201
|
Ako-Adjei D, Fu W, Wallin C, Katz KS, Song G, Darji D, Brister JR, Ptak RG, Pruitt KD. HIV-1, human interaction database: current status and new features. Nucleic Acids Res 2015; 43:D566-70. [PMID: 25378338 PMCID: PMC4383939 DOI: 10.1093/nar/gku1126] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 01/01/2023] Open
Abstract
The 'Human Immunodeficiency Virus Type 1 (HIV-1), Human Interaction Database', available through the National Library of Medicine at http://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions, serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. Each HIV-1 human protein interaction can be retrieved without restriction by web-based downloads and ftp protocols and includes: Reference Sequence (RefSeq) protein accession numbers, National Center for Biotechnology Information Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. In addition to specific HIV-1 protein-human protein interactions, included are interaction effects upon HIV-1 replication resulting when individual human gene expression is blocked using siRNA. A total of 3142 human genes are described participating in 12,786 protein-protein interactions, along with 1316 replication interactions described for each of 1250 human genes identified using small interfering RNA (siRNA). Together the data identifies 4006 human genes involved in 14,102 interactions. With the inclusion of siRNA interactions we introduce a redesigned web interface to enhance viewing, filtering and downloading of the combined data set.
Collapse
Affiliation(s)
- Danso Ako-Adjei
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - William Fu
- Department of Infectious Disease Research, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701, USA
| | - Craig Wallin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kenneth S Katz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Guangfeng Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Dakshesh Darji
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Roger G Ptak
- Department of Infectious Disease Research, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
202
|
Puri D, Gala H, Mishra R, Dhawan J. High-wire act: the poised genome and cellular memory. FEBS J 2014; 282:1675-91. [PMID: 25440020 DOI: 10.1111/febs.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Emerging evidence aided by genome-wide analysis of chromatin and transcriptional states has shed light on the mechanisms by which stem cells achieve cellular memory. The epigenetic and transcriptional plasticity governing stem cell behavior is highlighted by the identification of 'poised' genes, which permit cells to maintain readiness to undertake alternate developmental fates. This review focuses on two crucial mechanisms of gene poising: bivalent chromatin marks and RNA polymerase II stalling. We provide the context for these mechanisms by exploring the current consensus on the regulation of chromatin states, especially in quiescent adult stem cells, where poised genes are critical for recapitulating developmental choices, leading to regenerative function.
Collapse
Affiliation(s)
- Deepika Puri
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | |
Collapse
|
203
|
7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction. Tumour Biol 2014; 36:2809-14. [DOI: 10.1007/s13277-014-2907-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
|
204
|
Fujinaga K, Luo Z, Schaufele F, Peterlin BM. Visualization of positive transcription elongation factor b (P-TEFb) activation in living cells. J Biol Chem 2014; 290:1829-36. [PMID: 25492871 DOI: 10.1074/jbc.m114.605816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of transcription elongation by positive transcription elongation factor b (P-TEFb) plays a central role in determining the state of cell activation, proliferation, and differentiation. In cells, P-TEFb exists in active and inactive forms. Its release from the inactive 7SK small nuclear ribonucleoprotein complex is a critical step for P-TEFb to activate transcription elongation. However, no good method exists to analyze this P-TEFb equilibrium in living cells. Only inaccurate and labor-intensive cell-free biochemical assays are currently available. In this study, we present the first experimental system to monitor P-TEFb activation in living cells. We created a bimolecular fluorescence complementation assay to detect interactions between P-TEFb and its substrate, the C-terminal domain of RNA polymerase II. When cells were treated with suberoylanilide hydroxamic acid, which releases P-TEFb from the 7SK small nuclear ribonucleoprotein, they turned green. Other known P-TEFb-releasing agents, including histone deacetylase inhibitors, bromodomain and extraterminal bromodomain inhibitors, and protein kinase C agonists, also scored positive in this assay. Finally, we identified 5'-azacytidine as a new P-TEFb-releasing agent. This release of P-TEFb correlated directly with activation of human HIV and HEXIM1 transcription. Thus, our visualization of P-TEFb activation by fluorescent complementation assay could be used to find new P-TEFb-releasing agents, compare different classes of agents, and assess their efficacy singly and/or in combination.
Collapse
Affiliation(s)
- Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology and
| | - Zeping Luo
- From the Departments of Medicine, Microbiology, and Immunology and
| | - Fred Schaufele
- the Diabetes and Endocrinology Research Center, University of California, San Francisco, California 94143-0703
| | | |
Collapse
|
205
|
Calo E, Flynn RA, Martin L, Spitale RC, Chang HY, Wysocka J. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 2014; 518:249-53. [PMID: 25470060 DOI: 10.1038/nature13923] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
Abstract
DEAD-box RNA helicases are vital for the regulation of various aspects of the RNA life cycle, but the molecular underpinnings of their involvement, particularly in mammalian cells, remain poorly understood. Here we show that the DEAD-box RNA helicase DDX21 can sense the transcriptional status of both RNA polymerase (Pol) I and II to control multiple steps of ribosome biogenesis in human cells. We demonstrate that DDX21 widely associates with Pol I- and Pol II-transcribed genes and with diverse species of RNA, most prominently with non-coding RNAs involved in the formation of ribonucleoprotein complexes, including ribosomal RNA, small nucleolar RNAs (snoRNAs) and 7SK RNA. Although broad, these molecular interactions, both at the chromatin and RNA level, exhibit remarkable specificity for the regulation of ribosomal genes. In the nucleolus, DDX21 occupies the transcribed rDNA locus, directly contacts both rRNA and snoRNAs, and promotes rRNA transcription, processing and modification. In the nucleoplasm, DDX21 binds 7SK RNA and, as a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex, is recruited to the promoters of Pol II-transcribed genes encoding ribosomal proteins and snoRNAs. Promoter-bound DDX21 facilitates the release of the positive transcription elongation factor b (P-TEFb) from the 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes. Our results uncover the multifaceted role of DDX21 in multiple steps of ribosome biogenesis, and provide evidence implicating a mammalian RNA helicase in RNA modification and Pol II elongation control.
Collapse
Affiliation(s)
- Eliezer Calo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ryan A Flynn
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lance Martin
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert C Spitale
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joanna Wysocka
- 1] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
206
|
Dey BK, Mueller AC, Dutta A. Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 2014; 5:e944014. [PMID: 25483404 DOI: 10.4161/21541272.2014.944014] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A significant portion of the mammalian genome encodes numerous transcripts that are not translated into proteins, termed long non-coding RNAs. Initial studies identifying long non-coding RNAs inferred these RNA sequences were a consequence of transcriptional noise or promiscuous RNA polymerase II activity. However, the last decade has seen a revolution in the understanding of regulation and function of long non-coding RNAs. Now it has become apparent that long non-coding RNAs play critical roles in a wide variety of biological processes. In this review, we describe the current understanding of long non-coding RNA-mediated regulation of cellular processes: differentiation, development, and disease.
Collapse
Key Words
- Bvht, braveheart
- CDT, C-terminal domain
- DBE-T, D4Z4-binding element
- DMD, Duchenne muscular dystrophy
- ES, embryonic stem
- FSHD, facioscapulohumeral muscular dystrophy
- Fendrr, Foxf1a called fetal-lethal non-coding developmental regulatory RNA
- MEF2, myocyte enhancer factor-2
- MRFs, myogenic regulatory factors
- Malat1, metastasis associated lung adenocarcinoma transcript 1
- Mesp1, mesoderm progenitor 1
- Neat2, nuclear-enriched abundant transcript 2
- PRC2, polycomb group repressive complex 2
- RNAP II, RNA polymerase II
- SINE, short interspersed element
- SR, serine arginine
- SRA, steroid receptor activator
- SRY, sex-determining region Y
- YAM 1-4, YY1-associated muscle 1-4
- ceRNAs, competing endogenous RNAs
- ciRS-7, circular RNA sponge for miR-7
- development
- differentiation
- disease
- gene expression
- iPS, induced pluripotent stem
- lncRNAs, long non-coding RNAs
- long non-coding RNAs
- ncRNAa, non-coding RNA activating
- skeletal muscle
Collapse
Affiliation(s)
- Bijan K Dey
- a Department of Biochemistry and Molecular Genetics ; University of Virginia School of Medicine ; Charlottesville , VA USA
| | | | | |
Collapse
|
207
|
Phenyl-1-Pyridin-2yl-ethanone-based iron chelators increase IκB-α expression, modulate CDK2 and CDK9 activities, and inhibit HIV-1 transcription. Antimicrob Agents Chemother 2014; 58:6558-71. [PMID: 25155598 DOI: 10.1128/aac.02918-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection.
Collapse
|
208
|
Albert TK, Rigault C, Eickhoff J, Baumgart K, Antrecht C, Klebl B, Mittler G, Meisterernst M. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor. Br J Pharmacol 2014; 171:55-68. [PMID: 24102143 DOI: 10.1111/bph.12408] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/22/2013] [Accepted: 08/11/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The cyclin-dependent kinase CDK9 is an important therapeutic target but currently available inhibitors exhibit low specificity and/or narrow therapeutic windows. Here we have used a new highly specific CDK9 inhibitor, LDC000067 to interrogate gene control mechanisms mediated by CDK9. EXPERIMENTAL APPROACH The selectivity of LDC000067 was established in functional kinase assays. Functions of CDK9 in gene expression were assessed with in vitro transcription experiments, single gene analyses and genome-wide expression profiling. Cultures of mouse embryonic stem cells, HeLa cells, several cancer cell lines, along with cells from patients with acute myelogenous leukaemia were also used to investigate cellular responses to LDC000067. KEY RESULTS The selectivity of LDC000067 for CDK9 over other CDKs exceeded that of the known inhibitors flavopiridol and DRB. LDC000067 inhibited in vitro transcription in an ATP-competitive and dose-dependent manner. Gene expression profiling of cells treated with LDC000067 demonstrated a selective reduction of short-lived mRNAs, including important regulators of proliferation and apoptosis. Analysis of de novo RNA synthesis suggested a wide ranging positive role of CDK9. At the molecular and cellular level, LDC000067 reproduced effects characteristic of CDK9 inhibition such as enhanced pausing of RNA polymerase II on genes and, most importantly, induction of apoptosis in cancer cells. CONCLUSIONS AND IMPLICATIONS Our study provides a framework for the mechanistic understanding of cellular responses to CDK9 inhibition. LDC000067 represents a promising lead for the development of clinically useful, highly specific CDK9 inhibitors.
Collapse
Affiliation(s)
- T K Albert
- Institute of Molecular Tumor Biology (IMTB), Faculty of Medicine, Westfalian Wilhelms University Muenster (WWU), Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Adachi S, Homoto M, Tanaka R, Hioki Y, Murakami H, Suga H, Matsumoto M, Nakayama KI, Hatta T, Iemura SI, Natsume T. ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway. Nucleic Acids Res 2014; 42:10037-49. [PMID: 25106868 PMCID: PMC4150769 DOI: 10.1093/nar/gku652] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3′-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3′-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan Galaxy Pharma Inc., Akita 010-0951, Japan
| | - Masae Homoto
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Rikou Tanaka
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan Galaxy Pharma Inc., Akita 010-0951, Japan
| | - Yusaku Hioki
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Hiroshi Murakami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Shun-ichiro Iemura
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| |
Collapse
|
210
|
Safronova OS, Nakahama KI, Morita I. Acute hypoxia affects P-TEFb through HDAC3 and HEXIM1-dependent mechanism to promote gene-specific transcriptional repression. Nucleic Acids Res 2014; 42:8954-69. [PMID: 25056306 PMCID: PMC4132729 DOI: 10.1093/nar/gku611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is associated with a variety of physiological and pathological conditions and elicits specific transcriptional responses. The elongation competence of RNA Polymerase II is regulated by the positive transcription elongation factor b (P-TEFb)-dependent phosphorylation of Ser2 residues on its C-terminal domain. Here, we report that hypoxia inhibits transcription at the level of elongation. The mechanism involves enhanced formation of inactive complex of P-TEFb with its inhibitor HEXIM1 in an HDAC3-dependent manner. Microarray transcriptome profiling of hypoxia primary response genes identified ∼79% of these genes being HEXIM1-dependent. Hypoxic repression of P-TEFb was associated with reduced acetylation of its Cdk9 and Cyclin T1 subunits. Hypoxia caused nuclear translocation and co-localization of the Cdk9 and HDAC3/N-CoR repressor complex. We demonstrated that the described mechanism is involved in hypoxic repression of the monocyte chemoattractant protein-1 (MCP-1) gene. Thus, HEXIM1 and HDAC-dependent deacetylation of Cdk9 and Cyclin T1 in response to hypoxia signalling alters the P-TEFb functional equilibrium, resulting in repression of transcription.
Collapse
Affiliation(s)
- Olga S Safronova
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Ikuo Morita
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
211
|
Protein kinase D3 is essential for prostratin-activated transcription of integrated HIV-1 provirus promoter via NF-κB signaling pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:968027. [PMID: 25136641 PMCID: PMC4127265 DOI: 10.1155/2014/968027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023]
Abstract
Prostratin has been proposed as a promising reagent for eradicating the latent HIV-1 provirus by inducing HIV-1 transcription activation. The molecular mechanism of this activation, however, is far from clear. Here, we show that the protein kinase D3 (PKD3) is essential for prostratin-induced transcription activation of latent HIV-1 provirus. First, silencing PKD3, but not the other members of PKD family, blocked prostratin-induced transcription of HIV-1. Second, overexpressing the constitutively active form of PKD3, but not the wild-type or kinase-dead form of PKD3, augmented the expression of HIV-1. Consistent with this observation, we found that prostratin could trigger PKD3 activation by inducing the phosphorylation of its activation loop. In addition, we identified PKCε of the novel PKC subfamily as the upstream kinase for this phosphorylation. Finally, the activation effect of PKD3 on HIV-1 transcription was shown to depend on the presence of κB element and the prostratin-induced activation of NF-κB, as indicated by the fact that silencing PKD3 blocked prostratin-induced NF-κB activation and NF-κB-dependent HIV-1 transcription. Therefore, for the first time, PKD3 is implicated in the transcription activation of latent HIV-1 provirus, and our results revealed a molecular mechanism of prostratin-induced HIV-1 transcription via PKCε/PKD3/NF-κB signaling pathway.
Collapse
|
212
|
Kuzmina A, Verstraete N, Galker S, Maatook M, Bensaude O, Taube R. A single point mutation in cyclin T1 eliminates binding to Hexim1, Cdk9 and RNA but not to AFF4 and enforces repression of HIV transcription. Retrovirology 2014; 11:51. [PMID: 24985467 PMCID: PMC4226998 DOI: 10.1186/1742-4690-11-51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/10/2014] [Indexed: 11/21/2022] Open
Abstract
Background Human immunodeficiency virus (HIV) gene expression is primarily regulated at the step of transcription elongation. The viral Tat protein recruits the Positive Transcription Elongation Factor b (P-TEFb) and the Super Elongation Complex (SEC) to the HIV promoter and enhances transcription by host RNA polymerase II. Results To map residues in the cyclin box of cyclin T1 that mediate the binding of P-TEFb to its interacting host partners and support HIV transcription, a pool of N-terminal cyclin T1 mutants was generated. Binding and functional assays in cells identified specific positions in cyclin T1 that are important for (i) association of P-TEFb with Hexim1, Cdk9 and SEC/AFF4 (ii) supporting Tat-transactivation in murine cells and (iii) inhibition of basal and Tat-dependent HIV transcription in human cells. Significantly, a unique cyclin T1 mutant where a Valine residue at position 107 was mutated to Glutamate (CycT1-V107E) was identified. CycT1-V107E did not bind to Hexim1 or Cdk9, and also could not assemble on HIV TAR or 7SK-snRNA. However, it bound strongly to AFF4 and its association with HIV Tat was slightly impaired. CycT1-V107E efficiently inhibited HIV replication in human T cell lines and in CD4(+) primary cells, and enforced HIV transcription repression in T cell lines that harbor a transcriptionally silenced integrated provirus. Conclusions This study outlines the mechanism by which CycT1-V107E mutant inhibits HIV transcription and enforces viral latency. It defines the importance of N-terminal residues of cyclin T1 in mediating contacts of P-TEFb with its transcription partners, and signifies the requirement of a functional P-TEFb and SEC in mediating HIV transcription.
Collapse
Affiliation(s)
| | | | | | | | | | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P,O, Box 653, Beer-Sheva 84105, ISRAEL.
| |
Collapse
|
213
|
Verstraete N, Kuzmina A, Diribarne G, Nguyen VT, Kobbi L, Ludanyi M, Taube R, Bensaude O. A Cyclin T1 point mutation that abolishes positive transcription elongation factor (P-TEFb) binding to Hexim1 and HIV tat. Retrovirology 2014; 11:50. [PMID: 24985203 PMCID: PMC4227133 DOI: 10.1186/1742-4690-11-50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022] Open
Abstract
Background The positive transcription elongation factor b (P-TEFb) plays an essential role in activating HIV genome transcription. It is recruited to the HIV LTR promoter through an interaction between the Tat viral protein and its Cyclin T1 subunit. P-TEFb activity is inhibited by direct binding of its subunit Cyclin T (1 or 2) with Hexim (1 or 2), a cellular protein, bound to the 7SK small nuclear RNA. Hexim1 competes with Tat for P-TEFb binding. Results Mutations that impair human Cyclin T1/Hexim1 interaction were searched using systematic mutagenesis of these proteins coupled with a yeast two-hybrid screen for loss of protein interaction. Evolutionary conserved Hexim1 residues belonging to an unstructured peptide located N-terminal of the dimerization domain, were found to be critical for P-TEFb binding. Random mutagenesis of the N-terminal region of Cyclin T1 provided identification of single amino-acid mutations that impair Hexim1 binding in human cells. Furthermore, conservation of critical residues supported the existence of a functional Hexim1 homologue in nematodes. Conclusions Single Cyclin T1 amino-acid mutations that impair Hexim1 binding are located on a groove between the two cyclin folds and define a surface overlapping the HIV-1 Tat protein binding surface. One residue, Y175, in the centre of this groove was identified as essential for both Hexim1 and Tat binding to P-TEFb as well as for HIV transcription.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olivier Bensaude
- Institut de Biologie de l'Ecole Normale Supérieure, Paris F-75005, France.
| |
Collapse
|
214
|
Guo L, Zhao Y, Yang S, Zhang H, Chen F. An integrated analysis of miRNA, lncRNA, and mRNA expression profiles. BIOMED RESEARCH INTERNATIONAL 2014; 2014:345605. [PMID: 25045664 PMCID: PMC4086520 DOI: 10.1155/2014/345605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/17/2022]
Abstract
Increasing amounts of evidence indicate that noncoding RNAs (ncRNAs) have important roles in various biological processes. Here, miRNA, lncRNA, and mRNA expression profiles were analyzed in human HepG2 and L02 cells using high-throughput technologies. An integrative method was developed to identify possible functional relationships between different RNA molecules. The dominant deregulated miRNAs were prone to be downregulated in tumor cells, and the most abnormal mRNAs and lncRNAs were always upregulated. However, the genome-wide analysis of differentially expressed RNA species did not show significant bias between up- and downregulated populations. miRNA-mRNA interaction was performed based on their regulatory relationships, and miRNA-lncRNA and mRNA-lncRNA interactions were thoroughly surveyed and identified based on their locational distributions and sequence correlations. Aberrantly expressed miRNAs were further analyzed based on their multiple isomiRs. IsomiR repertoires and expression patterns were varied across miRNA loci. Several specific miRNA loci showed differences between tumor and normal cells, especially with respect to abnormally expressed miRNA species. These findings suggest that isomiR repertoires and expression patterns might contribute to tumorigenesis through different biological roles. Systematic and integrative analysis of different RNA molecules with potential cross-talk may make great contributions to the unveiling of the complex mechanisms underlying tumorigenesis.
Collapse
Affiliation(s)
- Li Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sheng Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Feng Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
215
|
Kentwell J, Gundara JS, Sidhu SB. Noncoding RNAs in endocrine malignancy. Oncologist 2014; 19:483-91. [PMID: 24718512 PMCID: PMC4012972 DOI: 10.1634/theoncologist.2013-0458] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/05/2014] [Indexed: 01/22/2023] Open
Abstract
Only recently has it been uncovered that the mammalian transcriptome includes a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. Among numerous kinds of ncRNAs, short noncoding RNAs, such as microRNAs, have been extensively investigated with regard to their biogenesis, function, and importance in carcinogenesis. Long noncoding RNAs (lncRNAs) have only recently been implicated in playing a key regulatory role in cancer biology. The deregulation of ncRNAs has been demonstrated to have important roles in the regulation and progression of cancer development. In this review, we describe the roles of both short noncoding RNAs (including microRNAs, small nuclear RNAs, and piwi-interacting RNAs) and lncRNAs in carcinogenesis and outline the possible underlying genetic mechanisms, with particular emphasis on clinical applications. The focus of our review includes studies from the literature on ncRNAs in traditional endocrine-related cancers, including thyroid, parathyroid, adrenal gland, and gastrointestinal neuroendocrine malignancies. The current and potential future applications of ncRNAs in clinical cancer research is also discussed, with emphasis on diagnosis and future treatment.
Collapse
|
216
|
Human Immunodeficiency Virus Type 1 Tat and Rev as Potential Targets for Drug Development. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
217
|
Dai Q, Luan G, Deng L, Lei T, Kang H, Song X, Zhang Y, Xiao ZX, Li Q. Primordial dwarfism gene maintains Lin28 expression to safeguard embryonic stem cells from premature differentiation. Cell Rep 2014; 7:735-46. [PMID: 24768001 DOI: 10.1016/j.celrep.2014.03.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/15/2014] [Accepted: 03/20/2014] [Indexed: 01/09/2023] Open
Abstract
Primordial dwarfism (PD) is characterized by global growth failure, both during embryogenesis and postnatally. Loss-of-function germline mutations in La ribonucleoprotein domain family, member 7 (LAPR7) have recently been linked to PD. Paradoxically, LARP7 deficiency was previously assumed to be associated with increased cell growth and proliferation via activation of positive transcription elongation factor b (P-TEFb). Here, we show that Larp7 deficiency likely does not significantly increase P-TEFb activity. We further discover that Larp7 knockdown does not affect pluripotency but instead primes embryonic stem cells (ESCs) for differentiation via downregulation of Lin28, a positive regulator of organismal growth. Mechanistically, we show that Larp7 interacts with a poly(A) polymerase Star-PAP to maintain Lin28 mRNA stability. We propose that proper regulation of Lin28 and PTEFb is essential for embryonic cells to achieve a sufficient number of cell divisions prior to differentiation and ultimately to maintain proper organismal size.
Collapse
Affiliation(s)
- Qian Dai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Guangxin Luan
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Li Deng
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Tingjun Lei
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Han Kang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xu Song
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yujun Zhang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Qintong Li
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, and State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
218
|
Schulze-Gahmen U, Lu H, Zhou Q, Alber T. AFF4 binding to Tat-P-TEFb indirectly stimulates TAR recognition of super elongation complexes at the HIV promoter. eLife 2014; 3:e02375. [PMID: 24843025 PMCID: PMC4013717 DOI: 10.7554/elife.02375] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Superelongation complexes (SECs) are essential for transcription elongation of many human genes, including the integrated HIV-1 genome. At the HIV-1 promoter, the viral Tat protein binds simultaneously to the nascent TAR RNA and the CycT1 subunit of the P-TEFb kinase in a SEC. To understand the preferential recruitment of SECs by Tat and TAR, we determined the crystal structure of a quaternary complex containing Tat, P-TEFb, and the SEC scaffold, AFF4. Tat and AFF4 fold on the surface of CycT1 and interact directly. Interface mutations in the AFF4 homolog AFF1 reduced Tat–AFF1 affinity in vivo and Tat-dependent transcription from the HIV promoter. AFF4 binding in the presence of Tat partially orders the CycT1 Tat–TAR recognition motif and increases the affinity of Tat-P-TEFb for TAR 30-fold. These studies indicate that AFF4 acts as a two-step filter to increase the selectivity of Tat and TAR for SECs over P-TEFb alone. DOI:http://dx.doi.org/10.7554/eLife.02375.001 The rate at which many genes are expressed as proteins depends on a process called transcriptional elongation. This process takes place as the region of DNA that defines the gene is transcribed into an RNA molecule, and it is catalyzed by an enzyme called RNA polymerase II. However, this process often stalls shortly after it starts, and another enzyme called a positive transcription elongation factor is needed to restart it. The human immunodeficiency virus (HIV) is a retrovirus that hijacks the gene expression machinery inside immune cells in order to replicate itself. To do this as efficiently as possible, the elongation factor needs to restart the transcription process as quickly as possible. To ensure that this happens the virus produces a protein called Tat that binds to the short region of RNA that has already been made. At the same time the Tat protein also combines with other proteins to form a multi-protein machine called the super elongation complex. Other proteins in the super elongation complex include a ‘scaffold’ protein called AFF4, a positive elongation factor called P-TEFb, and at least two additional transcription factors. Until recently researchers did not know how the Tat protein was able to recruit super elongation complexes to the correct location without recruiting other complexes that contained similar protein subunits. Now Schulze-Gahmen et al. have shed new light on this mystery by working out the crystal structure of the complex formed by the elongation factor P-TEFb when it forms a complex with the Tat protein and a scaffold protein called AFF4. The results show that direct interactions between the Tat and scaffold proteins help to recruit the super elongation complex to the correct location. The three-way interactions between Tat, AFF4, and P-TEFb form a binding surface that encourages the complex to bind to the RNA. Overall, Schulze-Gahmen et al. show that the super elongation complex is much more likely to be recognized by the Tat protein and then bind to RNA than just the elongation factor on its own. DOI:http://dx.doi.org/10.7554/eLife.02375.002
Collapse
Affiliation(s)
- Ursula Schulze-Gahmen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Huasong Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tom Alber
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
219
|
HIV-1 latency: an update of molecular mechanisms and therapeutic strategies. Viruses 2014; 6:1715-58. [PMID: 24736215 PMCID: PMC4014718 DOI: 10.3390/v6041715] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023] Open
Abstract
The major obstacle towards HIV-1 eradication is the life-long persistence of the virus in reservoirs of latently infected cells. In these cells the proviral DNA is integrated in the host’s genome but it does not actively replicate, becoming invisible to the host immune system and unaffected by existing antiviral drugs. Rebound of viremia and recovery of systemic infection that follows interruption of therapy, necessitates life-long treatments with problems of compliance, toxicity, and untenable costs, especially in developing countries where the infection hits worst. Extensive research efforts have led to the proposal and preliminary testing of several anti-latency compounds, however, overall, eradication strategies have had, so far, limited clinical success while posing several risks for patients. This review will briefly summarize the more recent advances in the elucidation of mechanisms that regulates the establishment/maintenance of latency and therapeutic strategies currently under evaluation in order to eradicate HIV persistence.
Collapse
|
220
|
Kaposi's sarcoma-associated herpesvirus ORF45 mediates transcriptional activation of the HIV-1 long terminal repeat via RSK2. J Virol 2014; 88:7024-35. [PMID: 24719417 DOI: 10.1128/jvi.00931-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Robust activation of human immunodeficiency virus type 1 (HIV-1) gene expression occurs upon superinfection with Kaposi's sarcoma-associated herpesvirus (KSHV), a common AIDS-associated pathogen. Though the mechanisms underlying this phenotype remain unknown, several KSHV-encoded factors have been reported to stimulate HIV-1 long terminal repeat (LTR) activity. Here, we systematically evaluated the ability of KSHV tegument proteins to modulate the activation of an integrated HIV-1 LTR and revealed that the most potent individual activator is ORF45. ORF45 directs an increase in RNA polymerase II recruitment to the HIV-1 LTR, leading to enhanced transcriptional output. ORF45 is a robust activator of the p90 ribosomal S6 kinases (RSK), and we found that this activity is necessary but not sufficient to increase transcription from the LTR. Of the three widely expressed RSK isoforms, RSK2 appears to be selectively involved in LTR stimulation by both KSHV ORF45 and HIV-1 Tat. However, constitutively active RSK2 is unable to stimulate the LTR, suggesting that ORF45 may preferentially direct this kinase to a specific set of targets. Collectively, our findings reveal a novel transcriptional activation function for KSHV ORF45 and highlight the importance of RSK2 in shaping the transcriptional environment during infection. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a prominent AIDS-associated pathogen. Previous studies have shown that infection of cells containing human immunodeficiency virus type 1 (HIV-1) with KSHV leads to potent stimulation of HIV-1 gene expression by activating the HIV-1 promoter, termed the long terminal repeat (LTR). Here, we compared the abilities of various KSHV proteins to activate gene expression from the HIV-1 LTR and found that KSHV ORF45 is the most potent activator. ORF45 is known to induce cell signaling through ribosomal S6 kinase (RSK) and enhance protein translation. However, we revealed that the activation of a specific isoform of RSK by ORF45 also leads to increased mRNA synthesis from the LTR by the host RNA polymerase. Collectively, our findings provide new insight into the interviral interactions between KSHV and HIV that may ultimately impact disease.
Collapse
|
221
|
Role of noncoding RNAs in the regulation of P-TEFb availability and enzymatic activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:643805. [PMID: 24701579 PMCID: PMC3950470 DOI: 10.1155/2014/643805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/13/2014] [Indexed: 11/23/2022]
Abstract
P-TEFb is a transcriptional factor that specifically regulates the elongation step of RNA polymerase II-dependent transcription and its activity strictly required for Human Immunodeficiency Virus (HIV) infection and during cardiac differentiation. P-TEFb role has emerged as a crucial regulator of transcription elongation and its activity found finely tuned in vivo at transcriptional level as well as posttranscriptionally by dynamic association with different multisubunit molecular particles. Both physiological and pathological cellular signals rapidly converge on P-TEFb regulation by modifying expression and activity of the complex to allow cells to properly respond to different stimuli. In this review we will give a panoramic view on P-TEFb regulation by noncoding RNAs in both physiological and pathological conditions.
Collapse
|
222
|
Choe SK, Ladam F, Sagerström CG. TALE factors poise promoters for activation by Hox proteins. Dev Cell 2014; 28:203-11. [PMID: 24480644 DOI: 10.1016/j.devcel.2013.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/08/2013] [Accepted: 12/19/2013] [Indexed: 01/09/2023]
Abstract
Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Franck Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
223
|
Lu Z, Matera AG. Vicinal: a method for the determination of ncRNA ends using chimeric reads from RNA-seq experiments. Nucleic Acids Res 2014; 42:e79. [PMID: 24623808 PMCID: PMC4027162 DOI: 10.1093/nar/gku207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Non-coding (nc)RNAs are important structural and regulatory molecules. Accurate determination of the primary sequence and secondary structure of ncRNAs is important for understanding their functions. During cDNA synthesis, RNA 3' end stem-loops can self-prime reverse transcription, creating RNA-cDNA chimeras. We found that chimeric RNA-cDNA fragments can also be detected at 5' end stem-loops, although at much lower frequency. Using the Gubler-Hoffman method, both types of chimeric fragments can be converted to cDNA during library construction, and they are readily detectable in high-throughput RNA sequencing (RNA-seq) experiments. Here, we show that these chimeric reads contain valuable information about the boundaries of ncRNAs. We developed a bioinformatic method, called Vicinal, to precisely map the ends of numerous fruitfly, mouse and human ncRNAs. Using this method, we analyzed chimeric reads from over 100 RNA-seq datasets, the results of which we make available for users to find RNAs of interest. In summary, we show that Vicinal is a useful tool for determination of the precise boundaries of uncharacterized ncRNAs, facilitating further structure/function studies.
Collapse
Affiliation(s)
- Zhipeng Lu
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - A Gregory Matera
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
224
|
Eilebrecht S, Le Douce V, Riclet R, Targat B, Hallay H, Van Driessche B, Schwartz C, Robette G, Van Lint C, Rohr O, Benecke AG. HMGA1 recruits CTIP2-repressed P-TEFb to the HIV-1 and cellular target promoters. Nucleic Acids Res 2014; 42:4962-71. [PMID: 24623795 PMCID: PMC4005653 DOI: 10.1093/nar/gku168] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Active positive transcription elongation factor b (P-TEFb) is essential for cellular and human immunodeficiency virus type 1 (HIV-1) transcription elongation. CTIP2 represses P-TEFb activity in a complex containing 7SK RNA and HEXIM1. Recently, the inactive 7SK/P-TEFb small nuclear RNP (snRNP) has been detected at the HIV-1 core promoter as well as at the promoters of cellular genes, but a recruiting mechanism still remains unknown to date. Here we show global synergy between CTIP2 and the 7SK-binding chromatin master-regulator HMGA1 in terms of P-TEFb–dependent endogenous and HIV-1 gene expression regulation. While CTIP2 and HMGA1 concordingly repress the expression of cellular 7SK-dependent P-TEFb targets, the simultaneous knock-down of CTIP2 and HMGA1 also results in a boost in Tat-dependent and independent HIV-1 promoter activity. Chromatin immunoprecipitation experiments reveal a significant loss of CTIP2/7SK/P-TEFb snRNP recruitment to cellular gene promoters and the HIV-1 promoter on HMGA1 knock-down. Our findings not only provide insights into a recruiting mechanism for the inactive 7SK/P-TEFb snRNP, but may also contribute to a better understanding of viral latency.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- Vaccine Research Institute, INSERM U955, Institut Mondor de Recherche Biomédicale, 8 rue du général Sarrail, 94011 Créteil, France, Institut des Hautes Études Scientifiques-Centre National de la Recherche Scientifique, 35 route de Chartres, 91440 Bures sur Yvette, France, Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France, IUT Louis Pasteur, 1 Allée d'Athénes, 67300 Schiltigheim, France, Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium, Institut Universitaire de France-IUF, Paris, France and CNRS UMR 7224, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Place RF, Noonan EJ. Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones 2014; 19:159-72. [PMID: 24002685 PMCID: PMC3933615 DOI: 10.1007/s12192-013-0456-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023] Open
Abstract
The field of non-coding RNA (ncRNA) has expanded over the last decade following the discoveries of several new classes of regulatory ncRNA. A growing amount of evidence now indicates that ncRNAs are involved even in the most fundamental of cellular processes. The heat shock response is no exception as ncRNAs are being identified as integral components of this process. Although this area of research is only in its infancy, this article focuses on several classes of regulatory ncRNA (i.e., miRNA, lncRNA, and circRNA), while summarizing their activities in mammalian heat shock. We also present an updated model integrating the traditional heat shock response with the activities of regulatory ncRNA. Our model expands on the mechanisms for efficient execution of the stress response, while offering a more comprehensive summary of the major regulators and responders in heat shock signaling. It is our hope that much of what is discussed herein may help researchers in integrating the fields of heat shock and ncRNA in mammals.
Collapse
Affiliation(s)
- Robert F. Place
- />Anvil Biosciences, 3475 Edison Way, Ste J, Menlo Park, CA 94025 USA
| | - Emily J. Noonan
- />Division of Cancer Prevention, Cancer Prevention Fellowship Program, Rockville, MD USA
- />Laboratory of Human Carcinogenesis, Center for Cancer Research, 37 Convent Dr., Bldg. 37 Room 3060, Bethesda, MD 20892-4258 USA
| |
Collapse
|
226
|
Liu W, Ma Q, Wong K, Li W, Ohgi K, Zhang J, Aggarwal A, Rosenfeld MG. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 2014; 155:1581-1595. [PMID: 24360279 DOI: 10.1016/j.cell.2013.10.056] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/03/2013] [Accepted: 10/23/2013] [Indexed: 01/14/2023]
Abstract
Distal enhancers characterized by the H3K4me(1) mark play critical roles in developmental and transcriptional programs. However, potential roles of specific distal regulatory elements in regulating RNA polymerase II (Pol II) promoter-proximal pause release remain poorly investigated. Here, we report that a unique cohort of jumonji C-domain-containing protein 6 (JMJD6) and bromodomain-containing protein 4 (Brd4) cobound distal enhancers, termed anti-pause enhancers (A-PEs), regulate promoter-proximal pause release of a large subset of transcription units via long-range interactions. Brd4-dependent JMJD6 recruitment on A-PEs mediates erasure of H4R3me(2(s)), which is directly read by 7SK snRNA, and decapping/demethylation of 7SK snRNA, ensuring the dismissal of the 7SK snRNA/HEXIM inhibitory complex. The interactions of both JMJD6 and Brd4 with the P-TEFb complex permit its activation and pause release of regulated coding genes. The functions of JMJD6/ Brd4-associated dual histone and RNA demethylase activity on anti-pause enhancers have intriguing implications for these proteins in development, homeostasis, and disease.
Collapse
Affiliation(s)
- Wen Liu
- School of Pharmaceutical Science, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.,Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Graduate Program in Bioinformatics and System Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kaki Wong
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kenny Ohgi
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jie Zhang
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aneel Aggarwal
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
227
|
Mbonye U, Karn J. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology 2014; 454-455:328-39. [PMID: 24565118 DOI: 10.1016/j.virol.2014.02.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/23/2014] [Accepted: 02/07/2014] [Indexed: 02/06/2023]
Abstract
Replication-competent latent HIV-1 proviruses that persist in the genomes of a very small subset of resting memory T cells in infected individuals under life-long antiretroviral therapy present a major barrier towards viral eradication. Multiple molecular mechanisms are required to repress the viral trans-activating factor Tat and disrupt the regulatory Tat feedback circuit leading to the establishment of the latent viral reservoir. In particular, latency is due to a combination of transcriptional silencing of proviruses via host epigenetic mechanisms and restrictions on the expression of P-TEFb, an essential co-factor for Tat. Induction of latent proviruses in the presence of antiretroviral therapy is expected to enable clearance of latently infected cells by viral cytopathic effects and host antiviral immune responses. An in-depth comprehensive understanding of the molecular control of HIV-1 transcription should inform the development of optimal combinatorial reactivation strategies that are intended to purge the latent viral reservoir.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States.
| |
Collapse
|
228
|
Panwar B, Arora A, Raghava GPS. Prediction and classification of ncRNAs using structural information. BMC Genomics 2014; 15:127. [PMID: 24521294 PMCID: PMC3925371 DOI: 10.1186/1471-2164-15-127] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/04/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. RESULTS In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. CONCLUSIONS This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon).
Collapse
Affiliation(s)
- Bharat Panwar
- Bioinformatics Centre, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh, India
| | - Amit Arora
- Bioinformatics Centre, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh, India
| | - Gajendra PS Raghava
- Bioinformatics Centre, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh, India
| |
Collapse
|
229
|
Regulation of CDK9 activity by phosphorylation and dephosphorylation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964964. [PMID: 24524087 PMCID: PMC3913462 DOI: 10.1155/2014/964964] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022]
Abstract
HIV-1 transcription is regulated by CDK9/cyclin T1, which, unlike a typical cell cycle-dependent kinase, is regulated by associating with 7SK small nuclear ribonuclear protein complex (snRNP). While the protein components of this complex are well studied, the mechanism of the complex formation is still not fully understood. The association of CDK9/cyclin T1 with 7SK snRNP is, in part, regulated by a reversible CDK9 phosphorylation. Here, we present a comprehensive review of the kinases and phosphatases involved in CDK9 phosphorylation and discuss their role in regulation of HIV-1 replication and potential for being targeted for drug development. We propose a novel pathway of HIV-1 transcription regulation via CDK9 Ser-90 phosphorylation by CDK2 and CDK9 Ser-175 dephosphorylation by protein phosphatase-1.
Collapse
|
230
|
AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. Proc Natl Acad Sci U S A 2013; 111:E15-24. [PMID: 24367103 DOI: 10.1073/pnas.1318503111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) stimulates RNA polymerase elongation by inducing the transition of promoter proximally paused polymerase II into a productively elongating state. P-TEFb itself is regulated by reversible association with various transcription factors/cofactors to form several multisubunit complexes [e.g., the 7SK small nuclear ribonucleoprotein particle (7SK snRNP), the super elongation complexes (SECs), and the bromodomain protein 4 (Brd4)-P-TEFb complex] that constitute a P-TEFb network controlling cellular and HIV transcription. These complexes have been thought to share no components other than the core P-TEFb subunits cyclin-dependent kinase 9 (CDK9) and cyclin T (CycT, T1, T2a, and T2b). Here we show that the AF4/FMR2 family member 1 (AFF1) is bound to CDK9-CycT and is present in all major P-TEFb complexes and that the tripartite CDK9-CycT-AFF1 complex is transferred as a single unit within the P-TEFb network. By increasing the affinity of the HIV-encoded transactivating (Tat) protein for CycT1, AFF1 facilitates Tat's extraction of P-TEFb from 7SK snRNP and the formation of Tat-SECs for HIV transcription. Our data identify AFF1 as a ubiquitous P-TEFb partner and demonstrate that full Tat transactivation requires the complete SEC.
Collapse
|
231
|
Amaral PP, Dinger ME, Mattick JS. Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 2013; 12:254-78. [PMID: 23709461 DOI: 10.1093/bfgp/elt016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells and organisms are subject to challenges and perturbations in their environment and physiology in all stages of life. The molecular response to such changes, including insulting conditions such as pathogen infections, involves coordinated modulation of gene expression programmes and has not only homeostatic but also ecological and evolutionary importance. Although attention has been primarily focused on signalling pathways and protein networks, non-coding RNAs (ncRNAs), which comprise a significant output of the genomes of prokaryotes and especially eukaryotes, are increasingly implicated in the molecular mechanisms of these responses. Long and short ncRNAs not only regulate development and cell physiology, they are also involved in disease states, including cancers, in host-pathogen interactions, and in a variety of stress responses. Indeed, regulatory RNAs are part of genetically encoded response networks and also underpin epigenetic processes, which are emerging as key mechanisms of adaptation and transgenerational inheritance. Here we present the growing evidence that ncRNAs are intrinsically involved in cellular and organismal adaptation processes, in both robustness and protection to stresses, as well as in mechanisms generating evolutionary change.
Collapse
|
232
|
Abstract
RNA transcripts that do not code for proteins have been long known to lie at the heart of many biological processes, such as splicing and translation. Yet their full potential has only been appreciated recently and non-coding RNAs (ncRNAs) are now attracting increasing attention. Pioneering work in yeast and plant systems has revealed that non-coding RNAs can have a major influence on the deposition of histone and DNA modifications. This can introduce heritable variation into gene expression and, thus, be the basis of epigenetic phenomena. Mechanistically, such processes have been studied extensively in the fission yeast Schizosaccharomyces pombe, providing an important conceptual framework for possible modes of action of ncRNAs also in other organisms. In this review, we highlight mechanistic insights into chromatin-associated ncRNA activities gained from work with fission yeast, and we draw parallels to studies in other eukaryotes that indicate evolutionary conservation.
Collapse
Affiliation(s)
- Claudia Keller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| |
Collapse
|
233
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
234
|
Sancineto L, Iraci N, Massari S, Attanasio V, Corazza G, Barreca ML, Sabatini S, Manfroni G, Avanzi NR, Cecchetti V, Pannecouque C, Marcello A, Tabarrini O. Computer-Aided Design, Synthesis and Validation of 2-Phenylquinazolinone Fragments as CDK9 Inhibitors with Anti-HIV-1 Tat-Mediated Transcription Activity. ChemMedChem 2013; 8:1941-53. [DOI: 10.1002/cmdc.201300287] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 12/20/2022]
|
235
|
Abstract
Elongation is becoming increasingly recognized as a critical step in eukaryotic transcriptional regulation. Although traditional genetic and biochemical studies have identified major players of transcriptional elongation, our understanding of the importance and roles of these factors is evolving rapidly through the recent advances in genome-wide and single-molecule technologies. Here, we focus on how elongation can modulate the transcriptional outcome through the rate-liming step of RNA polymerase II (Pol II) pausing near promoters and how the participating factors were identified. Among the factors we describe are the pausing factors--NELF (negative elongation factor) and DSIF (DRB sensitivity-inducing factor)--and P-TEFb (positive elongation factor b), which is the key player in pause release. We also describe the high-resolution view of Pol II pausing and propose nonexclusive models for how pausing is achieved. We then discuss Pol II elongation through the bodies of genes and the roles of FACT and SPT6, factors that allow Pol II to move through nucleosomes.
Collapse
Affiliation(s)
- Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703; ,
| | | |
Collapse
|
236
|
Napolitano G, Amente S, Lavadera ML, Di Palo G, Ambrosio S, Lania L, Dellino GI, Pelicci PG, Majello B. Sequence-specific double strand breaks trigger P-TEFb-dependent Rpb1-CTD hyperphosphorylation. Mutat Res 2013; 749:21-27. [PMID: 23906511 DOI: 10.1016/j.mrfmmm.2013.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/02/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
Double strand DNA breaks (DSBs) are one of the most challenging forms of DNA damage which, if left unrepaired, can trigger cellular death and can contribute to cancer. A number of studies have been focused on DNA-damage response (DDR) mechanisms, and most of them rely on the induction of DSBs triggered by chemical compounds or radiations. However, genotoxic drugs and radiation treatments of cultured cell lines induce random DSBs throughout the genome, thus heterogeneously across the cell population, leading to variability of the cellular response. To overcome this aspect, we used here a recently described cell-based DSBs system whereby, upon induction of an inducible restriction enzyme, hundreds of site-specific DSBs are generated across the genome. We show here that sequence-specific DSBs are sufficient to activate the positive transcription elongation factor b (P-TEFb), to trigger hyperphosphorylation of the largest RNA polymerase II carboxyl-terminal-domain (Rpb1-CTD) and to induce activation of p53-transcriptional axis resulting in cell cycle arrest.
Collapse
|
237
|
Ding V, Lew QJ, Chu KL, Natarajan S, Rajasegaran V, Gurumurthy M, Choo ABH, Chao SH. HEXIM1 induces differentiation of human pluripotent stem cells. PLoS One 2013; 8:e72823. [PMID: 23977357 PMCID: PMC3748041 DOI: 10.1371/journal.pone.0072823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/19/2013] [Indexed: 02/07/2023] Open
Abstract
Hexamethylene bisacetamide inducible protein 1 (HEXIM1) is best known as the inhibitor of positive transcription elongation factor b (P-TEFb), which is composed of cyclin-dependent kinase 9 (CDK9)/cyclin T1. P-TEFb is an essential regulator for the transcriptional elongation by RNA polymerase II. A genome-wide study using human embryonic stem cells shows that most mRNA synthesis is regulated at the stage of transcription elongation, suggesting a possible role for P-TEFb/HEXIM1 in the gene regulation of stem cells. In this report, we detected a marked increase in HEXIM1 protein levels in the differentiated human pluripotent stem cells (hPSCs) induced by LY294002 treatment. Since no changes in CDK9 and cyclin T1 were observed in the LY294002-treated cells, increased levels of HEXIM1 might lead to inhibition of P-TEFb activity. However, treatment with a potent P-TEFb inhibiting compound, flavopiridol, failed to induce hPSC differentiation, ruling out the possible requirement for P-TEFb kinase activity in hPSC differentiation. Conversely, differentiation was observed when hPSCs were incubated with hexamethylene bisacetamide, a HEXIM1 inducing reagent. The involvement of HEXIM1 in the regulation of hPSCs was further supported when overexpression of HEXIM1 concomitantly induced hPSC differentiation. Collectively, our study demonstrates a novel role of HEXIM1 in regulating hPSC fate through a P-TEFb-independent pathway.
Collapse
Affiliation(s)
- Vanessa Ding
- Stem Cell Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Qiao Jing Lew
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Kai Ling Chu
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Subaashini Natarajan
- Stem Cell Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Vikneswari Rajasegaran
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Meera Gurumurthy
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Andre B. H. Choo
- Stem Cell Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Sheng-Hao Chao
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Microbiology, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
238
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
239
|
Cherrier T, Le Douce V, Eilebrecht S, Riclet R, Marban C, Dequiedt F, Goumon Y, Paillart JC, Mericskay M, Parlakian A, Bausero P, Abbas W, Herbein G, Kurdistani SK, Grana X, Van Driessche B, Schwartz C, Candolfi E, Benecke AG, Van Lint C, Rohr O. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci U S A 2013; 110:12655-60. [PMID: 23852730 PMCID: PMC3732990 DOI: 10.1073/pnas.1220136110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) is involved in physiological and pathological events including inflammation, cancer, AIDS, and cardiac hypertrophy. The balance between its active and inactive form is tightly controlled to ensure cellular integrity. We report that the transcriptional repressor CTIP2 is a major modulator of P-TEFb activity. CTIP2 copurifies and interacts with an inactive P-TEFb complex containing the 7SK snRNA and HEXIM1. CTIP2 associates directly with HEXIM1 and, via the loop 2 of the 7SK snRNA, with P-TEFb. In this nucleoprotein complex, CTIP2 significantly represses the Cdk9 kinase activity of P-TEFb. Accordingly, we show that CTIP2 inhibits large sets of P-TEFb- and 7SK snRNA-sensitive genes. In hearts of hypertrophic cardiomyopathic mice, CTIP2 controls P-TEFb-sensitive pathways involved in the establishment of this pathology. Overexpression of the β-myosin heavy chain protein contributes to the pathological cardiac wall thickening. The inactive P-TEFb complex associates with CTIP2 at the MYH7 gene promoter to repress its activity. Taken together, our results strongly suggest that CTIP2 controls P-TEFb function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Thomas Cherrier
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
- Laboratory of Protein Signaling and Interactions, University of Liège, Liège, Belgium
| | - Valentin Le Douce
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
| | - Sebastian Eilebrecht
- Vaccine Research Institute, Institut National de la Santé et de la Recherche Médicale, Unité 955, 94010 Créteil, France
- Institut des Hautes Études Scientifiques, Centre National de la Recherche Scientifique, 91440 Bures sur Yvette, France
| | - Raphael Riclet
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
| | - Céline Marban
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
- Department of Biological Chemistry, University of California, Los Angeles, CA 92093
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, University of Liège, Liège, Belgium
| | - Yannick Goumon
- Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique Unité Propre de Recherche 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Mathias Mericskay
- Unité de Recherche 4, Aging, Stress, Inflammation Department, Université Pierre et Marie Curie Université Paris 6, 75005 Paris, France
| | - Ara Parlakian
- Unité de Recherche 4, Aging, Stress, Inflammation Department, Université Pierre et Marie Curie Université Paris 6, 75005 Paris, France
| | - Pedro Bausero
- Unité de Recherche 4, Aging, Stress, Inflammation Department, Université Pierre et Marie Curie Université Paris 6, 75005 Paris, France
| | - Wasim Abbas
- Department of Virology, Institut Fédératif de Recherche 133, Institut National de la Santé et de la Recherche Médicale, University of Franche-Comté, 25000 Besançon, France
| | - Georges Herbein
- Department of Virology, Institut Fédératif de Recherche 133, Institut National de la Santé et de la Recherche Médicale, University of Franche-Comté, 25000 Besançon, France
| | | | - Xavier Grana
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140
| | - Benoit Van Driessche
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Christian Schwartz
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
| | - Ermanno Candolfi
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
| | - Arndt G. Benecke
- Vaccine Research Institute, Institut National de la Santé et de la Recherche Médicale, Unité 955, 94010 Créteil, France
- Institut des Hautes Études Scientifiques, Centre National de la Recherche Scientifique, 91440 Bures sur Yvette, France
| | - Carine Van Lint
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Olivier Rohr
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
240
|
Wang W, Yao X, Huang Y, Hu X, Liu R, Hou D, Chen R, Wang G. Mediator MED23 regulates basal transcription in vivo via an interaction with P-TEFb. Transcription 2013; 4:39-51. [PMID: 23340209 DOI: 10.4161/trns.22874] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Mediator is a multi-subunit complex that transduces regulatory information from transcription regulators to the RNA polymerase II apparatus. Growing evidence suggests that Mediator plays roles in multiple stages of eukaryotic transcription, including elongation. However, the detailed mechanism by which Mediator regulates elongation remains elusive. In this study, we demonstrate that Mediator MED23 subunit controls a basal level of transcription by recruiting elongation factor P-TEFb, via an interaction with its CDK9 subunit. The mRNA level of Egr1, a MED23-controlled model gene, is reduced 4-5 fold in Med23 (-/-) ES cells under an unstimulated condition, but Med23-deficiency does not alter the occupancies of RNAP II, GTFs, Mediator complex, or activator ELK1 at the Egr1 promoter. Instead, Med23 depletion results in a significant decrease in P-TEFb and RNAP II (Ser2P) binding at the coding region, but no changes for several other elongation regulators, such as DSIF and NELF. ChIP-seq revealed that Med23-deficiency partially reduced the P-TEFb occupancy at a set of MED23-regulated gene promoters. Further, we demonstrate that MED23 interacts with CDK9 in vivo and in vitro. Collectively, these results provide the mechanistic insight into how Mediator promotes RNAP II into transcription elongation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Ji X, Zhou Y, Pandit S, Huang J, Li H, Lin CY, Xiao R, Burge CB, Fu XD. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 2013; 153:855-68. [PMID: 23663783 DOI: 10.1016/j.cell.2013.04.028] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 03/14/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
RNAP II is frequently paused near gene promoters in mammals, and its transition to productive elongation requires active recruitment of P-TEFb, a cyclin-dependent kinase for RNAP II and other key transcription elongation factors. A fraction of P-TEFb is sequestered in an inhibitory complex containing the 7SK noncoding RNA, but it has been unclear how P-TEFb is switched from the 7SK complex to RNAP II during transcription activation. We report that SRSF2 (also known as SC35, an SR-splicing factor) is part of the 7SK complex assembled at gene promoters and plays a direct role in transcription pause release. We demonstrate RNA-dependent, coordinated release of SRSF2 and P-TEFb from the 7SK complex and transcription activation via SRSF2 binding to promoter-associated nascent RNA. These findings reveal an unanticipated SR protein function, a role for promoter-proximal nascent RNA in gene activation, and an analogous mechanism to HIV Tat/TAR for activating cellular genes.
Collapse
Affiliation(s)
- Xiong Ji
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Lew QJ, Chu KL, Chia YL, Cheong N, Chao SH. HEXIM1, a New Player in the p53 Pathway. Cancers (Basel) 2013; 5:838-56. [PMID: 24202322 PMCID: PMC3795367 DOI: 10.3390/cancers5030838] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 01/10/2023] Open
Abstract
Hexamethylene bisacetamide-inducible protein 1 (HEXIM1) is best known as the inhibitor of positive transcription elongation factor b (P-TEFb), which controls transcription elongation of RNA polymerase II and Tat transactivation of human immunodeficiency virus. Besides P-TEFb, several proteins have been identified as HEXIM1 binding proteins. It is noteworthy that more than half of the HEXIM1 binding partners are involved in cancers. P53 and two key regulators of the p53 pathway, nucleophosmin (NPM) and human double minute-2 protein (HDM2), are among the factors identified. This review will focus on the functional importance of the interactions between HEXIM1 and p53/NPM/HDM2. NPM and the cytoplasmic mutant of NPM, NPMc+, were found to regulate P-TEFb activity and RNA polymerase II transcription through the interaction with HEXIM1. Importantly, more than one-third of acute myeloid leukemia (AML) patients carry NPMc+, suggesting the involvement of HEXIM1 in tumorigenesis of AML. HDM2 was found to ubiquitinate HEXIM1. The HDM2-mediated ubiquitination of HEXIM1 did not lead to protein degradation of HEXIM1 but enhanced its inhibitory activity on P-TEFb. Recently, HEXIM1 was identified as a novel positive regulator of p53. HEXIM1 prevented p53 ubiquitination by competing with HDM2 in binding to p53. Taken together, the new evidence suggests a role of HEXIM1 in regulating the p53 pathway and tumorigenesis.
Collapse
Affiliation(s)
- Qiao Jing Lew
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01, Singapore 138668, Singapore.
| | | | | | | | | |
Collapse
|
243
|
Abstract
The HIV/AIDS field is gaining momentum in the goal of finding a functional cure for HIV infection by utilizing strategies that specifically reactivate the latent viral reservoir in combination with the HAART regimen to prevent further viral spread. Small-molecule inhibitors such as histone deacetylase (HDAC) and bromodomain and extraterminal (BET) inhibitors can successfully activate HIV transcription and reverse viral latency in clonal cell lines. However, in resting CD4+ T cells, thought to be the principal physiological reservoir of latent HIV, their effect in reactivating the viral reservoir is more variable. It is possible that the discrepant responsiveness of quiescent primary CD4+ T cells to HDAC and BET inhibitors could be attributed to the limiting levels of P-TEFb, a key viral transcription host cofactor, in these cells. In this review, we discuss the role of P-TEFb and the necessity for its mobilization in stimulating viral reactivation from latency upon treatment with HDAC and BET inhibitors.
Collapse
Affiliation(s)
- Sona Budhiraja
- Department of Molecular Microbiology & Virology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew P Rice
- Department of Molecular Microbiology & Virology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
244
|
Sivakumaran H, Lin MH, Apolloni A, Cutillas V, Jin H, Li D, Wei T, Harrich D. Overexpression of PRMT6 does not suppress HIV-1 Tat transactivation in cells naturally lacking PRMT6. Virol J 2013; 10:207. [PMID: 23800116 PMCID: PMC3695826 DOI: 10.1186/1743-422x-10-207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/20/2013] [Indexed: 01/09/2023] Open
Abstract
Background Protein arginine methyltransferase 6 (PRMT6) can methylate the HIV-1 Tat, Rev and nucleocapsid proteins in a manner that diminishes each of their functions in in vitro assays, and increases the stability of Tat in human cells. In this study, we explored the relationship between PRMT6 and HIV-1 Tat by determining the domains in each protein required for interaction. Methods Through domain mapping and immunoprecipitation experiments, we determined that both the amino and carboxyl termini of PRMT6, and the activation domain within Tat are essential for interaction. Mutation of the basic domain of Tat did not affect the ability of PRMT6 to interact with Tat. Results We next used the A549 human alveolar adenocarcinoma cell line, which naturally expresses undetectable levels of PRMT6, as a model for testing the effects of PRMT6 on Tat stability, transactivation, and HIV-1 replication. As previously observed, steady state levels and the protein half-life of Tat were increased by the ectopic expression of PRMT6. However, no down regulation of Tat transactivation function was observed, even with over 300-fold molar excess of PRMT6 plasmid. We also observed no negative effect on HIV-1 infectivity when A549 producer cells overexpressed PRMT6. Conclusions We show that PRMT6 requires the activation domain, but surprisingly not the basic domain, of Tat for protein interaction. This interaction between Tat and PRMT6 may impact upon pathogenic effects attributed to Tat during HIV-1 infection other than its function during transactivation.
Collapse
Affiliation(s)
- Haran Sivakumaran
- Queensland Institute of Medical Research, Molecular Virology Laboratory, 300 Herston Road, Herston, Brisbane 4006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Lu H, Li Z, Xue Y, Zhou Q. Viral-host interactions that control HIV-1 transcriptional elongation. Chem Rev 2013; 113:8567-82. [PMID: 23795863 DOI: 10.1021/cr400120z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huasong Lu
- School of Pharmaceutical Sciences, Xiamen University , Xiamen, Fujian 361005, China
| | | | | | | |
Collapse
|
246
|
Bromodomain proteins in HIV infection. Viruses 2013; 5:1571-86. [PMID: 23793227 PMCID: PMC3717722 DOI: 10.3390/v5061571] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/09/2013] [Accepted: 06/13/2013] [Indexed: 02/06/2023] Open
Abstract
Bromodomains are conserved protein modules of ~110 amino acids that bind acetylated lysine residues in histone and non-histone proteins. Bromodomains are present in many chromatin-associated transcriptional regulators and have been linked to diverse aspects of the HIV life cycle, including transcription and integration. Here, we review the role of bromodomain-containing proteins in HIV infection. We begin with a focus on acetylated viral factors, followed by a discussion of structural and biological studies defining the involvement of bromodomain proteins in the HIV life cycle. We end with an overview of promising new studies of bromodomain inhibitory compounds for the treatment of HIV latency.
Collapse
|
247
|
Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2013; 2:a006916. [PMID: 22355797 DOI: 10.1101/cshperspect.a006916] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Control of HIV-1 gene expression depends on two viral regulatory proteins, Tat and Rev. Tat stimulates transcription elongation by directing the cellular transcriptional elongation factor P-TEFb to nascent RNA polymerases. Rev is required for the transport from the nucleus to the cytoplasm of the unspliced and incompletely spliced mRNAs that encode the structural proteins of the virus. Molecular studies of both proteins have revealed how they interact with the cellular machinery to control transcription from the viral LTR and regulate the levels of spliced and unspliced mRNAs. The regulatory feedback mechanisms driven by HIV-1 Tat and Rev ensure that HIV-1 transcription proceeds through distinct phases. In cells that are not fully activated, limiting levels of Tat and Rev act as potent blocks to premature virus production.
Collapse
Affiliation(s)
- Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
248
|
Abstract
Long non-coding RNAs (lncRNAs) have been found to perform various functions in a wide variety of important biological processes. To make easier interpretation of lncRNA functionality and conduct deep mining on these transcribed sequences, it is convenient to classify lncRNAs into different groups. Here, we summarize classification methods of lncRNAs according to their four major features, namely, genomic location and context, effect exerted on DNA sequences, mechanism of functioning and their targeting mechanism. In combination with the presently available function annotations, we explore potential relationships between different classification categories, and generalize and compare biological features of different lncRNAs within each category. Finally, we present our view on potential further studies. We believe that the classifications of lncRNAs as indicated above are of fundamental importance for lncRNA studies, helpful for further investigation of specific lncRNAs, for formulation of new hypothesis based on different features of lncRNA and for exploration of the underlying lncRNA functional mechanisms.
Collapse
Affiliation(s)
- Lina Ma
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST); Computational Bioscience Research Center; Computer, Electrical and Mathematical Sciences and Engineering Division; Thuwal, Kingdom of Saudi Arabia
| | - Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
- Correspondence to: Zhang Zhang,
| |
Collapse
|
249
|
Tian B, Zhao Y, Kalita M, Edeh CB, Paessler S, Casola A, Teng MN, Garofalo RP, Brasier AR. CDK9-dependent transcriptional elongation in the innate interferon-stimulated gene response to respiratory syncytial virus infection in airway epithelial cells. J Virol 2013; 87:7075-92. [PMID: 23596302 PMCID: PMC3676079 DOI: 10.1128/jvi.03399-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/08/2013] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3(-/-) MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser(2) carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-β) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease.
Collapse
Affiliation(s)
| | - Yingxin Zhao
- Department of Internal Medicine,
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
| | | | | | | | - Antonella Casola
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
- Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael N. Teng
- Joy McCann Culverhouse Airway Disease Research Center, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Roberto P. Garofalo
- Institute for Translational Sciences,
- Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Allan R. Brasier
- Department of Internal Medicine,
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
| |
Collapse
|
250
|
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in cell proliferation and gene expression. Although distinct sets of CDKs work in cell division and transcription by RNA polymerase II (Pol II), they share a CDK-activating kinase (CAK), which is itself a CDK-Cdk7-in metazoans. Thus a unitary CDK network controls and may coordinate cycles of cell division and gene expression. Recent work reveals decisive roles for Cdk7 in both pathways. The CAK function of Cdk7 helps determine timing of activation and cyclin-binding preferences of different CDKs during the cell cycle. In the transcription cycle, Cdk7 is both an effector kinase, which phosphorylates Pol II and other proteins and helps establish promoter-proximal pausing; and a CAK for Cdk9 (P-TEFb), which releases Pol II from the pause. By governing the transition from initiation to elongation, Cdk7, Cdk9 and their substrates influence expression of genes important for developmental and cell-cycle decisions, and ensure co-transcriptional maturation of Pol II transcripts. Cdk7 engaged in transcription also appears to be regulated by phosphorylation within its own activation (T) loop. Here I review recent studies of CDK regulation in cell division and gene expression, and propose a model whereby mitogenic signals trigger a cascade of CDK T-loop phosphorylation that drives cells past the restriction (R) point, when continued cell-cycle progression becomes growth factor-independent. Because R-point control is frequently deregulated in cancer, the CAK-CDK pathway is an attractive target for chemical inhibition aimed at impeding the inappropriate commitment to cell division.
Collapse
|