201
|
Fajac I, Briand P, Monsigny M, Midoux P. Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells. Hum Gene Ther 1999; 10:395-406. [PMID: 10048392 DOI: 10.1089/10430349950018841] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have examined the membrane lectin expressed by immortalized normal and cystic fibrosis (CF) airway epithelial cells, using fluorescein-labeled neoglycoproteins; the uptake of plasmid DNA using fluoresceinylated glycoplexes (plasmid/glycosylated polylysine complexes); and the efficiency of gene transfer when glycosylated polylysines and glycosylated, partially gluconoylated polylysines were used as vectors. The most efficient uptake of neoglycoproteins by normal and CF cells was obtained with mannosylated BSA (bovine serum albumin). Similarly, the most efficient uptake of plasmid DNA was obtained with glycoplexes bearing alpha-D-Man residues. Surprisingly, glycoplexes bearing alpha-D-Man residues were poorly efficient for gene transfer into normal and CF cells. The highest luciferase activity was achieved with lactosylated polylysine- and beta-D-GlcNAc-substituted gluconoylated polylysine as vectors. Gene transfer efficiency obtained with gluconoylated polylysine bearing beta-D-GlcNAc residues was similar to that observed with polyethylenimine (PEI; 25 and 800 kDa) and 10-fold higher than that observed with lipofectin and LipofectAMINE. These results suggest that the transfection efficiency with glycoplexes is not determined only by the specificity of the lectin expressed at the cell surface membrane but also by intracellular trafficking of the glycoplexes, which could be mediated by lectins present inside the cells.
Collapse
Affiliation(s)
- I Fajac
- INSERM U380, ICGM, Université René Descartes (Paris V), France.
| | | | | | | |
Collapse
|
202
|
Kammouni W, Naïmi D, Renaud W, Bianco N, Figarella C, Merten MD. High lysosomal activities in cystic fibrosis tracheal gland cells corrected by adenovirus-mediated CFTR gene transfer. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1453:14-22. [PMID: 9989241 DOI: 10.1016/s0925-4439(98)00084-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human tracheal gland serous (HTGS) cells are now believed to be a major target of cystic fibrosis (CF) gene therapy. To evaluate the efficiency of adenovirus-mediated gene transfer in these cells we tested the adenovirus construction containing beta-galactosidase cDNA. We observed that the endogenous beta-galactosidase activity in cultured CF-HTGS cells was too strong to allow us to detect any exogenous beta-galactosidase activity. Immunohistological study on sections of human tracheal tissue confirmed the presence of beta-galactosidase in the serous component of the submucosal glands. We then looked for other lysosomal activities in normal and CF-HTGS cells. We showed that normal cells already have elevated enzyme values and that CF-HTGS cells contained 2-4-fold more beta-galactosidase, alpha-fucosidase, alpha-mannosidase and beta-glucuronidase activities than normal cells. An analysis of their kinetic constants has shown that this difference could be attributed to a lower K(m) of CF lysosomal enzymes. More importantly, these differences are eliminated after adenovirus-mediated CFTR gene transfer and not after beta-galactosidase gene transfer.
Collapse
Affiliation(s)
- W Kammouni
- Laboratoire de Physiologie, Institut des Sciences de la Nature, Université de Constantine, Algeria
| | | | | | | | | | | |
Collapse
|
203
|
Witko-Sarsat V, Sermet-Gaudelus I, Lenoir G, Descamps-Latscha B. Inflammation and CFTR: might neutrophils be the key in cystic fibrosis? Mediators Inflamm 1999; 8:7-11. [PMID: 10704083 PMCID: PMC1781783 DOI: 10.1080/09629359990658] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this hypothesis is to provide new insights into the still unclear mechanisms governing airway inflammation in cystic fibrosis. Although the genetic basis of cystic fibrosis as well as the molecular structure of cystic fibrosis transmembrane regulator (CFTR), the mutated protein which causes the disease, have been well defined, a clear relationship between the genetic defect and the pulmonary pathophysiology, especially chronic infections and neutrophil-dominated airway inflammation has not been established. Cystic fibrosis is thus a unique pathological situation in that neutrophils can be depicted as both an antiinfectious and a proinflammatory cell. In cystic fibrosis there is an emerging picture of an imbalance between these two roles with both a reduction in the antiinfectious efficacy and an augmentation of the proinflammatory functions. Better knowledge of fundamental defects in neutrophil function in cystic fibrosis as well as a novel cellular function of CFTR, which will be reviewed, will allow identification of potentially new clinical targets and aid selective therapeutic action aimed at counteracting the lethal neutrophil-induced airway inflammation. The rationale for colchicine therapy is a significant example of a drug which might act both at the molecular levels on CFTR expression in epithelial cells and on neutrophils to mediate antiinflammatory effects. Preliminary results are presented in this issue (Med Inflamm 1999; 8: 13-15).
Collapse
Affiliation(s)
- V Witko-Sarsat
- INSERM U507, Hôpital Necker Enfants-Malades, Paris, France
| | | | | | | |
Collapse
|
204
|
Abstract
Intracellular CFTR: Localization and Function. Physiol. Rev. 79, Suppl.: S175-S191, 1999. - There is considerable evidence that CFTR can function as a chloride-selective anion channel. Moreover, this function has been localized to the apical membrane of chloride secretory epithelial cells. However, because cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane protein, it will also be present, to some degree, in a variety of other membrane compartments (including endoplasmic reticulum, Golgi stacks, endosomes, and lysosomes). An incomplete understanding of the molecular mechanisms by which alterations in an apical membrane chloride conductance could give rise to the various clinical manifestations of cystic fibrosis has prompted the suggestion that CFTR may also play a role in the normal function of certain intracellular compartments. A variety of intracellular functions have been attributed to CFTR, including regulation of membrane vesicle trafficking and fusion, acidification of organelles, and transport of small anions. This paper aims to review the evidence for localization of CFTR in intracellular organelles and the potential physiological consequences of that localization.
Collapse
Affiliation(s)
- N A Bradbury
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| |
Collapse
|
205
|
Verma M, Baraniuk J, Blass C, Ali M, Yuta A, Biedlningmaier J, Davidson EA. CFTR antisense phosphorothioate oligodeoxynucleotides (S-ODns) induce tracheo-bronchial mucin (TBM) mRNA expression in human airway mucosa. Glycoconj J 1999; 16:7-11. [PMID: 10580645 DOI: 10.1023/a:1006926217748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mucus hypersecretion is a critical component of cystic fibrosis (CF) pathogenesis. The effects of dysfunction of the cystic fibrosis transmembrane regulator (CFTR) on mucin expression were examined using the tracheo-bronchial mucin (TBM) gene as an indicator. TBM mRNA expression was assessed in a human bronchial epithelial cell line (HBE1) and human nasal mucosal explants in vitro. Antisense phosphorothioate oligodeoxynucleotides (S-ODN) to TBM suppressed baseline expression of TBM mRNA in both systems, but had no effect on glyceraldehyde phosphate dehydrogenase mRNA (GAPDH) expression. Sense and missense (multiple scrambled control oligonucleotides) S-ODNs had no effect. 8Br-cAMP and PGE1 significantly elevated TBM mRNA expression. These increases were also specifically inhibited by the antisense S-ODNs. In order to induce a CF-like state, S-ODN to CFTR were added to explants. Antisense CFTR S-ODNs were anticipated to reduce the expression of cellular CFTR protein, and the level of CFTR function. Antisense, but not sense or missense, CFTR S-ODN significantly increased TBM mRNA expression. These data suggest that mucin hypersecretion in CF may be a direct consequence of CFTR dysfunction; the specific mechanism through which this effect is mediated is not known.
Collapse
Affiliation(s)
- M Verma
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
Role of CFTR in Airway Disease. Physiol. Rev. 79, Suppl.: S215-S255, 1999. - Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), which accounts for the cAMP-regulated chloride conductance of airway epithelial cells. Lung disease is the chief cause of morbidity and mortality in CF patients. This review focuses on mechanisms whereby the deletion or impairment of CFTR chloride channel function produces lung disease. It examines the major themes of the channel hypothesis of CF, which involve impaired regulation of airway surface fluid volume or composition. Available evidence indicates that the effect of CFTR deletion alters physiological functions of both surface and submucosal gland epithelia. At the airway surface, deletion of CFTR causes hyperabsorption of sodium chloride and a reduction in the periciliary salt and water content, which impairs mucociliary clearance. In submucosal glands, loss of CFTR-mediated salt and water secretion compromises the clearance of mucins and a variety of defense substances onto the airway surface. Impaired mucociliary clearance, together with CFTR-related changes in the airway surface microenvironment, leads to a progressive cycle of infection, inflammation, and declining lung function. Here, we provide the details of this pathophysiological cascade in the hope that its understanding will promote the development of new therapies for CF.
Collapse
Affiliation(s)
- J M Pilewski
- Departments of Medicine and of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
207
|
Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB. CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 1999; 79:S145-66. [PMID: 9922379 DOI: 10.1152/physrev.1999.79.1.s145] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CFTR Is a Conductance Regulator as well as a Chloride Channel. Physiol. Rev. 79, Suppl.: S145-S166, 1999. - Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter gene family. Although CFTR has the structure of a transporter that transports substrates across the membrane in a nonconductive manner, CFTR also has the intrinsic ability to conduct Cl- at much higher rates, a function unique to CFTR among this family of ABC transporters. Because Cl- transport was shown to be lost in cystic fibrosis (CF) epithelia long before the cloning of the CF gene and CFTR, CFTR Cl- channel function was considered to be paramount. Another equally valid perspective of CFTR, however, derives from its membership in a family of transporters that transports a multitude of different substances from chemotherapeutic drugs, to amino acids, to glutathione conjugates, to small peptides in a nonconductive manner. Moreover, at least two members of this ABC transporter family (mdr-1, SUR) can regulate other ion channels in the membrane. More simply, ABC transporters can regulate somehow the function of other cellular proteins or cellular functions. This review focuses on a plethora of studies showing that CFTR also regulates other ion channel proteins. It is the hope of the authors that the reader will take with him or her the message that CFTR is a conductance regulator as well as a Cl- channel.
Collapse
Affiliation(s)
- E M Schwiebert
- Department of Physiology and Biophysics, Gregory Fleming James CF Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|
208
|
Abstract
Multidrug resistance is a generic term for the variety of strategies that tumor cells develop to evade the cytotoxic effects of anticancer drugs. It is characterized by decreased cellular sensitivity, not only to the drug(s) employed in chemotherapy but also to a broad spectrum of drugs with neither obvious common targets nor structural homology. It is one of the major obstacles to the successful treatment of tumors. This review concentrates on some of the physiological changes observed in drug-sensitive and drug-resistant tumor cell lines that could account for their relative sensitivities to chemotherapeutics. These changes suggest alternative strategies for combating tumor cells in general and multidrug-resistant cells in particular.
Collapse
|
209
|
Belhoussine R, Morjani H, Millot JM, Sharonov S, Manfait M. Confocal scanning microspectrofluorometry reveals specific anthracyline accumulation in cytoplasmic organelles of multidrug-resistant cancer cells. J Histochem Cytochem 1998; 46:1369-76. [PMID: 9815278 DOI: 10.1177/002215549804601205] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We used confocal microspectrofluorometry to investigate intracellular distribution of pirarubicin or THP-DOX in parental K562, CEM, and LR73 tumor cells and their corresponding multidrug-resistant (MDR) strains. Each spectrum of a recorded image was considered as a combination of cell autofluorescence and fluorescence of the drug. In the cytoplasm of parental K562, CEM, and LR73 cells, THP-DOX fluorescence emission profile was similar to that of free drug in aqueous buffer. The (I550nm/I600nm) ratio was 0. 50 +/- 0.1. However, in the cytoplasm of resistant cells the 550-nm band profile was modified. The I550nm/I600nm ratio was 0.85 +/- 0.2 in MDR K562 cells, which is significantly different from the ratio in sensitive cells (p<0.01). This appeared first to correspond to accumulation and self-oligomerization of THP-DOX in cytoplasmic organelles of MDR cells. Transfection of LR73 cells with the mdr1 gene conferred this characteristic on the resistant LR73R cells. Bodipy-ceramide, a trans-Golgi probe, was co-localized with the typical fluorescence emission peak at 550 nm observed in the cytoplasm of MDR cells. This organelle has been shown to be more acidic in MDR cells. Moreover, this specific pattern was similar to that observed when anthracycline is complexed with sphingomyelin. The typical fluorescence emission peak at 550 nm decreased in MDR cells incubated simultaneously in the presence of the drug and quinine, verapamil, or S9788. Growth inhibitory effect and nuclear accumulation of THP-DOX data obtained on LR73R and LR73D cell lines showed that only during reversion of resistance by verapamil and S9788 was an increase of nuclear THP-DOX accumulation observed. Our data suggest that characteristics of molecular environment, such as higher pH gradient or lipid structures, would be potential mechanisms of multidrug-resistance via the sequestration of anthracyclines.
Collapse
Affiliation(s)
- R Belhoussine
- Université de Reims Champagne-Ardenne, UFR de Pharmacie, IFR53, Laboratoire de Spectroscopie Biomoléculaire, Reims, France
| | | | | | | | | |
Collapse
|
210
|
Tabary O, Zahm JM, Hinnrasky J, Couetil JP, Cornillet P, Guenounou M, Gaillard D, Puchelle E, Jacquot J. Selective up-regulation of chemokine IL-8 expression in cystic fibrosis bronchial gland cells in vivo and in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:921-30. [PMID: 9736040 PMCID: PMC1853001 DOI: 10.1016/s0002-9440(10)65633-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/29/1998] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that the early pulmonary inflammation pathogenesis in cystic fibrosis (CF) may be associated with an abnormal increase in the production of pro-inflammatory cytokines in the CF lung, even in the absence of infectious stimuli. We have postulated that if baseline abnormalities in airway epithelial cell production of cytokines occur in CF, they should be manifested in the CF bronchial submucosal glands, which are known to express high levels of CFTR (cystic fibrosis transmembrane conductance regulator) protein, the gene product mutated in CF disease. Immunohistochemical analyses showed that CF bronchial submucosal glands in patients homozygous for the deltaF508 deletion expressed elevated levels of the endogenous chemokine interleukin (IL)-8 but not the pro-inflammatory cytokines IL-1beta and IL-6, compared with non-CF bronchial glands. Moreover, basal protein and mRNA expression of IL-8 were constitutively up-regulated in cultured deltaF508 homozygous CF human bronchial gland cells, in an unstimulated state, compared with non-CF bronchial gland cells. Furthermore, the exposure of CF and non-CF bronchial gland cells to an elevated extracellular Cl- concentration markedly increased the release of IL-8, which can be corrected in CF gland cells by reducing the extracellular Cl- concentration. We also found that, in contrast to non-CF gland cells, dexamethasone did not inhibit the release of IL-8 by cultured CF gland cells. The selective up-regulation of bronchial submucosal gland IL-8 could represent a primary event that initiates early airway submucosal inflammation in CF patients. These findings are relevant to the pathogenesis of CF and suggest a novel pathophysiological concept for the early and sustained airway inflammation in CF patients.
Collapse
Affiliation(s)
- O Tabary
- INSERM Unité 314, CHU Maison Blanche, Reims, France
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Mailleau C, Capeau J, Brahimi-Horn MC. Interrelationship between the Na+/glucose cotransporter and CFTR in Caco-2 cells: relevance to cystic fibrosis. J Cell Physiol 1998; 176:472-81. [PMID: 9699500 DOI: 10.1002/(sici)1097-4652(199809)176:3<472::aid-jcp4>3.0.co;2-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Both the Na+-dependent glucose cotransporter (SGLT1) and the cystic fibrosis transmembrane conductance regulator (CFTR) modulate Na+ and fluid movement, although in opposite directions. Yet few studies have investigated a possible interrelationship between these two transporters. By using the Caco-2 human colon carcinoma cell line, we confirmed that the activities of these transporters increased with spontaneous differentiation to the enterocytic phenotype. We showed that SGLT1 was positively regulated by Cl- and that optimal activity of CFTR was dependent on the presence of glucose. We also demonstrated that inhibition of CFTR by glibenclamide or diphenylamine-2-carboxylate did not modify the activity of SGLT1 and inhibition of SGLT1 by phlorizin did not modify the activity of CFTR, although it resulted in inhibition of glycoconjugate synthesis. These results point to positive substrate-cross regulation of SGLT1 and CFTR and suggest that NaCl and glucose are important for not only Na+ absorption and fluid movement, but also for cAMP-dependent Cl- efflux, and glycoconjugate synthesis, functions that are known to be anomalous in cystic fibrosis.
Collapse
Affiliation(s)
- C Mailleau
- Institut National de la Santé et de la Recherche Médicale U. 402, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | |
Collapse
|
212
|
Ma J, Davis PB. What we know and what we do not know about cystic fibrosis transmembrane conductance regulator. Clin Chest Med 1998; 19:459-71, v-vi. [PMID: 9759549 DOI: 10.1016/s0272-5231(05)70093-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel that resides in the apical membrane of many epithelial cells. Channel opening requires phosophorylation of serine residues in an intracellular regulatory domain by protein kinase A and as the binding and hydrolysis of ATP by intracellular nucleotide binding domains. Besides conducting the chloride ion, CFTR also regulates the function of other membrane proteins, directly or indirectly, notably the outwardly rectifying chloride channel and the epithelial sodium channel. The disease cystic fibrosis is caused by mutations in CFTR, which can result in defective protein production, defective processing and degradation in the endoplasmic reticulum, or defective channel pore properties or gating properties.
Collapse
Affiliation(s)
- J Ma
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
213
|
Crawford IT, Maloney PC. Identification of cystic fibrosis transmembrane conductance regulator in renal endosomes. Methods Enzymol 1998; 292:652-63. [PMID: 9711589 DOI: 10.1016/s0076-6879(98)92050-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- I T Crawford
- Science Applications International Corporation, Joppa, Maryland 21085, USA
| | | |
Collapse
|
214
|
Vieira LL. pH and volume homeostasis in trypanosomatids: current views and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:221-41. [PMID: 9748588 DOI: 10.1016/s0304-4157(98)00007-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- L L Vieira
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Science, Universidad Central de Venezuela, Caracas 47069, Venezuela
| |
Collapse
|
215
|
Bryan R, Kube D, Perez A, Davis P, Prince A. Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells. Am J Respir Cell Mol Biol 1998; 19:269-77. [PMID: 9698599 DOI: 10.1165/ajrcmb.19.2.2889] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR), particularly the common DeltaF508 mutation, have been associated with alterations in glycolipid sialylation and the availability of receptors for Pseudomonas aeruginosa binding. The surface properties of 9HTEo- tracheal epithelial cell lines transfected with plasmids that overproduce the regulatory (R) domain of CFTR (pCEP-R) and lack cyclic adenosine monophosphate-stimulated Cl- conductance were compared with control cell lines with normal CFTR function. There was increased bacterial adherence to the mutant cell lines with abnormal CFTR activity. Cell lines with overexpression of the R domain had surface properties similar to cells expressing the common DeltaF508 mutation in CF. P. aeruginosa adherence correlated with the increased numbers of asialoGM1 residues available on the surface of the epithelial cells with altered CFTR function; and antibody to asialoGM1, a P. aeruginosa pilin receptor, was able to compete with piliated bacteria for epithelial binding sites. The pCEP-R cell lines with increased bacterial binding were also associated with increased production of interleukin-8 in response to adherent P. aeruginosa compared with cells transfected with the empty vector pCEP. P. aeruginosa pil mutants that lack the adhesin specific for the asialoGM1 receptor did not discriminate between epithelial cells with normal or deficient CFTR function. These results confirm a direct relationship between aberrant CFTR function and increased levels of apical asialoGM1, and support the role of these asialylated glycolipids as P. aeruginosa receptors that initiate an epithelial proinflammatory response in response to bacterial ligands.
Collapse
Affiliation(s)
- R Bryan
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, USA
| | | | | | | | | |
Collapse
|
216
|
Sharma P, Dudus L, Nielsen PA, Clausen H, Yankaskas JR, Hollingsworth MA, Engelhardt JF. MUC5B and MUC7 are differentially expressed in mucous and serous cells of submucosal glands in human bronchial airways. Am J Respir Cell Mol Biol 1998; 19:30-7. [PMID: 9651178 DOI: 10.1165/ajrcmb.19.1.3054] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mucins are high molecular-weight glycoproteins involved in the protection and lubrication of respiratory, gastrointestinal, and reproductive tracts. Hypersecretory diseases such as cystic fibrosis (CF), chronic bronchitis, and asthma result in dysregulated levels of mucin production stemming from increased abundance of mucin-secreting cell types in the surface airway epithelium and submucosal glands. The isolation of at least nine mucin genes has prompted studies to characterize the cellular expression patterns of these mucins in normal and diseased tissues. In the present study, in situ hybridization and immunocytochemical methods were used to determine the cellular distribution of MUC5B and MUC7 expression in CF and non-CF human bronchus. Our findings indicate that MUC5B and MUC7 have expression patterns in human bronchial airways that are limited exclusively to submucosal glands. Specifically, MUC5B expression was confined to all mucous tubules, whereas MUC7 expression was seen in a subset of lysozyme expressing serous tubules of submucosal glands. Interestingly, heterogeneity of MUC7 expression between glands of the same bronchus ranged from 0 to 93% of serous tubules, suggesting that functional diversity may exist between glands within the same bronchial sample. No remarkable differences were observed in the expression patterns of MUC5B or MUC7 between CF (n = 7) and non-CF (n = 10) bronchial samples. In conclusion, MUC5B and MUC7 expressions define different cellular compartments within submucosal glands of human bronchus and lend insight into the heterogeneity of mucin production in the lung.
Collapse
Affiliation(s)
- P Sharma
- Department of Anatomy and Cell Biology and Department of Internal Medicine at the University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Schwiebert EM, Benos DJ, Fuller CM. Cystic fibrosis: a multiple exocrinopathy caused by dysfunctions in a multifunctional transport protein. Am J Med 1998; 104:576-90. [PMID: 9674722 DOI: 10.1016/s0002-9343(98)00119-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- E M Schwiebert
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
218
|
Altan N, Chen Y, Schindler M, Simon SM. Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med 1998; 187:1583-98. [PMID: 9584137 PMCID: PMC2212293 DOI: 10.1084/jem.187.10.1583] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1997] [Revised: 03/02/1998] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance (MDR) is a significant problem in the treatment of cancer. Chemotherapeutic drugs distribute through the cyto- and nucleoplasm of drug-sensitive cells but are excluded from the nucleus in drug-resistant cells, concentrating in cytoplasmic organelles. Weak base chemotherapeutic drugs (e.g., anthracyclines and vinca alkaloids) should concentrate in acidic organelles. This report presents a quantification of the pH for identified compartments of the MCF-7 human breast tumor cell line and demonstrates that (a) the chemotherapeutic Adriamycin concentrates in acidified organelles of drug-resistant but not drug-sensitive cells; (b) the lysosomes and recycling endosomes are not acidified in drug-sensitive cells; (c) the cytosol of drug-sensitive cells is 0.4 pH units more acidic than the cytosol of resistant cells; and (d) disrupting the acidification of the organelles of resistant cells with monensin, bafilomycin A1, or concanamycin A is sufficient to change the Adriamycin distribution to that found in drug-sensitive cells, rendering the cell vulnerable once again to chemotherapy. These results suggest that acidification of organelles is causally related to drug resistance and is consistent with the hypothesis that sequestration of drugs in acidic organelles and subsequent extrusion from the cell through the secretory pathways contribute to chemotherapeutic resistance.
Collapse
Affiliation(s)
- N Altan
- Laboratory of Cellular Biophysics, Rockefeller University, New York 10021, USA
| | | | | | | |
Collapse
|
219
|
Kudva YC, Mueske C, Butler PC, Eberhardt NL. A novel assay in vitro of human islet amyloid polypeptide amyloidogenesis and effects of insulin secretory vesicle peptides on amyloid formation. Biochem J 1998; 331 ( Pt 3):809-13. [PMID: 9560308 PMCID: PMC1219421 DOI: 10.1042/bj3310809] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human islet amyloid polypeptide (IAPP) is a 37-residue peptide that is co-secreted with insulin by the beta-cell and might be involved in the pathogenesis of non-insulin-dependent diabetes mellitus. We developed an improved assay in vitro based on the fluorescence of bound thioflavin T to study factors affecting amyloidogenesis. Monomeric IAPP formed amyloid fibrils, as detected by increased fluorescence and by electron microscopy. Fluorimetric analysis revealed that the initial rate of amyloid formation was: (1) proportional to the peptide monomer concentration, (2) maximal at pH 9.5, (3) maximal at 200 mMKCl, and (4) proportional to temperature from 4 to 37 degreesC. We found that 5-fold and 10-fold molar excesses of proinsulin inhibited fibril formation by 39% and 59% respectively. Insulin was somewhat more potent with 5-fold and 10-fold molar excesses inhibiting fibril formation by 69% and 73% respectively, whereas C-peptide had no effect at these concentrations. Thus at physiological ratios of IAPP to insulin, insulin and proinsulin, but not C-peptide, can retard amyloidogenesis. Because insulin resistance or hyperglycaemia increase the IAPP-to-insulin ratio, increased intracellular IAPP compared with insulin expression in genetically predisposed individuals might contribute to intracellular amyloid formation, beta-cell death and the genesis of non-insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- Y C Kudva
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN 55906, USA
| | | | | | | |
Collapse
|
220
|
Davidson DJ, Porteous DJ. Genetics and pulmonary medicine. 1. The genetics of cystic fibrosis lung disease. Thorax 1998; 53:389-97. [PMID: 9708232 PMCID: PMC1745224 DOI: 10.1136/thx.53.5.389] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- D J Davidson
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | |
Collapse
|
221
|
Szewczyk A. The intracellular potassium and chloride channels: properties, pharmacology and function (review). Mol Membr Biol 1998; 15:49-58. [PMID: 9724922 DOI: 10.3109/09687689809027518] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Channels selective for potassium or chloride ions are present in membranes of intracellular organelles such as sarcoplasmic (endoplasmic) reticulum, mitochondria, nucleus, synaptic vesicles, and chromaffin, and zymogen granules. They probably play an important role in cellular events such as compensation of electrical charges during transport of Ca2+, delta pH formation in mitochondria or V-ATPase containing membrane granules, and regulation of volume changes, due to potassium and chloride transport into intracellular organelles. Intracellular potassium and chloride channels could also be the target for pharmacologically active compounds. This mini-review describes the basic properties, pharmacology, and current hypotheses concerning the functional role of intracellular potassium and chloride channels.
Collapse
Affiliation(s)
- A Szewczyk
- Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
222
|
Zhang Y, Jiang Q, Dudus L, Yankaskas JR, Engelhardt JF. Vector-specific complementation profiles of two independent primary defects in cystic fibrosis airways. Hum Gene Ther 1998; 9:635-48. [PMID: 9551612 DOI: 10.1089/hum.1998.9.5-635] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) lung disease has been linked to multiple primary defects in airway epithelia caused by a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) gene. These defects include altered Cl- and Na+ permeability as well as intracellular defects in glycoprotein processing. This apparent diversity in CFTR function is reflected in the complex patterning of CFTR expression in airway epithelia. Such complexities present challenges in the design of CF gene therapies that are capable of reconstituting the endogenous patterns of CFTR gene expression in appropriate target cells. Using a human bronchial xenograft model of the CF airway, we have evaluated the efficacy of recombinant adenoviral and cationic liposome-mediated gene transfer to correct Cl- permeability and mucous sulfation defects found in CF lung disease. Results from these studies demonstrated a clear vector-specific complementation profile for these two defects that was dependent on the type of cell transduced and the level of transgene expression. Single-dose administration of recombinant adenovirus effectively transduced high levels of CFTR transgene expression in 11 +/- 1% of epithelial cells and was capable of correcting cAMP-induced changes in Cl- permeability to 91 +/- 14% that seen in non-CF airways. However, this level of transgene expression was incapable of reversing defects in mucous sulfation due to the lack of efficient targeting to goblet cells. In contrast, cationic liposome-mediated delivery of CFTR encoding plasmids to CF airways achieved extremely low levels of transgene expression with insignificant correction (7.4 +/- 2.4%) of cAMP-induced Cl- permeability. This low level of transgene expression, however, efficiently reduced mucous sulfation to levels seen in non-CF airways. Differences in the complementation profiles of these two vectors in correcting Cl- permeability and mucous sulfation defects mirror the ability of recombinant adenovirus and liposomes to reconstitute only certain features of the endogenous distribution and abundance of CFTR protein expression. Such findings suggest that the level of intracellular CFTR required to facilitate proper glycoprotein processing may be much lower than that needed to mediate bulk Cl- flow across the airway epithelium. In summary, these data present the first example by which two different vector systems can efficiently complement independent primary defects associated with a single dysfunctional gene.
Collapse
Affiliation(s)
- Y Zhang
- Department of Anatomy and Cell Biology, University of Iowa Medical Center, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
223
|
Gawlitzek M, Valley U, Wagner R. Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980305)57:5<518::aid-bit3>3.0.co;2-j] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
224
|
Abstract
The ion transport abnormalities in cystic fibrosis are becoming increasingly well defined, although how these lead to lung pathology is still speculation. Correction of these defects could theoretically be achieved either through pharmacological means or via gene therapy. Pharmacological approaches include increasing the amount of CFTR protein that reaches its correct localisation in epithelial cells. Secondly, approaches have been suggested which could increase the function of the protein already present at this correct localisation. Finally, it may be possible to identify alternative channels which could subserve the function of CFTR. Gene therapy is theoretically an attractive proposition as it should circumvent each of the identified abnormalities in cystic fibrosis. The principal difficulty at present relates to delivering sufficient copies of the normal CFTR gene into the appropriate cell population in vivo. A number of clinical trials have now been undertaken and steady and encouraging progress has been made in moving this approach from theory to practice.
Collapse
Affiliation(s)
- E Alton
- Ion Transport Unit, National Heart and Lung Institute, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, UK
| | | |
Collapse
|
225
|
Buyse G, Trouet D, Voets T, Missiaen L, Droogmans G, Nilius B, Eggermont J. Evidence for the intracellular location of chloride channel (ClC)-type proteins: co-localization of ClC-6a and ClC-6c with the sarco/endoplasmic-reticulum Ca2+ pump SERCA2b. Biochem J 1998; 330 ( Pt 2):1015-21. [PMID: 9480924 PMCID: PMC1219239 DOI: 10.1042/bj3301015] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chloride channel protein (ClC)-6a and ClC-6c, a kidney-specific splice variant with a truncated C-terminus, are proteins that belong structurally to the family of voltage-dependent chloride channels. Attempts to characterize functionally ClC-6a or ClC-6c in Xenopus oocytes have so far been negative. Similarly, expression of both ClC-6 isoforms in mammalian cells failed to provide functional information. One possible explanation of these negative results is that ClC-6 is an intracellular chloride channel rather than being located in the plasma membrane. We therefore studied the subcellular location of ClC-6 isoforms by transiently transfecting COS and CHO cells with epitope-tagged versions of ClC-6a and ClC-6c. Confocal imaging of transfected cells revealed for both ClC-6 isoforms an intracellular distribution pattern that clearly differed from the peripheral location of CD2, a plasma-membrane glycoprotein. Furthermore, dual-labelling experiments of COS cells co-transfected with ClC-6a or -6c and the sarco/endoplasmic-reticulum Ca2+ pump (SERCA2b) indicated that the ClC-6 isoforms co-localized with the SERCA2b Ca2+ pump. Thus ClC-6a and ClC-6c are intracellular membrane proteins, most likely residing in the endoplasmic reticulum. In view of their structural similarity to proven chloride channels, ClC-6 isoforms are molecular candidates for intracellular chloride channels.
Collapse
Affiliation(s)
- G Buyse
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
226
|
Kwon O, Danishefsky SJ. Synthesis of Asialo GM1. New Insights in the Application of Sulfonamidoglycosylation in Oligosaccharide Assembly: Subtle Proximity Effects in the Stereochemical Governance of Glycosidation. J Am Chem Soc 1998. [DOI: 10.1021/ja9724957] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ohyun Kwon
- Contribution from the Department of Chemistry, Havemeyer Hall, Columbia University, New York, New York 10027, and Laboratory for Bioorganic Chemistry, The Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, Box 106, New York, New York 10021
| | - Samuel J. Danishefsky
- Contribution from the Department of Chemistry, Havemeyer Hall, Columbia University, New York, New York 10027, and Laboratory for Bioorganic Chemistry, The Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, Box 106, New York, New York 10021
| |
Collapse
|
227
|
Trout L, King M, Feng W, Inglis SK, Ballard ST. Inhibition of airway liquid secretion and its effect on the physical properties of airway mucus. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L258-63. [PMID: 9486211 DOI: 10.1152/ajplung.1998.274.2.l258] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The combination of both Cl- and HCO3- secretion inhibitors causes an accumulation of mucins within the submucosal gland ducts of acetylcholine (ACh)-treated bronchi [S. K. Inglis, M. R. Corboz, A. E. Taylor, and S. T. Ballard. Am. J. Physiol. 272 (Lung Cell. Mol. Physiol. 16): L372-L377, 1997], suggesting indirectly that these agents block airway gland liquid secretion. The present study tested the hypotheses that ACh-stimulated liquid secretion is driven by Cl- and HCO3- secretion and that inhibition of this process leads to secretion of a dehydrated mucus with altered rheological properties. Excised distal bronchi from pigs were pretreated with either a combination of Cl- and HCO3- secretion inhibitors (bumetanide, acetazolamide, dimethylamiloride, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid) or the dimethyl sulfoxide vehicle and were then treated with ACh to induce secretion. The rate of mucus liquid secretion was substantially reduced when the airways were pretreated with the anion secretion inhibitors. Mucus liquid from inhibitor-pretreated airways contained almost threefold more nonvolatile solids than the control liquid. Rheological analysis revealed that mucus liquid from inhibitor-pretreated airways expressed a significantly greater log G* (rigidity factor), whereas tangent delta (recoil factor) was significantly reduced. These results suggest that 1) ACh-induced liquid secretion in bronchi is driven by both Cl- and HCO3- secretion and 2) inhibition of ACh-induced liquid secretion results in the secretion of mucus with a reduced water content and altered rheological properties.
Collapse
Affiliation(s)
- L Trout
- Department of Physiology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | | | | | | | |
Collapse
|
228
|
Larsson A, Flodin M, Kollberg H. Increased serum concentrations of carbohydrate-deficient transferrin (CDT) in patients with cystic fibrosis. Ups J Med Sci 1998; 103:231-6. [PMID: 10052112 DOI: 10.3109/03009739809178952] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Carbohydrate-deficient transferrin (CDT) has been reported to be one of the best laboratory markers in serum (S) for detection of alcohol abuse. We have studied S-CDT values in cystic fibrosis (CF) patients and show that CF patients have increased S-CDT values without high alcohol consumption. CF patients have abnormalities in their protein glycosylation and sialylation, which may explain the increased S-CDT values.
Collapse
Affiliation(s)
- A Larsson
- Department of Clinical Chemistry, University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
229
|
Ho K. The ROMK-cystic fibrosis transmembrane conductance regulator connection: new insights into the relationship between ROMK and cystic fibrosis transmembrane conductance regulator channels. Curr Opin Nephrol Hypertens 1998; 7:49-58. [PMID: 9442363 DOI: 10.1097/00041552-199801000-00009] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The structure of ATP-sensitive K+ (KATP) channels in excitable cells has been elucidated recently. These channels consist of a pore-forming inward rectifier K+ (Kir) channel and four sulfonylurea receptor proteins. In the distal nephron, Kir 1.1 (ROMK) channels probably contribute to the formation of epithelial (KATP) channels. Current findings suggest the possibility that these renal KATP channels consist of Kir 1.1 channel-CFTR complexes and therefore represent structural analogues of classical KATP channels.
Collapse
Affiliation(s)
- K Ho
- Washington University School of Medicine, Renal Division, St. Louis, MO 63110, USA.
| |
Collapse
|
230
|
Bhaskar KR, Turner BS, Grubman SA, Jefferson DM, LaMont JT. Dysregulation of proteoglycan production by intrahepatic biliary epithelial cells bearing defective (delta-f508) cystic fibrosis transmembrane conductance regulator. Hepatology 1998; 27:7-14. [PMID: 9425910 DOI: 10.1002/hep.510270103] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatic dysfunction in cystic fibrosis (CF) has been attributed to accumulation of viscous mucoid secretions in intrahepatic bile ducts. The purpose of our study was to compare glycoconjugate secretion by intrahepatic biliary epithelial (IBE) cells derived from normal livers and livers of CF patients with the delta F508 mutation of the cystic fibrosis transmembrane conductance regulator (CFTR). Confluent cells were incubated with 3H-glucosamine (GlcN) for 16 hours, and radiolabeled macromolecules were analyzed for the amount and type of glycoconjugates. Incorporation of 3H-GlcN into macromolecular glycoconjugates was two- to threefold higher in CF cells versus normals, as was uptake of 3H-Glcn into the cytoplasm of CF cells. Gel exclusion chromatography on Sepharose Cl 4B revealed that the secreted glycoconjugates from CF cells eluted entirely in the excluded fraction (molecular weight > 2 x 10(6)), while, in the normal cells, 60% of the glycoconjugates eluted as lower-molecular-weight species. The high-molecular-weight glycoconjugates in both CF and normal cells were identified as chondroitin sulfates, as evidenced by susceptibility to beta elimination, chondroitinase digestion, and amino acid composition. Western blotting of IBE cell secretions with a polyclonal antibody to chondroitin sulfate revealed proteoglycan bands at 100 and 210 kd. Our results indicate that secretion of chondroitin sulfate is markedly increased in CF biliary epithelium in vitro compared with non-CF cells. Increased uptake of precursor 3H-GlcN may contribute to enhanced glycosylation of chondroitin sulfate in CF cells.
Collapse
Affiliation(s)
- K R Bhaskar
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
231
|
Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998; 78:247-306. [PMID: 9457175 DOI: 10.1152/physrev.1998.78.1.247] [Citation(s) in RCA: 1282] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To survive, cells have to avoid excessive alterations of cell volume that jeopardize structural integrity and constancy of intracellular milieu. The function of cellular proteins seems specifically sensitive to dilution and concentration, determining the extent of macromolecular crowding. Even at constant extracellular osmolarity, volume constancy of any mammalian cell is permanently challenged by transport of osmotically active substances across the cell membrane and formation or disappearance of cellular osmolarity by metabolism. Thus cell volume constancy requires the continued operation of cell volume regulatory mechanisms, including ion transport across the cell membrane as well as accumulation or disposal of organic osmolytes and metabolites. The various cell volume regulatory mechanisms are triggered by a multitude of intracellular signaling events including alterations of cell membrane potential and of intracellular ion composition, various second messenger cascades, phosphorylation of diverse target proteins, and altered gene expression. Hormones and mediators have been shown to exploit the volume regulatory machinery to exert their effects. Thus cell volume may be considered a second message in the transmission of hormonal signals. Accordingly, alterations of cell volume and volume regulatory mechanisms participate in a wide variety of cellular functions including epithelial transport, metabolism, excitation, hormone release, migration, cell proliferation, and cell death.
Collapse
Affiliation(s)
- F Lang
- Institute of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
232
|
Marshansky V, Bourgoin S, Londoño I, Bendayan M, Maranda B, Vinay P. Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 1997; 18:2661-76. [PMID: 9580051 DOI: 10.1002/elps.1150181423] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preparation of kidney proximal tubules in suspension allows the study of receptor-mediated endocytosis, protein reabsorption, and traffic of endosomal vesicles. The study of tubular protein transport in vitro coupled with that of the function of endosomal preparation offers a unique opportunity to investigate a receptor-mediated endocytosis pathway under physiological and pathological conditions. We assume that receptor-mediated endocytosis of albumin in kidney proximal tubules in situ and in vitro can be regulated, on the one hand, by the components of the acidification machinery (V-type H+-ATPase, Cl(-)-channel and Na+/H+-exchanger), giving rise to formation and dissipation of a proton gradient in endosomal vesicles, and, on the other hand, by small GTPases of the ADP-ribosylation factor (Arf)-family. In this paper we thus analyze the recent advances of the studies of cellular and molecular mechanisms underlying the identification, localization, and function of the acidification machinery (V-type H+-ATPase, Cl(-)-channel) as well as Arf-family small GTPases and phospholipase D in the endocytotic pathway of kidney proximal tubules. Also, we explore the possible functional interaction between the acidification machinery and Arf-family small GTPases. Finally, we propose the hypothesis of the regulation of translocation of Arf-family small GTPases by an endosomal acidification process and its role during receptor-mediated endocytosis in kidney proximal tubules. The results of this study will not only enhance our understanding of the receptor-mediated endocytosis pathway in kidney proximal tubules under physiological conditions but will also have important implications with respect to the functional consequences under some pathological circumstances. Furthermore, it may suggest novel targets and approaches in the prevention and treatment of various diseases (cystic fibrosis, Dent's disease, diabetes and autosomal dominant polycystic kidney disease).
Collapse
Affiliation(s)
- V Marshansky
- Centre de Recherche L.-C. Simard, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
233
|
Degroote S, Lo-Guidice JM, Strecker G, Ducourouble MP, Roussel P, Lamblin G. Characterization of an N-acetylglucosamine-6-O-sulfotransferase from human respiratory mucosa active on mucin carbohydrate chains. J Biol Chem 1997; 272:29493-501. [PMID: 9368010 DOI: 10.1074/jbc.272.47.29493] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A microsomal GlcNAc-6-O-sulfotransferase activity from human bronchial mucosa, able to transfer a sulfate group from adenosine 3'-phosphate 5'-phosphosulfate onto methyl-N-acetylglucosaminides or terminal N-acetylglucosamine residues of carbohydrate chains from human respiratory mucins, has been characterized. The reaction products containing a terminal HO3S-6GlcNAc were identified by high performance anion-exchange chromatography. Using methyl-beta-N-acetylglucosaminide as a substrate, the optimal activity was obtained with 0.1% Triton X-100, 30 mM NaF, 20 mM Mn2+, 5 mM AMP in a 30 mM MOPS (3-(N-morpholino) propanesulfonic acid) buffer at pH 6.7. The apparent Km values for adenosine 3'-phosphate 5'-phosphosulfate and methyl-beta-N-acetylglucosaminide were observed at 9.1 x 10(-6) M and 0.54 x 10(-3) M, respectively. The enzyme had more affinity for carbohydrate chains with a terminal GlcNAc residue than for methyl-beta-N-acetylglucosaminide; it was unable to catalyze the transfer of sulfate to position 6 of the GlcNAc residue contained in a terminal Galbeta1-4GlcNAc sequence. However, oligosaccharides with a nonreducing terminal HO3S-6GlcNAc were substrates for a beta1-4 galactosyltransferase from human bronchial mucosa. These data point out that GlcNAc-6-O-sulfotransferase must act before beta1-4 galactosylation in mucin-type oligosaccharide biosynthesis.
Collapse
Affiliation(s)
- S Degroote
- Unité INSERM 377, place de Verdun, F-59045 Lille, France
| | | | | | | | | | | |
Collapse
|
234
|
Jiang X, Hill WG, Pilewski JM, Weisz OA. Glycosylation differences between a cystic fibrosis and rescued airway cell line are not CFTR dependent. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:L913-20. [PMID: 9374717 DOI: 10.1152/ajplung.1997.273.5.l913] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Altered glycosylation of mucus and membrane glycoconjugates could explain reported differences in binding of bacterial pathogens to cystic fibrosis (CF) versus normal tissue. However, because bacteria can alter cell surface glycoconjugates, it is not possible to assess the role of cystic fibrosis transmembrane conductance regulators (CFTR) in glycosylation in these studies. To address this issue, we have developed quantitative lectin binding assays to compare cell surface glycosylation in well-matched immortalized CF cells and rescued cell lines. The CF airway bronchial epithelial cell line IB3-1 consistently bound more peanut agglutinin (PNA) than its clonal derivative S9, which stably expresses functional wild-type CFTR. Pretreatment with neuraminidase increased PNA binding and abolished the difference between the two cell lines. However, infection of the IB3-1 cells with a replication-deficient recombinant adenovirus encoding CFTR restored CFTR function but did not alter PNA binding to cells. In contrast, treatment with the weak base ammonium chloride increased PNA binding to both cell lines as expected. Our data show that even clonally related CF and rescued cells can exhibit significant differences in carbohydrate processing. Although the differences that we found are consistent with the proposed role for CFTR in modulating intraorganellar pH, our data strongly suggest that they are CFTR independent. These studies add a cautionary note to the interpretation of differences in glycosylation between CF and normal primary tissues and immortalized cells.
Collapse
Affiliation(s)
- X Jiang
- Renal-Electrolyte Division Laboratory of Epithelial Cell Biology, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
235
|
Berguerand M, Klapisz E, Thomas G, Humbert L, Jouniaux AM, Olivier JL, Béréziat G, Masliah J. Differential stimulation of cytosolic phospholipase A2 by bradykinin in human cystic fibrosis cell lines. Am J Respir Cell Mol Biol 1997; 17:481-90. [PMID: 9376123 DOI: 10.1165/ajrcmb.17.4.2734] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tracheal epithelial cells and skin fibroblasts from different cystic fibrosis (CF) patients bearing the deltaF508 mutation of cystic fibrosis transmembrane conductance regulator (CFTR) released more arachidonic acid in response to bradykinin than do other CF and normal cells. Immortalized tracheal epithelial cell lines were used as models to study the mechanisms of this dysregulation. An 85 kD cytosolic phospholipase A2 (cPLA2) was found in these cells and bradykinin increased its binding to membranes of deltaF508 cells (CFT-2) but not to those of a double heterozygous CF cells (CFT-1), or of control cells (NT-1). The expression of G alpha(q)/11 protein was also increased in deltaF508 cells, with increased stimulation of phosphatidylinositol diphosphate-specific phospholipase C (PLC) by bradykinin, and an early, transient activation of mitogen-activated protein (MAP) kinase. As the binding of cPLA2 to membranes is Ca2+-dependent, the increased coupling to PLC could cause the hypersensitivity to bradykinin. Comparison of the effects of bradykinin to those observed with thapsigargin, an inhibitor of calcium reuptake, suggests that the increase of intracellular calcium is not the only mechanism involved in arachidonic acid release by bradykinin in deltaF508 cells. The lack of effect of calcium ionophore A23187 or TPA on arachidonic acid release from any of the cell lines suggested that activation needs a PKC-independent cPLA2 phosphorylation step, perhaps via MAP kinase activation. The binding of cPLA2 to membranes after bradykinin stimulation still occurred in CFT2 cells (deltaF508) homogenized in EDTA, suggesting that a membrane component plus increased intracellular calcium influenced cPLA2 anchoring to membranes. The defective processing of deltaF508 CFTR seems to increase cPLA2 stimulation by bradykinin, since the bradykinin-stimulated release of arachidonic acid is reversed by growing cells at 28 degrees C for 48 h. The deltaF508 mutation of CFTR appears to increase the stimulation of cPLA2 by Gq-mediated receptors in a PKC-independent and MAP kinase-dependent manner. Hence normal CFTR, or normally processed deltaF508 CFTR, inhibit cPLA2 stimulation. The greater reactivity of deltaF508 CFTR cells to inflammatory mediators might be part of the increased sensitivity of CF patients to lung inflammation.
Collapse
Affiliation(s)
- M Berguerand
- URA CNRS 1283, Laboratoire de Biochimie, CHU Saint Antoine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Hill WG, Harper GS, Rozaklis T, Hopwood JJ. Sulfation of chondroitin/dermatan sulfate by cystic fibrosis pancreatic duct cells is not different from control cells. BIOCHEMICAL AND MOLECULAR MEDICINE 1997; 62:85-94. [PMID: 9367803 DOI: 10.1006/bmme.1997.2625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cystic fibrosis is associated with mutations of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated plasma membrane chloride channel. Cystic fibrosis patients have been reported to possess elevated sulfation of glycoconjugates, which may contribute to the pathogenesis of the disease. Sulfation of glycosaminoglycans by a cystic fibrosis pancreatic adenocarcinoma cell line homozygous for DeltaF508 (CFPAC-1), a control pancreatic cell line (PANC-1), two CFPAC-1 cell lines transfected with the gene for CFTR (PLJ-CFTR-4.7, TR20), and a mock-transfected CFPAC-1 control (PLJ-6) was investigated. Cells were radiolabeled with [35S]sulfate and [3H]glucosamine, and glycosaminoglycans secreted into the medium after 24 and 72 h were isolated. Chondroitinase ABC digestion of chondroitin/dermatan sulfate allowed the recovery of disaccharides which were analyzed for their degree of sulfation by strong anion-exchange HPLC. No differences in the extent of sulfation by any of the cell lines were noted. However, glycoaminoglycans synthesized by cystic fibrosis cells consistently exhibited twofold higher [35S]-sulfate:[3H]glucosamine ratios than the controls. We conclude that CFTR plays no role in the sulfation of chondroitin/dermatan sulfate by pancreatic cells and that isotope incorporation ratios alone are insufficient evidence of changes in sulfation levels.
Collapse
Affiliation(s)
- W G Hill
- Department of Chemical Pathology, Women's and Children's Hospital, Adelaide, South Australia, 5006. whill+@pitt.edu
| | | | | | | |
Collapse
|
237
|
Hill WG, Harper GS, Rozaklis T, Boucher RC, Hopwood JJ. Organ-specific over-sulfation of glycosaminoglycans and altered extracellular matrix in a mouse model of cystic fibrosis. BIOCHEMICAL AND MOLECULAR MEDICINE 1997; 62:113-22. [PMID: 9367807 DOI: 10.1006/bmme.1997.2630] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cystic fibrosis (CF) is a fatal inherited disease caused by the loss of function of a plasma membrane chloride channel-the cystic fibrosis transmembrane conductance regulator (CFTR). It is characterized by viscous mucous secretions which have abnormal glycosylation and sulfation. The development of a CFTR knockout mouse has allowed in vivo experiments aimed at investigating the over-sulfation phenomenon reported for CF glycoconjugates. Four CF and five control mice injected with [35S]sulfate were examined for differences in the sulfation of glycosaminoglycans (GAGs) synthesized by 12 tissues after 48 h. The liver and pancreas of CF mice incorporated significantly higher amounts of [35S]sulfate into GAGs (dpm/microg) than the controls, while the ileum, jejunum, colon, cecum, spleen, trachea, and gall bladder of CF mice exhibited higher incorporation levels that were not significant. The lung and nasal septum were not different, and the nasal mucosa of CF mice was significantly lower (P < 0.05). Structural analysis of the chondroitin/dermatan sulfate component by strong anion-exchange HPLC revealed that the liver and ileum of CF mice incorporated significantly more total sulfate than controls. However, for other organs, the explanation for higher isotope incorporation was a 40-50% higher specific activity of [35S]sulfate within GAGs. This finding implied different uptake kinetics of sulfate from the circulation or that CF mice have altered sulfate pools. CF mice also had altered proportions of chondroitin/dermatan sulfate to heparan sulfate in the ileum and gall bladder (P < 0.05). We conclude that extracellular matrix architecture in some CF organs may be abnormal and that sulfation of glycoconjugates by some organs and sulfate utilization in others have been affected by the loss of CFTR. This study provides the first in vivo evidence for an influence of CFTR on glycoconjugate sulfation and suggests other secondary manifestations of CFTR dysfunction associated with abnormalities of the extracellular matrix.
Collapse
Affiliation(s)
- W G Hill
- Department of Chemical Pathology, Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia. whill+@pitt.edu
| | | | | | | | | |
Collapse
|
238
|
Hwang TC, Wang F, Yang IC, Reenstra WW. Genistein potentiates wild-type and delta F508-CFTR channel activity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C988-98. [PMID: 9316420 DOI: 10.1152/ajpcell.1997.273.3.c988] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Effects of genistein on wild-type (wt) and delta F508-cystic fibrosis transmembrane conductance regulator (CFTR) were studied in NIH/3T3 cells stably transfected with wt or mutant CFTR cDNA. As measured by I- efflux, half-maximal concentration of agonist (K1/2) for forskolin-dependent activation was greater for delta F508-CFTR than wt-CFTR. Genistein decreased the K1/2 for both forms of the channel and increased the maximal activity of delta F508-CFTR by 3.7-fold. In cell-attached patches, 10 microM forskolin induced minimal delta F508-CFTR activity with characteristic prolonged closed times (estimated time constant, > 30 s). Genistein increased the forskolin-induced macroscopic currents of wt-CFTR and delta F508-CFTR by 3- and 19-fold, respectively. Variance analysis suggested that in the presence of forskolin and genistein the open probabilities (Po) of wt- and delta F508-CFTR were identical. In single-channel studies, at maximal adenosine 3',5'-cyclic monophosphate (cAMP) stimulation, genistein increased the Po of wt-CFTR by prolonging the open time, but, at submaximal cAMP stimulation, the Po was increased by prolonging the open time and shortening the closed time. In excised patches with CFTR channels preactivated in the cell-attached mode, genistein increased ATP-dependent wt- and delta F508-CFTR current about twofold by prolonging the open time. Our results thus suggest that phosphorylation-dependent activation of delta F508-CFTR is defective and that genistein corrects this defect at least in part by binding to the CFTR protein.
Collapse
Affiliation(s)
- T C Hwang
- Department of Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia 65211, USA
| | | | | | | |
Collapse
|
239
|
Millot C, Millot JM, Morjani H, Desplaces A, Manfait M. Characterization of acidic vesicles in multidrug-resistant and sensitive cancer cells by acridine orange staining and confocal microspectrofluorometry. J Histochem Cytochem 1997; 45:1255-64. [PMID: 9283613 DOI: 10.1177/002215549704500909] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To study the pH gradient status through membranes of acidic vesicles, either in sensitive or in multidrug-resistant living cancer cells, we monitored the fluorescence-emission spectra of acridine orange. Successive stainings with a pH-sensitive dye and AO showed that low-pH organelles were stained red by AO. In these compartments, high AO concentrations are driven by the pH gradient through membrane vesicles. The resulting rise in the dye's oligomeric/monomeric ratio induced an increase in the red/green (655-nm/530-nm) emission intensity ratio. Therefore, the accumulation of AO in acidic organelles was appraised by determination of the contribution of the red emission intensity (R%) in each emission spectrum, using laser scanning confocal microspectrofluorometry. In vesicles of multidrug-resistant K562-R cells, R% is significantly higher (72 +/- 10%) than the value (48 +/- 8%) from K562-sensitive cells (p < 0.001). This result is interpreted as a more important accumulation of AO in acidic cytoplasmic structures of resistant cells, which induces a shift from AO monomers (green emission) to self-associated structures (red emission). Equilibration of the pH gradient through acidic organelles was performed by addition of weak bases and carboxylic ionophores. Ammonium chloride (0.1 mM), methylamine (0.1 mM), monensine (10 microM), or nigericine (0.3 microM) all suppressed the initial difference of local AO accumulation between both cell lines. These agents decreased the red emission intensity for the resistant cell line but not for the sensitive one. The same effects were induced by 50 microM verapamil, a pleiotropic drug-resistance modulator. Our data allow the hypothesis of a higher pH gradient through membranes of acidic organelles, which would be a potential mechanism of multidrug resistance via the sequestration of weak bases inside these organelles.
Collapse
Affiliation(s)
- C Millot
- Laboratory de Physiologie Cellulaire, GIBSA, IFR 53 UFR de Pharmacie, Reims, France
| | | | | | | | | |
Collapse
|
240
|
Deneuville E, Perrot-Minot C, Pennaforte F, Roussey M, Zahm JM, Clavel C, Puchelle E, de Bentzmann S. Revisited physicochemical and transport properties of respiratory mucus in genotyped cystic fibrosis patients. Am J Respir Crit Care Med 1997; 156:166-72. [PMID: 9230742 DOI: 10.1164/ajrccm.156.1.9606123] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the physicochemical and transport properties of sputum samples collected in physiotherapy from a well-documented group of 27 cystic fibrosis (CF) patients with identified CF genotypes. Sputum samples were characterized ex vivo for their water content, surface properties (surface tension and contact angle), rheologic properties (viscosity and elastic modulus), and transport properties (mucociliary and cough transport). These data were analyzed in relation to the clinical status of the patients (FEV1, FVC, Shwachman score, Brasfield score, nutritional status), their genotype, and the degree of infection of their sputa (leukocyte and Pseudomonas aeruginosa counts). We observed negative and significant correlations between mucociliary transport and elastic modulus of the patients' sputum (r = -0.63, p < 0.01), and between the cough transport and contact angle of the sputum (r = -0.81, p < 0.0001), respectively. The P. aeruginosa count was also significantly correlated with the sputum water content (r = -0.53, p < 0.02) as well as with the cough transport of the sputum (r = -0.62, p < 0.01). In CF patients with a sputum leukocyte count > 2,000/mm3, the sputum water content (p < 0.02), FEV1 (p < 0.05) and FVC (p < 0.02) were significantly lower than those of CF patients with a leukocyte count < or = 2,000/mm3. CF patients with a homozygous delta F 508 genotype had significantly greater values of sputum water content (p < 0.05), and cough-transport capacity (p < 0.05) than did heterozygous patients. No correlation was observed between the sputum properties and any of the clinical data. These results suggest that the control of infection should be emphasized in CF, since it can directly or indirectly modulate the degree of hydration, and therefore the physicochemical and transport properties, of airway secretions.
Collapse
Affiliation(s)
- E Deneuville
- INSERM Unité 314, CHR Maison Blanche, Reims, France
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Miele L, Cordella-Miele E, Xing M, Frizzell R, Mukherjee AB. Cystic fibrosis gene mutation (deltaF508) is associated with an intrinsic abnormality in Ca2+-induced arachidonic acid release by epithelial cells. DNA Cell Biol 1997; 16:749-59. [PMID: 9212168 DOI: 10.1089/dna.1997.16.749] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanism(s) of chronic airway inflammation in cystic fibrosis (CF) remains poorly understood. We studied Ca2+-induced release of arachidonic acid (AA), a precursor of proinflammatory lipid mediators, in epithelial cell lines with the deltaF508 mutation in CF transmembrane conductance regulator (CFTR) gene and in those lacking this mutation or cells in which this mutation was corrected by a functional CFTR gene transfer. We found that: (i) the mutant cells manifested an abnormally high Ca2+-induced AA release as compared to controls, (ii) AA release appeared to be catalyzed by a phospholipase A2 (PLA2) but not by phospholipase C followed by diacylglycerol lipase, and (iii) either correction of the CFTR-mutation or inhibition of PLA2 activity rectified this AA release abnormality. Taken together, our results suggest that CFTR mutation is associated with an intrinsic abnormality in AA release by epithelial cells carrying the deltaF508 mutation and suggest that the mechanism of chronic airway inflammation in CF, at least in part, involves this abnormality. These results also partly explain the effectiveness of high-dose ibuprofen therapy in arresting the progression of destructive lung disease in CF. Furthermore, they raise the possibility that correction of abnormal AA release by inhibiting PLA2 activity may improve the therapeutic benefits of ibuprofen.
Collapse
Affiliation(s)
- L Miele
- Section on Developmental Genetics, Heritable Disorders Branch, NICHD, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
242
|
Redhead C, Sullivan SK, Koseki C, Fujiwara K, Edwards JC. Subcellular distribution and targeting of the intracellular chloride channel p64. Mol Biol Cell 1997; 8:691-704. [PMID: 9247648 PMCID: PMC276119 DOI: 10.1091/mbc.8.4.691] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
p64 is an intracellular chloride channel originally identified in bovine kidney microsomes. Using a combination of immunofluorescent and electron microscopic technique, we demonstrate that p64 resides in the limiting membranes of perinuclear dense core vesicles which appear to be regulated secretory vesicles. Heterologous expression of p64 in PancI cells, a cell type which does not normally express p64, results in targeting to a similar compartment. Mutagenesis experiments demonstrate that both the N- and C-terminal domains of the protein independently contribute to subcellular distribution of the protein. The C-terminal domain functions to prevent expression of p64 on the plasma membrane and the N-terminal domain is necessary to deliver p64 to the appropriate membrane compartment.
Collapse
Affiliation(s)
- C Redhead
- Max Planck Institut fur Zuchtungforschung, Köln, Germany
| | | | | | | | | |
Collapse
|
243
|
Kelley TJ, Thomas K, Milgram LJ, Drumm ML. In vivo activation of the cystic fibrosis transmembrane conductance regulator mutant deltaF508 in murine nasal epithelium. Proc Natl Acad Sci U S A 1997; 94:2604-8. [PMID: 9122242 PMCID: PMC20135 DOI: 10.1073/pnas.94.6.2604] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gene causing cystic fibrosis (CF) encodes the CF transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel. Mutations in this gene result in reduced transepithelial chloride permeability across tissues affected in CF. Consequently, restoring chloride permeability to these tissues may prove therapeutic. Here we report that a combination of forskolin, an adenylate cyclase activator, and milrinone, an inhibitor of class III phosphodiesterases, increases the magnitude of the potential difference across nasal epithelium of mice homozygous for the most common CF mutation, delta F508, while neither drug alone has a significant effect on potential difference. Transgenic mice lacking CFTR do not respond to the milrinone/forskolin combination, indicating that the effect in delta F508 mice requires CFTR. These results suggest that, by pharmacological means, at least partial CFTR-mediated electrolyte transport can be restored in vivo to CF tissues expressing delta F508.
Collapse
Affiliation(s)
- T J Kelley
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-4948, USA
| | | | | | | |
Collapse
|
244
|
Abstract
A colloid titration technique has been used to determine the surface charge of cystic fibrosis (CF) and corresponding non-CF epithelial cells. We have shown that the negative surface charge of CF epithelial cells is significantly reduced in comparison with non-CF cells. This fact may play an important role in CF, where the increased adherence of microorganisms is known to cause chronic lung infection. Neuraminidase treatment removed approximately the same amount of surface charge in both cell lines, indicating no differences in cell surface sialylation. Similar results were obtained by direct measurements of the amount of N-acetylneuraminic acid released by neuraminidase. Therefore, our results indicate that sialic acid residues are not involved in the reduction of the negative surface charge in CF. This conclusion does not support the hypothesis that undersialylation of cell-membrane molecules occurs in cystic fibrosis.
Collapse
Affiliation(s)
- K Thethi
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
245
|
|
246
|
Kuver R, Savard C, Nguyen TD, Osborne WR, Lee SP. Isolation and long-term culture of gallbladder epithelial cells from wild-type and CF mice. In Vitro Cell Dev Biol Anim 1997; 33:104-9. [PMID: 9081217 DOI: 10.1007/s11626-997-0030-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mice with targeted disruption of the cftr gene show pathophysiologic changes in the gallbladder, which correlate with hepatobiliary disease seen in cystic fibrosis patients. As gallbladder epithelium secretes mucin, and as this epithelium consists of a relatively homogenous cell type, study of CFTR function in these cells would be beneficial to delineate the complex cellular functions of this protein. The size and anatomic location of the murine gallbladder makes such studies difficult in vivo. Therefore, the need exists for in vitro models of gallbladder epithelium. We describe a method to isolate and culture murine gallbladder epithelium from wild-type and CF mice. Cells were grown in a monolayer on porous inserts over a feeder layer of fibroblasts. These nontransformed cells can be successively passaged and maintain a well-differentiated epithelial cell phenotype as shown by morphologic criteria, characterized by polarized columnar epithelial cells with prominent microvilli and intercellular junctions. Organotypic cultures showed columnar cells simulating in vivo morphology. This culture system should be valuable in delineating cellular processes relating to CFTR in gallbladder epithelium.
Collapse
Affiliation(s)
- R Kuver
- Department of Medicine, University of Washington, Seattle, USA
| | | | | | | | | |
Collapse
|
247
|
Jilling T, Kirk KL. The biogenesis, traffic, and function of the cystic fibrosis transmembrane conductance regulator. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 172:193-241. [PMID: 9102394 DOI: 10.1016/s0074-7696(08)62361-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride channel that is encoded by the gene that is defective in cystic fibrosis. This ion channel resides at the luminal surfaces and in endosomes of epithelial cells that line the airways, intestine, and a variety of exocrine glands. In this article we discuss current hypotheses regarding how CFTR functions as a regulated ion channel and how CF mutations lead to disease. We also evaluate the emerging notion that CFTR is a multifunctional protein that is capable of regulating epithelial physiology at several levels, including the modulation of other ion channels and the regulation of intracellular membrane traffic. Elucidating the various functions of CFTR should contribute to our understanding of the pathology in cystic fibrosis, the most common lethal genetic disorder among Caucasians.
Collapse
Affiliation(s)
- T Jilling
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|
248
|
Muñiz M, Alonso M, Hidalgo J, Velasco A. A regulatory role for cAMP-dependent protein kinase in protein traffic along the exocytic route. J Biol Chem 1996; 271:30935-41. [PMID: 8940080 DOI: 10.1074/jbc.271.48.30935] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The influence of protein kinase A activity on transport of newly synthesized vesicular stomatitis virus G glycoprotein along the exocytic pathway was examined. Transport of vesicular stomatitis virus G glycoprotein to the cell surface was inhibited by N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), a selective inhibitor of protein kinase A. This block occurred at the exit of the Golgi complex, whereas transport through the Golgi compartments or from the endoplasmic reticulum to the Golgi was decreased in the presence of H-89. As judged by immunofluorescence endoplasmic reticulum to Golgi transport was accelerated in cells incubated with activators of protein kinase A such as isobutylmethylxanthine (IBMX) or forskolin (FK). Treatment with IBMX and FK also increased transport from the trans-Golgi network to the cell surface. During incubation with IBMX and FK, the organization of the Golgi complex was altered showing intercisternae fusion and miscompartmentalization of resident proteins. These structural changes affected both the kinetics of acquisition of endoglycosidase H resistance and transport activities. These data support a differential regulatory role for protein kinase A in different transport steps along the exocytic pathway. In particular, transport from the trans-Golgi network to the cell surface was dependent on protein kinase A activity. In addition, the results suggest the involvement of this enzyme on the maintenance of the Golgi complex organization.
Collapse
Affiliation(s)
- M Muñiz
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012-Seville, Spain
| | | | | | | |
Collapse
|
249
|
Biwersi J, Emans N, Verkman AS. Cystic fibrosis transmembrane conductance regulator activation stimulates endosome fusion in vivo. Proc Natl Acad Sci U S A 1996; 93:12484-9. [PMID: 8901608 PMCID: PMC38018 DOI: 10.1073/pnas.93.22.12484] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previous studies have suggested a role for cystic fibrosis transmembrane conductance regulator (CFTR) in the regulation of intracellular vesicular trafficking. A quantitative fluorescence method was used to test the hypothesis that CFTR expression and activation affects endosome-endosome fusion in intact cells. Endosomes from CFTR-expressing and control (vector-transfected) Swiss 3T3 fibroblasts were labeled by internalization with 4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene (Bodipy)-avidin, a fluid-phase marker whose fluorescence increases approximately 8-fold upon biotin binding. Cells were washed, chased, and then labeled with biotin-albumin or biotin-transferrin. The fraction of Bodipy-avidin-labeled endosomes that fused with biotin-containing endosomes (f(fusion)) was quantified by ratio imaging microfluorimetry. Endosome fusion in unstimulated CFTR-expressing cells was similar to that in control cells. However, in CFTR-expressing cells activated by forskolin, ffusion was increased by 1.30 +/- 0.18- and 2.65 +/- 0.17-fold for a 0 and 10 min chase time between avidin and biotin-albumin pulses; f(fusion) also increased (1.32 +/- 0.11-fold) when biotin-transferrin replaced biotin-albumin. The stimulation of endosome fusion was not due to differences in rates of endocytosis or endosomal acidification. Endosome fusion was not stimulated by forskolin in Cl--depleted CFTR-expressing cells, suggesting that the increase in endosome fusion is due to the CFTR chloride channel activity. These results provide evidence that CFTR is involved in the regulation of endosome fusion and, thus, a possible basis for the cellular defects associated with cystic fibrosis.
Collapse
Affiliation(s)
- J Biwersi
- Department of Medicine, University of California, San Francisco 94143-0521, USA
| | | | | |
Collapse
|
250
|
de Bentzmann S, Plotkowski C, Puchelle E. Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am J Respir Crit Care Med 1996; 154:S155-62. [PMID: 8876535 DOI: 10.1164/ajrccm/154.4_pt_2.s155] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the normal respiratory tract, the airway epithelial surface is protected from pathogenic bacterial colonization by the mucociliary clearance. The mucins present in the gel mucus layer exhibit a high diversity of carbohydrate receptors that allow specific bacterial recognition followed by bacterial and mucus elimination. As soon as the mucociliary clearance mechanism is impaired, the bacterial attachment to mucins in association with mucus stasis represent critical pathways for bacterial colonization of the airway epithelium. Several sources of injury may damage the epithelial integrity and induce partial or complete epithelial shedding, exposing cellular receptors and unmasked extracellular matrix (ECM) components that can be recognized by bacterial adhesins. Laminin and type I and IV collagens represent sites of Pseudomonas aeruginosa attachment to the ECM components. During airway epithelium repair after injury, particularly in cystic fibrosis (CF), the repairing cells exhibit apical receptors such as asialylated gangliosides (asialo GM1) to which P. aeruginosa adheres. The identification of the different receptors for P. aeruginosa, present either on the ECM proteins or on the apical surface of the remodeled airway epithelium, particularly in repairing respiratory CF epithelial cells, is a prerequisite to further therapeutic strategies to prevent airway colonization by P. aeruginosa.
Collapse
Affiliation(s)
- S de Bentzmann
- INSERM U 314, URCA, Hôpital Maison Blanche, Reims, France
| | | | | |
Collapse
|