in the neocortex.14 However, unlike neocortical neurons,14,15 they developed very few chemical synapses after the disappearance of electrical synapses. Instead, VMH neurons communicated with neuropeptides. The similar scarceness of synaptic connectivity found in other hypothalamic nuclei further indicated that the lack of synaptic connections is a unique feature for local neural circuits in most adult hypothalamic nuclei. Thus, our findings provide a solid synaptic basis at the cellular level to understand hypothalamic functions better.
Collapse
Affiliation(s)
- Yin-Qi Shao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Fan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen-Yan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Jun Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Tai Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
244
|
Haas SS, Myoraku A, Watson K, Robakis T, Frangou S, Abbasi F, Rasgon N. Lower functional hippocampal connectivity in healthy adults is jointly associated with higher levels of leptin and insulin resistance. Eur Psychiatry 2022; 65:e29. [PMID: 35492025 PMCID: PMC9158395 DOI: 10.1192/j.eurpsy.2022.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Metabolic dysregulation is currently considered a major risk factor for hippocampal pathology. The aim of the present study was to characterize the influence of key metabolic drivers on functional connectivity of the hippocampus in healthy adults. METHODS Insulin resistance was directly quantified by measuring steady-state plasma glucose (SSPG) concentration during the insulin suppression test and fasting levels of insulin, glucose, leptin, and cortisol, and measurements of body mass index and waist circumference were obtained in a sample of healthy cognitively intact adults (n = 104). Resting-state neuroimaging data were also acquired for the quantification of hippocampal functional cohesiveness and integration with the major resting-state networks (RSNs). Data-driven analysis using unsupervised machine learning (k-means clustering) was then employed to identify clusters of individuals based on their metabolic and functional connectivity profiles. RESULTS K-means clustering identified two clusters of increasing metabolic deviance evidenced by cluster differences in the plasma levels of leptin (40.36 (29.97) vs. 27.59 (25.58) μg/L) and the degree of insulin resistance (SSPG concentration: 161.63 (65.27) vs. 125.72 (66.81) mg/dL). Individuals in the cluster with higher metabolic deviance showed lower functional cohesiveness within each hippocampus and lower integration of posterior and anterior components of the left and right hippocampus with the major RSNs. The two clusters did not differ in general intellectual ability or episodic memory. CONCLUSIONS We identified two clusters of individuals differentiated by abnormalities in insulin resistance, leptin levels, and hippocampal connectivity, with one of the clusters showing greater deviance. These findings support the link between metabolic dysregulation and hippocampal function even in nonclinical samples.
Collapse
Affiliation(s)
- Shalaila S. Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alison Myoraku
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kathleen Watson
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
| | - Thalia Robakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fahim Abbasi
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Natalie Rasgon
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
245
|
Gao SJ, Liu DQ, Li DY, Sun J, Zhang LQ, Wu JY, Song FH, Zhou YQ, Mei W. Adipocytokines: Emerging therapeutic targets for pain management. Biomed Pharmacother 2022; 149:112813. [PMID: 35279597 DOI: 10.1016/j.biopha.2022.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Although pain has lower mortality rates than cancer, diabetes and stroke, pain is a predominate source of distress and disability. However, the management of pain remains an enormous problem. Many drugs used to pain treatment have more or less side effects. Therefore, the development of novel therapeutic target is critical for the treatment of pain. Notably, studies have shown that adipocytokines have a dual role in pain. Growing shreds of evidence shows that the levels of adipocytokines are upregulated or downregulated in the development of pain. In addition, substantial evidence indicates that regulation of adipocytokines levels in models of pain attenuates or promotes pain behaviors. In this review, we summarized and discussed the effect of adipocytokines in pain. These evidence indicates that adipocytokines attenuate or promote pain behaviors through interacting with their receptors, activating serotonin pathway, interacting with μ-opioid receptor, activating microglia, infiltrating macrophage and so on. Overall, adipocytokines have some potential in treating pain, but the underlying mechanisms remain unclear and need to be further studied.
Collapse
Affiliation(s)
- Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
246
|
Lee CH, Kang GM, Kim MS. Mechanisms of Weight Control by Primary Cilia. Mol Cells 2022; 45:169-176. [PMID: 35387896 PMCID: PMC9001153 DOI: 10.14348/molcells.2022.2046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.
Collapse
Affiliation(s)
- Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Gil Myoung Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
247
|
Chen L, Wu H, Li Y, Feng X, Zhu S, Xie K, Wu X, Sun Z, Shu G, Wang S, Gao P, Zhu X, Zhu C, Jiang Q, Wang L. Corticotropin-releasing factor receptor type 2 in the midbrain critically contributes to the hedonic feeding behavior of mice under heat stress. Biochem Biophys Res Commun 2022; 602:77-83. [DOI: 10.1016/j.bbrc.2022.02.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022]
|
248
|
Kim MS. The neural basis of weight control and obesity. Exp Mol Med 2022; 54:347-348. [PMID: 35474337 PMCID: PMC9076921 DOI: 10.1038/s12276-022-00759-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Appetite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
249
|
Singh P, Anjum S, Srivastava RK, Tsutsui K, Krishna A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front Neuroendocrinol 2022; 65:100979. [PMID: 35122778 DOI: 10.1016/j.yfrne.2022.100979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Shabana Anjum
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Kagamiyama 1-7-1, Higashi-Hiroshima University 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
250
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|