201
|
Hudson R. Coupling the magnetic and heat dissipative properties of Fe3O4 particles to enable applications in catalysis, drug delivery, tissue destruction and remote biological interfacing. RSC Adv 2016. [DOI: 10.1039/c5ra22260e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As interest in nanomaterials continues to grow, and the scope of their applications widens, one subset of materials has set itself apart: magnetic nanoparticles (MNPs).
Collapse
Affiliation(s)
- R. Hudson
- Department of Chemistry
- Colby College
- Waterville
- USA
| |
Collapse
|
202
|
Hoffman P, Crutch S. Knowing what and where: TMS evidence for the dual neural basis of geographical knowledge. Cortex 2015; 75:151-159. [PMID: 26783734 PMCID: PMC4762246 DOI: 10.1016/j.cortex.2015.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/09/2015] [Accepted: 11/26/2015] [Indexed: 11/28/2022]
Abstract
All animals acquire knowledge about the topography of their immediate environment through direct exploration. Uniquely, humans also acquire geographical knowledge indirectly through exposure to maps and verbal information, resulting in a rich database of global geographical knowledge. We used transcranial magnetic stimulation to investigate the structure and neural basis of this critical but poorly understood component of semantic knowledge. Participants completed tests of geographical knowledge that probed either information about spatial locations (e.g., France borders Spain) or non-spatial taxonomic information (e.g., France is a country). TMS applied to the anterior temporal lobe, a region that codes conceptual knowledge for words and objects, had a general disruptive effect on the geographical tasks. In contrast, stimulation of the intraparietal sulcus (IPS), a region involved in the coding of spatial and numerical information, had a highly selective effect on spatial geographical decisions but no effect on taxonomic judgements. Our results establish that geographical concepts lie at the intersection of two distinct neural representation systems, and provide insights into how the interaction of these systems shape our understanding of the world.
Collapse
Affiliation(s)
- Paul Hoffman
- Neuroscience and Aphasia Research Unit (NARU), University of Manchester, UK; Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, UK.
| | - Sebastian Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
203
|
Abstract
Advances in biophysics, biology, functional genomics, neuroscience, psychology, psychoneuroimmunology, and other fields suggest the existence of a subtle system of "biofield" interactions that organize biological processes from the subatomic, atomic, molecular, cellular, and organismic to the interpersonal and cosmic levels. Biofield interactions may bring about regulation of biochemical, cellular, and neurological processes through means related to electromagnetism, quantum fields, and perhaps other means of modulating biological activity and information flow. The biofield paradigm, in contrast to a reductionist, chemistry-centered viewpoint, emphasizes the informational content of biological processes; biofield interactions are thought to operate in part via low-energy or "subtle" processes such as weak, nonthermal electromagnetic fields (EMFs) or processes potentially related to consciousness and nonlocality. Biofield interactions may also operate through or be reflected in more well-understood informational processes found in electroencephalographic (EEG) and electrocardiographic (ECG) data. Recent advances have led to the development of a wide variety of therapeutic and diagnostic biofield devices, defined as physical instruments best understood from the viewpoint of a biofield paradigm. Here, we provide a broad overview of biofield devices, with emphasis on those devices for which solid, peer-reviewed evidence exists. A subset of these devices, such as those based upon EEG- and ECG-based heart rate variability, function via mechanisms that are well understood and are widely employed in clinical settings. Other device modalities, such a gas discharge visualization and biophoton emission, appear to operate through incompletely understood mechanisms and have unclear clinical significance. Device modes of operation include EMF-light, EMF-heat, EMF-nonthermal, electrical current, vibration and sound, physical and mechanical, intentionality and nonlocality, gas and plasma, and other (mode of operation not well-understood). Methodological issues in device development and interfaces for future interdisciplinary research are discussed. Devices play prominent cultural and scientific roles in our society, and it is likely that device technologies will be one of the most influential access points for the furthering of biofield research and the dissemination of biofield concepts. This developing field of study presents new areas of research that have many important implications for both basic science and clinical medicine.
Collapse
Affiliation(s)
- David Muehsam
- Visual Institute of Developmental Arts and Sciences, National Institute of Biostructures and Biosystems, Bologna, Italy; and Consciousness and Healing Initiative, San Diego, California (Dr Muehsam)
| | - Gaétan Chevalier
- Developmental and Cell Biology Department, University of California Irvine, Irvine (Dr Chevalier)
| | - Tiffany Barsotti
- California Institute for Human Science, Encinitas, California (Ms Barsotti)
| | - Blake T Gurfein
- Osher Center for Integrative Medicine, University of California, San Francisco, (Dr Gurfein)
| |
Collapse
|
204
|
Long X, Ye J, Zhao D, Zhang SJ. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci Bull (Beijing) 2015; 60:2107-2119. [PMID: 26740890 PMCID: PMC4692962 DOI: 10.1007/s11434-015-0902-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 01/15/2023]
Abstract
Current neuromodulation techniques such as optogenetics and deep-brain stimulation are transforming basic and translational neuroscience. These two neuromodulation approaches are, however, invasive since surgical implantation of an optical fiber or wire electrode is required. Here, we have invented a non-invasive magnetogenetics that combines the genetic targeting of a magnetoreceptor with remote magnetic stimulation. The non-invasive activation of neurons was achieved by neuronal expression of an exogenous magnetoreceptor, an iron-sulfur cluster assembly protein 1 (Isca1). In HEK-293 cells and cultured hippocampal neurons expressing this magnetoreceptor, application of an external magnetic field resulted in membrane depolarization and calcium influx in a reproducible and reversible manner, as indicated by the ultrasensitive fluorescent calcium indicator GCaMP6s. Moreover, the magnetogenetic control of neuronal activity might be dependent on the direction of the magnetic field and exhibits on-response and off-response patterns for the external magnetic field applied. The activation of this magnetoreceptor can depolarize neurons and elicit trains of action potentials, which can be triggered repetitively with a remote magnetic field in whole-cell patch-clamp recording. In transgenic Caenorhabditis elegans expressing this magnetoreceptor in myo-3-specific muscle cells or mec-4-specific neurons, application of the external magnetic field triggered muscle contraction and withdrawal behavior of the worms, indicative of magnet-dependent activation of muscle cells and touch receptor neurons, respectively. The advantages of magnetogenetics over optogenetics are its exclusive non-invasive, deep penetration, long-term continuous dosing, unlimited accessibility, spatial uniformity and relative safety. Like optogenetics that has gone through decade-long improvements, magnetogenetics, with continuous modification and maturation, will reshape the current landscape of neuromodulation toolboxes and will have a broad range of applications to basic and translational neuroscience as well as other biological sciences. We envision a new age of magnetogenetics is coming.
Collapse
Affiliation(s)
- Xiaoyang Long
- />School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Jing Ye
- />School of Medicine, Tsinghua University, Beijing, 100084 China
- />IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| | - Di Zhao
- />School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Sheng-Jia Zhang
- />School of Life Sciences, Tsinghua University, Beijing, 100084 China
- />IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
- />Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
205
|
Binney RJ, Ralph MAL. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network. Neuropsychologia 2015; 76:170-81. [PMID: 25448851 PMCID: PMC4582802 DOI: 10.1016/j.neuropsychologia.2014.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 01/08/2023]
Abstract
By developing and applying a method which combines fMRI and rTMS to explore semantic cognition, we identified both intrinsic (related to automatic changes in task/stimulus-related processing) and induced (i.e., associated with the effect of TMS) activation changes in the core, functionally-coupled network elements. Low-frequency rTMS applied to the human anterior temporal lobe (ATL) induced: (a) a local suppression at the site of stimulation; (b) remote suppression in three other ipsilateral semantic regions; and (c) a compensatory up-regulation in the contralateral ATL. Further examination of activity over time revealed that the compensatory changes appear to be a modulation of intrinsic variations that occur within the unperturbed network. As well as providing insights into the dynamic collaboration between core regions, the ability to observe intrinsic and induced changes in vivo may provide an important opportunity to understand the key mechanisms that underpin recovery of function in neurological patient groups.
Collapse
Affiliation(s)
- Richard J Binney
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, UK; Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, UK.
| |
Collapse
|
206
|
Hartwigsen G. The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain. BRAIN AND LANGUAGE 2015; 148:81-94. [PMID: 25468733 DOI: 10.1016/j.bandl.2014.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
With the advent of non-invasive brain stimulation (NIBS), a new decade in the study of language has started. NIBS allows for testing the functional relevance of language-related brain activation and enables the researcher to investigate how neural activation changes in response to focal perturbations. This review focuses on the application of NIBS in the healthy brain. First, some basic mechanisms will be introduced and the prerequisites for carrying out NIBS studies of language are addressed. The next section outlines how NIBS can be used to characterize the contribution of the stimulated area to a task. In this context, novel approaches such as multifocal transcranial magnetic stimulation and the condition-and-perturb approach are discussed. The third part addresses the combination of NIBS and neuroimaging in the study of plasticity. These approaches are particularly suited to investigate short-term reorganization in the healthy brain and may inform models of language recovery in post-stroke aphasia.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Department of Psychology, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|
207
|
Lei X, Wu T, Valdes-Sosa PA. Incorporating priors for EEG source imaging and connectivity analysis. Front Neurosci 2015; 9:284. [PMID: 26347599 PMCID: PMC4539512 DOI: 10.3389/fnins.2015.00284] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023] Open
Abstract
Electroencephalography source imaging (ESI) is a useful technique to localize the generators from a given scalp electric measurement and to investigate the temporal dynamics of the large-scale neural circuits. By introducing reasonable priors from other modalities, ESI reveals the most probable sources and communication structures at every moment in time. Here, we review the available priors from such techniques as magnetic resonance imaging (MRI), functional MRI (fMRI), and positron emission tomography (PET). The modality's specific contribution is analyzed from the perspective of source reconstruction. For spatial priors, EEG-correlated fMRI, temporally coherent networks (TCNs) and resting-state fMRI are systematically introduced in the ESI. Moreover, the fiber tracking (diffusion tensor imaging, DTI) and neuro-stimulation techniques (transcranial magnetic stimulation, TMS) are also introduced as the potential priors, which can help to draw inferences about the neuroelectric connectivity in the source space. We conclude that combining EEG source imaging with other complementary modalities is a promising approach toward the study of brain networks in cognitive and clinical neurosciences.
Collapse
Affiliation(s)
- Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University Chongqing, China ; Key Laboratory of Cognition and Personality, Ministry of Education Chongqing, China
| | - Taoyu Wu
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University Chongqing, China ; Key Laboratory of Cognition and Personality, Ministry of Education Chongqing, China
| | - Pedro A Valdes-Sosa
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China ; Cuban Neuroscience Center Cubanacan, Playa, Cuba
| |
Collapse
|
208
|
Hartwigsen G, Bergmann TO, Herz DM, Angstmann S, Karabanov A, Raffin E, Thielscher A, Siebner HR. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive level. PROGRESS IN BRAIN RESEARCH 2015; 222:261-87. [PMID: 26541384 DOI: 10.1016/bs.pbr.2015.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can be used to construct causal network models. These models can identify spatiotemporal changes in effective connectivity during distinct cognitive states and allow for examining how effective connectivity is shaped by NTBS. (iii) Modeling the NTBS effects based on neuroimaging can be complemented by behavior-based cognitive models that exploit variations in task performance. For instance, NTBS-induced changes in response speed and accuracy can be explicitly modeled in a cognitive framework accounting for the speed-accuracy trade-off. This enables to dissociate between behavioral NTBS effects that emerge in the context of rapid automatic responses or in the context of slow deliberate responses. We argue that these complementary modeling approaches facilitate the use of NTBS as a means of dissecting the causal architecture of cognitive systems of the human brain.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany.
| | - Til Ole Bergmann
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany
| | - Damian Marc Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Steffen Angstmann
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Anke Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Estelle Raffin
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Grenoble Institute of Neuroscience, Research Centre U836 Inserm-UJF, Team 11 Brain Function & Neuromodulation, Grenoble, France
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Biomedical Engineering Section, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|
209
|
Cognitive Impairment After Sleep Deprivation Rescued by Transcranial Magnetic Stimulation Application in Octodon degus. Neurotox Res 2015; 28:361-71. [PMID: 26194615 DOI: 10.1007/s12640-015-9544-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Sleep is indispensable for maintaining regular daily life activities and is of fundamental physiological importance for cognitive performance. Sleep deprivation (SD) may affect learning capacity and the ability to form new memories, particularly with regard to hippocampus-dependent tasks. Transcranial magnetic stimulation (TMS) is a non-invasive procedure of electromagnetic induction that generates electric currents, activating nearby nerve cells in the stimulated cortical area. Several studies have looked into the potential therapeutic use of TMS. The present study was designed to evaluate how TMS could improve learning and memory functions following SD in Octodon degus. Thirty juvenile (18 months old) females were divided into three groups (control, acute, and chronic TMS treatment-with and without SD). TMS-treated groups were placed in plastic cylindrical cages designed to keep them immobile, while receiving head magnetic stimulation. SD was achieved by gently handling the animals to keep them awake during the night. Behavioral tests included radial arm maze (RAM), Barnes maze (BM), and novel object recognition. When TMS treatment was applied over several days, there was significant improvement of cognitive performance after SD, with no side effects. A single TMS session reduced the number of errors for the RAM test and improved latency and reduced errors for the BM test, which both evaluate spatial memory. Moreover, chronic TMS treatment brings about a significant improvement in both spatial and working memories.
Collapse
|
210
|
Jackson RL, Lambon Ralph MA, Pobric G. The Timing of Anterior Temporal Lobe Involvement in Semantic Processing. J Cogn Neurosci 2015; 27:1388-96. [DOI: 10.1162/jocn_a_00788] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Despite indications that regions within the anterior temporal lobe (ATL) might make a crucial contribution to pan-modal semantic representation, to date there have been no investigations of when during semantic processing the ATL plays a critical role. To test the timing of the ATL involvement in semantic processing, we studied the effect of double-pulse TMS on behavioral responses in semantic and difficulty-matched control tasks. Chronometric TMS was delivered over the left ATL (10 mm from the tip of the temporal pole along the middle temporal gyrus). During each trial, two pulses of TMS (40 msec apart) were delivered either at baseline (before stimulus presentation) or at one of the experimental time points 100, 250, 400, and 800 msec poststimulus onset. A significant disruption to performance was identified from 400 msec on the semantic task but not on the control assessment. Our results not only reinforce the key role of the left ATL in semantic representation but also indicate that its contribution is especially important around 400 msec poststimulus onset. Together, these facts suggest that the ATL may be one of the neural sources of the N400 ERP component.
Collapse
|
211
|
Yi G, Wang J, Tsang KM, Wei X, Deng B, Han C. Spike-frequency adaptation of a two-compartment neuron modulated by extracellular electric fields. BIOLOGICAL CYBERNETICS 2015; 109:287-306. [PMID: 25652337 DOI: 10.1007/s00422-014-0642-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Spike-frequency adaptation has been shown to play an important role in neural coding. Based on a reduced two-compartment model, here we investigate how two common adaptation currents, i.e., voltage-sensitive potassium current (I(M)) and calcium-sensitive potassium current (I(AHP)), modulate neuronal responses to extracellular electric fields. It is shown that two adaptation mechanisms lead to distinct effects on the dynamical behavior of the neuron to electric fields. These effects depend on a neuronal morphological parameter that characterizes the ratio of soma area to total membrane area and internal coupling conductance. In the case of I(AHP) current, changing the morphological parameter switches spike initiation dynamics between saddle-node on invariant cycle bifurcation and supercritical Hopf bifurcation, whereas it only switches between subcritical and supercritical Hopf bifurcations for I(M) current. Unlike the morphological parameter, internal coupling conductance is unable to alter the bifurcation scenario for both adaptation currents. We also find that the electric field threshold for triggering neuronal steady-state firing is determined by two parameters, especially by the morphological parameter. Furthermore, the neuron with I(AHP) current generates mixed-mode oscillations through the canard phenomenon for some small values of the morphological parameter. All these results suggest that morphological properties play a critical role in field-induced effects on neuronal dynamics, which could qualitatively alter the outcome of adaptation by modulating internal current between soma and dendrite. The findings are readily testable in experiments, which could help to reveal the mechanisms underlying how the neuron responds to electric field stimulus.
Collapse
Affiliation(s)
- Guosheng Yi
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072, China
| | | | | | | | | | | |
Collapse
|
212
|
Burle B, Spieser L, Roger C, Casini L, Hasbroucq T, Vidal F. Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view. Int J Psychophysiol 2015; 97:210-20. [PMID: 25979156 PMCID: PMC4548479 DOI: 10.1016/j.ijpsycho.2015.05.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/30/2022]
Abstract
Among the different brain imaging techniques, electroencephalography (EEG) is classically considered as having an excellent temporal resolution, but a poor spatial one. Here, we argue that the actual temporal resolution of conventional (scalp potentials) EEG is overestimated, and that volume conduction, the main cause of the poor spatial resolution of EEG, also distorts the recovered time course of the underlying sources at scalp level, and hence degrades the actual temporal resolution of EEG. While Current Source Density (CSD) estimates, through the Surface Laplacian (SL) computation, are well known to dramatically reduce volume conduction effects and hence improve EEG spatial resolution, its positive impact on EEG temporal resolution is much less recognized. In two simulation studies, we first show how volume conduction and reference electrodes distort the scalp potential time course, and how SL transform provides a much better spatio-temporal description. We then exemplify similar effects on two empirical datasets. We show how the time courses of the scalp potentials mis-estimate the latencies of the relevant brain events and that CSD provides a much richer, and much more accurate, view of the spatio-temporal dynamics of brain activity. We investigated the impact of volume conduction on the temporal resolution of EEG. Simulations revealed a degraded temporal resolution of scalp potential data. Current Source Density allows to nicely recover the underlying time courses. These effects are shown on two empirical datasets. The importance of deblurring methods, such as CSD, is discussed.
Collapse
Affiliation(s)
- Borís Burle
- Aix-Marseille Université, CNRS, LNC UMR 7291, 13331 Marseille, France.
| | - Laure Spieser
- Aix-Marseille Université, CNRS, LNC UMR 7291, 13331 Marseille, France
| | | | - Laurence Casini
- Aix-Marseille Université, CNRS, LNC UMR 7291, 13331 Marseille, France
| | - Thierry Hasbroucq
- Aix-Marseille Université, CNRS, LNC UMR 7291, 13331 Marseille, France
| | - Franck Vidal
- Aix-Marseille Université, CNRS, LNC UMR 7291, 13331 Marseille, France
| |
Collapse
|
213
|
Moradi Chameh H, Janahmadi M, Semnanian S, Shojaei A, Mirnajafi-Zadeh J. Effect of low frequency repetitive transcranial magnetic stimulation on kindling-induced changes in electrophysiological properties of rat CA1 pyramidal neurons. Brain Res 2015; 1606:34-43. [DOI: 10.1016/j.brainres.2015.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/29/2022]
|
214
|
The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception. J Neurosci 2015; 35:731-8. [PMID: 25589766 DOI: 10.1523/jneurosci.3733-14.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Symmetry is an important cue in face and object perception. Here we used fMRI-guided transcranial magnetic stimulation (TMS) to shed light on the role of the occipital face area (OFA), a key region in face processing, and the lateral occipital (LO) cortex, a key area in object processing, in symmetry detection. In the first experiment, we applied TMS over the rightOFA, its left homolog (leftOFA), rightLO, and vertex (baseline) while participants were discriminating between symmetric and asymmetric dot patterns. Stimulation of rightOFA and rightLO impaired performance, causally implicating these two regions in detection of symmetry in low-level dot configurations. TMS over rightLO but not rightOFA also significantly impaired detection of nonsymmetric shapes defined by collinear Gabor patches, demonstrating that rightOFA responds to symmetry but not to all cues mediating figure-ground segregation. The second experiment showed a causal role for rightOFA but not rightLO in facial symmetry detection. Overall, our results demonstrate that both the rightOFA and rightLO are sensitive to symmetry in dot patterns, whereas only rightOFA is causally involved in facial symmetry detection.
Collapse
|
215
|
The Neuroprotective Mechanism of Low-Frequency rTMS on Nigral Dopaminergic Neurons of Parkinson's Disease Model Mice. PARKINSONS DISEASE 2015; 2015:564095. [PMID: 25883828 PMCID: PMC4390107 DOI: 10.1155/2015/564095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/24/2015] [Accepted: 01/24/2015] [Indexed: 11/17/2022]
Abstract
Background. Parkinson's disease is a neurodegenerative disease in elder people, pathophysiologic basis of which is the severe deficiency of dopamine in the striatum. The purpose of the present study was to evaluate the neuroprotective effect of low-frequency rTMS on Parkinson's disease in model mice. Methods. The effects of low-frequency rTMS on the motor function, cortex excitability, neurochemistry, and neurohistopathology of MPTP-induced Parkinson's disease mice were investigated through behavioral detection, electrophysiologic technique, high performance liquid chromatography-electrochemical detection, immunohistochemical staining, and western blot. Results. Low-frequency rTMS could improve the motor coordination impairment of Parkinson's disease mice: the resting motor threshold significantly decreased in the Parkinson's disease mice; the degeneration of nigral dopaminergic neuron and the expression of tyrosine hydroxylase were significantly improved by low-frequency rTMS; moreover, the expressions of brain derived neurotrophic factor and glial cell line derived neurotrophic factor were also improved by low-frequency rTMS. Conclusions. Low-frequency rTMS had a neuroprotective effect on the nigral dopaminergic neuron which might be due to the improved expressions of brain derived neurotrophic factor and glial cell line-derived neurotrophic factor. The present study provided a theoretical basis for the application of low-frequency rTMS in the clinical treatment and recovery of Parkinson's disease.
Collapse
|
216
|
Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. Wireless magnetothermal deep brain stimulation. Science 2015; 347:1477-80. [DOI: 10.1126/science.1261821] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
217
|
Shinshi M, Yanagisawa T, Hirata M, Goto T, Sugata H, Araki T, Okamura Y, Hasegawa Y, Ihara AS, Yorifuji S. Temporospatial identification of language-related cortical function by a combination of transcranial magnetic stimulation and magnetoencephalography. Brain Behav 2015; 5:e00317. [PMID: 25642395 PMCID: PMC4309891 DOI: 10.1002/brb3.317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/15/2014] [Accepted: 12/20/2014] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Identification of language-related cortical functions can be carried out noninvasively by transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), which allow for lesion-based interrogation and global temporospatial investigation of cortices, respectively. Combining these two modalities can improve the accuracy of the identification, but the relationships between them remain unclear. We compared TMS and MEG responses during the same language task to elucidate their temporospatial relationships and used the results to develop a novel method to identify language-related cortical functions. METHODS Twelve healthy right-handed volunteers performed a picture-naming task during TMS and MEG. TMS was applied on the right or left inferior frontal gyrus (IFG) at five time points, and the reaction times (RTs) for naming the pictures were measured. The temporospatial oscillatory changes measured by MEG during the same task were then compared with the TMS results. RESULTS Transcranial magnetic stimulation of the left IFG significantly lengthened RTs at 300 and 375 msec after picture presentation, whereas TMS of the right IFG did not change RTs significantly. Interestingly, the stimulus time point at which RTs increased significantly for each individual was correlated with when the low gamma event-related desynchronizations (ERDs) peaked in the left IFG. Moreover, combining the results of TMS and MEG improved the detection rate for identifying the laterality of language function. CONCLUSIONS These results suggest that the low gamma ERDs measured by MEG strongly relate to the language function of picture naming in the left IFG. Finally, we propose a novel method to identify language-related cortical functions by combining TMS and MEG.
Collapse
Affiliation(s)
- Misako Shinshi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine Osaka, Japan
| | - Takufumi Yanagisawa
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine Osaka, Japan ; Department of Neurosurgery, Osaka University Graduate School of Medicine Suita, Japan
| | - Masayuki Hirata
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine Osaka, Japan ; Department of Neurosurgery, Osaka University Graduate School of Medicine Suita, Japan
| | - Tetsu Goto
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine Osaka, Japan ; Department of Neurosurgery, Osaka University Graduate School of Medicine Suita, Japan
| | - Hisato Sugata
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine Osaka, Japan ; Department of Neurosurgery, Osaka University Graduate School of Medicine Suita, Japan
| | - Toshihiko Araki
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine Osaka, Japan
| | - Yumiko Okamura
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine Osaka, Japan
| | - Yuka Hasegawa
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine Osaka, Japan
| | - Aya S Ihara
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University Kobe, Japan
| | - Shiro Yorifuji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine Osaka, Japan
| |
Collapse
|
218
|
Schaal NK, Williamson VJ, Kelly M, Muggleton NG, Pollok B, Krause V, Banissy MJ. A causal involvement of the left supramarginal gyrus during the retention of musical pitches. Cortex 2015; 64:310-7. [PMID: 25577719 DOI: 10.1016/j.cortex.2014.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 11/17/2022]
Affiliation(s)
- Nora K Schaal
- Department of Experimental Psychology, Heinrich-Heine-University, 40225 Düsseldorf, Germany; Department of Psychology, Goldsmiths, University of London, SE14 6NW, London, UK.
| | - Victoria J Williamson
- Lucerne University of Applied Sciences and Arts, 6003 Lucerne, Switzerland; Department of Music, University of Sheffield, S3 7RA, Sheffield, UK
| | - Maria Kelly
- Department of Psychology, Goldsmiths, University of London, SE14 6NW, London, UK
| | - Neil G Muggleton
- Department of Psychology, Goldsmiths, University of London, SE14 6NW, London, UK; Brain and Behavior Laboratory, Institute of Cognitive Neuroscience, National Central University, Jhongli 320, Taiwan; Institute of Cognitive Neuroscience, University College London, London, UK
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael J Banissy
- Department of Psychology, Goldsmiths, University of London, SE14 6NW, London, UK; Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
219
|
Duecker F, Sack AT. Rethinking the role of sham TMS. Front Psychol 2015; 6:210. [PMID: 25767458 PMCID: PMC4341423 DOI: 10.3389/fpsyg.2015.00210] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/11/2015] [Indexed: 01/30/2023] Open
Abstract
Sham transcranial magnetic stimulation (TMS) approaches are widely used in basic and clinical research to ensure that observed effects are due to the intended neural manipulation instead of being caused by various possible side effects. We here critically discuss several methodological aspects of sham TMS. Importantly, we propose to carefully distinguish between the placebo versus sensory side effects of TMS. In line with this conceptual distinction, we describe current limitations of sham TMS approaches in the context of placebo effects and blinding success, followed by a short review of our own work demonstrating that the sensory side effects of sham TMS are not unspecific as often falsely assumed. Lastly, we argue that sham TMS approaches are inherently insufficient as full-fledged control conditions as they fail to demonstrate the specificity of TMS effects to a particular brain area or time point of stimulation. Sham TMS should therefore only complement alternative control strategies in TMS research.
Collapse
Affiliation(s)
- Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University , Maastricht, Netherlands ; Maastricht Brain Imaging Center, Maastricht University , Maastricht, Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University , Maastricht, Netherlands ; Maastricht Brain Imaging Center, Maastricht University , Maastricht, Netherlands
| |
Collapse
|
220
|
Andrew D, Yielder P, Murphy B. Do pursuit movement tasks lead to differential changes in early somatosensory evoked potentials related to motor learning compared with typing tasks? J Neurophysiol 2015; 113:1156-64. [DOI: 10.1152/jn.00713.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central nervous system (CNS) plasticity is essential for development; however, recent research has demonstrated its role in pathology, particularly following overuse and repetition. Previous studies investigating changes in sensorimotor integration (SMI) have used relatively simple paradigms resulting in minimal changes in neural activity, as determined through the use of somatosensory evoked potentials (SEPs). This study sought to utilize complex tasks and compare separate motor paradigms to determine which one best facilitates long-term learning. Spinal, brainstem, and cortical SEPs were recorded following median nerve stimulation at the wrist pre- and postinterventions. Eighteen participants performed the same paradigms, a control condition of 10 min of mental recitation and two interventions, one consisting of 10 min of tracing and the other 10 min of repetitive typing. Significant increases in the N13, N20, P25, and N30 SEP peaks were seen for both interventions. A significant decrease in the N24 SEP peak was observed for both interventions. Significant improvements in accuracy were seen for both interventions postacquisition but only for tracing during retention. The changes seen following motor learning were congruent with those associated with long-term learning, which was also reflected by significant increases in accuracy during retention. Tracing or the pursuit movement paradigm was shown to be a more effective learning tool. The identification of a task that is sufficiently novel and complex, leading to robust changes in SEP peaks, indicates a task that can be utilized in future work to study clinical populations and the effect of experimental interventions on SMI.
Collapse
Affiliation(s)
- Danielle Andrew
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Paul Yielder
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Bernadette Murphy
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
221
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1952] [Impact Index Per Article: 195.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
Affiliation(s)
- P M Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - D Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - R Chen
- Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Z Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R Di Iorio
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.
| | - V Di Lazzaro
- Department of Neurology, University Campus Bio-medico, Rome, Italy
| | - F Ferreri
- Department of Neurology, University Campus Bio-medico, Rome, Italy; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - M S George
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - H Matsumoto
- Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - C Miniussi
- Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M A Nitsche
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - A Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - S Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - J C Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - H R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Y Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - V Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
222
|
Olk B, Peschke C, Hilgetag CC. Attention and control of manual responses in cognitive conflict: Findings from TMS perturbation studies. Neuropsychologia 2015; 74:7-20. [PMID: 25661841 DOI: 10.1016/j.neuropsychologia.2015.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022]
Abstract
The article reviews studies that have used the perturbation approach of Transcranial Magnetic Stimulation (TMS) to assess the control of attention and manual response selection in conflict situations as elicited in three established paradigms: the Simon paradigm, the Flanker paradigm, and the Stroop paradigm. After describing the experimental conflict paradigms and briefly introducing TMS we review evidence for the involvement of different frontal and parietal cortical regions in the control of attention and response selection. For example, areas such as the frontal eye field (FEF) appear to significantly contribute to the encoding of spatial attributes of stimuli and areas of the parietal cortex, such as angular gyrus (AG), mediate the allocation of spatial attention and orienting. The dorsal medial frontal cortex (dMFC), supramarginal gyrus (SMG) and pre-supplementary motor area (pre-SMA) appear to be more related to response-related aspects of the conflicts (i.e., enhancement of signals related to correct movements, transformation of spatial information action codes, resolution of response selection conflicts, respectively). The reviewed studies illustrate crucial benefits but also limitations of TMS as well as the value of the combination of TMS with other methods. We suggest topics and approaches for future studies.
Collapse
Affiliation(s)
- Bettina Olk
- Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Claudia Peschke
- Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany; Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, W36, 20246 Hamburg, Germany
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, W36, 20246 Hamburg, Germany; Department of Health Sciences, Boston University, 635 Commonwealth Ave., MA 02215, USA
| |
Collapse
|
223
|
Pattamadilok C, Bulnes LC, Devlin JT, Bourguignon M, Morais J, Goldman S, Kolinsky R. How Early Does the Brain Distinguish between Regular Words, Irregular Words, and Pseudowords during the Reading Process? Evidence from Neurochronometric TMS. J Cogn Neurosci 2015; 27:1259-74. [PMID: 25603024 DOI: 10.1162/jocn_a_00779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive theories on reading propose that the characteristics of written stimuli determine how they are processed in the brain. However, whether the brain distinguishes between regular words, irregular words, and pseudowords already at an early stage of the reading process is still subject to debate. Here we used chronometric TMS to address this issue. During the first 140 msec of regular word, irregular word, and pseudoword reading, TMS was used to disrupt the function of the ventral occipitotemporal, posterior middle temporal, and supramarginal gyri, which are key areas involved in orthographic, semantic, and phonological processing, respectively. Early TMS stimulation delivered on posterior middle temporal and supramarginal gyri affected regular and irregular word, but not pseudoword, reading. In contrast, ventral occipitotemporal disruption affected both word and pseudoword reading. We thus found evidence for an early distinction between word and pseudoword processing in the semantic and phonological systems, but not in the orthographic system.
Collapse
|
224
|
Cohen Kadosh R. Modulating and enhancing cognition using brain stimulation: Science and fiction. JOURNAL OF COGNITIVE PSYCHOLOGY 2015. [DOI: 10.1080/20445911.2014.996569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
225
|
Transcranial magnetic stimulation dissociates prefrontal and parietal contributions to task preparation. J Neurosci 2015; 34:12481-9. [PMID: 25209286 DOI: 10.1523/jneurosci.4931-13.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive control is thought to rely upon a set of distributed brain regions within frontoparietal cortex, but the functional contributions of these regions remain elusive. Here, we investigated the disruptive effects of transcranial magnetic stimulation (TMS) over the human prefrontal and parietal cortices in task preparation at different abstraction levels. While participants completed a task-switching paradigm that assessed the reconfiguration of task goals and response sets independently, TMS was applied over the left inferior frontal junction (IFJ) and over the left intraparietal sulcus (IPS) during task preparation. In Experiment 1, TMS over the IFJ caused interference with the updating of task goals, while leaving the updating of response sets unaffected. In Experiment 2, TMS over the IPS created the opposite pattern of results, perturbing only the ability to update response sets, but not task goals. Experiment 3 furthermore revealed that TMS over the IPS interfered with task goal updating when the pulses are delivered at a later point in time during preparation. This dissociation of abstract and action-related components not only reveals distinct cognitive control processes during task preparation, but also sheds new light on how prefrontal and parietal areas might work in concert to support flexible and goal-oriented control of behavior.
Collapse
|
226
|
Chiarelli AM, Maclin EL, Low KA, Fabiani M, Gratton G. Comparison of procedures for co-registering scalp-recording locations to anatomical magnetic resonance images. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:016009. [PMID: 25574993 PMCID: PMC4288136 DOI: 10.1117/1.jbo.20.1.016009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/01/2014] [Indexed: 05/09/2023]
Abstract
Functional brain imaging techniques require accurate co-registration to anatomical images to precisely identify the areas being activated. Many of them, including diffuse optical imaging, rely on scalp-placed recording sensors. Fiducial alignment is an effective and rapid method for co-registering scalp sensors onto anatomy, but is quite sensitive to placement errors. Surface Euclidean distance minimization using the Levenberq-Marquart algorithm (LMA) has been shown to be very accurate when based on good initial guesses, such as precise fiducial alignment, but its accuracy drops substantially with fiducial placement errors. Here we compared fiducial and LMA co-registration methods to a new procedure, the iterative closest point-to-plane (ICP2P) method, using simulated and real data. An advantage of ICP2P is that it eliminates the need to identify fiducials and is, therefore, entirely automatic. We show that, typically, ICP2P is as accurate as fiducial-based LMA, but is less sensitive to initial placement errors. However, ICP2P is more sensitive to spatially correlated noise in the description of the head surface. Hence, the best technique for co-registration depends on the type of data available to describe the scalp and the surface defined by the recording sensors. Under optimal conditions, co-registration error using surface-fitting procedures can be reduced to ~ 3 mm.
Collapse
Affiliation(s)
- Antonio M. Chiarelli
- University of Illinois, Beckman Institute, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Edward L. Maclin
- University of Illinois, Beckman Institute, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kathy A. Low
- University of Illinois, Beckman Institute, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Monica Fabiani
- University of Illinois, Beckman Institute, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- University of Illinois, Psychology Department, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Gabriele Gratton
- University of Illinois, Beckman Institute, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- University of Illinois, Psychology Department, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
227
|
Abstract
Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions.
Collapse
Affiliation(s)
- Gregor Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
228
|
Abstract
Cardiac muscular contraction of the neurogenic heart that could be excited by pulsed magnetic stimulation (PMS) was investigated using preparation of the isolated crayfish heart. When a figure-eight magnetic coil was set over the isolated heart, cardiac contraction induced by a single PMS was not observed. Cardiac arrest occurred immediately after repetitive PMS and persisted for dozens of seconds depending on the number of stimuli. We concluded that PMS caused neuronal modulation in the neuronal network in the cardiac ganglion.
Collapse
Affiliation(s)
- Atsushi Chiba
- a Department of Physiology , Kinki University , Osaka-Sayama, Japan
| | - Masahiko Inase
- a Department of Physiology , Kinki University , Osaka-Sayama, Japan
| |
Collapse
|
229
|
Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F. TMS and drugs revisited 2014. Clin Neurophysiol 2014; 126:1847-68. [PMID: 25534482 DOI: 10.1016/j.clinph.2014.08.028] [Citation(s) in RCA: 509] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/03/2014] [Accepted: 08/24/2014] [Indexed: 12/18/2022]
Abstract
The combination of pharmacology and transcranial magnetic stimulation to study the effects of drugs on TMS-evoked EMG responses (pharmaco-TMS-EMG) has considerably improved our understanding of the effects of TMS on the human brain. Ten years have elapsed since an influential review on this topic has been published in this journal (Ziemann, 2004). Since then, several major developments have taken place: TMS has been combined with EEG to measure TMS evoked responses directly from brain activity rather than by motor evoked potentials in a muscle, and pharmacological characterization of the TMS-evoked EEG potentials, although still in its infancy, has started (pharmaco-TMS-EEG). Furthermore, the knowledge from pharmaco-TMS-EMG that has been primarily obtained in healthy subjects is now applied to clinical settings, for instance, to monitor or even predict clinical drug responses in neurological or psychiatric patients. Finally, pharmaco-TMS-EMG has been applied to understand the effects of CNS active drugs on non-invasive brain stimulation induced long-term potentiation-like and long-term depression-like plasticity. This is a new field that may help to develop rationales of pharmacological treatment for enhancement of recovery and re-learning after CNS lesions. This up-dated review will highlight important knowledge and recent advances in the contribution of pharmaco-TMS-EMG and pharmaco-TMS-EEG to our understanding of normal and dysfunctional excitability, connectivity and plasticity of the human brain.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Janine Reis
- Department of Neurology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milan, Italy
| | - Antonio Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | - Radwa Badawy
- Department of Neurology, Saint Vincent's Hospital, Fitzroy, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
230
|
Ko JH, Choi YY, Eidelberg D. Graph Theory-Guided Transcranial Magnetic Stimulation in Neurodegenerative Disorders. Bioelectron Med 2014. [DOI: 10.15424/bioelectronmed.2014.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
231
|
Schomers MR, Kirilina E, Weigand A, Bajbouj M, Pulvermüller F. Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence. Cereb Cortex 2014; 25:3894-902. [PMID: 25452575 PMCID: PMC4585521 DOI: 10.1093/cercor/bhu274] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., “pool” or “tool”). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed “tool” relative to “pool” responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition.
Collapse
Affiliation(s)
- Malte R Schomers
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, 14195 Berlin, Germany Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Evgeniya Kirilina
- Dahlem Institute for Neuroimaging of Emotion, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anne Weigand
- Dahlem Institute for Neuroimaging of Emotion, Freie Universität Berlin, 14195 Berlin, Germany Department of Psychiatry, Charité Universitätsmedizin Berlin, 14050 Berlin, Germany Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Malek Bajbouj
- Dahlem Institute for Neuroimaging of Emotion, Freie Universität Berlin, 14195 Berlin, Germany Department of Psychiatry, Charité Universitätsmedizin Berlin, 14050 Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, 14195 Berlin, Germany Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
232
|
Schuwerk T, Langguth B, Sommer M. Modulating functional and dysfunctional mentalizing by transcranial magnetic stimulation. Front Psychol 2014; 5:1309. [PMID: 25477838 PMCID: PMC4235411 DOI: 10.3389/fpsyg.2014.01309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/28/2014] [Indexed: 12/29/2022] Open
Abstract
Mentalizing, the ability to attribute mental states to others and oneself, is a cognitive function with high relevance for social interactions. Recent neuroscientific research has increasingly contributed to attempts to decompose this complex social cognitive function into constituting neurocognitive building blocks. Additionally, clinical research that focuses on social cognition to find links between impaired social functioning and neurophysiological deviations has accumulated evidence that mentalizing is affected in most psychiatric disorders. Recently, both lines of research have started to employ transcranial magnetic stimulation: the first to modulate mentalizing in order to specify its neurocognitive components, the latter to treat impaired mentalizing in clinical conditions. This review integrates findings of these two different approaches to draw a more detailed picture of the neurocognitive basis of mentalizing and its deviations in psychiatric disorders. Moreover, we evaluate the effectiveness of hitherto employed stimulation techniques and protocols, paradigms and outcome measures. Based on this overview we highlight new directions for future research on the neurocognitive basis of functional and dysfunctional social cognition.
Collapse
Affiliation(s)
- Tobias Schuwerk
- Department of Psychology, Ludwig-Maximilians-University Munich, Germany ; Department of Psychiatry and Psychotherapy, University of Regensburg Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg Regensburg, Germany
| | - Monika Sommer
- Department of Psychiatry and Psychotherapy, University of Regensburg Regensburg, Germany
| |
Collapse
|
233
|
Kraft A, Dyrholm M, Kehrer S, Kaufmann C, Bruening J, Kathmann N, Bundesen C, Irlbacher K, Brandt SA. TMS over the right precuneus reduces the bilateral field advantage in visual short term memory capacity. Brain Stimul 2014; 8:216-23. [PMID: 25481073 DOI: 10.1016/j.brs.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several studies have demonstrated a bilateral field advantage (BFA) in early visual attentional processing, that is, enhanced visual processing when stimuli are spread across both visual hemifields. The results are reminiscent of a hemispheric resource model of parallel visual attentional processing, suggesting more attentional resources on an early level of visual processing for bilateral displays [e.g. Sereno AB, Kosslyn SM. Discrimination within and between hemifields: a new constraint on theories of attention. Neuropsychologia 1991;29(7):659-75.]. Several studies have shown that the BFA extends beyond early stages of visual attentional processing, demonstrating that visual short term memory (VSTM) capacity is higher when stimuli are distributed bilaterally rather than unilaterally. OBJECTIVE/HYPOTHESIS Here we examine whether hemisphere-specific resources are also evident on later stages of visual attentional processing. METHODS Based on the Theory of Visual Attention (TVA) [Bundesen C. A theory of visual attention. Psychol Rev 1990;97(4):523-47.] we used a whole report paradigm that allows investigating visual attention capacity variability in unilateral and bilateral displays during navigated repetitive transcranial magnetic stimulation (rTMS) of the precuneus region. RESULTS A robust BFA in VSTM storage capacity was apparent after rTMS over the left precuneus and in the control condition without rTMS. In contrast, the BFA diminished with rTMS over the right precuneus. CONCLUSION This finding indicates that the right precuneus plays a causal role in VSTM capacity, particularly in bilateral visual displays.
Collapse
Affiliation(s)
- Antje Kraft
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Mads Dyrholm
- Center of Visual Cognition, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Kehrer
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Kaufmann
- Clinical Psychology, Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jovita Bruening
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Kathmann
- Clinical Psychology, Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claus Bundesen
- Center of Visual Cognition, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Irlbacher
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan A Brandt
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
234
|
Dagnino B, Gariel-Mathis MA, Roelfsema PR. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1. J Neurophysiol 2014; 113:730-9. [PMID: 25392172 DOI: 10.1152/jn.00645.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception.
Collapse
Affiliation(s)
- Bruno Dagnino
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (an institute of the Royal Academy of Arts and Sciences of the Netherlands), Amsterdam, The Netherlands
| | - Marie-Alice Gariel-Mathis
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (an institute of the Royal Academy of Arts and Sciences of the Netherlands), Amsterdam, The Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (an institute of the Royal Academy of Arts and Sciences of the Netherlands), Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands; and Psychiatry Department, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
235
|
Inhibiting the posterior medial prefrontal cortex by rTMS decreases the discrepancy between self and other in Theory of Mind reasoning. Behav Brain Res 2014; 274:312-8. [DOI: 10.1016/j.bbr.2014.08.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/08/2014] [Accepted: 08/16/2014] [Indexed: 12/18/2022]
|
236
|
Krieger-Redwood K, Jefferies E. TMS interferes with lexical-semantic retrieval in left inferior frontal gyrus and posterior middle temporal gyrus: Evidence from cyclical picture naming. Neuropsychologia 2014; 64:24-32. [PMID: 25229872 DOI: 10.1016/j.neuropsychologia.2014.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Katya Krieger-Redwood
- Department of Psychology and York Neuroimaging Centre, University of York, Heslington, York YO10 5DD, UK
| | - Elizabeth Jefferies
- Department of Psychology and York Neuroimaging Centre, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
237
|
Inhibitory repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex modulates early affective processing. Neuroimage 2014; 101:193-203. [DOI: 10.1016/j.neuroimage.2014.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/04/2014] [Accepted: 07/05/2014] [Indexed: 11/18/2022] Open
|
238
|
Continuous theta burst stimulation of angular gyrus reduces subjective recollection. PLoS One 2014; 9:e110414. [PMID: 25333985 PMCID: PMC4204853 DOI: 10.1371/journal.pone.0110414] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/17/2014] [Indexed: 11/19/2022] Open
Abstract
The contribution of lateral parietal regions such as the angular gyrus to human episodic memory has been the subject of much debate following widespread observations of left parietal activity in healthy volunteers during functional neuroimaging studies of memory retrieval. Patients with lateral parietal lesions are not amnesic, but recent evidence indicates that their memory abilities may not be entirely preserved. Whereas recollection appears intact when objective measures such as source accuracy are used, patients often exhibit reduced subjective confidence in their accurate recollections. When asked to recall autobiographical memories, they may produce spontaneous narratives that lack richness and specificity, but can remember specific details when prompted. Two distinct theoretical accounts have been proposed to explain these results: that the patients have a deficit in the bottom-up capturing of attention by retrieval output, or that they have an impairment in the subjective experience of recollection. The present study aimed to differentiate between these accounts using continuous theta burst stimulation (cTBS) in healthy participants to disrupt function of specific left parietal subregions, including angular gyrus. Inconsistent with predictions of the attentional theory, angular gyrus cTBS did not result in greater impairment of free recall than cued recall. Supporting predictions of the subjective recollection account, temporary disruption of angular gyrus was associated with highly accurate source recollection accuracy but a selective reduction in participants' rated source confidence. The findings are consistent with a role for angular gyrus in the integration of memory features into a conscious representation that enables the subjective experience of remembering.
Collapse
|
239
|
Monaco J, Casellato C, Koch G, D'Angelo E. Cerebellar theta burst stimulation dissociates memory components in eyeblink classical conditioning. Eur J Neurosci 2014; 40:3363-70. [DOI: 10.1111/ejn.12700] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
Affiliation(s)
- J. Monaco
- Brain Connectivity Center; C. Mondino National Neurological Institute; Via Mondino 2 Pavia I-27100 Italy
| | - C. Casellato
- NeuroEngineering and Medical Robotics Laboratory; Department of Electronics; Information and Bioengineering; Politecnico di Milano; Milano Italy
| | - G. Koch
- Non-invasive Brain Stimulation Unit; Santa Lucia Foundation IRCCS; Via Ardeatina 306 00179 Rome Italy
| | - E. D'Angelo
- Brain Connectivity Center; C. Mondino National Neurological Institute; Via Mondino 2 Pavia I-27100 Italy
- Department of Brain and Behavioral Sciences; University of Pavia; Via Forlanini 6 Pavia I-27100 Italy
| |
Collapse
|
240
|
Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proc Natl Acad Sci U S A 2014; 111:13553-8. [PMID: 25187557 DOI: 10.1073/pnas.1405508111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely used in clinical interventions and basic neuroscience. Additionally, it has become a powerful tool to drive plastic changes in neuronal networks. However, highly resolved recordings of the immediate TMS effects have remained scarce, because existing recording techniques are limited in spatial or temporal resolution or are interfered with by the strong TMS-induced electric field. To circumvent these constraints, we performed optical imaging with voltage-sensitive dye (VSD) in an animal experimental setting using anaesthetized cats. The dye signals reflect gradual changes in the cells' membrane potential across several square millimeters of cortical tissue, thus enabling direct visualization of TMS-induced neuronal population dynamics. After application of a single TMS pulse across visual cortex, brief focal activation was immediately followed by synchronous suppression of a large pool of neurons. With consecutive magnetic pulses (10 Hz), widespread activity within this "basin of suppression" increased stepwise to suprathreshold levels and spontaneous activity was enhanced. Visual stimulation after repetitive TMS revealed long-term potentiation of evoked activity. Furthermore, loss of the "deceleration-acceleration" notch during the rising phase of the response, as a signature of fast intracortical inhibition detectable with VSD imaging, indicated weakened inhibition as an important driving force of increasing cortical excitability. In summary, our data show that high-frequency TMS changes the balance between excitation and inhibition in favor of an excitatory cortical state. VSD imaging may thus be a promising technique to trace TMS-induced changes in excitability and resulting plastic processes across cortical maps with high spatial and temporal resolutions.
Collapse
|
241
|
Forbes CE. On social neuroscience methodologies and their applicability to group processes and intergroup relations. GROUP PROCESSES & INTERGROUP RELATIONS 2014. [DOI: 10.1177/1368430214546070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Group processes and intergroup relations are one of the most important topics examined by social psychologists. Recent advancements in social neuroscience methodologies provide valuable insight into these processes by allowing researchers to examine different psychological phenomena via neural processes that instantiate them while individuals interact with ingroup and outgroup members. This includes responses that occur outside conscious awareness or are deemed undesirable to overtly express. The purpose of this review is to provide an overview of the different social neuroscience methodologies that afford these possibilities. Specifically, functional magnetic resonance imaging (fMRI), electroencephalography (EEG), functional near infrared spectroscopy (fNIRS), transcranial magnetic stimulation (TMS), and genetic approaches will be discussed. Each section includes a discussion of what the methodology is and how it is used to assess neural function. A secondary goal of the review is to highlight recent studies that have utilized the aforementioned tools to better understand intergroup processes and interactions. Throughout, advantages and limitations of each approach are discussed, particularly with respect to the study of group processes and intergroup relations.
Collapse
|
242
|
Deer TR, Krames E, Mekhail N, Pope J, Leong M, Stanton-Hicks M, Golovac S, Kapural L, Alo K, Anderson J, Foreman RD, Caraway D, Narouze S, Linderoth B, Buvanendran A, Feler C, Poree L, Lynch P, McJunkin T, Swing T, Staats P, Liem L, Williams K. The Appropriate Use of Neurostimulation: New and Evolving Neurostimulation Therapies and Applicable Treatment for Chronic Pain and Selected Disease States. Neuromodulation 2014; 17:599-615; discussion 615. [DOI: 10.1111/ner.12204] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 02/07/2014] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Nagy Mekhail
- University of Kentucky-Lexington; Lexington KY USA
| | - Jason Pope
- Center for Pain Relief; Charleston WV USA
| | | | | | | | - Leo Kapural
- Carolinas Pain Institute at Brookstown; Wake Forest Baptist Health; Winston-Salem NC USA
| | - Ken Alo
- The Methodist Hospital Research Institute; Houston TX USA
- Monterey Technical Institute; Monterey Mexico
| | | | - Robert D. Foreman
- University of Oklahoma Health Sciences Center, College of Medicine; Oklahoma City OK USA
| | - David Caraway
- Center for Pain Relief, Tri-State, LLC; Huntington WV USA
| | - Samer Narouze
- Anesthesiology and Pain Medicine, Neurological Surgery; Summa Western Reserve Hospital; Cuyahoga Falls OH USA
| | - Bengt Linderoth
- Functional Neurosurgery and Applied Neuroscience Research Unit, Karolinska Institute; Karolinska University Hospital; Stockholm Sweden
| | | | - Claudio Feler
- University of Tennessee; Memphis TN USA
- Valley View Hospital; Glenwood Springs CO USA
| | - Lawrence Poree
- University of California at San Francisco; San Francisco CA USA
- Pain Clinic of Monterey Bay; Aptos CA
| | - Paul Lynch
- Arizona Pain Specialists; Scottsdale AZ USA
| | | | - Ted Swing
- Arizona Pain Specialists; Scottsdale AZ USA
| | - Peter Staats
- Premier Pain Management Centers; Shrewsbury NJ USA
- Johns Hopkins University; Baltimore MD USA
| | - Liong Liem
- St. Antonius Hospital; Nieuwegein The Netherlands
| | - Kayode Williams
- Johns Hopkins School of Medicine and Carey Business School; Baltimore MD USA
| |
Collapse
|
243
|
Sliwinska MW, Vitello S, Devlin JT. Transcranial magnetic stimulation for investigating causal brain-behavioral relationships and their time course. J Vis Exp 2014. [PMID: 25079670 PMCID: PMC4219631 DOI: 10.3791/51735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a safe, non-invasive brain stimulation technique that uses a strong electromagnet in order to temporarily disrupt information processing in a brain region, generating a short-lived "virtual lesion." Stimulation that interferes with task performance indicates that the affected brain region is necessary to perform the task normally. In other words, unlike neuroimaging methods such as functional magnetic resonance imaging (fMRI) that indicate correlations between brain and behavior, TMS can be used to demonstrate causal brain-behavior relations. Furthermore, by varying the duration and onset of the virtual lesion, TMS can also reveal the time course of normal processing. As a result, TMS has become an important tool in cognitive neuroscience. Advantages of the technique over lesion-deficit studies include better spatial-temporal precision of the disruption effect, the ability to use participants as their own control subjects, and the accessibility of participants. Limitations include concurrent auditory and somatosensory stimulation that may influence task performance, limited access to structures more than a few centimeters from the surface of the scalp, and the relatively large space of free parameters that need to be optimized in order for the experiment to work. Experimental designs that give careful consideration to appropriate control conditions help to address these concerns. This article illustrates these issues with TMS results that investigate the spatial and temporal contributions of the left supramarginal gyrus (SMG) to reading.
Collapse
Affiliation(s)
| | - Sylvia Vitello
- Cognitive, Perceptual & Brain Sciences, University College London
| | - Joseph T Devlin
- Cognitive, Perceptual & Brain Sciences, University College London
| |
Collapse
|
244
|
Liew SL, Santarnecchi E, Buch ER, Cohen LG. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci 2014; 8:378. [PMID: 25018714 PMCID: PMC4072967 DOI: 10.3389/fnhum.2014.00378] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/14/2014] [Indexed: 01/01/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) may enhance motor recovery after neurological injury through the causal induction of plasticity processes. Neurological injury, such as stroke, often results in serious long-term physical disabilities, and despite intensive therapy, a large majority of brain injury survivors fail to regain full motor function. Emerging research suggests that NIBS techniques, such as transcranial magnetic (TMS) and direct current (tDCS) stimulation, in association with customarily used neurorehabilitative treatments, may enhance motor recovery. This paper provides a general review on TMS and tDCS paradigms, the mechanisms by which they operate and the stimulation techniques used in neurorehabilitation, specifically stroke. TMS and tDCS influence regional neural activity underlying the stimulation location and also distant interconnected network activity throughout the brain. We discuss recent studies that document NIBS effects on global brain activity measured with various neuroimaging techniques, which help to characterize better strategies for more accurate NIBS stimulation. These rapidly growing areas of inquiry may hold potential for improving the effectiveness of NIBS-based interventions for clinical rehabilitation.
Collapse
Affiliation(s)
- Sook-Lei Liew
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH Bethesda, MD, USA
| | | | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences Bethesda, MD, USA
| |
Collapse
|
245
|
Ge S, Jiang R, Wang R, Chen J. Design of a dynamic transcranial magnetic stimulation coil system. J Med Syst 2014; 38:64. [PMID: 24957390 DOI: 10.1007/s10916-014-0064-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
Abstract
To study the brain activity at the whole-head range, transcranial magnetic stimulation (TMS) researchers need to investigate brain activity over the whole head at multiple locations. In the past, this has been accomplished with multiple single TMS coils that achieve quasi whole-head array stimulation. However, these designs have low resolution and are difficult to position and control over the skull. In this study, we propose a new dynamic whole-head TMS mesh coil system. This system was constructed using several sagittal and coronal directional wires. Using both simulation and real experimental data, we show that by varying the current direction and strength of each wire, this new coil system can form both circular coils or figure-eight coils that have the same features as traditional TMS coils. Further, our new system is superior to current coil systems because stimulation parameters such as size, type, location, and timing of stimulation can be dynamically controlled within a single experiment.
Collapse
Affiliation(s)
- Sheng Ge
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu, 210096, China,
| | | | | | | |
Collapse
|
246
|
Enhanced awareness followed reversible inhibition of human visual cortex: a combined TMS, MRS and MEG study. PLoS One 2014; 9:e100350. [PMID: 24956195 PMCID: PMC4067303 DOI: 10.1371/journal.pone.0100350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022] Open
Abstract
This series of experiments investigated the neural basis of conscious vision in humans using a form of transcranial magnetic stimulation (TMS) known as continuous theta burst stimulation (cTBS). Previous studies have shown that occipital TMS, when time-locked to the onset of visual stimuli, can induce a phenomenon analogous to blindsight in which conscious detection is impaired while the ability to discriminate ‘unseen’ stimuli is preserved above chance. Here we sought to reproduce this phenomenon using offline occipital cTBS, which has been shown to induce an inhibitory cortical aftereffect lasting 45–60 minutes. Contrary to expectations, our first experiment revealed the opposite effect: cTBS enhanced conscious vision relative to a sham control. We then sought to replicate this cTBS-induced potentiation of consciousness in conjunction with magnetoencephalography (MEG) and undertook additional experiments to assess its relationship to visual cortical excitability and levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA; via magnetic resonance spectroscopy, MRS). Occipital cTBS decreased cortical excitability and increased regional GABA concentration. No significant effects of cTBS on MEG measures were observed, although the results provided weak evidence for potentiation of event related desynchronisation in the β band. Collectively these experiments suggest that, through the suppression of noise, cTBS can increase the signal-to-noise ratio of neural activity underlying conscious vision. We speculate that gating-by-inhibition in the visual cortex may provide a key foundation of consciousness.
Collapse
|
247
|
Ambiguous emotion recognition in temporal lobe epilepsy: the role of expression intensity. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2014; 13:452-63. [PMID: 23430725 DOI: 10.3758/s13415-013-0153-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lateralization of emotion processing is currently debated and may be further explored by examining facial expression recognition (FER) impairments in temporal lobe epilepsy (TLE). Furthermore, there is also debate in the literature whether FER deficits in individuals with TLE are more pronounced in the right than in the left hemisphere. Individuals with TLE were tested with an FER task designed to be more sensitive than those classically used to shed light on this issue. A total of 25 right- and 32 left-TLE patients, candidates for surgery, along with controls, underwent an FER task composed of stimuli shown not only at full-blown intensities (100 %), but also morphed to lower-intensity display levels (35 %, 50 %, and 75 %). The results showed that, as compared to controls, right-TLE patients showed deficits in the recognition of all emotional categories. Furthermore, when considering valence, right-TLE patients were impaired only in negative emotion recognition, but no deficits for positive emotions were highlighted in left-TLE patients. Finally, only the right-TLE patients' impairment was found to be related to the age of epilepsy onset. Our work demonstrates that the FER deficits in TLE span multiple emotional categories and show manifestations dependent on the laterality of the epileptic focus. Taken together, our findings provide the strongest evidence for the right-hemisphere model, but they also partially support the valence model. We suggest that current models are not exhaustive at explaining emotional-processing cerebral control, and further that multistep models should be developed.
Collapse
|
248
|
Kiyonaga A, Korb FM, Lucas J, Soto D, Egner T. Dissociable causal roles for left and right parietal cortex in controlling attentional biases from the contents of working memory. Neuroimage 2014; 100:200-5. [PMID: 24945665 DOI: 10.1016/j.neuroimage.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/12/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022] Open
Abstract
The contents of working memory (WM) steer visual attention, but the extent of this guidance can be strategically enhanced or inhibited when WM content is reliably helpful or harmful to a visual task. Current understanding of the neural substrates mediating the cognitive control over WM biases is limited, however, by the correlational nature of functional MRI approaches. A recent fMRI study provided suggestive evidence for a functional lateralization of these control processes in posterior parietal cortex (PPC): activity in left PPC correlated with the presentation of WM cues that ought to be strategically enhanced to optimize performance, while activity in the right PPC correlated with the presentation of cues that ought to be inhibited to prevent detrimental attentional biases in a visual search. Here, we aimed to directly assess whether the left and right PPC are causally involved in the cognitive control of WM biases, and to clarify their precise functional contributions. We therefore applied 1 Hz repetitive transcranial magnetic stimulation (rTMS) to left and right PPC (and a vertex control site) prior to administering a behavioral task assessing WM biasing control functions. We observed that the perturbation of left PPC eliminated the strategic benefit of predictably helpful WM cueing, while the perturbation of right PPC amplified the cost of unpredictable detrimental WM cueing. The left and right PPC thus play distinct causal roles in WM-attention interactions: the left PPC to maximize benefits, and the right PPC to minimize costs, of internally maintained content on visual attention.
Collapse
Affiliation(s)
- Anastasia Kiyonaga
- Duke University, Department of Psychology and Neuroscience and Center for Cognitive Neuroscience, USA
| | - Franziska M Korb
- Duke University, Department of Psychology and Neuroscience and Center for Cognitive Neuroscience, USA
| | - John Lucas
- Duke University, Department of Psychology and Neuroscience and Center for Cognitive Neuroscience, USA
| | - David Soto
- Imperial College London, Division of Brain Sciences, United Kingdom
| | - Tobias Egner
- Duke University, Department of Psychology and Neuroscience and Center for Cognitive Neuroscience, USA.
| |
Collapse
|
249
|
Yi GS, Wang J, Wei XL, Tsang KM, Chan WL, Deng B. Neuronal spike initiation modulated by extracellular electric fields. PLoS One 2014; 9:e97481. [PMID: 24873827 PMCID: PMC4038635 DOI: 10.1371/journal.pone.0097481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/20/2014] [Indexed: 02/02/2023] Open
Abstract
Based on a reduced two-compartment model, the dynamical and biophysical mechanism underlying the spike initiation of the neuron to extracellular electric fields is investigated in this paper. With stability and phase plane analysis, we first investigate in detail the dynamical properties of neuronal spike initiation induced by geometric parameter and internal coupling conductance. The geometric parameter is the ratio between soma area and total membrane area, which describes the proportion of area occupied by somatic chamber. It is found that varying it could qualitatively alter the bifurcation structures of equilibrium as well as neuronal phase portraits, which remain unchanged when varying internal coupling conductance. By analyzing the activating properties of somatic membrane currents at subthreshold potentials, we explore the relevant biophysical basis of spike initiation dynamics induced by these two parameters. It is observed that increasing geometric parameter could greatly decrease the intensity of the internal current flowing from soma to dendrite, which switches spike initiation dynamics from Hopf bifurcation to SNIC bifurcation; increasing internal coupling conductance could lead to the increase of this outward internal current, whereas the increasing range is so small that it could not qualitatively alter the spike initiation dynamics. These results highlight that neuronal geometric parameter is a crucial factor in determining the spike initiation dynamics to electric fields. The finding is useful to interpret the functional significance of neuronal biophysical properties in their encoding dynamics, which could contribute to uncovering how neuron encodes electric field signals.
Collapse
Affiliation(s)
- Guo-Sheng Yi
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, China
| | - Xi-Le Wei
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, China
| | - Kai-Ming Tsang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wai-Lok Chan
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bin Deng
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, China
| |
Collapse
|
250
|
Galli G. What makes deeply encoded items memorable? Insights into the levels of processing framework from neuroimaging and neuromodulation. Front Psychiatry 2014; 5:61. [PMID: 24904444 PMCID: PMC4035598 DOI: 10.3389/fpsyt.2014.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/15/2014] [Indexed: 01/17/2023] Open
Abstract
When we form new memories, their mnestic fate largely depends upon the cognitive operations set in train during encoding. A typical observation in experimental as well as everyday life settings is that if we learn an item using semantic or "deep" operations, such as attending to its meaning, memory will be better than if we learn the same item using more "shallow" operations, such as attending to its structural features. In the psychological literature, this phenomenon has been conceptualized within the "levels of processing" framework and has been consistently replicated since its original proposal by Craik and Lockhart in 1972. However, the exact mechanisms underlying the memory advantage for deeply encoded items are not yet entirely understood. A cognitive neuroscience perspective can add to this field by clarifying the nature of the processes involved in effective deep and shallow encoding and how they are instantiated in the brain, but so far there has been little work to systematically integrate findings from the literature. This work aims to fill this gap by reviewing, first, some of the key neuroimaging findings on the neural correlates of deep and shallow episodic encoding and second, emerging evidence from studies using neuromodulatory approaches such as psychopharmacology and non-invasive brain stimulation. Taken together, these studies help further our understanding of levels of processing. In addition, by showing that deep encoding can be modulated by acting upon specific brain regions or systems, the reviewed studies pave the way for selective enhancements of episodic encoding processes.
Collapse
Affiliation(s)
- Giulia Galli
- Brain Investigation and Neuromodulation (BIN) Laboratory, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|