201
|
Jana NR, Nukina N. Recent advances in understanding the pathogenesis of polyglutamine diseases: involvement of molecular chaperones and ubiquitin-proteasome pathway. J Chem Neuroanat 2003; 26:95-101. [PMID: 14599658 DOI: 10.1016/s0891-0618(03)00029-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Polyglutamine diseases consist of a group of familial neurodegenerative disorders caused by expression of proteins containing expanded polyglutamine stretch. Over the past several years, tremendous progress has been made in identifying the molecular mechanisms by which the expanded polyglutamine tract leads to neuronal dysfunction and neurodegeneration. A common feature of most polyglutamine disorders is the occurrence of ubiquitin-positive neuronal intranuclear inclusions. The appearance of ubiquitinated aggregates implies an underline incapability of the cellular chaperones and proteasome machinery that normally functions to prevent the accumulation of misfolded proteins. Here we review the recent studies that have revealed a critical role for molecular chaperones and ubiquitin-proteasome pathway in the pathogenesis of polyglutamine diseases.
Collapse
Affiliation(s)
- Nihar Ranjan Jana
- National Brain Research Centre, SCO 5, 6 and 7, Sector 15, Part-II, 122 001 Gurgaon, India.
| | | |
Collapse
|
202
|
Michalik A, Van Broeckhoven C. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet 2003; 12 Spec No 2:R173-86. [PMID: 14504263 DOI: 10.1093/hmg/ddg295] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Expansion of CAG trinucleotide repeats coding for polyglutamine in unrelated proteins causes at least nine late-onset progressive neurodegenerative disorders, including Huntington's disease and a number of spinocerebellar ataxias. Expanded polyglutamine provokes a dominant gain-of-function neurotoxicity, regardless of the specific protein context within which it resides. Nevertheless, the protein context does modulate polyglutamine toxicity, as evidenced by the distinct clinical and pathological features of the various disorders. Importantly, polyglutamine toxicity might derive from its ability to aggregate. Indeed, aggregation probably underlies some defining attributes of the polyglutamine disorders, such as their late onset, progressive nature, and the dependence of onset age on polyglutamine length. However, the central role of aggregation in polyglutamine pathogenesis has been challenged by several studies, which instead argued that the soluble form of the disease proteins is responsible for neuronal damage. Thus, the question whether polyglutamine aggregates are deleterious, harmless or protective remains the most passionately disputed issue in the study of these diseases. In this review, we attempt to reconcile some of these controversies.
Collapse
Affiliation(s)
- Andrej Michalik
- Department of Molecular Genetics, Flanders Interuniversity Institute of Biotechnology, University of Antwerp, Antwerpen, Belgium
| | | |
Collapse
|
203
|
Affiliation(s)
- Daniela Berg
- Institute for Human Genetics, Department of Medical Genetics, University of Tübingen, Calwerstrasse 7, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
204
|
|
205
|
Luthi-Carter R, Cha JHJ. Mechanisms of transcriptional dysregulation in Huntington's disease. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1566-2772(03)00059-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
206
|
Giovannone B, Lee E, Laviola L, Giorgino F, Cleveland KA, Smith RJ. Two novel proteins that are linked to insulin-like growth factor (IGF-I) receptors by the Grb10 adapter and modulate IGF-I signaling. J Biol Chem 2003; 278:31564-73. [PMID: 12771153 DOI: 10.1074/jbc.m211572200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grb10 is a protein that binds to the intracellular domains of activated tyrosine kinase receptors, including insulin-like growth factor (IGF-I) and insulin receptors. This occurs through the interaction of two C-terminal Grb10 motifs (BPS and Src homology domains) with receptor phosphotyrosine residues. Published data from transfection/overexpression studies support both positive and negative regulatory effects of Grb10, thus leaving its physiological role unclear. Because Grb10 has the structure of an adapter protein, the objective of this study was to determine whether Grb10 links other proteins to IGF-I receptors and thus modulates IGF-I signaling. Using yeast two-hybrid screening, the N terminus of Grb10 was shown to interact with two novel proteins, designated GIGYF1 (Grb10 interacting GYF protein 1) and GIGYF2. Mutation analysis indicates that a 17-amino acid sequence in GIGYF1 and GIGYF2, homologous to the GYF domain described previously, binds to tandem proline-rich regions in the N terminus of Grb10. In IGF-I receptor-expressing R+ fibroblasts, there is detectable binding of a Myc-tagged fragment of GIGYF1 to Grb10 in the basal state. Stimulation with IGF-I results in increased binding of GIGYF1 to Grb10 and transient binding of both Grb10 and GIGYF1 to IGF-I receptors, presumably via the adapter function of Grb10. At later time points, GIGYF1 dissociates, but Grb10 remains linked to IGF-I receptors. Overexpression of the Grb10 binding fragment of GIGYF1 in R+ cells results in a significant increase in IGF-I-stimulated receptor tyrosine phosphorylation. In conclusion, we have identified two members of a novel protein family, which become transiently linked to IGF-I receptors by the Grb10 adapter protein following IGF-I stimulation. Grb10 and GIGYFs may act cooperatively to regulate receptor signaling.
Collapse
Affiliation(s)
- Barbara Giovannone
- Division of Endocrinology and the Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
207
|
|
208
|
|
209
|
Abstract
PURPOSE OF REVIEW The present review covers recent developments in inherited ataxias. The discovery of new loci and genes has led to improved understanding of the breadth and epidemiology of inherited ataxias. This has resulted also in more rational classification schemes. Research on identified loci has begun to yield insights into the pathogenesis of neuronal dysfunction and neurodegeneration in these diseases. RECENT FINDINGS There are a plethora of inherited ataxias due to a variety of mutational mechanisms involving numerous loci. While ataxia and other aspects of cerebellar dysfunction are the core features of these diseases, rational classification has been impeded by the simultaneous variety of associated clinical features and considerable overlap in clinical features among diseases involving different loci. Inherited ataxias can be classified according to mode of inheritance and mechanism of mutations. Dominantly inherited ataxias (spinocerebellar ataxias) are one major group of ataxias. Spinocerebellar ataxias can be subdivided into expanded exonic CAG repeat (polyglutamine; polyQ) disorders, dominantly inherited ataxias with mutations in non-coding regions, and dominantly inherited ataxias with chromosomal localizations but unidentified loci. Another group of dominantly inherited ataxias are episodic ataxias due to ion channel mutations. Recessive ataxias constitute a more heterogeneous group due to loss-of-function effects in numerous loci. A number of these loci have now been identified. Progress has been made in investigating the pathogenesis of neuronal dysfunction/neurodegeneration in several inherited ataxias. Convergent evidence suggests that transcriptional dysregulation is an important component of neurodegeneration in polyQ disorders. Mitochondrial dysfunction is central to pathogenesis of the most common recessive ataxia, Friedreich ataxia. SUMMARY Mapping of additional ataxia loci and identification of novel ataxia genes continues unabated. Genetic classification enables typology of inherited ataxias. Identification of the affected loci and the mutational mechanisms has allowed the first glimmers of understanding of the pathogenesis of several inherited ataxias.
Collapse
Affiliation(s)
- Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
210
|
Takahashi J, Fujigasaki H, Iwabuchi K, Bruni AC, Uchihara T, El Hachimi KH, Stevanin G, Dürr A, Lebre AS, Trottier Y, de Thé H, Tanaka J, Hauw JJ, Duyckaerts C, Brice A. PML nuclear bodies and neuronal intranuclear inclusion in polyglutamine diseases. Neurobiol Dis 2003; 13:230-7. [PMID: 12901837 DOI: 10.1016/s0969-9961(03)00080-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In polyglutamine diseases, accumulation in the nucleus of mutant proteins induces the formation of neuronal intranuclear inclusions (NIIs). The nucleus is compartmentalized into structural and functional domains, which are involved in NII formation. Promyelocytic leukemia protein (PML), a major component of nuclear bodies, and mSin3A, a component of the transcription co-repressor complex, were used to investigate how the intranuclear domains/sites relate to NII formation in SCA2, SCA3, SCA7, SCA17 and DRPLA brains. We demonstrate that the size of PML-positive intranuclear structures was larger in pathological brains than in control ones and that these structures contained mutant proteins. PML colocalized only with small NIIs, which maintained the ring-like structure of normal nuclear bodies. Enlarged ring-like PML-positive structures, devoid of mutant proteins, were also found and might represent structures where mutant polyglutamine proteins have been successfully processed. These data suggest that NIIs originate from nuclear bodies, where mutant proteins accumulate for degradation.
Collapse
Affiliation(s)
- Junko Takahashi
- Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Salpêtrière, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Ahmad-Annuar A, Tabrizi SJ, Fisher EMC. Mouse models as a tool for understanding neurodegenerative diseases. Curr Opin Neurol 2003; 16:451-8. [PMID: 12869802 DOI: 10.1097/01.wco.0000084221.82329.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to present recent advances in the both the creation and the use of mouse models of human neurodegenerative disease. We briefly touch on the technologies used to make these models, and then focus on recent results from new models. We discuss why such models are useful when they do - and do not - mimic the human disorder. RECENT FINDINGS The numbers of mouse models are increasing dramatically and are starting to yield important results for human disease. We present a selection of new and important models and the results of recent investigations of these animals. SUMMARY An accepted protocol when studying any form of human neurodegenerative disease is to investigate the genetics, pathology, neurophysiology, response to therapeutics, etc., of the disorder in the mouse. This approach is clearly bearing fruit for our understanding and treatment of human neurodegeneration.
Collapse
Affiliation(s)
- Azlina Ahmad-Annuar
- Institute of Neurology, National Hospital of Neurology and Neurosurgery, London, UK
| | | | | |
Collapse
|
212
|
Ishihara K, Yamagishi N, Saito Y, Adachi H, Kobayashi Y, Sobue G, Ohtsuka K, Hatayama T. Hsp105alpha suppresses the aggregation of truncated androgen receptor with expanded CAG repeats and cell toxicity. J Biol Chem 2003; 278:25143-50. [PMID: 12714591 DOI: 10.1074/jbc.m302975200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The N-terminal fragment of AR containing the expanded polyglutamine tract aggregates in cytoplasm and/or in nucleus and induces cell death. Some chaperones such as Hsp40 and Hsp70 have been identified as important regulators of polyglutamine aggregation and/or cell death in neuronal cells. Recently, Hsp105alpha, expressed at especially high levels in mammalian brain, has been shown to suppress apoptosis in neuronal cells and prevent the aggregation of protein caused by heat shock in vitro. However, its role in polyglutamine-mediated cell death and toxicity has not been studied. In the present study, we examined the effects of Hsp105alpha on the aggregation and cell toxicity caused by expansion of the polyglutamine tract using a cellular model of SBMA. The transient expression of truncated ARs (tARs) containing an expanded polyglutamine tract caused aggregates to form in COS-7 and SK-N-SH cells and concomitantly apoptosis in the cells with the nuclear aggregates. When Hsp105alpha was overexpressed with tAR97 in the cells, Hsp105alpha was colocalized to aggregates of tAR97, and the aggregation and cell toxicity caused by expansion of the polyglutamine tract were markedly reduced. Both beta-sheet and alpha-helix domains, but not the ATPase domain, of Hsp105alpha were necessary to suppress the formation of aggregates in vivo and in vitro. Furthermore, Hsp105alpha was found to localize in nuclear inclusions formed by ARs containing an expanded polyglutamine tract in tissues of patients and transgenic mice with SBMA. These findings suggest that overexpression of Hsp105alpha suppresses cell death caused by expansion of the polyglutamine tract without chaperone activity, and the enhanced expression of the essential domains of Hsp105alpha in brain may provide an effective therapeutic approach for CAG repeat diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Härkönen K, Huhtaniemi I, Mäkinen J, Hübler D, Irjala K, Koskenvuo M, Oettel M, Raitakari O, Saad F, Pöllänen P. The polymorphic androgen receptor gene CAG repeat, pituitary-testicular function and andropausal symptoms in ageing men. INTERNATIONAL JOURNAL OF ANDROLOGY 2003; 26:187-94. [PMID: 12755998 DOI: 10.1046/j.1365-2605.2003.00415.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activity of androgen receptor (AR) is modulated by a polymorphic CAG trinucleotide repeat in the AR gene. In the present study, we investigated hormonal changes among ageing men, and whether the number of AR CAG triplets is related to the appearance of these changes, as well as symptoms and diseases associated with ageing. A total of 213 41-70-year-old men donated blood for hormone analyses (LH, testosterone, oestradiol and SHBG) and answered questions concerning diseases and symptoms associated with ageing and/or androgen deficiency. Of these men, 172 donated blood for the measurement of the CAG repeat length of AR. The CAG repeat region of the AR gene was amplified by polymerase chain reaction (PCR) and the products were sized on polyacrylamide gels. The repeat number was analysed as a dichotomized variable divided according to cut-off limits of the lowest (< or =20 repeats) and the highest quartile (> or =23 repeats), and as a continuous variable. The proportion of men with serum LH in the uppermost quartile (>6.0 IU/L) with normal serum testosterone (>9.8 nmol/L, above the lowest 10%) increased significantly with age (p = 0.01). There were fewer men with this hormonal condition among those with CAG repeat number in the uppermost quartile (> or =23 repeats) (p = 0.03). These men also reported less decreased potency (p < 0.05). The repeat number was positively correlated with depression, as expressed by the wish to be dead (r = 0.45; p < 0.0001), depressed mood (r = 0.23; p = 0.003), anxiety (r = 0.15; p < 0.05), deterioration of general well-being (r = 0.22; p = 0.004), as well as decreased beard growth (r = 0.49; p < 0.0001). A hormonal condition where serum testosterone is normal but LH increased is a frequent finding in male ageing. Only certain types of age-related changes in ageing men were associated with the length of the AR gene CAG repeat, suggesting that this parameter may play a role in setting different thresholds for the array of androgen actions in the male.
Collapse
Affiliation(s)
- Kati Härkönen
- Department of Medical Genetics, University of Turku, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Reid SJ, Rees MI, van Roon-Mom WMC, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RLM, Owen MJ, Dragunow M, Snell RG. Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis 2003; 13:37-45. [PMID: 12758065 DOI: 10.1016/s0969-9961(03)00014-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, an inherited spinocerebellar ataxia (SCA17) has been attributed to polyglutamine coding expansions within the gene coding for human TATA-box binding protein (TBP). The normal repeat range is 25-42 units with patients having as few as 46 repeats. We undertook a TBP repeat length population study showing its relative stability, skewed distribution, and substantial population specific differences. To investigate the mechanism of neurodegeneration in SCA17 we have developed a cellular model expressing full-length TBP with a range of polyQ expansions. As has been found with other polyQ cellular models, insoluble intracellular inclusions form in a repeat-length-dependent manner. In addition, we have shown that the expanded TBP polyQ tract is able to interact with other overexpressed polyQ-containing proteins. Importantly, overexpression of expanded TBP results in increased Cre-dependent transcriptional activity. As TBP is required for transcription by all RNA polymerases, this may indicate a mechanism for aberrant polyQ gain of function.
Collapse
Affiliation(s)
- Suzanne J Reid
- Department of Molecular Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
Huntington disease (HD) is caused by a CAG repeat expansion that is translated into an abnormally long polyglutamine (polyQ) tract in the huntingtin protein. The precise mechanisms leading to neurodegeneration in HD have not been fully elucidated, but alterations in gene transcription could well be involved because the activities of several nuclear proteins are compromised by the polyQ mutation. Recent microarray studies also show relevant changes in gene expression profiles in HD models, providing useful information on the potential consequences of disrupted transcriptional pathways in HD.
Collapse
Affiliation(s)
- Katharine L Sugars
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | |
Collapse
|
216
|
Goellner GM, Rechsteiner M. Are Huntington's and polyglutamine-based ataxias proteasome storage diseases? Int J Biochem Cell Biol 2003; 35:562-71. [PMID: 12672449 DOI: 10.1016/s1357-2725(02)00388-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, 10 neurological diseases, including Huntington's and several ataxias, are caused by a lengthening of glutamine (Q) tracts in various proteins. Even though the Q expansions arise in unrelated proteins, the diseases share three striking features: (1) 35 contiguous glutamines constitutes the pathological threshold for 9 of the 10 diseases; (2) the Q-expanded proteins are expressed in many tissues, yet pathology is largely restricted to neurons; and (3) the Q-expanded proteins or fragments thereof form nuclear inclusions that also contain ubiquitin, proteasomes and chaperones. Our studies of the proteasome activator REGgamma suggest a possible explanation for these shared properties. REGgamma is highly expressed in brain, located in the nucleus and actually suppresses the proteasome active sites principally responsible for cleaving glutamine-MCA bonds. These observations coupled with reports that peptides longer than 35 residues, the polyQ pathology threshold, are unable to diffuse out of the proteasome suggest the following hypothesis. Proteins containing long glutamine tracts are efficiently pumped into REGgamma-capped 26S proteasomes, but REGgamma suppression of cleavage after glutamine produces polyQ fragments too long to diffuse out of the 20S proteolytic core thereby inactivating the 26S proteasome. In effect, we hypothesize that the polyQ pathologies may be proteasomal storage diseases analogous to disorders of lysosome catabolism.
Collapse
Affiliation(s)
- Geoffrey M Goellner
- Department of Biochemistry, University of Utah, 50 N Medical Drive, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
217
|
Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci 2003. [PMID: 12657679 DOI: 10.1523/jneurosci.23-06-02203.2003] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR). The nuclear inclusions consisting of the mutant AR protein are characteristic and combine with many components of ubiquitin-proteasome and molecular chaperone pathways, raising the possibility that misfolding and altered degradation of mutant AR may be involved in the pathogenesis. We have reported that the overexpression of heat shock protein (HSP) chaperones reduces mutant AR aggregation and cell death in a neuronal cell model (Kobayashi et al., 2000). To determine whether increasing the expression level of chaperone improves the phenotype in a mouse model, we cross-bred SBMA transgenic mice with mice overexpressing the inducible form of human HSP70. We demonstrated that high expression of HSP70 markedly ameliorated the motor function of the SBMA model mice. In double-transgenic mice, the nuclear-localized mutant AR protein, particularly that of the large complex form, was significantly reduced. Monomeric mutant AR was also reduced in amount by HSP70 overexpression, suggesting the enhanced degradation of mutant AR. These findings suggest that HSP70 overexpression ameliorates SBMA phenotypes in mice by reducing nuclear-localized mutant AR, probably caused by enhanced mutant AR degradation. Our study may provide the basis for the development of an HSP70-related therapy for SBMA and other polyQ diseases.
Collapse
|
218
|
Nucifora FC, Ellerby LM, Wellington CL, Wood JD, Herring WJ, Sawa A, Hayden MR, Dawson VL, Dawson TM, Ross CA. Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. J Biol Chem 2003; 278:13047-55. [PMID: 12464607 DOI: 10.1074/jbc.m211224200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dentatorubral and pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder similar to Huntington's disease, with clinical manifestations including chorea, incoordination, ataxia, and dementia. It is caused by an expansion of a CAG trinucleotide repeat encoding polyglutamine in the atrophin-1 gene. Both patients and DRPLA transgenic mice have nuclear accumulation of atrophin-1, especially an approximately 120-kDa fragment, which appears to represent a cleavage product. We now show that this is an N-terminal fragment that does not correspond to the previously described caspase-3 fragment, or any other known caspase cleavage product. The atrophin-1 sequence contains a putative nuclear localization signal in the N terminus of the protein and a putative nuclear export signal in the C terminus. We have tested the hypothesis that endogenous localization signals are functional in atrophin-1, and that nuclear localization and proteolytic cleavage contribute to atrophin-1 cell toxicity. In transient cell transfection experiments using a neuroblastoma cell line, full-length atrophin-1 with 26 (normal) or 65 (expanded) glutamines localized to both nucleus and cytoplasm, with no significant difference in toxicity between the normal and mutant proteins. A construct with 65 glutamine repeats encoding an N-terminal fragment (which removes an NES) of atrophin-1 similar in size to the truncation product in DRPLA patient tissue, showed increased nuclear labeling, and an increase in cellular toxicity, compared with a similar fragment with 26 glutamines. Full-length atrophin-1 with 65 polyglutamine repeats and mutations inactivating the NES also yielded increased nuclear localization and increased toxicity. These data suggest that truncation enhances cellular toxicity of the mutant protein, and that the NES is a relevant region deleted during truncation. Furthermore, mutating the NLS in the truncated protein shifted atrophin-1 more to the cytoplasm and eliminated the increased toxicity, consistent with the idea that nuclear localization enhances toxicity. In none of the experiments were inclusions visible in the nucleus or cytoplasm suggesting that inclusion formation is unrelated to cell death. These data indicate that truncation of atrophin-1 may alter its ability to shuttle between the nucleus and cytoplasm, leading to abnormal nuclear interactions and cell toxicity.
Collapse
Affiliation(s)
- Frederick C Nucifora
- Division of Neurobiology, Department of Psychiatry, and The Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Stevanin G, Dürr A, Brice A. Spinocerebellar ataxias caused by polyglutamine expansions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 516:47-77. [PMID: 12611435 DOI: 10.1007/978-1-4615-0117-6_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Giovanni Stevanin
- INSERM U289, Institut Fédératif di Recherche des Neurosciences, Groupe Hospitalier Pitié-Salpêtriére, Paris, France
| | | | | |
Collapse
|
220
|
Fujita H, Fujii R, Aratani S, Amano T, Fukamizu A, Nakajima T. Antithetic effects of MBD2a on gene regulation. Mol Cell Biol 2003; 23:2645-57. [PMID: 12665568 PMCID: PMC152551 DOI: 10.1128/mcb.23.8.2645-2657.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA methylation is essential for epigenetic gene regulation during development. The cyclic AMP (cAMP)-responsive element (CRE) is found in the promoter of many cAMP-regulated genes and plays important roles in their gene expression. Methylation occurs on the CRE site and results in transcriptional repression via a direct mechanism, that is, prevention by the methyl group of binding of the cAMP-responsive factor CREB to this site. A recent study indicated that the nucleosome is also important in repressing transcription. In this study, we investigated the regulation of transcriptional repression on methylated CRE. We focused on methyl-CpG binding domain protein 2 (MBD2). MBD2 consists of two forms, MBD2a and MBD2b, the latter lacking the N-terminal extension of MBD2a. Unexpectedly, we found that MBD2a, but not MBD2b, promoted activation of the unmethylated cAMP-responsive genes. An in vivo binding assay revealed that MBD2a selectively interacted with RNA helicase A (RHA), a component of CREB transcriptional coactivator complexes. MBD2a and RHA cooperatively enhanced CREB-dependent gene expression. Interestingly, coimmunoprecipitation assays demonstrated that MBD2a binding to RHA was not associated with histone deacetylase 1. Our results indicate a novel role for MBD2a in gene regulation.
Collapse
Affiliation(s)
- Hidetoshi Fujita
- Institute of Medical Science, St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan
| | | | | | | | | | | |
Collapse
|
221
|
Steffan JS, Thompson LM. Targeting aggregation in the development of therapeutics for the treatment of Huntington's disease and other polyglutamine repeat diseases. Expert Opin Ther Targets 2003; 7:201-13. [PMID: 12667098 DOI: 10.1517/14728222.7.2.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Huntington's disease (HD) is one of a number of familial polyglutamine (polyQ) repeat diseases. These neurodegenerative disorders are caused by expression of otherwise unrelated proteins that contain an expansion of a polyQ tract, rendering them toxic to specific subsets of vulnerable neurons. These expanded repeats have an inherent propensity to aggregate; insoluble neuronal nuclear and cytoplasmic polyQ aggregates or inclusions are hallmarks of the disorders [1,2]. In HD, inclusions in diseased brains often precede onset of symptoms, and have been proposed to be involved in pathogenicity [3-5]. Various strategies to block the process of aggregation have been developed in an effort to create drugs that decrease neurotoxicity. A discussion of the effect of antibodies, caspase inhibitors, chemical inhibitors, heat-shock proteins, suppressor peptides and transglutaminase inhibitors upon aggregation and disease is presented.
Collapse
Affiliation(s)
- Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-4260, USA.
| | | |
Collapse
|
222
|
Igarashi S, Morita H, Bennett KM, Tanaka Y, Engelender S, Peters MF, Cooper JK, Wood JD, Sawa A, Ross CA. Inducible PC12 cell model of Huntington's disease shows toxicity and decreased histone acetylation. Neuroreport 2003; 14:565-8. [PMID: 12657886 DOI: 10.1097/00001756-200303240-00007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the abnormal expansion of a polyglutamine tract in the huntingtin protein. We have developed PC12 cell lines in which the expression of an N-terminal truncation of huntingtin (N63) with either wild type (23Q) or expanded polyglutamine (148Q) can be induced by the removal of doxycycline. Differentiated PC12 cells induced to express N63-148Q showed cellular toxicity reaching up to 50% at 6 days post-induction. Histone acetyltransferase (HAT) activity and global histone acetylation was significantly decreased in cells expressing truncated huntingtin with mutant but not normal huntingtin. These data suggest that altered chromatin modification via reduction in coactivator activity may cause neuronal transcriptional dysregulation and contribute to cellular toxicity.
Collapse
Affiliation(s)
- Shuichi Igarashi
- Department of Neuroscience, Brain Research Institute, Niigata University, I Asahimachi, Niigata 951-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Yazawa I, Hazeki N, Nakase H, Kanazawa I, Tanaka M. Histone H3 is aberrantly phosphorylated in glutamine-repeat diseases. Biochem Biophys Res Commun 2003; 302:144-9. [PMID: 12593861 DOI: 10.1016/s0006-291x(03)00115-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Double-labeling immunohistochemical studies staining with anti-ubiquitin and anti-phosphoserine antibodies and application of an enzymatic dephosphorylation technique reveal neuronal inclusions and affected nuclei to be aberrantly phosphorylated in brain tissues with patients with glutamine-repeat diseases. Regional distribution of the phosphorylated nuclei in neurons correlates with the pathology. To identify the target nuclear protein, transient expression of Huntington's disease exon 1 gene containing an expanded glutamine repeat was generated in a cell culture and nuclear inclusions were isolated with a fluorescence-activated cell sorting system. Immunoblotting studies of the aggregated nuclear proteins using anti-phosphoserine antibody demonstrate the protein of the aberrant phosphorylation as histone H3. The immunoblots of control and diseased brain tissues demonstrate that the phosphorylation of histone H3 is commonly increased in the diseased brains. Aberrant phosphorylation of histone H3 is surmised to be a shared pathological process in glutamine-repeat diseases.
Collapse
Affiliation(s)
- Ikuru Yazawa
- Department of Neurology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan.
| | | | | | | | | |
Collapse
|
224
|
Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PAS, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A 2003; 100:2041-6. [PMID: 12576549 PMCID: PMC149955 DOI: 10.1073/pnas.0437870100] [Citation(s) in RCA: 622] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntington's disease (HD) is an inherited, progressive neurological disorder that is caused by a CAG/polyglutamine repeat expansion and for which there is no effective therapy. Recent evidence indicates that transcriptional dysregulation may contribute to the molecular pathogenesis of this disease. Supporting this view, administration of histone deacetylase (HDAC) inhibitors has been shown to rescue lethality and photoreceptor neurodegeneration in a Drosophila model of polyglutamine disease. To further explore the therapeutic potential of HDAC inhibitors, we have conducted preclinical trials with suberoylanilide hydroxamic acid (SAHA), a potent HDAC inhibitor, in the R6/2 HD mouse model. We show that SAHA crosses the blood-brain barrier and increases histone acetylation in the brain. We found that SAHA could be administered orally in drinking water when complexed with cyclodextrins. SAHA dramatically improved the motor impairment in R6/2 mice, clearly validating the pursuit of this class of compounds as HD therapeutics.
Collapse
Affiliation(s)
- Emma Hockly
- Medical and Molecular Genetics, Guy's, King's and St. Thomas' School of Medicine, King's College London, Eighth Floor Guy's Tower, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Ross CA, Poirier MA, Wanker EE, Amzel M. Polyglutamine fibrillogenesis: the pathway unfolds. Proc Natl Acad Sci U S A 2003; 100:1-3. [PMID: 12509507 PMCID: PMC140861 DOI: 10.1073/pnas.0237018100] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
226
|
Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16412-8. [PMID: 12189209 PMCID: PMC139902 DOI: 10.1073/pnas.182426899] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of insoluble protein aggregates in neurons is a hallmark of neurodegenerative diseases caused by proteins with expanded polyglutamine (polyQ) repeats. However, the mechanistic relationship between polyQ aggregation and its toxic effects on neurons remains unclear. Two main hypotheses have been put forward for how polyQ expansions may cause cellular dysfunction. In one model neurotoxicity results from the ability of polyQ-expanded proteins to recruit other important cellular proteins with polyQ stretches into the aggregates. In the other model, aggregating polyQ proteins partially inhibit the ubiquitin-proteasome system for protein degradation. These two mechanisms are not exclusive but may act in combination. In general, protein misfolding and aggregation are prevented by the machinery of molecular chaperones. Some chaperones such as the members of the Hsp70 family also modulate polyQ aggregation and suppress its toxicity. These recent findings suggest that an imbalance between the neuronal chaperone capacity and the production of potentially dangerous polyQ proteins may trigger the onset of polyQ disease.
Collapse
Affiliation(s)
- Hideki Sakahira
- Max-Planck-Institut für Biochemie, Department of Cellular Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
227
|
Terashima T, Kawai H, Fujitani M, Maeda K, Yasuda H. SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport 2002; 13:2359-64. [PMID: 12488827 DOI: 10.1097/00001756-200212030-00038] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the implication of small ubiquitin-related modifier-1 (SUMO-1) in the formation of neuronal intranuclear inclusions in polyglutamine diseases, we examined the localization of SUMO-1 in dentatorubral-pallidoluysian atrophy (DRPLA) brain tissues and PC12 cells expressing truncated atrophin-1 with expanded poly-glutamine stretches. SUMO-1 was co-localized with neuronal intranuclear inclusions in DRPLA brain and the DRPLA model cells, which showed that the aggregates formed by expanded polyglutamine stretches were highly SUMOlylated. In addition, to examine the role of SUMO-1 in nuclear aggregate formation and cell death, either SUMO-1 or DeltaSUMO-1, which is a SUMOlylation defective mutant lacking the C-terminal motif, was co-transfected with atrophin-1 with expanded polyglutamine stretches. Co-transfection of DeltaSUMO-1 decreased number of the cells with nuclear aggregates and consequent apoptosis of PC12 cells, both of which were markedly enhanced by co-transfection of SUMO-1 with atrophin-1 with expanded polyglutamine stretches. These results suggest that SUMO-1 is implicated in the pathogenesis of DRPLA and accelerates aggregate formation and cell death.
Collapse
Affiliation(s)
- Tomoya Terashima
- Division of Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | |
Collapse
|
228
|
Abstract
The expansion of a CAG repeat is a common causative gene mutation in several hereditary neurodegenerative disorders, including dentatorubral-pallidoluysian atrophy (DRPLA). Although, in DRPLA, it is revealed that the variety of clinical manifestations is related to the variable expansion of the CAG repeat, there are still many problems in the correlation between the symptoms and neuropathologic findings. Recent immunohistochemical studies have revealed that diffuse intranuclear accumulation of mutant proteins with expanded polyglutamine stretches is a significant pathology in DRPLA, and involves a wide range of the CNS regions far beyond the lesion distribution previously established by neuronal loss. This novel pathology may become a clue for elucidating molecular mechanisms of neuronal dysfunction and establishing clinicopathological correlations in CAG-repeat diseases.
Collapse
Affiliation(s)
- Mitsunori Yamada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan.
| | | | | |
Collapse
|
229
|
Purification of polyglutamine aggregates and identification of elongation factor-1alpha and heat shock protein 84 as aggregate-interacting proteins. J Neurosci 2002. [PMID: 12417652 DOI: 10.1523/jneurosci.22-21-09267.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aggregates of green fluorescent protein (GFP)-fused truncated N-terminal huntingtin containing abnormally long polyglutamine tracts (150 repeats of glutamine residue) were purified from an ecdysone-inducible mutant neuro2A cell line (HD150Q-28) by using a fluorescence-activated cell sorter. To analyze the aggregate-interacting proteins, we subjected the purified aggregates to SDS-PAGE; prominent protein bands in the gel were digested with Achromobactor lysyl endopeptidase, followed by a HPLC-mass spectrometry (MS) analysis. The resulting data of tandem MS analysis revealed that, in addition to ubiquitin and widely reported chaperone proteins such as heat shock cognate 70 (HSC70), human DNA J-1 (HDJ-1), and HDJ-2, the translational elongation factor-1alpha (EF-1alpha) and heat shock protein 84 (HSP84) also were recognized as aggregate-interacting proteins. Sequestration of these proteins to aggregates was confirmed further by several immunochemical methods. We confirmed that, in addition to the other known proteins, EF-1alpha and HSP84 also colocalized with the intracellular aggregates. An assay of the transient expression of EF-1alpha and HSP84 in HD150Q-28 cells revealed that both proteins improved cell viability. Moreover, the rate of aggregate formation decreased in both transfectants. Our study suggests that both EF-1alpha and HSP84 are involved in the neurodegenerative process of polyglutamine diseases.
Collapse
|
230
|
Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C, Weil PA, Davidson I. Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain. J Biol Chem 2002; 277:45510-7. [PMID: 12237303 DOI: 10.1074/jbc.m206556200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Yeast TFIID comprises the TATA binding protein and 14 TBP-associated factors (TAF(II)s), nine of which contain histone-fold domains (HFDs). The C-terminal region of the TFIID-specific yTAF4 (yTAF(II)48) containing the HFD shares strong sequence similarity with Drosophila (d)TAF4 (dTAF(II)110) and human TAF4 (hTAF(II)135). A structure/function analysis of yTAF4 demonstrates that the HFD, a short conserved C-terminal domain (CCTD), and the region separating them are all required for yTAF4 function. Temperature-sensitive mutations in the yTAF4 HFD alpha2 helix or the CCTD can be suppressed upon overexpression of yTAF12 (yTAF(II)68). Moreover, coexpression in Escherichia coli indicates direct yTAF4-yTAF12 heterodimerization optimally requires both the yTAF4 HFD and CCTD. The x-ray crystal structure of the orthologous hTAF4-hTAF12 histone-like heterodimer indicates that the alpha3 region within the predicted TAF4 HFD is unstructured and does not correspond to the bona fide alpha3 helix. Our functional and biochemical analysis of yTAF4, rather provides strong evidence that the HFD alpha3 helix of the TAF4 family lies within the CCTD. These results reveal an unexpected and novel HFD organization in which the alpha3 helix is separated from the alpha2 helix by an extended loop containing a conserved functional domain.
Collapse
Affiliation(s)
- Sylvie Thuault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Boîte Postale 163 67404 Illkirch Cédex, Communauté Urbaine de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Yamada M, Sato T, Tsuji S, Takahashi H. Oligodendrocytic polyglutamine pathology in dentatorubral-pallidoluysian atrophy. Ann Neurol 2002; 52:670-4. [PMID: 12402270 DOI: 10.1002/ana.10352] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
White matter degeneration is one of the pathological conditions of dentatorubral-pallidoluysian atrophy. Autopsy brains exhibited a reduced number of glial cells in the lesions and an involvement of oligodendrocytes in nuclear inclusion formation, which previously has been recognized only as a pathological hallmark in neurons. Dentatorubral-pallidoluysian atrophy transgenic mice showed an increased number of affected glias with increasing age and with larger expansions of CAG repeats. These findings suggest that glial cells in dentatorubral-pallidoluysian atrophy also are involved in the polyglutamine pathogenesis.
Collapse
Affiliation(s)
- Mitsunori Yamada
- Department of Pathology, Brain Research Institute, Niigata University, 1 Asahimachi, Niigata 951-8585, Japan.
| | | | | | | |
Collapse
|
232
|
Eckardstein SV, Schmidt A, Kamischke A, Simoni M, Gromoll J, Nieschlag E. CAG repeat length in the androgen receptor gene and gonadotrophin suppression influence the effectiveness of hormonal male contraception. Clin Endocrinol (Oxf) 2002; 57:647-55. [PMID: 12390340 DOI: 10.1046/j.1365-2265.2002.01652.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Nonuniformity in suppression of spermatogenesis induced by various hormones or hormone combinations has impeded the development of an effective hormonal male contraceptive. The basis for this heterogeneity in response remained unresolved to date; however, the presence of ethnic differences points to an involvement of genetic factors. PATIENTS AND MEASUREMENTS In a retrospective analysis we investigated the impact of a CAG repeat polymorphism in the androgen receptor and polymorphic sites in the oestrogen and FSH receptor genes on spermatogenic suppression in 85 Caucasian men treated with different regimens of hormonal contraception. RESULTS Failure to reduce sperm concentrations below 3 million/ml was significantly associated with insufficient suppression of gonadotrophins. The extent of gonadotrophin suppression was not explained by any polymorphism but was primarily pharmacological, resulting from addition of gestagens to testosterone. When LH and FSH suppression was rapid and persistent none of the polymorphisms studied explained why some men failed to achieve azoospermia. In cases with incomplete gonadotrophin suppression the chances of becoming azoospermic were 2.5 times higher in men having more than 22 CAG repeats. CONCLUSIONS In summary, our analysis shows that in a subset of men, effective hormonal male contraception can be achieved even in the absence of complete gonadotrophin suppression.
Collapse
MESH Headings
- Adult
- Chi-Square Distribution
- Contraceptive Agents, Male/administration & dosage
- Contraceptives, Oral, Hormonal/administration & dosage
- Depression, Chemical
- Estrogen Receptor alpha
- Gonadotropins, Pituitary/blood
- Humans
- Male
- Odds Ratio
- Polymorphism, Genetic
- Receptors, Androgen/genetics
- Receptors, Estrogen/genetics
- Receptors, FSH/genetics
- Repetitive Sequences, Nucleic Acid
- Retrospective Studies
- Sperm Count
- Spermatogenesis/drug effects
- Statistics, Nonparametric
Collapse
|
233
|
Sato K, Murakami T, Hamakawa Y, Kamada H, Nagano I, Shoji M, Takata H, Nobukuni K, Ihara Y, Namba R, Hayabara T, Hirose S, Abe K. Selective colocalization of transglutaminase-like activity in ubiquitinated intranuclear inclusions of hereditary dentatorubral-pallidoluysian atrophy. Brain Res 2002; 952:327-30. [PMID: 12376195 DOI: 10.1016/s0006-8993(02)03244-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the role of transglutaminase (TG) in the pathophysiology of dentatorubral-pallidoluysian atrophy (DRPLA), the distributions of ubiquitin-positive neuronal intranuclear inclusions (Ub-NII) and TG activity were studied in three patients with DRPLA and four disease controls. In the cerebellar granule cells of DRPLA, 2.5-4.9% of neurons had Ub-NII, and 7.5-9.8% of them were TG positive. In the frontal cortex; however, the ratio of neurons with Ub-NII was relatively low compared with those in the cerebellar cortex, and no Ub-NII was TG positive. There was no distinct difference in the ratio of neurons with Ub-NII and their TG positivity between the cases with homozygous or heterozygous DRPLA patients. The selective and good colocalization of Ub-NII and TG in the cerebellar granule cells may reveal a role of TG in the neurodegenerative process in DRPLA.
Collapse
Affiliation(s)
- Keiko Sato
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Quinn PG. Mechanisms of basal and kinase-inducible transcription activation by CREB. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:269-305. [PMID: 12206454 DOI: 10.1016/s0079-6603(02)72072-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The cAMP response element (CRE)-binding protein (CREB) stimulates basal transcription of CRE-containing genes and mediates induction of transcription upon phosphorylation by protein kinases. The basal activity of CREB maps to a carboxy-terminal constitutive activation domain (CAD), whereas phosphorylation and inducibility map to a central, kinase-inducible domain (KID). The CAD interacts with and recruits the promoter recognition factor TFIID through an interaction with a specific TATA-binding-protein-associated factor (TAF), dTAFII110/ hTAFII135. Interaction between the TAF and the CAD is mediated by a central cluster of hydrophobic amino acids, mutation of which disrupts TAF binding, polymerase recruitment, and transcription activation. Assessment of the contributions of the CAD and KID to recruitment of the polymerase complex versus enhancement of subsequent reaction steps (isomerization, promoter clearance, and reinitiation) showed that the CAD and P-KID act in a concerted mechanism to stimulate transcription. The CAD, but not the KID, mediated recruitment of a complex containing components of a transcription initiation complex, including pol II, IIB, and IID. However, the CAD was relatively ineffective in stimulating subsequent steps in the reaction mechanism. In contrast, phosphorylation of the KID in CREB effectively stimulated isomerization of the recruited polymerase complex and multiple-round transcription. A model for the activation of transcription by phosphorylated CREB is proposed, in which the polymerase is recruited by interaction of the CAD with TFIID and the recruited polymerase is activated further by phosphorylation of the KID in CREB.
Collapse
Affiliation(s)
- Patrick G Quinn
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
235
|
Kimura Y, Koitabashi S, Kakizuka A, Fujita T. Circumvention of chaperone requirement for aggregate formation of a short polyglutamine tract by the co-expression of a long polyglutamine tract. J Biol Chem 2002; 277:37536-41. [PMID: 12161426 DOI: 10.1074/jbc.m201721200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyglutamine disease is now recognized as one of the conformational, amyloid-related diseases. In this disease, polyglutamine expansion in proteins has toxic effects on cells and also results in the formation of aggregates. Polyglutamine aggregate formation is accompanied by conversion of the polyglutamine from a soluble to an insoluble form. In yeast, the efficiency of the aggregate formation is determined by the balance of various parameters, including the length of the polyglutamine tract, the function of Hsp104, and the level of polyglutamine expression. In this study, we found that the co-expression of a long polyglutamine tract, which formed aggregates independently of the function of Hsp104, enhanced the formation of aggregates of a short polyglutamine tract in wild-type cells as well as in Deltahsp104 mutant cells. Thus, the expression of a long polyglutamine tract would be an additional parameter determining the efficiency of aggregate formation of a short polyglutamine tract. The co-localization of aggregates of long and short polyglutamine tracts suggests the possibility that the enhancement occurs due to the seeding of aggregates of the long polyglutamine tracts.
Collapse
Affiliation(s)
- Yoko Kimura
- Department of Tumor Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo, Tokyo 113-8613, Japan.
| | | | | | | |
Collapse
|
236
|
Sun B, Fan W, Balciunas A, Cooper JK, Bitan G, Steavenson S, Denis PE, Young Y, Adler B, Daugherty L, Manoukian R, Elliott G, Shen W, Talvenheimo J, Teplow DB, Haniu M, Haldankar R, Wypych J, Ross CA, Citron M, Richards WG. Polyglutamine repeat length-dependent proteolysis of huntingtin. Neurobiol Dis 2002; 11:111-22. [PMID: 12460551 DOI: 10.1006/nbdi.2002.0539] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amino-terminal fragments of huntingtin, which contain the expanded polyglutamine repeat, have been proposed to contribute to the pathology of Huntington's disease (HD). Data supporting this claim have been generated from patients with HD in which truncated amino-terminal fragments forming intranuclear inclusions have been observed, and from animal and cell-based models of HD where it has been demonstrated that truncated polyglutamine-containing fragments of htt are more toxic than full-length huntingtin. We report here the identification of a region within huntingtin, spanning from amino acids 63 to 111, that is cleaved in cultured cells to generate a fragment of similar size to those observed in patients with HD. Importantly, proteolytic cleavage within this region appears dependent upon the length of the polyglutamine repeat within huntingtin, with pathological polyglutamine repeat-containing huntingtin being more efficiently cleaved than huntingtin containing polyglutamine repeats of nonpathological size.
Collapse
Affiliation(s)
- Banghua Sun
- Amgen Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Takeuchi H, Kobayashi Y, Yoshihara T, Niwa JI, Doyu M, Ohtsuka K, Sobue G. Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res 2002; 949:11-22. [PMID: 12213295 DOI: 10.1016/s0006-8993(02)02568-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations of the superoxide dismutase 1 (SOD1) gene cause familial amyotrophic lateral sclerosis (FALS). Intracytoplasmic aggregate formation consisting of mutant SOD1 is the histological hallmark of FALS. Since a previous report revealed that Hsp70 reduced aggregate formation and cell death in a cell model of FALS, here we examined the combined effects of Hsp70 and its cofactor, Hsp40, on a cell model of FALS. The combination of Hsp70 and Hsp40 reduced intracytoplasmic aggregates and markedly improved neurite outgrowth. They also prevented cell death to a relatively lesser extent. Neurite outgrowth was recognized almost exclusively in the cells without intracytoplasmic aggregates. Hsp70 and Hsp40 were upregulated in cells expressing mutant SOD1, and were colocalized with intracytoplasmic aggregates of mutant SOD1. These findings suggest that heat shock proteins (HSPs) promote neurite outgrowth by suppressing intracytoplasmic aggregate formation and restoring cellular dysfunctions. This is the first demonstration that overexpression of HSPs improved neurite outgrowth as it suppressed intracytoplasmic aggregate formation and cell death in a cultured neuronal cell model of FALS. These findings may provide a basis for the utilization of HSPs in developing a treatment for FALS.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
One of the most surprising discoveries of the past decade (at least in the field of neurodegeneration) was that protein misfolding underlies several seemingly disparate neurological diseases. Animal models were crucial to this discovery. In this article, we will discuss the CAG repeat diseases, the tauopathies and Parkinson disease, highlighting how mouse and fly models have contributed to our understanding of pathogenesis. In each case, we will stress what has been learned about the role of protein clearance and the questions that remain about how misfolded proteins acquire their toxicity.
Collapse
Affiliation(s)
- Huda Y Zoghbi
- Depts of Pediatrics, Neurology, and Molecular and Human Genetics, and Howard Hughes Medical Institute, Baylor College of Medicine, 77030, Houston, TX, USA
| | | |
Collapse
|
239
|
Chai Y, Shao J, Miller VM, Williams A, Paulson HL. Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis. Proc Natl Acad Sci U S A 2002; 99:9310-5. [PMID: 12084819 PMCID: PMC123137 DOI: 10.1073/pnas.152101299] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Protein misfolding and aggregation are central features of the polyglutamine neurodegenerative disorders, but the dynamic properties of expanded polyglutamine proteins are poorly understood. Here, we use fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) with green fluorescent protein fusion proteins to study polyglutamine protein kinetics in living cells. Our results reveal markedly divergent mobility states for an expanded polyglutamine protein, ataxin-3, and establish that nuclear inclusions formed by this protein are aggregates. Additional studies of green fluorescent protein-tagged cAMP response element binding protein coexpressed with either of two mutant polyglutamine proteins, ataxin-3 and huntingtin, support a model of disease in which coaggregation of transcriptional components contributes to pathogenesis. Finally, studies of a third polyglutamine disease protein, ataxin-1, reveal unexpected heterogeneity in the dynamics of inclusions formed by different disease proteins, a finding which may help explain disease-specific elements of pathogenesis in these neurodegenerative disorders.
Collapse
Affiliation(s)
- Yaohui Chai
- Department of Neurology, 3160 Medical Labs, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
240
|
Freiman RN, Tjian R. Neurodegeneration. A glutamine-rich trail leads to transcription factors. Science 2002; 296:2149-50. [PMID: 12077389 DOI: 10.1126/science.1073845] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Richard N Freiman
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
241
|
Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002; 296:2238-43. [PMID: 11988536 DOI: 10.1126/science.1072613] [Citation(s) in RCA: 518] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by expansion of a polyglutamine tract in the huntingtin protein. Transcriptional dysregulation has been implicated in HD pathogenesis. Here, we report that huntingtin interacts with the transcriptional activator Sp1 and coactivator TAFII130. Coexpression of Sp1 and TAFII130 in cultured striatal cells from wild-type and HD transgenic mice reverses the transcriptional inhibition of the dopamine D2 receptor gene caused by mutant huntingtin, as well as protects neurons from huntingtin-induced cellular toxicity. Furthermore, soluble mutant huntingtin inhibits Sp1 binding to DNA in postmortem brain tissues of both presymptomatic and affected HD patients. Understanding these early molecular events in HD may provide an opportunity to interfere with the effects of mutant huntingtin before the development of disease symptoms.
Collapse
Affiliation(s)
- Anthone W Dunah
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Center for Aging, Genetics and Neurodegeneration, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Enokido Y, Maruoka H, Hatanaka H, Kanazawa I, Okazawa H. PQBP-1 increases vulnerability to low potassium stress and represses transcription in primary cerebellar neurons. Biochem Biophys Res Commun 2002; 294:268-71. [PMID: 12051705 DOI: 10.1016/s0006-291x(02)00477-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PQBP-1 is a polyglutamine tract binding protein implicated in transcription. We previously reported that PQBP-1 and mutant ataxin-1, product of the spinocerebellar atrophy type 1 (SCA1) causative gene, cooperatively induce cell death in culture cells. Simultaneously, we showed that mutant ataxin-1 promoted interaction between PQBP-1 and RNA polymerase II and enhanced repression of the basal transcription by PQBP-1. In this study, we have examined the effects of overexpression of PQBP-1 to the primary-cultured cerebellar neurons. Our results indicate that overexpression of PQBP-1 inhibits the basal transcription in cerebellar neurons and increases their vulnerability to low potassium conditions.
Collapse
Affiliation(s)
- Y Enokido
- Division of Protein Biosynthesis, Institute for Protein Research, Osaka University, Japan
| | | | | | | | | |
Collapse
|
243
|
Okazawa H, Rich T, Chang A, Lin X, Waragai M, Kajikawa M, Enokido Y, Komuro A, Kato S, Shibata M, Hatanaka H, Mouradian MM, Sudol M, Kanazawa I. Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death. Neuron 2002; 34:701-13. [PMID: 12062018 DOI: 10.1016/s0896-6273(02)00697-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PQBP-1 was isolated on the basis of its interaction with polyglutamine tracts. In this study, using in vitro and in vivo assays, we show that the association between ataxin-1 and PQBP-1 is positively influenced by expanded polyglutamine sequences. In cell lines, interaction between the two molecules induces apoptotic cell death. As a possible mechanism underlying this phenomenon, we found that mutant ataxin-1 enhances binding of PQBP-1 to the C-terminal domain of RNA polymerase II large subunit (Pol II). This reduces the level of phosphorylated Pol II and transcription. Our results suggest the involvement of PQBP-1 in the pathology of spinocerebellar ataxia type 1 (SCA1) and support the idea that modified transcription underlies polyglutamine-mediated pathology.
Collapse
Affiliation(s)
- Hitoshi Okazawa
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Toyoshima I, Sugawara M, Kato K, Wada C, Shimohata T, Koide R, Onodera O, Tsuji S. Time course of polyglutamine aggregate body formation and cell death: enhanced growth in nucleus and an interval for cell death. J Neurosci Res 2002; 68:442-8. [PMID: 11992470 DOI: 10.1002/jnr.10233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyglutamine (polyQ) aggregate bodies are a hallmark of dentatorubral-pallidoluysian atrophy and related neurodegenerative disorders, although the relationship between aggregate body formation and cell death is not clear. We analyzed the kinetics of polyQ aggregate formation and the time intervals for cell death, tracking individual cells using fluorescence video microscopy, for the first time. Expanded polyQ tracts of atrophin-1 with or without nuclear localization signal (NLS) labeled with green fluorescent protein (GFP) were constructed, Q57NLS/GFP and Q56/GFP, respectively. All of the Q57NLS/GFP aggregate bodies were in nuclei, and all of the Q56/GFP aggregate bodies were in cytoplasm. Aggregates of Q56/GFP were larger than those of Q57NLS/GFP. Surprisingly, a kinetic analysis showed that the latter grew 5.37 times faster than the former. The time interval between transfection and cell death was shorter in Q57NLS/GFP, but the time between the end of the rapid growing phase of aggregation and the start of the cell death process did not show a significant difference. Aggregate growth was confirmed to correspond to the accumulated free polyQ by the time of starting aggregation. These findings suggest that aggregate body formation induced by expanded polyQ stretches is a self-limiting process and is enhanced by factor(s) in nuclei, whereas it is not tightly bound to the cell death process.
Collapse
Affiliation(s)
- I Toyoshima
- Department of Internal Medicine, Akita University School of Medicine, Akita, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Shimohata T, Sato A, Burke JR, Strittmatter WJ, Tsuji S, Onodera O. Expanded polyglutamine stretches form an 'aggresome'. Neurosci Lett 2002; 323:215-8. [PMID: 11959423 DOI: 10.1016/s0304-3940(02)00162-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To understand the pathogenetic mechanisms underlying polyglutamine (polyQ) diseases, we investigated the mechanisms of the formation of aggregate bodies containing expanded polyQ stretches, focusing on dentatorubral-pallidoluysian atrophy (DRPLA). We demonstrated that the expression of a truncated DRPLA protein containing expanded polyQ stretches in COS-7 cells resulted in the formation of perinuclear aggregate bodies that are co-localized with gamma-tubulin, a protein marker for the microtubules-organizing center (MTOC). A collapsed vimentin network surrounded these aggregate bodies. Furthermore, disruption of the microtubules (MTs) with nocodazole resulted in the formation of small aggregate bodies that were scattered throughout the cytoplasm. These findings suggest that the truncated DRPLA proteins containing expanded polyQ stretches unfold and form small aggregate bodies in the cell periphery. These aggregates move on MTs to the MTOC, where they remain as distinct 'aggresomes''.
Collapse
Affiliation(s)
- Takayoshi Shimohata
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8181, Japan
| | | | | | | | | | | |
Collapse
|
246
|
Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schütz G. Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 2002; 31:47-54. [PMID: 11967539 DOI: 10.1038/ng882] [Citation(s) in RCA: 543] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Control of cellular survival and proliferation is dependent on extracellular signals and is a prerequisite for ordered tissue development and maintenance. Activation of the cAMP responsive element binding protein (CREB) by phosphorylation has been implicated in the survival of mammalian cells. To define its roles in the mouse central nervous system, we disrupted Creb1 in brain of developing and adult mice using the Cre/loxP system. Mice with a Crem(-/-) background and lacking Creb in the central nervous system during development show extensive apoptosis of postmitotic neurons. By contrast, mice in which both Creb1 and Crem are disrupted in the postnatal forebrain show progressive neurodegeneration in the hippocampus and in the dorsolateral striatum. The striatal phenotype is reminiscent of Huntington disease and is consistent with the postulated role of CREB-mediated signaling in polyglutamine-triggered diseases.
Collapse
Affiliation(s)
- Theo Mantamadiotis
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
|
248
|
Ueda H, Goto J, Hashida H, Lin X, Oyanagi K, Kawano H, Zoghbi HY, Kanazawa I, Okazawa H. Enhanced SUMOylation in polyglutamine diseases. Biochem Biophys Res Commun 2002; 293:307-13. [PMID: 12054600 DOI: 10.1016/s0006-291x(02)00211-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small ubiquitin-like modifiers (SUMOs) are proteins homologous to ubiquitin that possibly regulate intranuclear protein localization, nuclear transport, and ubiquitination. We examined patients of DRPLA, SCA1, MJD, and Huntington's disease and found that neurons in affected regions of the brain react strongly to SUMO-1, a family member of SUMOs. Western blot with a transgenic mouse expressing mutant ataxin-1 showed the increase of SUMOylated proteins in the cerebellar cortex, which we named ESCA1 and ESCA2. These results indicated activation of SUMO-1 system in polyglutamine diseases and predicted its involvement in the pathology.
Collapse
Affiliation(s)
- Hiroko Ueda
- Department of Molecular Therapeutics, Tokyo Metropolitan, Institute for Neuroscience, 2-6, Musashi-dai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HD gene. The expanded repeats are translated into an abnormally long polyglutamine tract close to the N-terminus of the HD gene product, huntingtin. Studies in mouse models and human suggest that the mutation is associated with a deleterious gain of function. There is now a wide range of mouse models for HD, providing important insights into processes associated with disease pathogenesis. These models have been complemented by studies in Drosophila and Caenorhabditis elegans that have allowed the identification of possible modifier loci through suppressor screens.
Collapse
Affiliation(s)
- David C Rubinsztein
- Dept of Medical Genetics, Cambridge Institute of Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK.
| |
Collapse
|
250
|
Li SH, Cheng AL, Zhou H, Lam S, Rao M, Li H, Li XJ. Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol 2002; 22:1277-87. [PMID: 11839795 PMCID: PMC134707 DOI: 10.1128/mcb.22.5.1277-1287.2002] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyglutamine expansion causes Huntington disease (HD) and at least seven other neurodegenerative diseases. In HD, N-terminal fragments of huntingtin with an expanded glutamine tract are able to aggregate and accumulate in the nucleus. Although intranuclear huntingtin affects the expression of numerous genes, the mechanism of this nuclear effect is unknown. Here we report that huntingtin interacts with Sp1, a transcription factor that binds to GC-rich elements in certain promoters and activates transcription of the corresponding genes. In vitro binding and immunoprecipitation assays show that polyglutamine expansion enhances the interaction of N-terminal huntingtin with Sp1. In HD transgenic mice (R6/2) that express N-terminal-mutant huntingtin, Sp1 binds to the soluble form of mutant huntingtin but not to aggregated huntingtin. Mutant huntingtin inhibits the binding of nuclear Sp1 to the promoter of nerve growth factor receptor and suppresses its transcriptional activity in cultured cells. Overexpression of Sp1 reduces the cellular toxicity and neuritic extension defects caused by intranuclear mutant huntingtin. These findings suggest that the soluble form of mutant huntingtin in the nucleus may cause cellular dysfunction by binding to Sp1 and thus reducing the expression of Sp1-regulated genes.
Collapse
Affiliation(s)
- Shi-Hua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|