201
|
Wilbrecht L, Lin WC, Callahan K, Bateson M, Myers K, Ross R. Experimental biology can inform our understanding of food insecurity. J Exp Biol 2024; 227:jeb246215. [PMID: 38449329 PMCID: PMC10949070 DOI: 10.1242/jeb.246215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Food insecurity is a major public health issue. Millions of households worldwide have intermittent and unpredictable access to food and this experience is associated with greater risk for a host of negative health outcomes. While food insecurity is a contemporary concern, we can understand its effects better if we acknowledge that there are ancient biological programs that evolved to respond to the experience of food scarcity and uncertainty, and they may be particularly sensitive to food insecurity during development. Support for this conjecture comes from common findings in several recent animal studies that have modeled insecurity by manipulating predictability of food access in various ways. Using different experimental paradigms in different species, these studies have shown that experience of insecure access to food can lead to changes in weight, motivation and cognition. Some of these studies account for changes in weight through changes in metabolism, while others observe increases in feeding and motivation to work for food. It has been proposed that weight gain is an adaptive response to the experience of food insecurity as 'insurance' in an uncertain future, while changes in motivation and cognition may reflect strategic adjustments in foraging behavior. Animal studies also offer the opportunity to make in-depth controlled studies of mechanisms and behavior. So far, there is evidence that the experience of food insecurity can impact metabolic efficiency, reproductive capacity and dopamine neuron synapses. Further work on behavior, the central and peripheral nervous system, the gut and liver, along with variation in age of exposure, will be needed to better understand the full body impacts of food insecurity at different stages of development.
Collapse
Affiliation(s)
- Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wan Chen Lin
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kathryn Callahan
- Psychiatric Research Institute of Montefiore and Einstein, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Melissa Bateson
- Bioscience Institute, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Kevin Myers
- Department of Psychology and Programs in Animal Behavior and Neuroscience, Bucknell University, Lewisburg, PA 17837, USA
| | - Rachel Ross
- Psychiatric Research Institute of Montefiore and Einstein, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Psychiatry, Montefiore Medical Center, Bronx, New York, NY 10467, USA
| |
Collapse
|
202
|
Rehman A, Lathief S, Charoenngam N, Pal L. Aging and Adiposity-Focus on Biological Females at Midlife and Beyond. Int J Mol Sci 2024; 25:2972. [PMID: 38474226 DOI: 10.3390/ijms25052972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Menopause is a physiological phase of life of aging women, and more than 1 billion women worldwide will be in menopause by 2025. The processes of global senescence parallel stages of reproductive aging and occur alongside aging-related changes in the body. Alterations in the endocrine pathways accompany and often predate the physiologic changes of aging, and interactions of these processes are increasingly being recognized as contributory to the progression of senescence. Our goal for this review is to examine, in aging women, the complex interplay between the endocrinology of menopause transition and post-menopause, and the metabolic transition, the hallmark being an increasing tendency towards central adiposity that begins in tandem with reproductive aging and is often exacerbated post menopause. For the purpose of this review, our choice of the terms 'female' and 'woman' refer to genetic females.
Collapse
Affiliation(s)
- Amna Rehman
- Department of Internal Medicine, Berkshire Medical Center, Pittsfield, MA 02101, USA
| | - Sanam Lathief
- Division of Endocrinology, Mount Auburn Hospital, Cambridge, MA 02138, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nipith Charoenngam
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Lubna Pal
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
203
|
Uchishiba M, Yamamoto S, Takeda A, Arakaki R, Arata M, Noguchi H, Aoki H, Tamura K, Maeda T, Minato S, Nii M, Inui H, Kamada S, Kinouchi R, Yamamoto Y, Yoshida K, Yagi S, Kato T, Kaji T, Nishimura M, Ino K, Iwasa T. Progesterone treatment reduces food intake and body weight in ovariectomized female rats. Steroids 2024; 203:109367. [PMID: 38266463 DOI: 10.1016/j.steroids.2024.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
While the effects of progesterone on body weight and appetite in pre-menopausal conditions have been well elucidated, its effects in post-menopausal conditions have not been clarified. On the contrary, the effects of estrogen on body weight and appetite in post-menopausal conditions have been well established. In this study, the effects of progesterone treatment on body weight, appetite, and fat mass in ovariectomized rats were evaluated. In addition, the central and/or peripheral levels of oxytocin (OT), leptin, and their receptors, which are potent anorectic factors, were examined. Female rats were ovariectomized and divided into control, progesterone-treated, and estrogen-treated groups. Body weight, food intake, and subcutaneous fat mass were lower in both the progesterone and estrogen groups than in the control group. The estrogen group exhibited higher serum OT levels than the control group, whereas the OT levels of the progesterone and control groups did not differ. The serum leptin levels of both the progesterone and estrogen groups were lower than those of the control group. Gene expression analysis of OT, leptin, and their receptors in the hypothalamus and adipose tissue found few significant differences among the groups. Hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA levels involved in appetite regulation were slightly altered in the progesterone and estrogen groups. These findings suggest that progesterone treatment may have favorable effects on body weight, appetite, and fat mass regulation in post-menopausal conditions and that the mechanisms underlying these effects of progesterone differ from those underlying the effects of estrogen.
Collapse
Affiliation(s)
- Maimi Uchishiba
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan; Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shota Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan; Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Moeka Arata
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Hidenori Aoki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Kou Tamura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Takaaki Maeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Mari Nii
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Hiroaki Inui
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Riyo Kinouchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Shigetaka Yagi
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takeshi Kato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Takashi Kaji
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Graduate School, Tokushima University, Tokushima 770-8501, Japan.
| |
Collapse
|
204
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
205
|
Riera CE. Wiring the Brain for Wellness: Sensory Integration in Feeding and Thermogenesis: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:338-347. [PMID: 38377445 PMCID: PMC10882152 DOI: 10.2337/db23-0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 02/22/2024]
Abstract
The recognition of sensory signals from within the body (interoceptive) and from the external environment (exteroceptive), along with the integration of these cues by the central nervous system, plays a crucial role in maintaining metabolic balance. This orchestration is vital for regulating processes related to both food intake and energy expenditure. Animal model studies indicate that manipulating specific populations of neurons in the central nervous system which influence these processes can effectively modify energy balance. This body of work presents an opportunity for the development of innovative weight loss therapies for the treatment of obesity and type 2 diabetes. In this overview, we delve into the sensory cues and the neuronal populations responsible for their integration, exploring their potential in the development of weight loss treatments for obesity and type 2 diabetes. This article is the first in a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Céline E. Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
206
|
Meneu A, Lavoué V, Guillermet S, Levêque J, Mathelin C, Brousse S. [How could physical activity decrease the risk of breast cancer development and recurrence?]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2024; 52:158-164. [PMID: 38244776 DOI: 10.1016/j.gofs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVES Breast cancer is the most frequent and deadly cancer among women. In France, 50% of adults are currently overweight, mostly as a result of a sedentary lifestyle. Numerous studies have highlighted overweight, obesity and lack of physical activity as risk factors for the occurrence and prognosis of cancers, particularly breast cancer. The aim of this study was to understand the extent to which physical activity can improve this prognosis, and what the pathophysiology is. METHODS The Senology Commission of the Collège national des gynécologues et obstétriciens français (CNGOF) based its responses on an analysis of the international literature using a Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) methodology conducted on the PubMed database between 1994 and 2023. RESULTS A total of 70 articles were selected, demonstrating the role of regular physical activity in reducing the risk of breast cancer occurrence and recurrence. This role in controlling carcinogenesis is mediated by metabolic factors such as leptin, adiponectin and insulin, sex hormones and inflammation. The signaling pathways deregulated by these molecules are known carcinogenic pathways which could be used as therapeutic targets adapted to this population, without replacing the essential hygienic-dietary recommendations. CONCLUSION Physical activity has a protective effect on breast cancer risk and prognosis. We must therefore continue to raise awareness in the general population and promote physical activity as a means of primary, secondary, and tertiary prevention.
Collapse
Affiliation(s)
- Alisée Meneu
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France
| | - Vincent Lavoué
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France; Service de gynécologie-obstétrique, CHU de Rennes, Rennes, France
| | - Sophie Guillermet
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France
| | - Jean Levêque
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France; Service de gynécologie-obstétrique, CHU de Rennes, Rennes, France
| | - Carole Mathelin
- Service de chirurgie, ICANS, CHRU avenue Molière, avenue Albert-Calmette, 67200 Strasbourg, France
| | - Susie Brousse
- Service de chirurgie, centre Eugène-Marquis, avenue de la Bataille Flandres-Dunkerque, 35042 Rennes cedex, France; Inserm UMR_S 1242, Chemistry Oncogenesis Stress Signaling, université de Rennes, Rennes, France.
| |
Collapse
|
207
|
Koshta K, Chauhan A, Singh S, Gaikwad AN, Kumar M, Srivastava V. Altered Igf2 imprint leads to accelerated adipogenesis and early onset of metabolic syndrome in male mice following gestational arsenic exposure. CHEMOSPHERE 2024; 352:141493. [PMID: 38368966 DOI: 10.1016/j.chemosphere.2024.141493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/20/2023] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Developmental exposure to environmental pollutants has been shown to promote adverse health outcomes in offspring. Exposure to heavy metals such as arsenic which also has endocrine-disrupting activity is being increasingly linked with cancers, diabetes, and lately with Metabolic Syndrome (MetS). In this work, we have assessed the effects of preconceptional plus gestational arsenic exposure on the developmental programming of MetS in offspring. In our study, only gestational arsenic exposure led to reduced birth weight, followed by catch-up growth, adiposity, elevated serum triglycerides levels, and hyperglycemia in male offspring. Significant adipocyte dysfunction was observed in offspring with increased hypertrophy, insulin resistance, and chronic inflammation in epididymal white adipose tissue. Adipose tissue regulates the metabolic health of individuals and its dysfunction resulted in elevated serum levels of metabolism-regulating adipokines (Leptin, Resistin) and pro-inflammatory cytokines (PAI-1, TNFα). The progenitor adipose-derived stem cells (AdSCs) from exposed progeny had increased proliferation and adipogenic potential with excess lipid accumulation. We also found increased activation of Akt, ERK1/2 & p38 MAPK molecules in arsenic-exposed AdSCs along with increased levels of phospho-Insulin-like growth factor-1 receptor (p-IGF1R) and its upstream activator Insulin-like growth factor-2 (IGF2). Overexpression of Igf2 was found to be due to arsenic-mediated DNA hypermethylation at the imprinting control region (ICR) located -2kb to -4.4 kb upstream of the H19 gene which caused a reduction in the conserved zinc finger protein (CTCF) occupancy. This further led to persistent activation of the MAPK signaling cascade and enhanced adipogenesis leading to the early onset of MetS in the offspring.
Collapse
Affiliation(s)
- Kavita Koshta
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anchal Chauhan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sukhveer Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Nilkanth Gaikwad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Mahadeo Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Drug and Chemical Toxicology, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Vikas Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
208
|
Mallick R, Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Fatty Acids and their Proteins in Adipose Tissue Inflammation. Cell Biochem Biophys 2024; 82:35-51. [PMID: 37794302 PMCID: PMC10867084 DOI: 10.1007/s12013-023-01185-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Chronic low-grade adipose tissue inflammation is associated with metabolic disorders. Inflammation results from the intertwined cross-talks of pro-inflammatory and anti-inflammatory pathways in the immune response of adipose tissue. In addition, adipose FABP4 levels and lipid droplet proteins are involved in systemic and tissue inflammation. Dysregulated adipocytes help infiltrate immune cells derived from bone marrow responsible for producing cytokines and chemokines. When adipose tissue expands in excess, adipocyte exhibits increased secretion of adipokines and is implicated in metabolic disturbances due to the release of free fatty acids. This review presents an emerging concept in adipose tissue fat metabolism, fatty acid handling and binding proteins, and lipid droplet proteins and their involvement in inflammatory disorders.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ranjit K Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, Queretaro, 76130, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
209
|
Lonardo MS, Cacciapuoti N, Guida B, Di Lorenzo M, Chiurazzi M, Damiano S, Menale C. Hypothalamic-Ovarian axis and Adiposity Relationship in Polycystic Ovary Syndrome: Physiopathology and Therapeutic Options for the Management of Metabolic and Inflammatory Aspects. Curr Obes Rep 2024; 13:51-70. [PMID: 38172476 PMCID: PMC10933167 DOI: 10.1007/s13679-023-00531-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW The goal of the present review is to address the main adiposity-related alterations in Polycystic Ovary Syndrome (PCOS) focusing on hypothalamic-pituitary-ovarian (H-P-O) axis and to provide an overview of nutraceutical and pharmacological therapeutic strategies. RECENT FINDINGS Female reproduction is a complex and delicate interplay between neuroendocrine signals involving the H-P-O axis. Elements that disrupt the balance of these interactions can lead to metabolic and reproductive disorders, such as PCOS. This disorder includes menstrual, metabolic, and biochemical abnormalities as well as hyperandrogenism, oligo-anovulatory menstrual cycles, insulin resistance, and hyperleptinemia which share an inflammatory state with other chronic diseases. Moreover, as in a self-feeding cycle, high androgen levels in PCOS lead to visceral fat deposition, resulting in insulin resistance and hyperinsulinemia, further stimulating ovarian and adrenal androgen production. In fact, regardless of age and BMI, women with PCOS have more adipose tissue and less lean mass than healthy women. Excessive adiposity, especially visceral adiposity, is capable of affecting female reproduction through direct mechanisms compromising the luteal phase, and indirect mechanisms as metabolic alterations able to affect the function of the H-P-O axis. The intricate crosstalk between adiposity, inflammatory status and H-P-O axis function contributes to the main adiposity-related alterations in PCOS, and alongside currently available hormonal treatments, nutraceutical and pharmacological therapeutic strategies can be exploited to treat these alterations, in order to enable a more comprehensive synergistic and tailored treatment.
Collapse
Affiliation(s)
- Maria Serena Lonardo
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, Federico II University of Naples, Via Sergio Pansini 5, 80131, Napoli, Italy.
| | - Nunzia Cacciapuoti
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, Federico II University of Naples, Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, Federico II University of Naples, Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Mariana Di Lorenzo
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, Federico II University of Naples, Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, Federico II University of Naples, Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Simona Damiano
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, Federico II University of Naples, Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Ciro Menale
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, Federico II University of Naples, Via Sergio Pansini 5, 80131, Napoli, Italy
| |
Collapse
|
210
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
211
|
Singh R, Gholipourmalekabadi M, Shafikhani SH. Animal models for type 1 and type 2 diabetes: advantages and limitations. Front Endocrinol (Lausanne) 2024; 15:1359685. [PMID: 38444587 PMCID: PMC10912558 DOI: 10.3389/fendo.2024.1359685] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a group of metabolic disorders characterized by chronic elevation in blood glucose levels, resulting from inadequate insulin production, defective cellular response to extracellular insulin, and/or impaired glucose metabolism. The two main types that account for most diabetics are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), each with their own pathophysiological features. T1D is an autoimmune condition where the body's immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to lack of insulin, a vital hormone for regulating blood sugar levels and cellular glucose uptake. As a result, those with T1D depend on lifelong insulin therapy to control their blood glucose level. In contrast, T2DM is characterized by insulin resistance, where the body's cells do not respond effectively to insulin, coupled with a relative insulin deficiency. This form of diabetes is often associated with obesity, sedentary lifestyle, and/or genetic factors, and it is managed with lifestyle changes and oral medications. Animal models play a crucial role in diabetes research. However, given the distinct differences between T1DM and T2DM, it is imperative for researchers to employ specific animal models tailored to each condition for a better understanding of the impaired mechanisms underlying each condition, and for assessing the efficacy of new therapeutics. In this review, we discuss the distinct animal models used in type 1 and type 2 diabetes mellitus research and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Raj Singh
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sasha H Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
- Cancer Center, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
212
|
Vilariño-García T, Polonio-González ML, Pérez-Pérez A, Ribalta J, Arrieta F, Aguilar M, Obaya JC, Gimeno-Orna JA, Iglesias P, Navarro J, Durán S, Pedro-Botet J, Sánchez-Margalet V. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int J Mol Sci 2024; 25:2338. [PMID: 38397015 PMCID: PMC10888594 DOI: 10.3390/ijms25042338] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent disease worldwide, estimated to affect 1 in every 11 adults; among them, 90-95% of cases are type 2 diabetes mellitus. This is partly attributed to the surge in the prevalence of obesity, which has reached epidemic proportions since 2008. In these patients, cardiovascular (CV) risk stands as the primary cause of morbidity and mortality, placing a substantial burden on healthcare systems due to the potential for macrovascular and microvascular complications. In this context, leptin, an adipocyte-derived hormone, plays a fundamental role. This hormone is essential for regulating the cellular metabolism and energy balance, controlling inflammatory responses, and maintaining CV system homeostasis. Thus, leptin resistance not only contributes to weight gain but may also lead to increased cardiac inflammation, greater fibrosis, hypertension, and impairment of the cardiac metabolism. Understanding the relationship between leptin resistance and CV risk in obese individuals with type 2 DM (T2DM) could improve the management and prevention of this complication. Therefore, in this narrative review, we will discuss the evidence linking leptin with the presence, severity, and/or prognosis of obesity and T2DM regarding CV disease, aiming to shed light on the potential implications for better management and preventive strategies.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen del Rocio University Hospital, University of Seville, Seville 41013, Spain;
| | - María L. Polonio-González
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, University Rovira i Vigili, IISPV, CIBERDEM, 43007 Tarragona, Spain;
| | - Francisco Arrieta
- Endocrinology and Nutrition Service, Ramón y Cajal University Hospital, 28034 Madrid, Spain;
| | - Manuel Aguilar
- Endocrinology and Nutrition Service, Puerta del Mar University Hospital, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz University (UCA), 11001 Cádiz, Spain;
| | - Juan C. Obaya
- Chopera Helath Center, Alcobendas Primary Care,Alcobendas 28100 Madrid, Spain;
| | - José A. Gimeno-Orna
- Endocrinology and Nutrition Department, Hospital Clinico Universitario Lozano Blesa, 15 50009 Zaragoza, Spain;
| | - Pedro Iglesias
- Endocrinology and Nutrition Service, Puerta de Hierro University Hospital, Majadahonda, 28220 Madrid, Spain;
| | - Jorge Navarro
- Hospital Clínico Universitario de Valencia,46011 Valencia, Spain;
| | - Santiago Durán
- Endodiabesidad Clínica Durán & Asociados,41018 Seville, Spain;
| | - Juan Pedro-Botet
- Lipids and Cardiovascular Risk Unit, Hospital del Mar, Autonomous University of Barcelona, 08003 Barcelona, Spain;
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009, Spain; (M.L.P.-G.); (A.P.-P.)
- Institute of Biomedicine of Seville (IBIS), Hospital Universitario Virgen del Rocío/Virgen Macarena, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
213
|
Paslawski R, Kowalczyk P, Paslawska U, Wiśniewski J, Dzięgiel P, Janiszewski A, Kiczak L, Zacharski M, Gawdzik B, Kramkowski K, Szuba A. Analysis of the Model of Atherosclerosis Formation in Pig Hearts as a Result of Impaired Activity of DNA Repair Enzymes. Int J Mol Sci 2024; 25:2282. [PMID: 38396961 PMCID: PMC10888614 DOI: 10.3390/ijms25042282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Excessive consumption of food rich in saturated fatty acids and carbohydrates can lead to metabolic disturbances and cardiovascular disease. Hyperlipidemia is a significant risk factor for acute cardiac events due to its association with oxidative stress. This leads to arterial wall remodeling, including an increase in the thickness of the intima media complex (IMT), and endothelial dysfunction leading to plaque formation. The decreased nitric oxide synthesis and accumulation of lipids in the wall result in a reduction in the vasodilating potential of the vessel. This study aimed to establish a clear relationship between markers of endothelial dysfunction and the activity of repair enzymes in cardiac tissue from a pig model of early atherosclerosis. The study was conducted on 28 female Polish Landrace pigs, weighing 40 kg (approximately 3.5 months old), which were divided into three groups. The control group (n = 11) was fed a standard, commercial, balanced diet (BDG) for 12 months. The second group (n = 9) was fed an unbalanced, high-calorie Western-type diet (UDG). The third group (n = 8) was fed a Western-type diet for nine months and then switched to a standard, balanced diet (regression group, RG). Control examinations, including blood and urine sampling, were conducted every three months under identical conditions with food restriction for 12 h and water restriction for four hours before general anesthesia. The study analyzed markers of oxidative stress formed during lipid peroxidation processes, including etheno DNA adducts, ADMA, and NEFA. These markers play a crucial role in reactive oxygen species analysis in ischemia-reperfusion and atherosclerosis in mammalian tissue. Essential genes involved in oxidative-stress-induced DNA demethylation like OGG1 (8-oxoguanine DNA glycosylase), MPG (N-Methylpurine DNA Glycosylase), TDG (Thymine-DNA glycosylase), APEX (apurinic/apirymidinic endodeoxyribonuclease 1), PTGS2 (prostaglandin-endoperoxide synthase 2), and ALOX (Arachidonate Lipoxygenase) were measured using the Real-Time RT-PCR method. The data suggest that high oxidative stress, as indicated by TBARS levels, is associated with high levels of DNA repair enzymes and depends on the expression of genes involved in the repair pathway. In all analyzed groups of heart tissue homogenates, the highest enzyme activity and gene expression values were observed for the OGG1 protein recognizing the modified 8oxoG. Conclusion: With the long-term use of an unbalanced diet, the levels of all DNA repair genes are increased, especially (significantly) Apex, Alox, and Ptgs, which strongly supports the hypothesis that an unbalanced diet induces oxidative stress that deregulates DNA repair mechanisms and may contribute to genome instability and tissue damage.
Collapse
Affiliation(s)
- Robert Paslawski
- Veterinary Insitute, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamieńskiego 73a, 51-124 Wroclaw, Poland; (P.D.); (A.J.); (L.K.); (M.Z.); (A.S.)
| | - Paweł Kowalczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Urszula Paslawska
- Veterinary Insitute, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamieńskiego 73a, 51-124 Wroclaw, Poland; (P.D.); (A.J.); (L.K.); (M.Z.); (A.S.)
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamieńskiego 73a, 51-124 Wroclaw, Poland; (P.D.); (A.J.); (L.K.); (M.Z.); (A.S.)
- Department of Histology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368 Wroclaw, Poland
| | - Adrian Janiszewski
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamieńskiego 73a, 51-124 Wroclaw, Poland; (P.D.); (A.J.); (L.K.); (M.Z.); (A.S.)
- Faculty of Veterinary Medicine, Life Science Institute, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Liliana Kiczak
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamieńskiego 73a, 51-124 Wroclaw, Poland; (P.D.); (A.J.); (L.K.); (M.Z.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 Norwida St., 50-375 Wroclaw, Poland
| | - Maciej Zacharski
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamieńskiego 73a, 51-124 Wroclaw, Poland; (P.D.); (A.J.); (L.K.); (M.Z.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 Norwida St., 50-375 Wroclaw, Poland
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1, 15-089 Białystok, Poland;
| | - Andrzej Szuba
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamieńskiego 73a, 51-124 Wroclaw, Poland; (P.D.); (A.J.); (L.K.); (M.Z.); (A.S.)
- Division of Angiology, Wroclaw Medical University, Pasteur 1, 50-367 Wroclaw, Poland
| |
Collapse
|
214
|
Abstract
Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA;
| | - Tuo Deng
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
215
|
Guo X, Asthana P, Zhai L, Cheng KW, Gurung S, Huang J, Wu J, Zhang Y, Mahato AK, Saarma M, Ustav M, Kwan HY, Lyu A, Chan KM, Xu P, Bian ZX, Wong HLX. Artesunate treats obesity in male mice and non-human primates through GDF15/GFRAL signalling axis. Nat Commun 2024; 15:1034. [PMID: 38310105 PMCID: PMC10838268 DOI: 10.1038/s41467-024-45452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Obesity, a global health challenge, is a major risk factor for multiple life-threatening diseases, including diabetes, fatty liver, and cancer. There is an ongoing need to identify safe and tolerable therapeutics for obesity management. Herein, we show that treatment with artesunate, an artemisinin derivative approved by the FDA for the treatment of severe malaria, effectively reduces body weight and improves metabolic profiles in preclinical models of obesity, including male mice with overnutrition-induced obesity and male cynomolgus macaques with spontaneous obesity, without inducing nausea and malaise. Artesunate promotes weight loss and reduces food intake in obese mice and cynomolgus macaques by increasing circulating levels of Growth Differentiation Factor 15 (GDF15), an appetite-regulating hormone with a brainstem-restricted receptor, the GDNF family receptor α-like (GFRAL). Mechanistically, artesunate induces the expression of GDF15 in multiple organs, especially the liver, in mice through a C/EBP homologous protein (CHOP)-directed integrated stress response. Inhibition of GDF15/GFRAL signalling by genetic ablation of GFRAL or tissue-specific knockdown of GDF15 abrogates the anti-obesity effect of artesunate in mice with diet-induced obesity, suggesting that artesunate controls bodyweight and appetite in a GDF15/GFRAL signalling-dependent manner. These data highlight the therapeutic benefits of artesunate in the treatment of obesity and related comorbidities.
Collapse
Affiliation(s)
- Xuanming Guo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pallavi Asthana
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ka Wing Cheng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Susma Gurung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiangang Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jiayan Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yijing Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Arun Kumar Mahato
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | | | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Pingyi Xu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China.
| | | |
Collapse
|
216
|
Ergun Y, Imamoglu AG, Cozzolino M, Demirkiran C, Basar M, Garg A, Yildirim RM, Seli E. Mitochondrial Unfolded Protein Response Gene Clpp Is Required for Oocyte Function and Female Fertility. Int J Mol Sci 2024; 25:1866. [PMID: 38339144 PMCID: PMC10855406 DOI: 10.3390/ijms25031866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Mitochondrial unfolded protein stress response (mtUPR) plays a critical role in regulating cellular and metabolic stress response and helps maintain protein homeostasis. Caseinolytic peptidase P (CLPP) is one of the key regulators of mtUPR and promotes unfolded protein degradation. Previous studies demonstrated that global deletion of Clpp resulted in female infertility, whereas no impairment was found in the mouse model with targeted deletion of Clpp in cumulus/granulosa cells. These results suggest the need to delineate the function of Clpp in oocytes. In this study, we aimed to further explore the role of mtUPR in female reproductive competence and senescence using a mouse model. Oocyte-specific targeted deletion of Clpp in mice resulted in female subfertility associated with metabolic and functional abnormalities in oocytes, thus highlighting the importance of CLPP-mediated protein homeostasis in oocyte competence and reproductive function.
Collapse
Affiliation(s)
- Yagmur Ergun
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Marlton, NJ 07920, USA
| | - Aysegul Gizem Imamoglu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mauro Cozzolino
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVI Roma, 00169 Rome, Italy
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Murat Basar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Fertility Center, Orange, CT 06477, USA
| | - Akanksha Garg
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Fertility Center, Orange, CT 06477, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| |
Collapse
|
217
|
Yousof TR, Bouchard CC, Alb M, Lynn EG, Lhoták S, Jiang H, MacDonald M, Li H, Byun JH, Makda Y, Athanasopoulos M, Maclean KN, Cherrington NJ, Naqvi A, Igdoura SA, Krepinsky JC, Steinberg GR, Austin RC. Restoration of the ER stress response protein TDAG51 in hepatocytes mitigates NAFLD in mice. J Biol Chem 2024; 300:105655. [PMID: 38237682 PMCID: PMC10875272 DOI: 10.1016/j.jbc.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tamana R Yousof
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Celeste C Bouchard
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Mihnea Alb
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Edward G Lynn
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Sárka Lhoták
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hua Jiang
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Jae H Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Yumna Makda
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Kenneth N Maclean
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Asghar Naqvi
- Department of Pathology and Molecular Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada
| | - Suleiman A Igdoura
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Division of Endocrinology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
218
|
Allard C, Cota D, Quarta C. Poly-Agonist Pharmacotherapies for Metabolic Diseases: Hopes and New Challenges. Drugs 2024; 84:127-148. [PMID: 38127286 DOI: 10.1007/s40265-023-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
219
|
Xue R, Wang Y, Geng L, Xiao H, Kumar V, Lan X, Malhotra A, Singhal PC, Chen J. Comprehensive analysis of the gene expression profile of the male and female BTBR mice with diabetic nephropathy. Int J Biol Macromol 2024; 257:128720. [PMID: 38101684 DOI: 10.1016/j.ijbiomac.2023.128720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Comprehensive insight into the gender-based gene expression-related omics data in a rodent model of diabetic nephropathy (DN) is scarce. In the present study, the gender-based genes regulating different pathways involved in the progression of DN were explored through an unbiased RNA sequence of kidneys from BTBR mice with DN. We identified 17,739 and 17,981 genes in male and female DN mice; 1121 and 655 genes were expressed differentially (DEGs, differentially expressed genes) in male and female DN mice; both genders displayed only 195 DEGs. In the male DN mice, the number of upregulated genes was nearly the same as that of the down-regulated genes. In contrast, the number of upregulated genes was lesser than that of the down-regulated genes in the female DN mice, manifesting a remarkable gender disparity during the progression of DN in this animal model. Gene Ontology (GO) and KEGG-enriched results showed that most of these DEGs were related to the critical biological processes, including metabolic pathways, natural oxidation, bile secretion, and PPAR signaling; all are highly associated with DN. Notably, the DEGs significantly enriched for steroid hormone biosynthesis pathway were identified in both genders; the number of DEGs increased was 22 in male DN mice and 14 in female DN mice. Specifically, the Ugt1a10, Akr1c12, and Akr1c14 were upregulated in both genders. Interestingly, the Hsd11b1 gene was upregulated in female DN mice but downregulated in male DN mice. These results suggest that a significant gender-based variance in the gene expression occurs during the progression of DN and may be playing a role in the advancement of DN in the BTBR mouse model.
Collapse
Affiliation(s)
- Rui Xue
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lei Geng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haiting Xiao
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Vinod Kumar
- Department of Dermatology, Postgraduate Institute for Medical Education and Research, Chandigarh 160012, India
| | - Xiqian Lan
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, United States
| | - Pravin C Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, United States.
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
220
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
221
|
Partsalaki I, Markantes GK, Michalaki MA. Low-Glycemic Load Diets and Thyroid Function: A Narrative Review and Future Perspectives. Nutrients 2024; 16:347. [PMID: 38337632 PMCID: PMC10857036 DOI: 10.3390/nu16030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Nutrition and calorie intake are associated with subtle changes of thyroid function tests in subjects with an intact Hypothalamic-Pituitary-Thyroid axis. Iodine deficiency and extreme fluctuations in calorie intake, such as those that occur during periods of starvation or overfeeding could lead to alterations in thyroid hormones. The dietary macronutrient and micronutrient composition could also influence the thyroid function. Recently, Low-Glycemic Load (LGL) diets have become very popular and are effective in the treatment and/or prevention of several medical conditions, including diabetes, obesity, cardiovascular disease, and epilepsy. In this review, we report on the available data from the literature regarding the association between LGL diets and thyroid function or dysfunction. Several studies conducted in this field to date have yielded inconsistent results.
Collapse
Affiliation(s)
- Ioanna Partsalaki
- Department of Nutrition and Dietetics, University Hospital of Patras, 26504 Rio, Greece;
| | - Georgios K. Markantes
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Rio, Greece;
| | - Marina A. Michalaki
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Rio, Greece;
| |
Collapse
|
222
|
Aung O, Amorim MR, Mendelowitz D, Polotsky VY. Revisiting the Role of Serotonin in Sleep-Disordered Breathing. Int J Mol Sci 2024; 25:1483. [PMID: 38338762 PMCID: PMC10855456 DOI: 10.3390/ijms25031483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a ubiquitous neuro-modulator-transmitter that acts in the central nervous system, playing a major role in the control of breathing and other physiological functions. The midbrain, pons, and medulla regions contain several serotonergic nuclei with distinct physiological roles, including regulating the hypercapnic ventilatory response, upper airway patency, and sleep-wake states. Obesity is a major risk factor in the development of sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA), recurrent closure of the upper airway during sleep, and obesity hypoventilation syndrome (OHS), a condition characterized by daytime hypercapnia and hypoventilation during sleep. Approximately 936 million adults have OSA, and 32 million have OHS worldwide. 5-HT acts on 5-HT receptor subtypes that modulate neural control of breathing and upper airway patency. This article reviews the role of 5-HT in SDB and the current advances in 5-HT-targeted treatments for SDB.
Collapse
Affiliation(s)
- O Aung
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; (O.A.); (M.R.A.)
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA
| | - Mateus R. Amorim
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; (O.A.); (M.R.A.)
- Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA;
| | - Vsevolod Y. Polotsky
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; (O.A.); (M.R.A.)
- Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA;
| |
Collapse
|
223
|
Ahmadi S, Nemoto Y, Ohkubo T. Impact of In Ovo Leptin Injection and Dietary Protein Levels on Ovarian Growth Markers and Early Folliculogenesis in Post-Hatch Chicks ( Gallus gallus domesticus). BIOLOGY 2024; 13:69. [PMID: 38392288 PMCID: PMC10886161 DOI: 10.3390/biology13020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Genetically bred for rapid growth, broiler breeder hens develop obesity and ovarian dysfunction when fed ad libitum, resembling a condition that resembles human polycystic ovary syndrome (PCOS). Nutritional control applies to post-hatched chicks from one week onward to prevent the development of a PCOS-like phenotype in adult broilers. This study investigated the impact of a growth marker, leptin, and post-hatch nutritional intake on early-life ovarian function. Fertile broiler eggs were injected in ovo with physiological saline solution or 5 µg of leptin and then incubated. After hatching, female chicks were fed ad libitum a diet containing low protein (17% low crude protein (LP)) or standard protein (22% standard crude protein (SP)). Tissues were collected from 7- and 28-day-old chicks for RT-qPCR and histological analysis. In contrast to the LP diet, the SP diet suppressed the mRNA expression of ovarian growth markers essential for folliculogenesis in post-hatched chicks. Leptin injection did not influence ovarian growth markers but increased pituitary gonadotropin transcripts in 7-day-old chicks fed with LP diet. No treatment effects on follicle activation were noted on day 7, but by day 28, in ovo leptin-treated LP-fed chicks exhibited a higher percentage of primary follicles. These changes may have resulted from the early upregulation of genes by leptin during the first week, including pituitary gonadotropins and ovarian leptin receptors. The decline in ovarian growth markers with the SP diet highlights the importance of precise post-hatch protein calculation, which may influence future ovarian function in animals. These findings may contribute to future dietary strategies to enhance broiler reproduction.
Collapse
Affiliation(s)
- Sadequllah Ahmadi
- College of Agriculture, Ibaraki University, Ami 300-0393, Japan
- Faculty of Animal Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Yuta Nemoto
- College of Agriculture, Ibaraki University, Ami 300-0393, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ami 300-0393, Japan
| |
Collapse
|
224
|
Karmazyn M, Gan XT. Molecular and Cellular Mechanisms Underlying the Cardiac Hypertrophic and Pro-Remodelling Effects of Leptin. Int J Mol Sci 2024; 25:1137. [PMID: 38256208 PMCID: PMC10816997 DOI: 10.3390/ijms25021137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Since its initial discovery in 1994, the adipokine leptin has received extensive interest as an important satiety factor and regulator of energy expenditure. Although produced primarily by white adipocytes, leptin can be synthesized by numerous tissues including those comprising the cardiovascular system. Cardiovascular function can thus be affected by locally produced leptin via an autocrine or paracrine manner but also by circulating leptin. Leptin exerts its effects by binding to and activating specific receptors, termed ObRs or LepRs, belonging to the Class I cytokine family of receptors of which six isoforms have been identified. Although all ObRs have identical intracellular domains, they differ substantially in length in terms of their extracellular domains, which determine their ability to activate cell signalling pathways. The most important of these receptors in terms of biological effects of leptin is the so-called long form (ObRb), which possesses the complete intracellular domain linked to full cell signalling processes. The heart has been shown to express ObRb as well as to produce leptin. Leptin exerts numerous cardiac effects including the development of hypertrophy likely through a number of cell signaling processes as well as mitochondrial dynamics, thus demonstrating substantial complex underlying mechanisms. Here, we discuss mechanisms that potentially mediate leptin-induced cardiac pathological hypertrophy, which may contribute to the development of heart failure.
Collapse
|
225
|
Yang X, Deng H, Lv J, Chen X, Zeng L, Weng J, Liang H, Xu W. Comparison of changes in adipokine and inflammatory cytokine levels in patients with newly diagnosed type 2 diabetes treated with exenatide, insulin, or pioglitazone: A post-hoc study of the CONFIDENCE trial. Heliyon 2024; 10:e23309. [PMID: 38169889 PMCID: PMC10758788 DOI: 10.1016/j.heliyon.2023.e23309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Background Adipokines and inflammatory cytokines (ADICs) play important roles in type 2 diabetes mellitus (T2DM). This study aimed to compare the changes of ADIC levels (ΔADICs) in patients with newly diagnosed T2DM treated with different antihyperglycemic agents, and further investigate the impact of these changes on metabolic indices, β-cell function and insulin resistance (IR). Methods Four hundred and sixteen patients with newly diagnosed T2DM from 25 centers in China randomly received 48-week intervention with exenatide, insulin or pioglitazone. Anthropometric and laboratory data, indices of β-cell function and IR, and levels of AIDCs, including interleukin-1 beta (IL-1β), interferon-gamma (IFN-γ), leptin, and fibroblast growth factor 21 (FGF21) were detected at baseline and the end of the study. Results In total, 281 participants (68 % male, age: 50.3 ± 9.4 years) completed the study. After 48- week treatment, IL-1β and IFN-γ were significantly decreased with exenatide treatment (P < 0.001 and P = 0.001, respectively), but increased with insulin (P = 0.009 and P = 0.026, respectively). However, pioglitazone treatment had no impact on ADICs. No significant change in leptin or FGF21 was detected with any of the treatments. After adjustment for baseline values and changes of body weight, waist and HbA1c, the between-group differences were found in ΔIL-1β (exenatide vs. insulin: P = 0.048; and exenatide vs. pioglitazone: P = 0.003, respectively) and ΔIFN-γ (exenatide vs. insulin: P = 0.049; and exenatide vs. pioglitazone: P < 0.001, respectively). Multiple linear regression analysis indicated that Δweight was associated with ΔIL-1β (β = 0.753; 95 % CI, 0.137-1.369; P = 0.017). After adjusting for treatment effects, Δweight was also be correlated with ΔFGF21 (β = 1.097; 95%CI, 0.250-1.944; P = 0.012); furthermore, ΔHOMA-IR was correlated with Δleptin (β = 0.078; 95%CI, 0.008-0.147; P = 0.029) as well. However, ΔHOMA-IR was not significantly associated with ΔIL-1β after adjusting for treatment effects (P = 0.513). Conclusion Exenatide treatment led to significant changes of inflammatory cytokines levels (IL-1β and IFN-γ), but not adipokines (leptin and FGF21), in newly diagnosed T2DM patients. The exenatide-mediated improvement in weight and IR may be associated with a decrease in inflammatory cytokine levels.
Collapse
Affiliation(s)
- Xubin Yang
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Hongrong Deng
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jing Lv
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Xueyan Chen
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, the 3rd Affiliated Hospital of Sun Yat-sen University. NO.600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
226
|
Iwane S, Nemoto W, Miyamoto T, Hayashi T, Tanaka M, Uchitani K, Muranaka T, Fujitani M, Koizumi Y, Hirata A, Tsubota M, Sekiguchi F, Tan-No K, Kawabata A. Clinical and preclinical evidence that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers prevent diabetic peripheral neuropathy. Sci Rep 2024; 14:1039. [PMID: 38200077 PMCID: PMC10781693 DOI: 10.1038/s41598-024-51572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
Given possible involvement of the central and peripheral angiotensin system in pain processing, we conducted clinical and preclinical studies to test whether pharmacological inhibition of the angiotensin system would prevent diabetic peripheral neuropathy (DPN) accompanying type 2 diabetes mellitus (T2DM). In the preclinical study, the nociceptive sensitivity was determined in leptin-deficient ob/ob mice, a T2DM model. A clinical retrospective cohort study was conducted, using the medical records of T2DM patients receiving antihypertensives at three hospitals for nearly a decade. In the ob/ob mice, daily treatment with perindopril, an angiotensin-converting enzyme inhibitor (ACEI), or telmisartan, an angiotensin receptor blocker (ARB), but not amlodipine, an L-type calcium channel blocker (CaB), significantly inhibited DPN development without affecting the hyperglycemia. In the clinical study, the enrolled 7464 patients were divided into three groups receiving ACEIs, ARBs and the others (non-ACEI, non-ARB antihypertensives). Bonferroni's test indicated significantly later DPN development in the ARB and ACEI groups than the others group. The multivariate Cox proportional analysis detected significant negative association of the prescription of ACEIs or ARBs and β-blockers, but not CaBs or diuretics, with DPN development. Thus, our study suggests that pharmacological inhibition of the angiotensin system is beneficial to prevent DPN accompanying T2DM.
Collapse
Affiliation(s)
- Shiori Iwane
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Tomoyoshi Miyamoto
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
- School of Pharmacy, Hyogo Medical University, Kobe, 650-8530, Japan
| | - Tomonori Hayashi
- Department of Pharmacy, Kindai University Nara Hospital, Ikoma, 630-0293, Japan
| | - Masayuki Tanaka
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Kazuki Uchitani
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Tatsuya Muranaka
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Masanori Fujitani
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, 594-0076, Japan
| | - Yuichi Koizumi
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, 594-0076, Japan
| | - Atsushi Hirata
- Department of Pharmacy, Kindai University Nara Hospital, Ikoma, 630-0293, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
227
|
Veerabathiran R, P A, BK I, D R, RS AH. Genetic predisposition of LEPR (rs1137101) gene polymorphism related to type 2 diabetes mellitus - a meta-analysis. Ann Med 2024; 55:2302520. [PMID: 38198642 PMCID: PMC10783847 DOI: 10.1080/07853890.2024.2302520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a multifaceted disease appropriate to elevated blood glucose levels resulting from decreased insulin and beta-cell activity. Using a case-control methodology, researchers have examined the relationship between polymorphisms in LEPR and T2DM in a population from south India.Materials and Methods: We conducted a genetic analysis of 311 participants, and results were accomplished using a case-control study, a meta-analysis of previous studies on LEPR was conducted, and type 2 diabetes genotype distribution across various geographical regions Malaysians, Chinese Han, Kuwait, Iran, Mongolia, and Han Chinese, Greece, Saudi, India (North India, Punjabi), (South India, Tamilnadu). The study involved 254 prospective investigations, and nine association studies were preferred according to preset criteria. Studies were assessed for quality using the Hardy-Weinberg equilibrium (HWE) and the Newcastle-Ottawa Scale (NOS). An analysis of the genetic models was conducted to determine their relationship, statistical analysis was utilized to calculate odds ratios (ORs) and matching 95% confidence intervals (CIs).Results: The LEPR-rs1137101 polymorphism in the case-control study was associated with a significant increase in the risk of type 2 diabetes. A meta-analysis revealed a connection between LEPR gene polymorphism (rs1137101) and type 2 diabetes risk. Investigators might gain a more profound thought on the significance of the identified genetic variation and its impact on the chance of developing type 2 diabetes by verifying and strengthening previously reported findings. The model of fixed effects was chosen due to the low heterogeneity, and significant associations were observed in the allelic (OR = 0.79, 95% CI [0.70-0.87]), homozygote (OR = 0.58, 95% CI [0.46-0.72]), dominant (OR = 0.66, 95% CI [0.56-0.79]), and recessive (OR = 0.83, 95% CI [0.71-0.96]) genetic models. A Begg's funnel plot and Egger's test indicated no publication bias. These findings suggest that the rs1137101 variant in the LEPR gene has been linked to a higher risk of T2DM.Conclusions: A larger sample size, however, is required for further research, and consideration of potential confounding factors is needed to validate these associations. Understanding the implications of LEPR gene polymorphisms in T2DM susceptibility may contribute to personalized treatment strategies for patients with T2DM.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Tamilnadu, India
| | - Aswathi P
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Tamilnadu, India
| | - Iyshwarya BK
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Tamilnadu, India
| | - Rajasekaran D
- Department of General Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Akram Hussain RS
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Tamilnadu, India
| |
Collapse
|
228
|
Haberman ER, Sarker G, Arús BA, Ziegler KA, Meunier S, Martínez-Sánchez N, Freibergerová E, Yilmaz-Özcan S, Fernández-González I, Zentai C, O'Brien CJO, Grainger DE, Sidarta-Oliveira D, Chakarov S, Raimondi A, Iannacone M, Engelhardt S, López M, Ginhoux F, Domingos AI. Immunomodulatory leptin receptor + sympathetic perineurial barrier cells protect against obesity by facilitating brown adipose tissue thermogenesis. Immunity 2024; 57:141-152.e5. [PMID: 38091996 DOI: 10.1016/j.immuni.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/12/2024]
Abstract
Adipose tissues (ATs) are innervated by sympathetic nerves, which drive reduction of fat mass via lipolysis and thermogenesis. Here, we report a population of immunomodulatory leptin receptor-positive (LepR+) sympathetic perineurial barrier cells (SPCs) present in mice and humans, which uniquely co-express Lepr and interleukin-33 (Il33) and ensheath AT sympathetic axon bundles. Brown ATs (BATs) of mice lacking IL-33 in SPCs (SPCΔIl33) had fewer regulatory T (Treg) cells and eosinophils, resulting in increased BAT inflammation. SPCΔIl33 mice were more susceptible to diet-induced obesity, independently of food intake. Furthermore, SPCΔIl33 mice had impaired adaptive thermogenesis and were unresponsive to leptin-induced rescue of metabolic adaptation. We therefore identify LepR+ SPCs as a source of IL-33, which orchestrate an anti-inflammatory BAT environment, preserving sympathetic-mediated thermogenesis and body weight homeostasis. LepR+IL-33+ SPCs provide a cellular link between leptin and immune regulation of body weight, unifying neuroendocrinology and immunometabolism as previously disconnected fields of obesity research.
Collapse
Affiliation(s)
- Emma R Haberman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Gitalee Sarker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bernardo A Arús
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Karin A Ziegler
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sandro Meunier
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Noelia Martínez-Sánchez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Eliška Freibergerová
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Iara Fernández-González
- Neurobesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Chloe Zentai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Conan J O O'Brien
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David E Grainger
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Svetoslav Chakarov
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore, Singapore; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | - Matteo Iannacone
- Vita-Salute San Raffaele University, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Miguel López
- Neurobesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore, Singapore; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
229
|
Fan X, Qin R, Yuan W, Fan JS, Huang W, Lin Z. The solution structure of human leptin reveals a conformational plasticity important for receptor recognition. Structure 2024; 32:18-23.e2. [PMID: 37924810 DOI: 10.1016/j.str.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Leptin is a multi-potency cytokine that regulates various physiological functions, including weight control and energy homeostasis. Signaling of leptin is also important in many aging-related diseases. Leptin is required for the noncovalent crosslinking of different extracellular domains of leptin receptors, which is critical for receptor activation and downstream signaling. Nevertheless, the structure of intact apo-form leptin and the structural transition leptin undergoes upon receptor binding are not fully understood yet. Here, we determined the monomeric structure of wild-type human leptin by solution-state nuclear magnetic resonance spectroscopy. Leptin contains an intrinsically disordered region (IDR) in the internal A-B loop and the flexible helix E in the C-D loop, both of which undergo substantial local structural changes when leptin binds to its receptor. Our findings provide further insights into the molecular mechanisms of leptin signaling.
Collapse
Affiliation(s)
- Xiao Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Ruiqi Qin
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jing-Song Fan
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
230
|
Hu H, Luo S, Lai P, Lai M, Mao L, Zhang S, Jiang Y, Wen J, Zhou W, Liu X, Wang L, Huang M, Hu Y, Zhao X, Xia L, Zhou W, Jiang Y, Zou Z, Liu A, Guo B, Bai X. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation. Proc Natl Acad Sci U S A 2024; 121:e2310685120. [PMID: 38147550 PMCID: PMC10769826 DOI: 10.1073/pnas.2310685120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Collapse
Affiliation(s)
- Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong528300, China
| | - Sheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Mingqiang Lai
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong510900, China
| | - Linlin Mao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yuanjun Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jiaxin Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wu Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaolin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Minjun Huang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Anling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bin Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Orthopaedics, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong523018, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| |
Collapse
|
231
|
Wang Y, Liu Y, Fang J, Xing X, Wang H, Shi X, Liu X, Niu T, Liu K. Small-molecule agonist AdipoRon alleviates diabetic retinopathy through the AdipoR1/AMPK/EGR4 pathway. J Transl Med 2024; 22:2. [PMID: 38166990 PMCID: PMC10759471 DOI: 10.1186/s12967-023-04783-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a progressive disease that involves multiple organs due to increased blood glucose, and diabetic retinopathy (DR) is the main complication of DM in the eyes and causes irreversible vision loss. In the pathogenesis of diabetic vascular disease, oxidative stress caused by hyperglycemia plays an important role in Müller cell impairment. In recent years, AdipoRon, an adiponectin analog that demonstrated important physiological functions in obesity, diabetes, inflammation, and cardiovascular diseases, demonstrated cellular protection from apoptosis and reduced inflammatory damage through a receptor-dependent mechanism. Here, we investigated how AdipoRon reduced oxidative stress and apoptosis in Müller glia in a high glucose environment. RESULTS By binding to adiponectin receptor 1 on Müller glia, AdipoRon activated 5' adenosine monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase phosphorylation downstream, thereby alleviating oxidative stress and eventual apoptosis of cells and tissues. Transcriptome sequencing revealed that AdipoRon promoted the synthesis and expression of early growth response factor 4 (EGR4) and inhibited the cellular protective effects of AdipoRon in a high-glucose environment by reducing the expression of EGR4. This indicated that AdipoRon played a protective role through the EGR4 and classical AMPK pathways. CONCLUSIONS This provides a new target for the early treatment of DR.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
- Department of Ophthalmology, Shanghai Renji Hospital, School of Medicine, Shanghai, 200127, China
| | - Yujuan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xinyi Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China.
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China.
| |
Collapse
|
232
|
Flier JS, Ahima RS. Leptin physiology and pathophysiology: knowns and unknowns 30 years after its discovery. J Clin Invest 2024; 134:e174595. [PMID: 38165042 PMCID: PMC10760948 DOI: 10.1172/jci174595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Affiliation(s)
- Jeffrey S. Flier
- Department of Medicine and Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
233
|
Di Fusco SA, Mocini E, Gulizia MM, Gabrielli D, Grimaldi M, Oliva F, Colivicchi F. ANMCO (Italian Association of Hospital Cardiologists) scientific statement: obesity in adults-an approach for cardiologists. Eat Weight Disord 2024; 29:1. [PMID: 38168872 PMCID: PMC10761446 DOI: 10.1007/s40519-023-01630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is a complex, chronic disease requiring a multidisciplinary approach to its management. In clinical practice, body mass index and waist-related measurements can be used for obesity screening. The estimated prevalence of obesity among adults worldwide is 12%. With the expected further increase in overall obesity prevalence, clinicians will increasingly be managing patients with obesity. Energy balance is regulated by a complex neurohumoral system that involves the central nervous system and circulating mediators, among which leptin is the most studied. The functioning of these systems is influenced by both genetic and environmental factors. Obesity generally occurs when a genetically predisposed individual lives in an obesogenic environment for a long period. Cardiologists are deeply involved in evaluating patients with obesity. Cardiovascular risk profile is one of the most important items to be quantified to understand the health risk due to obesity and the clinical benefit that a single patient can obtain with weight loss. At the individual level, appropriate patient involvement, the detection of potential obesity causes, and a multidisciplinary approach are tools that can improve clinical outcomes. In the near future, we will probably have new pharmacological tools at our disposal that will facilitate achieving and maintaining weight loss. However, pharmacological treatment alone cannot cure such a complex disease. The aim of this paper is to summarize some key points of this field, such as obesity definition and measurement tools, its epidemiology, the main mechanisms underlying energy homeostasis, health consequences of obesity with a focus on cardiovascular diseases and the obesity paradox.Level of evidence V: report of expert committees.
Collapse
Affiliation(s)
- Stefania Angela Di Fusco
- Emergency Department, Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital, ASL Roma 1, Rome, Italy
| | - Edoardo Mocini
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy.
| | | | - Domenico Gabrielli
- Cardio-Thoracic-Vascular Department, San Camillo-Forlanini Hospital, Rome, Italy
- Heart Care Foundation, Florence, Italy
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, 70021, Bari, Italy
| | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, 20162, Milan, Italy
| | - Furio Colivicchi
- Emergency Department, Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital, ASL Roma 1, Rome, Italy
| |
Collapse
|
234
|
Sun Z, Liu Y, Zhao Y, Xu Y. Animal Models of Type 2 Diabetes Complications: A Review. Endocr Res 2024; 49:46-58. [PMID: 37950485 DOI: 10.1080/07435800.2023.2278049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Diabetes mellitus is a multifactorial metabolic disease, of which type 2 diabetes (T2D) is one of the most common. The complications of diabetes are far more harmful than diabetes itself. Type 2 diabetes complications include diabetic nephropathy (DN), diabetic heart disease, diabetic foot ulcers (DFU), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (DR) et al. Many animal models have been developed to study the pathogenesis of T2D and discover an effective strategy to treat its consequences. In this sense, it is crucial to choose the right animal model for the corresponding diabetic complication. This paper summarizes and classifies the animal modeling approaches to T2D complications and provides a comprehensive review of their advantages and disadvantages. It is hopeful that this paper will provide theoretical support for animal trials of diabetic complications.
Collapse
Affiliation(s)
- Zhongyan Sun
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao SAR, Taipa, PR China
| | - Yadi Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao SAR, Taipa, PR China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Taipa, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao SAR, Taipa, PR China
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine,Macau University of Science and Technology, Zhuhai, PR China
- Macau University of Science and Technology, Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, PR China
| |
Collapse
|
235
|
Li AH, Kuo YY, Yang SB, Chen PC. Central Channelopathies in Obesity. CHINESE J PHYSIOL 2024; 67:15-26. [PMID: 38780269 DOI: 10.4103/ejpi.ejpi-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
As obesity has raised heightening awareness, researchers have attempted to identify potential targets that can be treated for therapeutic intervention. Focusing on the central nervous system (CNS), the key organ in maintaining energy balance, a plethora of ion channels that are expressed in the CNS have been inspected and determined through manipulation in different hypothalamic neural subpopulations for their roles in fine-tuning neuronal activity on energy state alterations, possibly acting as metabolic sensors. However, a remaining gap persists between human clinical investigations and mouse studies. Despite having delineated the pathways and mechanisms of how the mouse study-identified ion channels modulate energy homeostasis, only a few targets overlap with the obesity-related risk genes extracted from human genome-wide association studies. Here, we present the most recently discovered CNS-specific metabolism-correlated ion channels using reverse and forward genetics approaches in mice and humans, respectively, in the hope of illuminating the prospects for future therapeutic development.
Collapse
Affiliation(s)
- Athena Hsu Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
236
|
Shin K, Begeman IJ, Cao J, Kang J. leptin b and its regeneration enhancer illustrate the regenerative features of zebrafish hearts. Dev Dyn 2024; 253:91-106. [PMID: 36495292 PMCID: PMC10256838 DOI: 10.1002/dvdy.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zebrafish possess a remarkable regenerative capacity, which is mediated by the induction of various genes upon injury. Injury-dependent transcription is governed by the tissue regeneration enhancer elements (TREEs). Here, we utilized leptin b (lepb), an injury-specific factor, and its TREE to dissect heterogeneity of noncardiomyocytes (CMs) in regenerating hearts. RESULTS Our single-cell RNA sequencing (scRNA-seq) analysis demonstrated that the endothelium/endocardium(EC) is activated to induce distinct subpopulations upon injury. We demonstrated that lepb can be utilized as a regeneration-specific marker to subset injury-activated ECs. lepb+ ECs robustly induce pro-regenerative factors, implicating lepb+ ECs as a signaling center to interact with other cardiac cells. Our scRNA-seq analysis identified that lepb is also produced by subpopulation of epicardium (Epi) and epicardium-derived cells (EPDCs). To determine whether lepb labels injury-emerging non-CM cells, we tested the activity of lepb-linked regeneration enhancer (LEN) with chromatin accessibility profiles and transgenic lines. While nondetectable in uninjured hearts, LEN directs EC and Epi/EPDC expression upon injury. The endogenous LEN activity was assessed using LEN deletion lines, demonstrating that LEN deletion abolished injury-dependent expression of lepb, but not other nearby genes. CONCLUSIONS Our integrative analyses identify regeneration-emerging cell-types and factors, leading to the discovery of regenerative features of hearts.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| |
Collapse
|
237
|
Li WX, Cai LT, Huang YP, Huang YQ, Pan SH, Liu ZL, Ndandala CB, Shi G, Deng SP, Shi HJ, Li GL, Jiang DN. Sequence identification and expression characterization of leptin in the spotted scat, Scatophagus argus. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110882. [PMID: 37562672 DOI: 10.1016/j.cbpb.2023.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Scatophagus argus is an important marine culture fish in South and South-East Asia, including Southeast coastal areas of China. Artificial propagation technology for S. argus is not optimum; thus further studies on its reproduction biology are required. Although previous studies have shown that leptin (Lep) can regulate fish reproduction, the role of lep genes in S. argus is unknown. Herein, in silico analysis showed that S. argus has two lep genes (lepa and lepb). Protein 3D-structure prediction showed that Lepa has four α-helices (similar to mammals), while Lepb only has three. Tissue distribution analysis showed that lepa is highly expressed in the liver, whereas lepb was not detected in any tissue. Notably, lepr was expressed in all tissues. Lepa mRNA expression levels in the liver and serum Lep, estradiol (E2) and vitellogenin (Vtg) levels of female fish were significantly higher in ovaries at stage IV than in ovaries at stage II. Serum E2 levels were significantly positively correlated with Vtg levels in female fish at different development stages, while serum E2 was not correlated with Lep levels. Consistently, in vitro incubation of the liver with E2 significantly up-regulated vtga, while it did not affect lepa expression. Recombinant Lep (10 nM) significantly up-regulated chicken gonadotropin-releasing hormone (cGnRH/GnRH-II) in the hypothalamus and GnRH receptor (GnRHR) and luteinizing hormone beta (Lhb) in the pituitary. These results suggest that lepa regulates female reproduction in S. argus.
Collapse
Affiliation(s)
- Wan-Xin Li
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Li-Ting Cai
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Yan-Ping Huang
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Yuan-Qing Huang
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Shu-Hui Pan
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Zhi-Long Liu
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Charles Brighton Ndandala
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Gang Shi
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Si-Ping Deng
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Hong-Juan Shi
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Guang-Li Li
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China
| | - Dong-Neng Jiang
- Fisheries College of Guangdong Ocean University, Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088 Zhanjiang, China.
| |
Collapse
|
238
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
239
|
Mauvais-Jarvis F. Sex differences in energy metabolism: natural selection, mechanisms and consequences. Nat Rev Nephrol 2024; 20:56-69. [PMID: 37923858 DOI: 10.1038/s41581-023-00781-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Metabolic homeostasis operates differently in men and women. This sex asymmetry is the result of evolutionary adaptations that enable women to resist loss of energy stores and protein mass while remaining fertile in times of energy deficit. During starvation or prolonged exercise, women rely on oxidation of lipids, which are a more efficient energy source than carbohydrates, to preserve glucose for neuronal and placental function and spare proteins necessary for organ function. Carbohydrate reliance in men could be an evolutionary adaptation related to defence and hunting, as glucose, unlike lipids, can be used as a fuel for anaerobic high-exertion muscle activity. The larger subcutaneous adipose tissue depots in healthy women than in healthy men provide a mechanism for lipid storage. As female mitochondria have higher functional capacity and greater resistance to oxidative damage than male mitochondria, uniparental inheritance of female mitochondria may reduce the transmission of metabolic disorders. However, in women, starvation resistance and propensity to obesity have evolved in tandem, and the current prevalence of obesity is greater in women than in men. The combination of genetic sex, programming by developmental testosterone in males, and pubertal sex hormones defines sex-specific biological systems in adults that produce phenotypic sex differences in energy homeostasis, metabolic disease and drug responses.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine and Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA.
- Endocrine service, Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
240
|
Sagawa N. Fetus is a possible target of preemptive medicine-from curative endocrinology to preemptive endocrinology. Endocr J 2024; 71:1013-1022. [PMID: 39496398 PMCID: PMC11778350 DOI: 10.1507/endocrj.ej20240403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Affiliation(s)
- Norimasa Sagawa
- Honorary Member, The Japan Endocrine Society
- Professor Emeritus, Mie University, Mie, Japan
- Adviser, General Women's Medical and Health Science Center, Rakuwakai-Otowa Hospital, Kyoto, Japan
| |
Collapse
|
241
|
Parvanova A, Reseghetti E, Abbate M, Ruggenenti P. Mechanisms and treatment of obesity-related hypertension-Part 1: Mechanisms. Clin Kidney J 2024; 17:sfad282. [PMID: 38186879 PMCID: PMC10768772 DOI: 10.1093/ckj/sfad282] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Indexed: 01/09/2024] Open
Abstract
The prevalence of obesity has tripled over the past five decades. Obesity, especially visceral obesity, is closely related to hypertension, increasing the risk of primary (essential) hypertension by 65%-75%. Hypertension is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and its prevalence is rapidly increasing following the pandemic rise in obesity. Although the causal relationship between obesity and high blood pressure (BP) is well established, the detailed mechanisms for such association are still under research. For more than 30 years sympathetic nervous system (SNS) and kidney sodium reabsorption activation, secondary to insulin resistance and compensatory hyperinsulinemia, have been considered as primary mediators of elevated BP in obesity. However, experimental and clinical data show that severe insulin resistance and hyperinsulinemia can occur in the absence of elevated BP, challenging the causal relationship between insulin resistance and hyperinsulinemia as the key factor linking obesity to hypertension. The purpose of Part 1 of this review is to summarize the available data on recently emerging mechanisms believed to contribute to obesity-related hypertension through increased sodium reabsorption and volume expansion, such as: physical compression of the kidney by perirenal/intrarenal fat and overactivation of the systemic/renal SNS and the renin-angiotensin-aldosterone system. The role of hyperleptinemia, impaired chemoreceptor and baroreceptor reflexes, and increased perivascular fat is also discussed. Specifically targeting these mechanisms may pave the way for a new therapeutic intervention in the treatment of obesity-related hypertension in the context of 'precision medicine' principles, which will be discussed in Part 2.
Collapse
Affiliation(s)
- Aneliya Parvanova
- Department of Renal Medicine, Clinical Research Centre for Rare Diseases “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elia Reseghetti
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Manuela Abbate
- Research Group on Global Health, University of the Balearic Islands, Palma, Spain
- Research Group on Global Health and Lifestyle, Health Research Institutte of the Balearic Islands (IdISBa), Palma, Spain
| | - Piero Ruggenenti
- Department of Renal Medicine, Clinical Research Centre for Rare Diseases “Aldo e Cele Daccò”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
242
|
Yu M, Yu B, Chen D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes 2024; 16:2414796. [PMID: 39501848 PMCID: PMC11542600 DOI: 10.1080/19490976.2024.2414796] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/09/2024] Open
Abstract
Appetite, a crucial aspect regulated by both the central nervous system and peripheral hormones, is influenced by the composition and dynamics of the intestinal microbiota, as evidenced by recent research. This review highlights the role of intestinal microbiota in appetite regulation, elucidating the involvement of various pathways. Notably, the metabolites generated by intestinal microorganisms, including short-chain fatty acids, bile acids, and amino acid derivatives, play a pivotal role in this intricate process. Furthermore, intestinal microorganisms contribute to appetite regulation by modulating nutritional perception, neural signal transmission, and hormone secretion within the digestive system. Consequently, manipulating and modulating the intestinal microbiota represent innovative strategies for ameliorating appetite-related disorders. This paper provides a comprehensive review of the effects of gut microbes and their metabolites on the central nervous system and host appetite. By exploring their potential regulatory pathways and mechanisms, this study aims to enhance our understanding of how gut microbes influence appetite regulation in the host.
Collapse
Affiliation(s)
- Miao Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- DadHank(Chengdu)Biotech Corp, Chengdu, Sichuan Province, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| |
Collapse
|
243
|
Khademi Z, Mahmoudi Z, Sukhorukov VN, Jamialahmadi T, Sahebkar A. CRISPR/Cas9 Technology: A Novel Approach to Obesity Research. Curr Pharm Des 2024; 30:1791-1803. [PMID: 38818919 DOI: 10.2174/0113816128301465240517065848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024]
Abstract
Gene editing technology, particularly Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has transformed medical research. As a newly developed genome editing technique, CRISPR technology has strongly assisted scientists in enriching their comprehension of the roles of individual genes and their influences on a vast spectrum of human malignancies. Despite considerable progress in elucidating obesity's molecular pathways, current anti-obesity medications fall short in effectiveness. A thorough understanding of the genetic foundations underlying various neurobiological pathways related to obesity, as well as the neuro-molecular mechanisms involved, is crucial for developing effective obesity treatments. Utilizing CRISPR-based technologies enables precise determination of the roles of genes that encode transcription factors or enzymes involved in processes, such as lipogenesis, lipolysis, glucose metabolism, and lipid storage within adipose tissue. This innovative approach allows for the targeted suppression or activation of genes regulating obesity, potentially leading to effective weight management strategies. In this review, we have provided a detailed overview of obesity's molecular genetics, the fundamentals of CRISPR/Cas9 technology, and how this technology contributes to the discovery and therapeutic targeting of new genes associated with obesity.
Collapse
Affiliation(s)
- Zahra Khademi
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Mahmoudi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
244
|
Guo Z, Peng Y, Hu Q, Liu N, Liu Q. The relationship between leptin and periodontitis: a literature review. PeerJ 2023; 11:e16633. [PMID: 38111655 PMCID: PMC10726740 DOI: 10.7717/peerj.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Leptin is a peptide hormone that regulates energy balance, immune inflammatory response, and bone metabolism. Several studies have demonstrated a relationship between leptin and periodontitis, a local inflammatory disease that progressively weakens the supporting structures of the teeth, eventually leading to tooth loss. This article reviews the existing literature and discusses leptin's basic characteristics, its relationship with periodontitis, and its effects on periodontal tissue metabolism.
Collapse
Affiliation(s)
- Zhijiao Guo
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yanhui Peng
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Qiaoyu Hu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Na Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Qing Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
245
|
Kalusche W, Case C, Taylor E. Leptin antagonism attenuates hypertension and renal injury in an experimental model of autoimmune disease. Clin Sci (Lond) 2023; 137:1771-1785. [PMID: 38031726 PMCID: PMC10721433 DOI: 10.1042/cs20230924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that is characterized by B- and T-lymphocyte dysfunction and altered cytokine production, including elevated levels of the adipocytokine leptin. Leptin has various immunomodulatory properties, including promoting the expansion of proinflammatory T lymphocytes and the proliferation and survival of B cells. In the present study, we hypothesized that leptin antagonism would improve B- and T-cell dysfunction and attenuate hypertension in an experimental model of SLE, the NZBWF1 mouse. To test this hypothesis, 28-week-old female control and SLE mice were administered 5 mg/kg of murine leptin superantagonist (LA) or vehicle via ip injection every other day for four weeks. Analysis of peripheral blood immune cell populations showed no changes in total CD45R+ B and CD3+ T cell percentages after treatment with LA. However, SLE mice treated with LA had an improved CD4/CD8 ratio and decreased CD3+CD4-CD8- double negative (DN) T cells. Blood pressure was higher in SLE than in control, and treatment with LA decreased blood pressure in SLE mice. Treatment with LA also delayed the onset of albuminuria and decreased glomerulosclerosis in SLE mice. Renal immune cell infiltration was significantly higher in SLE mice as compared with control, but LA treatment was associated with decreased levels of renal CD4+ T cells. In conclusion, these data suggest that leptin plays a pathogenic role in the development of hypertension in SLE, in part, by promoting the expansion of inflammatory DN T cells and the infiltration of T cells into the kidneys.
Collapse
Affiliation(s)
- William J. Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Clinton T. Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Erin B. Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
246
|
Rossi GS, Welch KC. Leptin Resistance Does Not Facilitate Migratory Fattening in Ruby-Throated Hummingbirds (Archilochus Colubris). Integr Comp Biol 2023; 63:1075-1086. [PMID: 37248054 DOI: 10.1093/icb/icad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
In mammals, leptin is an important energy homeostasis hormone produced by adipose tissue. Circulating leptin concentrations correlate positively with fat mass and act in a negative feedback fashion to inhibit food intake and increase energy expenditure, thereby preventing fat gain. For some species, leptin resistance is advantageous during times of year where fat gain is necessary (e.g., prior to hibernation). While the function of leptin in birds remains controversial, seasonal leptin resistance may similarly benefit migratory species. Here, we used the ruby-throated hummingbird (Archilochus colubris) to test the hypothesis that leptin resistance promotes fattening prior to migration. We predicted that during the migratory fattening period, leptin levels should correlate positively with fat mass but should not inhibit food intake or increase energy expenditure, resulting in fattening. We tracked the body (fat) mass, the concentration of leptin-like protein in the urine, and the food intake of 12 captive hummingbirds from August 2021 to January 2022. In a subset of hummingbirds, we also quantified voluntary physical activity as a proxy for energy expenditure. We found remarkable age-related variation in fattening strategies, with juveniles doubling their body fat by mid-September and adults exhibiting only a 50% increase. Changes in fat mass were strongly associated with increased food intake and reduced voluntary activity. However, we found no correlation between leptin-like protein concentration and fat mass, food intake, or voluntary activity. Since increased torpor use has been shown to accelerate migratory fattening in ruby-throated hummingbirds, we also hypothesized that leptin is a mediator of torpor use. In an experimental manipulation of circulating leptin, however, we found no change in torpor use, body fat, or food intake. Overall, our findings suggest that leptin may not act as an adipostat in hummingbirds, nor does leptin resistance regulate how hummingbirds fatten prior to migration.
Collapse
Affiliation(s)
- Giulia S Rossi
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Kenneth C Welch
- Departmant of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
247
|
Cho EH, Kim YS, Kim YR, Kang JH, Park SW, Lim HP, Yun KD, Jang WH, Koh JT, Park C, Lee BN. A leptin-loaded poly- ϵ-caprolactone 3D printing scaffold for odontoblastic differentiation in human dental pulp cells. Biomed Mater 2023; 19:015009. [PMID: 37972541 DOI: 10.1088/1748-605x/ad0d84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
This study investigated the effects on odontoblast differentiation of a 3D-printed poly-ϵ-caprolactone (PCL) scaffold that incorporated leptin. Material extrusion-type 3D printing with a 43 000-molecular weight PCL material was used to fabricate a PCL scaffold with a 6 mm diameter, 1 mm height, and 270-340 µm pore size. The experimental groups were PCL scaffolds (control group), PCL scaffolds with aminated surfaces (group A), and PCL scaffolds with leptin on the aminated surface (group L). The aminated surface was treated with 1,6-hexanediamine and verified by ninhydrin analysis. Leptin loading was performed using Traut's reagent and 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC). Groups A and L showed significantly higher surface wettability, pulp cell adhesion, and proliferation than the control group. Group L exhibited increased alkaline phosphatase, calcification deposits, and mRNA and protein expression of dentin sialophosphoprotein and dentin matrix acidic phosphoprotein 1 compared with the control group. In this study, a 3D-printed PCL scaffold containing leptin was enhanced odontoblast differentiation and dental pulp cells adhesion and proliferation.
Collapse
Affiliation(s)
- Eun-Hyo Cho
- School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ye-Seul Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Ran Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-Ho Kang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Won Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Kwi-Dug Yun
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Woo-Hyung Jang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tea Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chan Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
248
|
Zhu F, Yin ZT, Zhao QS, Sun YX, Jie YC, Smith J, Yang YZ, Burt DW, Hincke M, Zhang ZD, Yuan MD, Kaufman J, Sun CJ, Li JY, Shao LW, Yang N, Hou ZC. A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes. Commun Biol 2023; 6:1233. [PMID: 38057566 PMCID: PMC10700341 DOI: 10.1038/s42003-023-05619-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yu-Chen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yu-Ze Yang
- Beijing General Station of Animal Husbandry, 100101, Beijing, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Zi-Ding Zhang
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Meng-Di Yuan
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Cong-Jiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jun-Ying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Li-Wa Shao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Beijing, China.
| |
Collapse
|
249
|
Ricottini E, Gatto L, Nusca A, Melfi R, Mangiacapra F, Albano M, Cavallaro C, Pozzilli P, Di Sciascio G, Prati F, Ussia GP, Grigioni F. Leptin as predictor of cardiovascular events and high platelet reactivity in patients undergoing percutaneous coronary intervention. Clin Nutr ESPEN 2023; 58:104-110. [PMID: 38056992 DOI: 10.1016/j.clnesp.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/20/2023] [Accepted: 09/06/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND AIMS Leptin is a hormone involved in the regulation of food intake. Previous studies suggested an interplay between leptin, platelet aggregation, and cardiovascular outcome but this issue was not investigated in vivo in patients treated with percutaneous coronary intervention (PCI). We designed a study to evaluate the possible relation between leptin, cardiovascular outcome, and platelet reactivity (PR) in patients undergoing PCI. METHODS 155 PCI patients had preprocedural measurements of PR and leptin plasma levels. The latter were assessed by ELISA. Hyperleptinemia was defined as leptin levels ≥14 ng/ml. PR was evaluated by the VerifyNowP2Y12 assay and expressed as P2Y12 reaction units (PRU). Patients were divided into three groups based on PR values and defined as low (LPR), normal (NPR), and high (HPR). Patients were followed for up 8 years. The primary endpoint was the incidence of Major Acute Cardiac Events (MACE) at long-term follow-up according to leptin groups. Secondary endpoints were the evaluation of leptin levels according to PR groups and the incidence of periprocedural myocardial infarction (PMI) according to leptin groups. RESULTS Long-term follow-up was completed in 140 patients. Patients with hyperleptinemia experienced a higher MACE rate than the normoleptinemic group (HR 2.3; CI 95% 1.14-4.6, P = 0.02). These results remained unchanged after adjusting for Body Mass Index, hypertension, and gender. Leptin levels were significantly different among groups of PR (P = 0.047). Leptin levels were higher in the HPR group (12.61 ± 16.58 ng/ml) compared to the LPR group (7.83 ± 8.87 ng/ml, P = 0.044) and NPR group (7.04 ± 7.03 ng/ml, P = 0.01). The rate of PMI was higher in hyperleptinemia patients (15.1% vs. 6.5%, P = 0.22). CONCLUSIONS This study suggests that high leptin levels are associated with a worse clinical outcome in patients undergoing PCI and with HPR. Further studies are needed to define better the pathophysiological pathways underlying this association.
Collapse
Affiliation(s)
| | - Laura Gatto
- Azienda Ospedaliera San Giovanni Addolorata, Rome, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rosetta Melfi
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabio Mangiacapra
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Campus Bio-Medico University of Rome, Department of Medicine, Rome, Italy
| | - Marzia Albano
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Paolo Pozzilli
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Campus Bio-Medico University of Rome, Department of Medicine, Rome, Italy
| | - Germano Di Sciascio
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Campus Bio-Medico University of Rome, Department of Medicine, Rome, Italy
| | - Francesco Prati
- Azienda Ospedaliera San Giovanni Addolorata, Rome, Italy; Centro per la Lotta Contro l'Infarto-CLI Foundation, Rome, Italy; Saint Camillus International Medical University, Rome, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Campus Bio-Medico University of Rome, Department of Medicine, Rome, Italy
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Campus Bio-Medico University of Rome, Department of Medicine, Rome, Italy
| |
Collapse
|
250
|
Ferreira-Hermosillo A, de Miguel Ibañez R, Pérez-Dionisio EK, Villalobos-Mata KA. Obesity as a Neuroendocrine Disorder. Arch Med Res 2023; 54:102896. [PMID: 37945442 DOI: 10.1016/j.arcmed.2023.102896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Obesity is one of the most prevalent diseases in the world. Based on hundreds of clinical and basic investigations, its etiopathogenesis goes beyond the simple imbalance between energy intake and expenditure. The center of the regulation of appetite and satiety lies in the nuclei of the hypothalamus where peripheral signals derived from adipose tissue (e.g., leptin), the gastrointestinal tract, the pancreas, and other brain structures, arrive. These signals are part of the homeostatic control system (eating to survive). Additionally, a hedonic or reward system (eating for pleasure) is integrated into the regulation of appetite. This reward system consists of a dopaminergic circuit that affects eating-related behaviors influencing food preferences, food desires, gratification when eating, and impulse control to avoid compulsions. These systems are not separate. Indeed, many of the hormones that participate in the homeostatic system also participate in the regulation of the hedonic system. In addition, factors such as genetic and epigenetic changes, certain environmental and sociocultural elements, the microbiota, and neuronal proinflammatory effects of high-energy diets also contribute to the development of obesity. Therefore, obesity can be considered a complex neuroendocrine disease, and all of the aforementioned components should be considered for the management of obesity.
Collapse
Affiliation(s)
- Aldo Ferreira-Hermosillo
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Regina de Miguel Ibañez
- Endocrinology Service, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Enid Karina Pérez-Dionisio
- Endocrinology Service, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Karen Alexandra Villalobos-Mata
- Endocrinology Service, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|