201
|
Age to survive: DNA damage and aging. Trends Genet 2008; 24:77-85. [PMID: 18192065 DOI: 10.1016/j.tig.2007.11.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 12/15/2022]
Abstract
Aging represents the progressive functional decline and increased mortality risk common to nearly all metazoans. Recent findings experimentally link DNA damage and organismal aging: longevity-regulating genetic pathways respond to the accumulation of DNA damage and other stress conditions and conversely influence the rate of damage accumulation and its impact for cancer and aging. This novel insight has emerged from studies on human progeroid diseases and mouse models that have deficient DNA repair pathways. Here we discuss a unified concept of an evolutionarily conserved 'survival' response that shifts the organism's resources from growth to maintenance as an adaptation to stresses, such as starvation and DNA damage. This shift protects the organism from cancer and promotes healthy aging.
Collapse
|
202
|
Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell 2008; 7:13-22. [PMID: 17996009 DOI: 10.1111/j.1474-9726.2007.00348.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The great majority of lifespan-augmenting mutations were discovered in the nematode Caenorhabditis elegans. In particular, genetic disruption of insulin-like signaling extends longevity 1.5- to 3-fold in the nematode, and to lesser degrees in other taxa, including fruit flies and mice. C. elegans strains bearing homozygous nonsense mutations in the age-1 gene, which encodes the class-I phosphatidylinositol 3-kinase catalytic subunit (PI3K(CS)), produce progeny that were thought to undergo obligatory developmental arrest. We now find that, after prolonged developmental times at 15-20 degrees C, they mature into extremely long-lived adults with near-normal feeding rates and motility. They survive to a median of 145-190 days at 20 degrees C, with nearly 10-fold extension of both median and maximum adult lifespan relative to N2DRM, a long-lived wild-type stock into which the null mutant was outcrossed. PI3K-null adults, although a little less thermotolerant, are considerably more resistant to oxidative and electrophilic stresses than worms bearing normal or less long-lived alleles. Their unprecedented factorial gains in survival, under both normal and toxic environments, are attributed to elimination of residual and maternally contributed PI3K(CS) or its products, and consequent modification of kinase signaling cascades.
Collapse
Affiliation(s)
- Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
203
|
Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 2007; 4:e13. [PMID: 18225956 PMCID: PMC2213705 DOI: 10.1371/journal.pgen.0040013] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 12/10/2007] [Indexed: 01/20/2023] Open
Abstract
Calorie restriction (CR), the only non-genetic intervention known to slow aging and extend life span in organisms ranging from yeast to mice, has been linked to the down-regulation of Tor, Akt, and Ras signaling. In this study, we demonstrate that the serine/threonine kinase Rim15 is required for yeast chronological life span extension caused by deficiencies in Ras2, Tor1, and Sch9, and by calorie restriction. Deletion of stress resistance transcription factors Gis1 and Msn2/4, which are positively regulated by Rim15, also caused a major although not complete reversion of the effect of calorie restriction on life span. The deletion of both RAS2 and the Akt and S6 kinase homolog SCH9 in combination with calorie restriction caused a remarkable 10-fold life span extension, which, surprisingly, was only partially reversed by the lack of Rim15. These results indicate that the Ras/cAMP/PKA/Rim15/Msn2/4 and the Tor/Sch9/Rim15/Gis1 pathways are major mediators of the calorie restriction-dependent stress resistance and life span extension, although additional mediators are involved. Notably, the anti-aging effect caused by the inactivation of both pathways is much more potent than that caused by CR. Reduction in calorie intake is a well-established intervention that extends the life span of a variety of biological model organisms studied. Calorie restriction also delays and attenuates age-related changes in primates, although its longevity-promoting effect has not been demonstrated. Here, we utilized a single cell organism, baker's yeast, to examine the role of evolutionarily conserved genes in life span regulation and their involvement in calorie restriction. The yeast mutants lacking Ras2, Tor1, or Sch9 are long-lived. The anti-aging effect observed in these mutants depends on the protein Rim15 and several key regulators of gene expression that are essential in inducing cellular protection under stress. The beneficial effects of calorie restriction are much smaller in yeast that are missing these proteins, indicating their essential role in promoting longevity. Our study also showed that by combining the genetic manipulation and calorie restriction intervention, yeast can reach a life span ten times that of those grown under standard conditions. This extreme longevity requires Rim15 and also depends on other yet-to-be identified mechanisms. Our findings provided new leads that may help to elucidate the mechanisms underlying the anti-aging effect of calorie restriction in mammals.
Collapse
Affiliation(s)
- Min Wei
- Andrus Gerontology Center, University of Southern California, Los Angeles, California, United States of America
| | | | | | | | | | | | | |
Collapse
|
204
|
Brooks NL, Trent CM, Raetzsch CF, Flurkey K, Boysen G, Perfetti MT, Jeong YC, Klebanov S, Patel KB, Khodush VR, Kupper LL, Carling D, Swenberg JA, Harrison DE, Combs TP. Low utilization of circulating glucose after food withdrawal in Snell dwarf mice. J Biol Chem 2007; 282:35069-77. [PMID: 17905742 DOI: 10.1074/jbc.m700484200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose metabolism is altered in long-lived people and mice. Although it is clear that there is an association between altered glucose metabolism and longevity, it is not known whether this link is causal or not. Our current hypothesis is that decreased fasting glucose utilization may increase longevity by reducing oxygen radical production, a potential cause of aging. We observed that whole body fasting glucose utilization was lower in the Snell dwarf, a long-lived mutant mouse. Whole body fasting glucose utilization may be reduced by a decrease in the production of circulating glucose. Our isotope labeling analysis indicated both gluconeogenesis and glycogenolysis were suppressed in Snell dwarfs. Elevated circulating adiponectin may contribute to the reduction of glucose production in Snell dwarfs. Adiponectin lowered the appearance of glucose in the media over hepatoma cells by suppressing gluconeogenesis and glycogenolysis. The suppression of glucose production by adiponectin in vitro depended on AMP-activated protein kinase, a cell mediator of fatty acid oxidation. Elevated fatty acid oxidation was indicated in Snell dwarfs by increased utilization of circulating oleic acid, reduced intracellular triglyceride content, and increased phosphorylation of acetyl-CoA carboxylase. Finally, protein carbonyl content, a marker of oxygen radical damage, was decreased in Snell dwarfs. The correlation between high glucose utilization and elevated oxygen radical production was also observed in vitro by altering the concentrations of glucose and fatty acids in the media or pharmacologic inhibition of glucose and fatty acid oxidation with 4-hydroxycyanocinnamic acid and etomoxir, respectively.
Collapse
Affiliation(s)
- Natasha L Brooks
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Bishop NA, Guarente L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 2007; 8:835-44. [PMID: 17909538 DOI: 10.1038/nrg2188] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Caloric restriction is the only known non-genetic intervention that robustly extends lifespan in mammals. This regimen also attenuates the incidence and progression of many age-dependent pathologies. Understanding the genetic mechanisms that underlie dietary-restriction-induced longevity would therefore have profound implications for future medical treatments aimed at tackling conditions that are associated with the ageing process. Until recently, however, almost nothing was known about these mechanisms in metazoans. Recent advances in our understanding of the genetic bases of energy sensing and lifespan control in yeast, invertebrates and mammals have begun to solve this puzzle. Evidence is mounting that the brain has a crucial role in sensing dietary restriction and promoting longevity in metazoans.
Collapse
Affiliation(s)
- Nicholas A Bishop
- Department of Biology, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
206
|
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
207
|
Spindler SR, Mote PL. Screening candidate longevity therapeutics using gene-expression arrays. Gerontology 2007; 53:306-21. [PMID: 17570924 DOI: 10.1159/000103924] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/28/2007] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We review studies showing that CR acts rapidly, even in late adulthood, to extend health- and lifespan in mice. These rapid physiological effects are closely linked to patterns of gene expression in liver and heart. Non-human primate and human studies suggest that the signal transduction pathways responsible for the lifespan and health effects of caloric restriction (CR) may also be involved in human longevity. Thus, pharmaceuticals capable of mimicking the effects of CR (and other methods of lifespan extension) may have application to human health. OBJECTIVE We show that lifespan studies are an inefficient and theoretically problematic way of screening for longevity therapeutics. We review studies suggesting that rapid changes in patterns of gene expression can be used to identify pharmaceuticals capable of mimicking some positive effects of caloric restriction. RESULTS We present a traditional study of the effects of melatonin, melatonin and pregnenolone, aminoguanidine, aminoguanidine and alpha-lipoic acid, aminoguanidine, alpha-lipoic acid, pregnenolone, and coenzyme-Q(10) on the lifespan of mice. No treatment extended lifespan. However, because the mice die mostly of cancer, only chemopreventives active against specific cancers can be identified by such studies. The studies were also time-consuming and expensive. We discuss high-density microarray studies of the effectiveness of glucoregulatory drugs and putative cancer chemopreventatives at reproducing the hepatic gene-expression profiles of long-term and short-term CR. We describe the identification of one compound, metformin, which reproduces a subset of the gene-expression and physiological effects of CR. CONCLUSION Taken together, our results suggest that gene-expression biomarkers may be superior to lifespan studies for initial screening of candidate longevity therapeutics.
Collapse
Affiliation(s)
- Stephen R Spindler
- Department of Biochemistry, University of California, Riverside, Calif 92521, USA.
| | | |
Collapse
|
208
|
Bishop NA, Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 2007; 447:545-9. [PMID: 17538612 DOI: 10.1038/nature05904] [Citation(s) in RCA: 511] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 05/09/2007] [Indexed: 01/26/2023]
Abstract
Dietary restriction extends lifespan and retards age-related disease in many species and profoundly alters endocrine function in mammals. However, no causal role of any hormonal signal in diet-restricted longevity has been demonstrated. Here we show that increased longevity of diet-restricted Caenorhabditis elegans requires the transcription factor gene skn-1 acting in the ASIs, a pair of neurons in the head. Dietary restriction activates skn-1 in these two neurons, which signals peripheral tissues to increase metabolic activity. These findings demonstrate that increased lifespan in a diet-restricted metazoan depends on cell non-autonomous signalling from central neuronal cells to non-neuronal body tissues, and suggest that the ASI neurons mediate diet-restriction-induced longevity by an endocrine mechanism.
Collapse
Affiliation(s)
- Nicholas A Bishop
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
209
|
Abstract
This Hot Topics review, the first in a projected annual series, discusses those articles, published in the last year, which seem likely to have a major impact on our understanding of the aging process in mammals and the links between aging and late-life illnesses. The year's highlights include studies of oxidation damage in the very-long-lived naked mole-rat, and of caloric restriction in monkeys, humans, and growth hormone-unresponsive mice. Two studies of resveratrol, one showing its ability to extend lifespan in a short-lived fish, the other demonstrating beneficial effects in mice subjected to a diet high in fat, may well be harbingers of a parade of intervention studies in the coming decade.
Collapse
Affiliation(s)
- Steven N Austad
- Department of Cellular & Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
210
|
Higami Y, Tsuchiya T, Chiba T, Yamaza H, Muraoka I, Hirose M, Komatsu T, Shimokawa I. Hepatic gene expression profile of lipid metabolism in rats: Impact of caloric restriction and growth hormone/insulin-like growth factor-1 suppression. J Gerontol A Biol Sci Med Sci 2007; 61:1099-110. [PMID: 17167150 DOI: 10.1093/gerona/61.11.1099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We investigated the role of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis on caloric restriction (CR) using male wild-type and transgenic homozygous dwarf rats bearing an antisense GH transgene and their F1 heterozygous progeny fed either ad libitum or subjected to 30% CR. CR predominantly altered expression of hepatic genes involved in the stress response, xenobiotic metabolism, and lipid metabolism. Most gene expressions involved in stress response and xenobiotic metabolism were regulated in a GH/IGF-1-dependent manner, and those involved in lipid metabolism were regulated in a GH/IGF-1-independent manner. Moreover, CR enhanced the gene expression involved in fatty acid synthesis after feeding and those encoding mitochondrial beta-oxidation enzymes during food shortage, probably via transcriptional regulation by peroxisome proliferator-activated receptor alpha. These results, taken together with serum biochemical measures and hepatic triglyceride content, suggest that CR promotes lipid utilization through hepatic transcriptional alteration and prevents hepatic steatosis in a GH/IGF-1-independent manner.
Collapse
Affiliation(s)
- Yoshikazu Higami
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Rocha JS, Bonkowski MS, de França LR, Bartke A. Effects of mild calorie restriction on reproduction, plasma parameters and hepatic gene expression in mice with altered GH/IGF-I axis. Mech Ageing Dev 2007; 128:317-31. [PMID: 17376513 DOI: 10.1016/j.mad.2007.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 02/09/2007] [Accepted: 02/10/2007] [Indexed: 01/07/2023]
Abstract
The somatotropic axis, the hypothalamic-pituitary-gonadal axis and the nutritional status are deeply interrelated in mammals. Calorie restriction (CR) prolongs lifespan, but usually at some cost to reproduction. Interestingly, many of the physiological characteristics of animals with interruption in the somatotropic axis are shared by CR animals. The level of CR in most studies is 30-60%. We tested if a milder (20%) CR would promote health benefits without inhibiting reproduction in four types of mice with altered somatotropic axis: Ames dwarfs, GHR-KO, and PEPCK-bGH and MT-bGH transgenics. Fertility was not altered by CR in any of the examined groups. Mild CR did not affect final body weights or relative reproductive organ weights; did not alter plasma levels of glucose, insulin, IGF-I, testosterone, progesterone or estradiol; and did not influence hepatic expression of genes related to longevity. Altered activity of the GH/IGF-I axis in the different mice models studied had a major impact on the parameters analyzed. This preliminary study encourages speculation that mild regimens of CR can produce health and longevity benefits without the "costs" of impaired reproductive potential.
Collapse
Affiliation(s)
- Juliana S Rocha
- Department of Morphology, Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | | | | | | |
Collapse
|
212
|
Mobbs CV, Mastaitis JW, Zhang M, Isoda F, Cheng H, Yen K. Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease. INTERDISCIPLINARY TOPICS IN GERONTOLOGY 2007; 35:39-68. [PMID: 17063032 PMCID: PMC2755292 DOI: 10.1159/000096555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated blood glucose associated with diabetes produces progressive and apparently irreversible damage to many cell types. Conversely, reduction of glucose extends life span in yeast, and dietary restriction reduces blood glucose. Therefore it has been hypothesized that cumulative toxic effects of glucose drive at least some aspects of the aging process and, conversely, that protective effects of dietary restriction are mediated by a reduction in exposure to glucose. The mechanisms mediating cumulative toxic effects of glucose are suggested by two general principles of metabolic processes, illustrated by the lac operon but also observed with glucose-induced gene expression. First, metabolites induce the machinery of their own metabolism. Second, induction of gene expression by metabolites can entail a form of molecular memory called hysteresis. When applied to glucose-regulated gene expression, these two principles suggest a mechanism whereby repetitive exposure to postprandial excursions of glucose leads to an age-related increase in glycolytic capacity (and reduction in beta-oxidation of free fatty acids), which in turn leads to an increased generation of oxidative damage and a decreased capacity to respond to oxidative damage, independent of metabolic rate. According to this mechanism, dietary restriction increases life span and reduces pathology by reducing exposure to glucose and therefore delaying the development of glucose-induced glycolytic capacity.
Collapse
Affiliation(s)
- Charles V Mobbs
- Departments of Neuroscience and Geriatrics, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
213
|
Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, Kaeberlein M. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 2006; 5:487-94. [PMID: 17081160 DOI: 10.1111/j.1474-9726.2006.00238.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A partial reduction in food intake has been found to increase lifespan in many different organisms. We report here a new dietary restriction regimen in the nematode Caenorhabditis elegans, based on the standard agar plate lifespan assay, in which adult worms are maintained in the absence of a bacterial food source. These findings represent the first report in any organism of lifespan extension in response to prolonged starvation. Removal of bacterial food increases lifespan to a greater extent than partial reduction of food through a mechanism that is distinct from insulin/IGF-like signaling and the Sir2-family deacetylase, SIR-2.1. Removal of bacterial food also increases lifespan when initiated in postreproductive adults, suggesting that dietary restriction started during middle age can result in a substantial longevity benefit that is independent of reproduction.
Collapse
|
214
|
Warner HR. LONGEVITY REGULATION AND AGING IN ANIMAL MODELS. THE GERONTOLOGIST 2006. [DOI: 10.1093/geront/46.6.844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
215
|
Selman C, Kerrison ND, Cooray A, Piper MDW, Lingard SJ, Barton RH, Schuster EF, Blanc E, Gems D, Nicholson JK, Thornton JM, Partridge L, Withers DJ. Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol Genomics 2006; 27:187-200. [PMID: 16882887 DOI: 10.1152/physiolgenomics.00084.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Caloric restriction (CR) increases healthy life span in a range of organisms. The underlying mechanisms are not understood but appear to include changes in gene expression, protein function, and metabolism. Recent studies demonstrate that acute CR alters mortality rates within days in flies. Multitissue transcriptional changes and concomitant metabolic responses to acute CR have not been described. We generated whole genome RNA transcript profiles in liver, skeletal muscle, colon, and hypothalamus and simultaneously measured plasma metabolites using proton nuclear magnetic resonance in mice subjected to acute CR. Liver and muscle showed increased gene expressions associated with fatty acid metabolism and a reduction in those involved in hepatic lipid biosynthesis. Glucogenic amino acids increased in plasma, and gene expression for hepatic gluconeogenesis was enhanced. Increased expression of genes for hormone-mediated signaling and decreased expression of genes involved in protein binding and development occurred in hypothalamus. Cell proliferation genes were decreased and cellular transport genes increased in colon. Acute CR captured many, but not all, hepatic transcriptional changes of long-term CR. Our findings demonstrate a clear transcriptional response across multiple tissues during acute CR, with congruent plasma metabolite changes. Liver and muscle switched gene expression away from energetically expensive biosynthetic processes toward energy conservation and utilization processes, including fatty acid metabolism and gluconeogenesis. Both muscle and colon switched gene expression away from cellular proliferation. Mice undergoing acute CR rapidly adopt many transcriptional and metabolic changes of long-term CR, suggesting that the beneficial effects of CR may require only a short-term reduction in caloric intake.
Collapse
Affiliation(s)
- Colin Selman
- Centre for Diabetes and Endocrinology, Department of Medicine, University College London, Rayne Institute, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
Sustaining health and extending longevity have been perpetual goals of all human societies. For almost as long, there has been an ongoing effort to develop treatments that could prevent aging and, more importantly, make us live longer and more healthily. At present, there is one known intervention that delays aging, increases lifespan and prevents diseases in many animal species: calorie restriction. There are other physiological factors that are believed to have corresponding impacts on longevity and aging, including growth hormone and the insulin/insulin-like growth factor 1 signaling pathway. However, there is still much debate regarding the complex action of growth hormone on lifespan and aging.
Collapse
Affiliation(s)
- Michal M Masternak
- a Southern Illinois University, School of Medicine, Geriatrics Research, Department of Internal Medicine, 801 N. Rutledge Street, Room 4389, PO Box 19628, Springfield, IL 62794-9628, USA.
| | - Andrzej Bartke
- b Southern Illinois University, School of Medicine, Geriatrics Research, Department of Internal Medicine and Physiology, 801 N. Rutledge Street, Room 4389, PO Box 19628, Springfield, IL 62794-9628, USA.
| |
Collapse
|
217
|
Komatsu T, Chiba T, Yamaza H, To K, Toyama H, Higami Y, Shimokawa I. Effect of leptin on hypothalamic gene expression in calorie-restricted rats. J Gerontol A Biol Sci Med Sci 2006; 61:890-8. [PMID: 16960019 DOI: 10.1093/gerona/61.9.890] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Diminished leptin signaling to the arcuate nucleus of hypothalamus (ARH) may induce calorie restriction (CR)-specific neuroendocrine and metabolic adaptation, which is potentially relevant to the effect of CR. The present study investigated whether restoration of leptin signaling to the ARH could reverse CR-induced alterations in neuropeptide gene expression in rats. Male F344 rats, fed ad libitum or a 30% CR diet from 6 weeks of age, received leptin or vehicle intracerebroventricularly for 14 days via osmotic mini-pumps implanted in the subcutis at 34 weeks of age. The messenger RNA levels were quantified by real-time reverse transcription-polymerase chain reaction using total RNA extracted from microdissected tissues containing the ARH. The results indicated that leptin administration reversed the upregulated expression of neuropeptide Y and agouti-related protein genes in CR rats, suggesting the possibility of a role for the leptin-ARH pathway in the effect of CR.
Collapse
Affiliation(s)
- Toshimitsu Komatsu
- Department of Pathology & Gerontology, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki City 852-8523, Japan
| | | | | | | | | | | | | |
Collapse
|
218
|
Murakami S. Stress resistance in long-lived mouse models. Exp Gerontol 2006; 41:1014-9. [PMID: 16962277 DOI: 10.1016/j.exger.2006.06.061] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/17/2006] [Accepted: 06/30/2006] [Indexed: 12/11/2022]
Abstract
Cellular stress resistance has been observed in a variety of long-lived mouse systems. The Ames and Snell dwarf mice show altered hormonal profiles (low levels of growth hormone/IGF-1 and of other hormones). These altered hormonal profiles lead to physiological changes in cells, leading to increased resistance to multiple forms of stress including UV light, oxidative stress, heat, and the heavy metal cadmium. The cells also show resistance to carcinogen and senescence-like growth arrest induced by ambient oxygen. Thus, cellular stress resistance may confer resistance to various diseases associated with stress insults. Stress resistance has also been observed in various long-lived mice (hemizygous knockout of igf-1r, a mutation in p66(shc), and klotho overexpression) and in vitro CR (Carolie Restriction) system. Many of the long-lived mouse systems show reduction or inhibition of the insulin/IGF-1-FOXO pathway, thus suggesting that there may be an overlapping mechanism for increased life span. The insulin/IGF-1-FOXO pathway interlocks to several signal transduction pathways through AKT, FOXO, JNK, and other components. Taken together, stress resistance may be an essential function in cells that leads to increased longevity. I will summarize molecular basis of stress resistance and further discuss stress resistance in other systems.
Collapse
Affiliation(s)
- Shin Murakami
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
219
|
Harper JM, Salmon AB, Chang Y, Bonkowski M, Bartke A, Miller RA. Stress resistance and aging: influence of genes and nutrition. Mech Ageing Dev 2006; 127:687-94. [PMID: 16713617 PMCID: PMC2923407 DOI: 10.1016/j.mad.2006.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/03/2006] [Accepted: 04/12/2006] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that dermal fibroblast cell lines derived from young adult mice of the long-lived Snell dwarf (dw/dw), Ames dwarf (df/df) and growth hormone receptor knockout (GHR-KO) mouse stocks are resistant, in vitro, to the cytotoxic effects of hydrogen peroxide, cadmium, ultraviolet light, paraquat, and heat. Here we show that, in contrast, fibroblasts from mice on low-calorie (CR) or low methionine (Meth-R) diets are not stress resistant in culture, despite the longevity induced by both dietary regimes. A second approach, involving induction of liver cell death in live animals using acetaminophen (APAP), documented hepatotoxin resistance in the CR and Meth-R mice, but dw/dw and GHR-KO mutant mice were not resistant to this agent, and were in fact more susceptible than littermate controls to the toxic effects of APAP. These data thus suggest that while resistance to stress is a common characteristic of experimental life span extension in mice, the cell types showing resistance may differ among the various models of delayed or decelerated aging.
Collapse
Affiliation(s)
- James M Harper
- Department of Pathology and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, MI, United States.
| | | | | | | | | | | |
Collapse
|
220
|
Hulbert AJ, Faulks SC, Harper JM, Miller RA, Buffenstein R. Extended longevity of wild-derived mice is associated with peroxidation-resistant membranes. Mech Ageing Dev 2006; 127:653-7. [PMID: 16620917 PMCID: PMC2929641 DOI: 10.1016/j.mad.2006.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 02/24/2006] [Accepted: 03/07/2006] [Indexed: 11/18/2022]
Abstract
Two lines of mice, Idaho (Id) and Majuro (Ma), both derived from wild-trapped progenitors, have previously been shown to have extended lifespans in captivity when compared to a genetically heterogenous laboratory line of mice (DC). We have examined whether membrane fatty composition varies with lifespan within the species Mus musculus in a similar manner to that previously demonstrated between mammal species. Muscle and liver phospholipids from these long-living mice lines have a reduced amount of the highly polyunsaturated omega-3 docosahexaenoic acid compared to the DC mice, and consequently their membranes are less likely to peroxidative damage. The relationship between maximum longevity and membrane peroxidation index is similar for these mice lines as previously observed for mammals in general. It is suggested that peroxidation-resistant membranes may be an important component of extended longevity.
Collapse
Affiliation(s)
- A J Hulbert
- Metabolic Research Centre, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | |
Collapse
|
221
|
Caro P, Gómez J, Sanz A, Portero-Otín M, Pamplona R, Barja G. Effect of graded corticosterone treatment on aging-related markers of oxidative stress in rat liver mitochondria. Biogerontology 2006; 8:1-11. [PMID: 16823605 DOI: 10.1007/s10522-006-9026-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Caloric restriction (CR) decreases aging rate and lowers the rate of reactive oxygen species (ROS) production at mitochondria in different organs, but the signal responsible for this last change is unknown. Glucocorticoids could constitute such a signal since it is well known that their levels increase during CR, and available studies failed to find consistent effects of insulin, the other better described hormone that varies during CR, on mitochondrial oxidative stress. In addition, there is almost no information on the possible in vivo effects of glucocorticoids on specific markers of mitochondrial and tissue oxidative stress. In this investigation, male Wistar rats were treated with corticosterone at doses of 150 and 400 mg/kg of diet during 4 weeks. After that time, oxidative stress-related parameters were measured in the liver. The corticosterone treatments did not change the rate of ROS production or the rate of oxygen consumption of rat liver mitochondria. The two lipoxidation protein markers measured (malondialdehyde-lysine and carboxymethyllysine) were decreased by both corticosterone treatments. These changes were associated with decreases in fatty acid unsaturation, especially with lowered levels of the highly unsaturated araquidonic and docosahexaenoic acids, which decrease the sensitivity to lipid peroxidation processes. The specific protein carbonyl glutamic semialdehyde, a marker of protein oxidation, was also lowered at 400 mg/kg corticosterone. The protein glycoxydation marker carboxyethyllysine and the level of oxidative damage to mtDNA (8-oxo-7,8-dihydro-2 9-deoxyguanosine) were increased by corticosterone. The results do not support the idea that corticosterone is the signal responsible for the decrease in mitochondrial ROS generation during CR. However, they show that this hormone modulates the level of oxidative stress both in proteins and in mtDNA. Some of these changes can contribute to the chronic effects of the hormone at tissue level.
Collapse
Affiliation(s)
- Pilar Caro
- Department of Animal Physiology-II, Facultad de Ciencias Biológicas, Complutense University, c/Antonio Novais-2, Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
222
|
Laule O, Hirsch-Hoffmann M, Hruz T, Gruissem W, Zimmermann P. Web-based analysis of the mouse transcriptome using Genevestigator. BMC Bioinformatics 2006; 7:311. [PMID: 16790046 PMCID: PMC1533866 DOI: 10.1186/1471-2105-7-311] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 06/21/2006] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gene function analysis often requires a complex and laborious sequence of laboratory and computer-based experiments. Choosing an effective experimental design generally results from hypotheses derived from prior knowledge or experimentation. Knowledge obtained from meta-analyzing compendia of expression data with annotation libraries can provide significant clues in understanding gene and network function, resulting in better hypotheses that can be tested in the laboratory. DESCRIPTION Genevestigator is a microarray database and analysis system allowing context-driven queries. Simple but powerful tools allow biologists with little computational background to retrieve information about when, where and how genes are expressed. We manually curated and quality-controlled 3110 mouse Affymetrix arrays from public repositories. Data queries can be run against an annotation library comprising 160 anatomy categories, 12 developmental stage groups, 80 stimuli, and 182 genetic backgrounds or modifications. The quality of results obtained through Genevestigator is illustrated by a number of biological scenarios that are substantiated by other types of experimentation in the literature. CONCLUSION The Genevestigator-Mouse database effectively provides biologically meaningful results and can be accessed at https://www.genevestigator.ethz.ch.
Collapse
Affiliation(s)
- Oliver Laule
- Institute of Plant Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Tomas Hruz
- Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Plant Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | | |
Collapse
|
223
|
Wang Z, Al-Regaiey KA, Masternak MM, Bartke A. Adipocytokines and lipid levels in Ames dwarf and calorie-restricted mice. J Gerontol A Biol Sci Med Sci 2006; 61:323-31. [PMID: 16611697 DOI: 10.1093/gerona/61.4.323] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ames dwarf mice are long-lived and insulin sensitive, and have a normal or reduced percentage of body fat. Calorie restriction (CR) is known to improve insulin sensitivity and reduce body fat. The purpose of this study was to evaluate the mechanism of improved insulin sensitivity in the Ames dwarfs and the effects of CR on adipose signaling and metabolism in normal and dwarf mice. Enhanced insulin sensitivity in dwarf mice may be partly due to increased release of adiponectin and the reduced release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). Altered levels of adipocytokines might be consequent to the decreased lipid synthesis, plasma triglycerides, and free fatty acid levels. In normal mice, CR improves insulin sensitivity by affecting the release of adipocytokines, and decreasing circulating fatty acid and triglycerides concentrations as well as liver triglyceride accumulation. However, CR may reduce rather than enhance some of the insulin effects in the highly insulin-sensitive dwarf mice.
Collapse
Affiliation(s)
- Zhihui Wang
- Geriatrics Research, Department of Physiology and Internal Medicine, School of Medicine, Southern Illinois University, 801 N. Rutledge, Springfield, IL 62794-9628, USA.
| | | | | | | |
Collapse
|
224
|
Coschigano KT. Aging-related characteristics of growth hormone receptor/binding protein gene-disrupted mice. AGE (DORDRECHT, NETHERLANDS) 2006; 28:191-200. [PMID: 19943140 PMCID: PMC2464722 DOI: 10.1007/s11357-006-9004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/01/2005] [Indexed: 05/28/2023]
Abstract
Since generation of the growth hormone receptor/binding protein (GHR/BP) gene-disrupted mouse nearly 10 years ago, use of this mouse model has become widespread in the elucidation of the physiological roles of GH and insulin-like growth factor-1 (IGF-1). In particular, it serves as a useful model to study mechanisms of aging. This review highlights the evidence demonstrating that the loss of GH signaling leads to lifespan extension in mice, and presents the multiple characteristics of this mouse line that suggest the life extension is due to alteration of the aging process.
Collapse
Affiliation(s)
- Karen T Coschigano
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, 351 Irvine Hall, Athens, OH 45701, USA.
| |
Collapse
|
225
|
Ikeno Y, Lew CM, Cortez LA, Webb CR, Lee S, Hubbard GB. Do long-lived mutant and calorie-restricted mice share common anti-aging mechanisms?--a pathological point of view. AGE (DORDRECHT, NETHERLANDS) 2006; 28:163-71. [PMID: 19943137 PMCID: PMC2464730 DOI: 10.1007/s11357-006-9007-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/15/2005] [Indexed: 05/17/2023]
Abstract
Rodent models are an invaluable resource for studying the mechanism of mammalian aging. In recent years, the availability of transgenic and knockout mouse models has facilitated the study of potential mechanisms of aging. Since 1996, aging studies with several long-lived mutant mice have been conducted. Studies with the long-lived mutant mice, Ames and Snell dwarf, and growth hormone receptor/binding protein knockout mice, are currently providing important clues regarding the role of the growth hormone/insulin like growth factor-1 axis in the aging process. Interestingly, these studies demonstrate that these long-lived mutant mice have physiological characteristics that are similar to the effects of calorie restriction, which has been the most effective experimental manipulation capable of extending lifespan in various species. However, a question remains to be answered: do these long-lived mutant and calorie-restricted mice extend their lifespan through a common underlying mechanism?
Collapse
Affiliation(s)
- Yuji Ikeno
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
226
|
Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci U S A 2006; 103:7901-5. [PMID: 16682650 PMCID: PMC1458512 DOI: 10.1073/pnas.0600161103] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Reduced intake of nutrients [calorie restriction (CR)] extends longevity in organisms ranging from yeast to mammals. Mutations affecting somatotropic, insulin, or homologous signaling pathways can increase life span in worms, flies, and mice, and there is considerable evidence that reduced secretion of insulin-like growth factor I and insulin are among the mechanisms that mediate the effects of CR on aging and longevity in mammals. In the present study, mice with targeted disruption of the growth hormone (GH) receptor [GH receptor/GH-binding protein knockout (GHRKO) mice] and their normal siblings were fed ad libitum (AL) or subjected to 30% CR starting at 2 months of age. In normal females and males, CR produced the expected increases in overall, average, median, and maximal life span. Longevity of normal mice subjected to CR resembles that of GHRKO animals fed AL. In sharp contrast to its effects in normal mice, CR failed to increase overall, median, or average life span in GHRKO mice and increased maximal life span only in females. In a separate group of animals, CR for 1 year improved insulin sensitivity in normal mice but failed to further enhance the remarkable insulin sensitivity in GHRKO mutants. These data imply that somatotropic signaling is critically important not only in the control of aging and longevity under conditions of unlimited food supply but also in mediating the effects of CR on life span. The present findings also support the notion that enhanced sensitivity to insulin plays a prominent role in the actions of CR and GH resistance on longevity.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Bartke
- Departments of *Internal Medicine–Geriatrics Research
- Physiology, Southern Illinois University School of Medicine, Springfield, IL 62794
- To whom correspondence should be addressed at:
Geriatrics Research, Southern Illinois University, 801 N. Rutledge, P.O. Box 19628, Springfield, IL 62794-9628. E-mail:
| |
Collapse
|
227
|
Kappeler L, De Magalhaes Filho C, Le Bouc Y, Holzenberger M. Durée de vie, génétique et axe somatotrope. Med Sci (Paris) 2006; 22:259-65. [PMID: 16527206 DOI: 10.1051/medsci/2006223259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Research on ageing made a big leap forward when genes regulating lifespan were discovered about a decade ago. First isolated by screening the genome of the nematode Caenorhabditis elegans, most of these genes belong to an essential signalling pathway that is highly conserved during animal evolution. Orthologous genes in vertebrate species are the families of genes coding for insulin, insulin-like growth factors (IGF) and related proteins. Intensively studied and well-known for their pivotal roles in proliferation, differentiation, survival and metabolism of most cells, we now discover their multiples functions with respect to the control of longevity and their ability to modulate the cell's responses to oxidative stress, a major cause of cellular and organismal ageing. The activity of IGF signalling in mammals depends on a complex interplay of endocrine signals that together constitute the somatotropic axis. Accordingly, several components of this hormone axis, like growth hormone or growth hormone releasing hormone receptors, regulate efficiently animal longevity, which has been elegantly demonstrated by studies performed in genetically modified mouse models. From this and other work, it becomes increasingly clear that the control of ageing is a question of hormonal regulations. We here present several of these models and discuss the respective contributions of insulin and IGF signalling to the regulation of lifespan. We review data on the Klotho gene that acts on lifespan via surprising and not yet fully understood molecular mechanisms, connecting this new, hormone-like substance to IGF and insulin signalling. We further report recent evidence showing that human lifespan might be controlled in similar ways. Finally, we shed some light on clinical GH treatment in humans, from an endocrinologist's point of view.
Collapse
Affiliation(s)
- Laurent Kappeler
- Inserm U.515, Hôpital Saint-Antoine, 184, rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France.
| | | | | | | |
Collapse
|
228
|
Powers RW, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 2006; 20:174-84. [PMID: 16418483 PMCID: PMC1356109 DOI: 10.1101/gad.1381406] [Citation(s) in RCA: 733] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chronological life span (CLS) in Saccharomyces cerevisiae, defined as the time cells in a stationary phase culture remain viable, has been proposed as a model for the aging of post-mitotic tissues in mammals. We developed a high-throughput assay to determine CLS for approximately 4800 single-gene deletion strains of yeast, and identified long-lived strains carrying mutations in the conserved TOR pathway. TOR signaling regulates multiple cellular processes in response to nutrients, especially amino acids, raising the possibility that decreased TOR signaling mediates life span extension by calorie restriction. In support of this possibility, removal of either asparagine or glutamate from the media significantly increased stationary phase survival. Pharmacological inhibition of TOR signaling by methionine sulfoximine or rapamycin also increased CLS. Decreased TOR activity also promoted increased accumulation of storage carbohydrates and enhanced stress resistance and nuclear relocalization of the stress-related transcription factor Msn2. We propose that up-regulation of a highly conserved response to starvation-induced stress is important for life span extension by decreased TOR signaling in yeast and higher eukaryotes.
Collapse
Affiliation(s)
- R Wilson Powers
- Department of Genome Sciences and Medicine, The Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
229
|
Rae MJ. You don't need a weatherman: famines, evolution, and intervention into aging. AGE (DORDRECHT, NETHERLANDS) 2006; 28:93-109. [PMID: 23598682 PMCID: PMC2464717 DOI: 10.1007/s11357-006-9002-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 11/11/2005] [Indexed: 06/02/2023]
Abstract
Calorie restriction (CR) is the most robust available intervention into biological aging. Efforts are underway to develop pharmaceuticals that would replicate CR's anti-aging effects in humans ("CR mimetics"), on the assumption that the life- and healthspan-extending effects of CR in lower organisms will be proportionally extrapolable to humans (the "proportionality principle" (PP)). A recent argument from evolutionary theory (the "weather hypothesis" (WH)) suggests that CR (or its mimetics) will only provide 2-3 years of extended healthy lifespan in humans. The extension of healthy human lifespan that would be afforded by intervention into aging makes it crucial that resources for therapeutic development be optimally allocated; CR mimetics being the main direction being pursued for interventive biogerontology, this paper evaluates the challenge to the potential efficacy of CR mimetics posed by the WH, on a theoretical level and by reference to the available interspecies data on CR. Rodent data suggest that the anti-aging effects of CR continue to increase in inverse proportion to the degree of energy restriction imposed, well below the level that would be expected to be survivable under the conditions under which the mechanisms of CR evolved and are maintained in the wild. Moreover, the same increase in anti-aging effects continues well below the point at which it interferes with reproductive function. Both of these facts are in accordance with the predictions of evolutionary theory. Granted these facts, the interspecies data-including data available in humans-are consistent with the predictions of PP rather than those of the WH. This suggests that humans will respond to a high degree of CR (or its pharmaceutical simulation) with a proportional deceleration of aging, so that CR mimetics should be as effective in humans as CR itself is in the rodent model. Despite this fact, CR mimetics should not be the focus of biomedical gerontology, as strategies based on the direct targeting of the molecular lesions of aging are likely to lead to more rapidly developable and far more effective anti-aging biomedicines.
Collapse
Affiliation(s)
- Michael J. Rae
- Calorie Restriction Society, Society Cohort Study Team, 1827 W. 145th St, Suite 205, Gardena, CA 90249 USA
| |
Collapse
|
230
|
Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:496-508. [PMID: 16574059 DOI: 10.1016/j.bbabio.2006.01.009] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/10/2006] [Accepted: 01/28/2006] [Indexed: 12/20/2022]
Abstract
Caloric restriction (CR) decreases aging rate and mitochondrial ROS (MitROS) production and oxidative stress in rat postmitotic tissues. Low levels of these parameters are also typical traits of long-lived mammals and birds. However, it is not known what dietary components are responsible for these changes during CR. It was recently observed that 40% protein restriction without strong CR also decreases MitROS generation and oxidative stress. This is interesting because protein restriction also increases maximum longevity (although to a lower extent than CR) and is a much more practicable intervention for humans than CR. Moreover, it was recently found that 80% methionine restriction substituting it for l-glutamate in the diet also decreases MitROS generation in rat liver. Thus, methionine restriction seems to be responsible for the decrease in ROS production observed in caloric restriction. This is interesting because it is known that exactly that procedure of methionine restriction also increases maximum longevity. Moreover, recent data show that methionine levels in tissue proteins negatively correlate with maximum longevity in mammals and birds. All these suggest that lowering of methionine levels is involved in the control of mitochondrial oxidative stress and vertebrate longevity by at least two different mechanisms: decreasing the sensitivity of proteins to oxidative damage, and lowering of the rate of ROS generation at mitochondria.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Basic Medical Sciences, University of Lleida, Lleida 25008, Spain
| | | |
Collapse
|
231
|
Bonduriansky R, Brassil CE. Reproductive ageing and sexual selection on male body size in a wild population of antler flies (Protopiophila litigata). J Evol Biol 2006; 18:1332-40. [PMID: 16135128 DOI: 10.1111/j.1420-9101.2005.00957.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Little is known about the importance of trade-offs between ageing and other life history traits, or the effects of ageing on sexual selection, particularly in wild populations suffering high extrinsic mortality rates. Life history theory suggests that trade-offs between reproduction and somatic maintenance may constrain individuals with higher initial reproductive rates to deteriorate more rapidly, resulting in reduced sexual selection strength. However, this trade-off may be masked by increased condition dependence of reproductive effort in older individuals. We tested for this trade-off in males in a wild population of antler flies (Protopiophila litigata). High mating rate was associated with reduced longevity, as a result of increased short-term mortality risk or accelerated ageing in traits affecting viability. In contrast, large body size was associated with accelerated ageing in traits affecting mating success, resulting in reduced sexual selection for large body size. Thus, ageing can affect sexual selection and evolution in wild populations.
Collapse
Affiliation(s)
- R Bonduriansky
- Department of Zoology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
232
|
Abstract
A number of lines of evidence, including nonhuman primate and human studies, suggest that regulatory pathways similar to those invoked by caloric restriction (CR) may be involved in determining human longevity. Thus, pharmaceuticals capable of mimicking the molecular mechanisms of life- and health-span extension by CR (CR mimetics) may have application to human health. CR acts rapidly, even in late adulthood, to begin to extend life- and health-span in mice. We have linked these effects with rapid changes in the levels of specific gene transcripts in the liver and the heart. Our results are consistent with the rapid effects of caloric intake on the lifespan and/or biochemistry and physiology of Drosophila, rodents, rhesus macaques and humans. To test the hypothesis that existing pharmaceuticals can mimic the physiologic effects of CR, we evaluated the effectiveness of glucoregulatory drugs and putative cancer chemo-preventatives in reproducing the hepatic gene-expression profiles produced by long-term CR (LTCR). We found that 8 weeks of metformin treatment was superior to 8 weeks of CR at reproducing the specific changes in transcript levels produced by LTCR. Consistent with these results, metformin reduces cancer incidence in diabetic humans and ameliorates the onset and severity of metabolic syndrome. Metformin extends the mean and maximum lifespans of female transgenic HER-2/neu mice by 8% and 13.1% in comparison with control mice. Phenformin, a close chemical relative of metformin, extends lifespan and reduces tumor incidence in C3H mice. These results indicate that gene-expression biomarkers can be used to identify promising candidate CR mimetics.
Collapse
Affiliation(s)
- Stephen R Spindler
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
233
|
Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, Bonkowski MS, Panici JA, Przybylski GK, Bartke A. Caloric restriction results in decreased expression of peroxisome proliferator-activated receptor superfamily in muscle of normal and long-lived growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 2006; 60:1238-45. [PMID: 16282554 DOI: 10.1093/gerona/60.10.1238] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resistance to growth hormone, reduced insulin-like growth factor 1 (IGF1) action, and enhanced insulin sensitivity are likely mediators of extended life span and delayed aging process in growth hormone receptor/binding protein knockout (GHR-KO) mice. Fat metabolism and genes involved in fatty acid oxidation are strongly involved in insulin action. Using real-time polymerase chain reaction and western blot we have examined expression of peroxisome proliferator-activated receptors (PPARs) and retinoid X receptor (RXR) genes in the skeletal muscle of normal and GHR-KO mice subjected to 30% caloric restriction. The results indicate that caloric restriction decreased the expression of PPARgamma, PPARalpha, and PPARbeta/delta which would lead to down-regulation of fat metabolism. This suggested metabolic change clearly does not affect whole-body insulin action. These findings suggest that whole-animal insulin sensitivity is not regulated through skeletal muscle insulin action.
Collapse
Affiliation(s)
- Michal M Masternak
- Department of Internal Medicine, Geriatrics Research, Southern Illnois University School of Medicine, Springfield, 62794-9628, USA.
| | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Yeast has essentially two lifespans: a replicative lifespan (the number of daughters produced by each dividing mother cell) and a chronological lifespan (the capacity of stationary (G0) cultures to maintain viability over time). There is a tendency now to label every investigation that addresses these lifespans as ageing research. It is, though, analyses of the longest lifespans that will be most informative about the determinants of longevity and yield results most relevant to ageing in more complex systems. This review addresses these issues and describes the ongoing studies that are now attempting to address ageing in yeast cells of maximal replicative or chronological longevity.
Collapse
Affiliation(s)
- Peter W Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
235
|
Abstract
OBJECTIVE Although the quest for longevity is as old as civilization itself, only recently have technical and conceptual advances in genomics research brought us to the point of understanding the precise molecular events that make us age. This heralds an era when manipulations of these will enable us to live longer, healthier lives. The present review describes how recent experimental strategies have identified key genes and intracellular pathways that are responsible for ageing and longevity. FINDINGS In diverse species transcription factors belonging to the forkhead/winged helix box gene, group O (FOXO) subfamily have been found to be crucial in downstream suppression of the life-shortening effects of insulin/insulin-like growth factor-I receptor signalling pathways that, when upregulated, accelerate ageing by suppression of FOXO. The various adverse processes activated upon FOXO suppression include increased generation of reactive oxygen species (ROS). ROS are pivotal for the onset of various common conditions, including hypertension, atherosclerosis, type 2 diabetes, cancer and Alzheimer's disease, each of which shortens lifespan. In humans, FOXO3a, as well as FOXO1 and -4, and their downstream effectors, could hold the key to counteracting ageing and common diseases. An understanding of the processes controlled by these FOXOs should permit development of novel classes of agents that will more directly counteract or prevent the damage associated with diverse life-threatening conditions, and so foster a life of good health to a ripe old age. Just like caloric restriction, lifespan can be increased in various species by plant-derived polyphenols, such as resveratrol, via activation of sirtuins in cells. Sirtuins, such as SIRT1 in mammals, utilize FOXO and other pathways to achieve their beneficial effects on health and lifespan. CONCLUSION Lifespan is tractable and basic mechanisms are now known. Longevity research complements and overlaps research in most major medical disciplines. Current progress bodes well for an ever-increasing length of healthy life for those who adapt emerging knowledge personally (so-called 'longevitarians').
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Institute for Biomedical Research, Building F13, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
236
|
Abstract
Despite very different life expectancies, a 2-year-old mouse, a 12-year-old dog, a 32-year-old chimpanzee or an 80-year-old man will share many common deficits such as a reduction in tissue elasticity, immunological responses, muscular strength, sensory perceptions, reflexes, as well as memory losses and increase of age-associated diseases (osteoporosis, osteoarthritis, type II diabetes, cardiovascular diseases, cataract and macular degeneration, neurodegenerative diseases, to name only a few...). With the increase of life expectancy in human species, ageing has become a major concern for the society, both at the human and financial level. The main challenge for biologists studying ageing is to understand how the multiple effects quoted above, so easily identifiable in various species, are nonetheless so coordinate among individuals of a given species. The acquisition of this fundamental knowledge will be essential to reach the ultimate goal of healthy ageing for human populations. At the present time, three types of recent developments on ageing research can be distinguished: 1) A consensus on evolutionist theory of ageing is developing. This theory is based on the fact that long-lived species usually arise from protected ecological niches. It implies that phenotypes which are expressed late in "aged survivors" are beyond natural selection. So, alleles underlying this late expression being adaptive or not ("good" or "bad"), contribute only slightly to the pool of genes of the following generation. 2) Study of laboratory models like the nematode C. elegans or fly D. melanogaster have enabled the observation that single-gene invalidation can increase lifespan. Interestingly, some of these changes seem to imply a common process through insulin/IGF-1 (insulin like growth factor-I) orthologue, energy metabolism and growth implicated hormones, as well as protection against free radicals. 3) In the mouse, several genes mutation increase lifespan and are associated with a decrease in growth hormone (GH) secretion as well as its main effector IGF-1. The study of such transgenic mutants, in parallel with the well-known effect of the caloric restriction on ageing, open several tracks which should allow determining common mechanisms which regulate the mammalian lifespan.
Collapse
Affiliation(s)
- L Kappeler
- U 549 Inserm/Paris 5-IFR 77, Hôpital Broca - Sainte-Anne, 2 ter, rue d'Alésia, 75014 Paris
| | | |
Collapse
|
237
|
Walker G, Houthoofd K, Vanfleteren JR, Gems D. Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev 2005; 126:929-37. [PMID: 15896824 DOI: 10.1016/j.mad.2005.03.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/28/2005] [Accepted: 03/15/2005] [Indexed: 11/30/2022]
Abstract
The nematode Caenorhabditis elegans has been subjected to dietary restriction (DR) by a number of means, with varying results in terms of fecundity and lifespan. Two possible mechanisms by which DR increases lifespan are reduction of metabolic rate and reduction of insulin/IGF-1 signalling. Experimental tests have not supported either possibility. However, interaction studies suggest that DR and insulin/IGF-1 signalling may act in parallel on common regulated processes. In this review, we discuss recent developments in C. elegans DR research, including new discoveries about the biology of nutrient uptake in the gut, and the importance of invasion by the bacterial food source as a determinant of lifespan. The evidence that the effect of DR on lifespan in C. elegans is mediated by the TOR pathway is discussed. We conclude that the effect of DR on lifespan is likely to involve multiple mechanisms, which may differ according to the DR regimen used and the organism under study.
Collapse
Affiliation(s)
- Glenda Walker
- Department of Biology, University College London, Gower Street, WC1E 6BT, UK
| | | | | | | |
Collapse
|
238
|
Guarente L. Calorie restriction and SIR2 genes--towards a mechanism. Mech Ageing Dev 2005; 126:923-8. [PMID: 15941577 DOI: 10.1016/j.mad.2005.03.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 01/20/2005] [Accepted: 03/15/2005] [Indexed: 12/11/2022]
Abstract
Calorie restriction is the first and most compelling example of life extension in mammals. Much speculation about how CR works has focused on ideas of what causes aging. Since these causes themselves are much disputed, I have instead focused my thinking on lessons from simple model organisms, which have emerged from recent genetic studies. These findings can now be integrated with numerous, elegant studies on CR over the decades, which provide a treasure trove of information about physiological changes that are elicited by this regimen. In this paper, I present data showing that the SIR2 gene is a strong candidate to regulate CR in the simple model organisms, such as yeast and Drosophila. I then summarize what is known about the mammalian Sirt1 as it relates to physiological changes during CR, and discuss how this mechanism may impact on life span, as well as diseases of aging.
Collapse
Affiliation(s)
- Leonard Guarente
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
239
|
Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 2005; 126:987-1002. [PMID: 15893363 DOI: 10.1016/j.mad.2005.03.019] [Citation(s) in RCA: 406] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/03/2005] [Accepted: 03/15/2005] [Indexed: 12/15/2022]
Abstract
The diet known as calorie restriction (CR) is the most reproducible way to extend the lifespan of mammals. Many of the early hypotheses to explain this effect were based on it being a passive alteration in metabolism. Yet, recent data from yeast, worms, flies, and mammals support the idea that CR is not simply a passive effect but an active, highly conserved stress response that evolved early in life's history to increase an organism's chance of surviving adversity. This perspective updates the evidence for and against the various hypotheses of CR, and concludes that many of them can be synthesized into a single, unifying hypothesis. This has important implications for how we might develop novel medicines that can harness these newly discovered innate mechanisms of disease resistance and survival.
Collapse
Affiliation(s)
- David A Sinclair
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Paster, Boston, MA 02115, USA.
| |
Collapse
|
240
|
Dhahbi JM, Mote PL, Fahy GM, Spindler SR. Identification of potential caloric restriction mimetics by microarray profiling. Physiol Genomics 2005; 23:343-50. [PMID: 16189280 DOI: 10.1152/physiolgenomics.00069.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To facilitate the development of assays for the discovery of pharmaceuticals capable of mimicking the effects of caloric restriction (CR) on life- and healthspan (CR mimetics), we evaluated the effectiveness of glucoregulatory and putative cancer chemopreventatives in reproducing the hepatic gene expression profile produced by long-term CR (LTCR), using Affymetrix microarrays. We have shown that CR initiated late in life begins to extend lifespan, reduce cancer as a cause of death, and reproduce approximately three-quarters of the genomic effects of LTCR in 8 wk (CR8). Eight weeks of metformin treatment was superior to CR8 at reproducing LTCR-like gene expression changes, maintaining a superior number of such changes over a broad range of statistical stringencies, and producing more Gene Ontology terms overlapping those produced by LTCR. Consistent with these results, metformin has been shown to reduce cancer incidence in mice and humans. Phenformin, a chemical cousin of metformin, extends lifespan and reduces tumor incidence in mice. Taken together, these results indicate that gene expression biomarkers can be used to identify promising candidate CR mimetics.
Collapse
Affiliation(s)
- Joseph M Dhahbi
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
241
|
Abstract
The important role of IGF and insulin-related signaling pathways in the control of longevity of worms and insects is very well documented. In the mouse, several spontaneous or experimentally induced mutations that interfere with GH biosynthesis, GH actions, or sensitivity to IGF-I lead to extended longevity. Increases in the average life span in these mutants range from approximately 20-70% depending on the nature of the endocrine defect, gender, diet, and/or genetic background. Extended longevity of hypopituitary and GH-resistant mice appears to be due to multiple mechanisms including reduced insulin levels, enhanced insulin sensitivity, alterations in carbohydrate and lipid metabolism, reduced generation of reactive oxygen species, enhanced resistance to stress, reduced oxidative damage, and delayed onset of age-related disease. There is considerable evidence to suggest that the genetic and endocrine mechanisms that influence aging and longevity in mice may play a similar role in other mammalian species, including the human.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Physiology and Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, 801 North Rutledge, Room 4389, Springfield, Illinois 62794-9628, USA.
| |
Collapse
|
242
|
Merry BJ. Dietary restriction in rodents—delayed or retarded ageing? Mech Ageing Dev 2005; 126:951-9. [PMID: 15893804 DOI: 10.1016/j.mad.2005.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 12/02/2004] [Accepted: 03/15/2005] [Indexed: 11/26/2022]
Abstract
Dietary restriction (DR) feeding increases survival significantly in strains of rats and mice. There remains however, the question as to whether these two species are always responding in an identical manner to the feeding regime. Enhanced survival can be achieved either through a set-point effect, where there is a change in the elevation of the Ln age-specific mortality rate or, by a decrease in the slope of the Ln age-specific mortality rate that results in a significant increase in the time to double the rate of mortality. It is only the second response that is evidence of a slower rate of ageing. These two possible responses to DR feeding may confound attempts to identify the biochemical mechanisms underlying the effect of DR on survival. A general lack of consistency is evident in the data and this is apparent when evaluating the free radical hypothesis of ageing in this model. Further, this hypothesis as currently viewed may be too simplistic to explain the variety and complexity of the ageing phenotype. What may be more important is not oxidative macromolecular damage but the slow transition to this cellular endpoint through the slow development of oxidative stress and the role it plays in modifying cell gene expression profiles.
Collapse
Affiliation(s)
- B J Merry
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
243
|
Houthoofd K, Johnson TE, Vanfleteren JR. Dietary Restriction in the Nematode Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2005; 60:1125-31. [PMID: 16183950 DOI: 10.1093/gerona/60.9.1125] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The first observation of the positive effect of reduced food intake on mammalian life span was made 70 years ago. In the decades that followed, researchers successfully applied this method to increase the life span of a very wide range of animals. The nematode Caenorhabditis elegans is an excellent model organism for studying the aging process. However, relatively little effort has been made to study the effects of dietary restriction in C. elegans. In this review we discuss the difficulties of subjecting C. elegans to dietary restriction, the effects of dietary restriction on metabolism and stress defense, and the potential role of different signaling pathways in DR-induced life extension. Recent experiments suggest that the TOR (target of rapamycin) pathway, rather than insulin-like signaling, might be involved in mediating the life-extending effect of dietary restriction.
Collapse
Affiliation(s)
- Koen Houthoofd
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
244
|
Gredilla R, Barja G. Minireview: the role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 2005; 146:3713-7. [PMID: 15919745 DOI: 10.1210/en.2005-0378] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reduction of caloric intake without malnutrition is one of the most consistent experimental interventions that increases mean and maximum life spans in different species. For over 70 yr, caloric restriction has been studied, and during the last years the number of investigations on such nutritional intervention and aging has dramatically increased. Because caloric restriction decreases the aging rate, it constitutes an excellent approach to better understand the mechanisms underlying the aging process. Various investigations have reported reductions in steady-state oxidative damage to proteins, lipids, and DNA in animals subjected to restricted caloric intake. Most interestingly, several investigations have reported that these decreases in oxidative damage are related to a lowering of mitochondrial free radical generation rate in various tissues of the restricted animals. Thus, similar to what has been described for long-lived animals in comparative studies, a decrease in mitochondrial free radical generation has been suggested to be one of the main determinants of the extended life span observed in restricted animals. In this study we review recent reports of caloric restriction and longevity, focusing on mitochondrial oxidative stress and the proposed mechanisms leading to an extended longevity in calorie-restricted animals.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Department of Animal Physiology-II, Faculty of Biology, Complutense University, Madrid, Spain
| | | |
Collapse
|
245
|
Zheng J, Mutcherson R, Helfand SL. Calorie restriction delays lipid oxidative damage in Drosophila melanogaster. Aging Cell 2005; 4:209-16. [PMID: 16026335 DOI: 10.1111/j.1474-9726.2005.00159.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The oxidative stress hypothesis predicts that the accumulation of oxidative damage to a variety of macromolecules is the molecular trigger driving the process of aging. Although an inverse relationship between oxidative damage and lifespan has been established in several different species, the precise relationship between oxidative damage and aging is not fully understood. Drosophila melanogaster is a favored model organism for aging research. Environmental interventions such as ambient temperature and calorie restriction can alter adult lifespan to provide an excellent system to examine the relationship between oxidative damage, aging and lifespan. We have developed an enzyme-linked immunosorbent assay (ELISA) using commercially available reagents for measuring 4-hydroxy-2-nonenal (HNE) in proteins, a marker for oxidative damage to lipids, and present data in flies to show that HNE adducts accumulate in an age-dependent manner. With immunohistology, we also find the primary site of HNE accumulation is the pericerebral fat body, where induction of dFOXO was recently shown to retard aging. When subjected to environmental interventions that shorten lifespan, such as elevated ambient temperature, the chronological accumulation of HNE adduct is accelerated. Conversely, interventions that extend lifespan, such as lower ambient temperature or low calorie diets, slow the accumulation of HNE adduct. These studies associate damage from lipid peroxidation with aging and lifespan in Drosophila and show that calorie restriction in flies, as in mammals, slows the accumulation of lipid related oxidative damage.
Collapse
Affiliation(s)
- Jianyu Zheng
- University of Connecticut Health Center, Department of Genetics and Developmental Biology, Farmington, CT 06030, USA
| | | | | |
Collapse
|
246
|
Affiliation(s)
- Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan School of Medicine, and Ann Arbor DVA Medical Center, Ann Arbor, MI 48109-0940, USA.
| |
Collapse
|
247
|
Sharp ZD, Bartke A. Evidence for down-regulation of phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J Gerontol A Biol Sci Med Sci 2005; 60:293-300. [PMID: 15860463 DOI: 10.1093/gerona/60.3.293] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How growth hormone (GH) stimulates protein synthesis is unknown. Phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathways balance anabolic and catabolic activities in response to nutrients and growth factor signaling. As a test of GH signaling, immunoassays of two downstream translation regulatory proteins were compared in ad libitum-fed 2-month-old normal and Ames (Prop1df) dwarf mice. Phosphorylation of the p70 and p85 isoforms of S6 kinase 1 in liver and the p70 isoform in gastrocnemius muscle were significantly decreased in dwarfs. Messenger RNA (mRNA) Cap-binding demonstrated significantly higher levels of translation repressor 4E-BP1/eukaryotic initiation factor 4E (eIF4E) (coprecipitates) from dwarf livers, but not muscle. Consistent with these binding data, significantly less phosphorylation of 4E-BP1 was documented in dwarf liver. These data suggest a link between GH signaling and translation control in a model of extended longevity.
Collapse
Affiliation(s)
- Zelton Dave Sharp
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245, USA.
| | | |
Collapse
|
248
|
Abstract
Natural variation in rate of aging or longevity in mice and humans shows a very complex inheritance pattern. Few targeted genetic screens have identified longevity genes in mammals, partly as a result from the fact that the genetics of longevity can only be studied reliably in cohorts of mice. In this paper we propose that a combined genetic and genomic analysis of large families of fully genotyped recombinant inbred mice may provide a crucial tool to the aging research community. As a proof of principle we describe preliminary studies in which variation in gene expression patterns in hematopoietic stem cells and brain were genetically linked to longevity.
Collapse
Affiliation(s)
- Gerald de Haan
- Department of Stem Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | |
Collapse
|
249
|
Abstract
Aging, or senescence, has typically been measured by demographic analysis, which has its merits but is blind to key aspects of functional development and deterioration. If one uses demographic analyses, however, the approach providing most insight is the analysis of age-specific mortality. The continuing increase in DNA sequencing power combined with emerging computational techniques will allow in the near future detailed investigation of mechanisms of aging in diverse species beyond the typical laboratory bestiary. A comparative approach of this sort needs to consider, in addition to simple longevity, the effects of phylogeny and body size on the species in question. Insight may be gained from the study of species exhibiting accelerated aging relative to more "typical" species. These naturally short-lived species, such as several small shrews and marsupials, avoid the worry inherent in "accelerated aging" genotypes of common models, which is that they are only short-lived because of some idiosyncratic pathology unrelated to general aging. A case of special interest that has yet to be seriously investigated is the domestic dog, in which selective breeding has produced phenotypes within the same species that age at two-fold different rates. Exceptionally long-lived species offer exceptional opportunities to discover whether there are few or many ways to create long-lived organisms. Slow-aging species with the most to offer include bats and naked mole-rats. Perhaps no fundamental question in biology is more intriguing that why and how nature has produced such a dazzling array of aging rates. The development of functional genetics over the next several decades promises to lead us toward an answer.
Collapse
Affiliation(s)
- Steven N Austad
- University of Texas Health Science Center, Barshop Institute for Longevity and Aging Studies, SCTBM Bldg. Room 3.100, 15355 Lambda Drive, San Antonio, TX 78245, USA.
| |
Collapse
|
250
|
Abstract
Recent advances have suggested the existence of phylogenetically conserved pathways regulating ageing in eukaryotes. At least two of these "public" longevity-determining pathways appear to have been evolutionarily conserved from yeast through mammals. We have developed a high-throughput, genome-wide approach to identify a large fraction of the non-essential, single-gene deletion mutations that confer increased longevity in yeast. The identification and characterization of conserved genes that regulate the ageing process across eukaryotic species is likely to result in an improved understanding of the causes of human ageing and provide potential therapeutic targets for drug discovery.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|