201
|
Niklison-Chirou MV, Agostini M, Amelio I, Melino G. Regulation of Adult Neurogenesis in Mammalian Brain. Int J Mol Sci 2020; 21:ijms21144869. [PMID: 32660154 PMCID: PMC7402357 DOI: 10.3390/ijms21144869] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways. Here, we review recent findings that advance our knowledge in epigenetic, transcriptional and metabolic regulation of adult neurogenesis in the SGZ of the hippocampus, with a special attention to the p53-family of transcription factors.
Collapse
Affiliation(s)
- Maria Victoria Niklison-Chirou
- Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK;
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.A.); (I.A.)
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.A.); (I.A.)
- School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.A.); (I.A.)
- Correspondence:
| |
Collapse
|
202
|
Robustaflavone induces G0/G1 cell cycle arrest and apoptosis in human umbilical vein endothelial cells and exhibits anti-angiogenic effects in vivo. Sci Rep 2020; 10:11070. [PMID: 32632123 PMCID: PMC7338547 DOI: 10.1038/s41598-020-67993-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
We investigated the anti-angiogenic and pro-apoptotic effects of robustaflavone (RF), a naturally occurring biflavonoid, on human umbilical vein endothelial cells (HUVECs). RF inhibited HUVEC proliferation and showed cytotoxicity that inhibited HUVEC viability. RF-induced apoptosis was characterized by flow cytometry and caspase 3 analysis. We found that RF increased the number of sub-G1 cells and terminal deoxynucleotidyl transferase dUTP nick end-labeled cells. Additionally, RF induced caspase 3 and poly (ADP-ribose) polymerase activation. Potential molecular targets were identified using a human apoptosis antibody array. RF upregulated Bax, Bad, cleaved caspase 3, p21, and phosphorylated p53 levels. RF induced mitochondrial membrane potential loss and the release of cytochrome c and apoptosis-inducing factor. Cell cycle arrest at G0/G1 phase and the downregulation of Cdk4, Cdk6, and cyclin D1 expression were induced by RF. In vivo anti-angiogenic effects were investigated using a tumor allograft animal model and a Matrigel plug assay. RF reduced the volumes and weights of CT-26 cell-derived tumors. The blood vessel density was significantly decreased in RF-treated tumors. RF also inhibited VEGF-A-stimulated blood vessel formation in vivo in Matrigel plugs. These results suggest that RF can potentially inhibit angiogenesis-dependent tumor growth and metastasis.
Collapse
|
203
|
Branca JA, Low BE, Saxl RL, Sargent JK, Doty RA, Wiles MV, Dumont BL, Hasham MG. Loss of TRP53 (p53) accelerates tumorigenesis and changes the tumor spectrum of SJL/J mice. Genes Cancer 2020; 11:83-94. [PMID: 32577159 PMCID: PMC7289902 DOI: 10.18632/genesandcancer.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background—SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin’s-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model.
Collapse
Affiliation(s)
| | | | - Ruth L Saxl
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | | | | | | | |
Collapse
|
204
|
Buckley N, Panatta E, Morone N, Noguchi M, Scorrano L, Knight RA, Amelio I, Melino G. P73 C-terminus is dispensable for multiciliogenesis. Cell Cycle 2020; 19:1833-1845. [PMID: 32584647 DOI: 10.1080/15384101.2020.1783055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The p53 family transcriptional factor p73 plays a pivotal role in development. Ablation of p73 results in severe neurodevelopmental defects, chronic infections, inflammation and infertility. In addition to this, Trp73-\- mice display severe alteration in the ciliated epithelial lining and the full-length N-terminal isoform TAp73 has been implicated in the control of multiciliogenesis transcriptional program. With our recently generated Trp73Δ13/Δ13 mouse model, we interrogate the physiological role of p73 C-terminal isoforms in vivo. Trp73Δ13/Δ13 mice lack exon 13 in Trp73 gene, producing an ectopic switch from the C-terminal isoforms p73α to p73β. Trp73Δ13/Δ13 mice show a pattern of expression of TAp73 comparable to the wild-type littermates, indicating that the α to β switch does not significantly alter the expression of the gene in this cell type. Moreover, Trp73Δ13/Δ13 do not display any significant alteration in the airway ciliated epithelium, suggesting that in this context p73β can fully substitute the function of the longer isoform p73α. Similarly, Trp73Δ13/Δ13 ciliated epithelium of the brain ependyma also does appear defective. In this district however expression of TAp73 is not detectable, indicating that expression of the gene might be compensated by alternative mechanisms. Overall our work indicates that C-terminus p73 is dispensable for the multiciliogenesis program and suggests a possible tissue-specific effect of p73 alternative splicing.
Collapse
Affiliation(s)
- Niall Buckley
- Medical Research Council, Toxicology Unit, Department of Pathology, Cambridge University , Cambridge, UK
| | - Emanuele Panatta
- Medical Research Council, Toxicology Unit, Department of Pathology, Cambridge University , Cambridge, UK
| | - Nobuhiro Morone
- Medical Research Council, Toxicology Unit, Department of Pathology, Cambridge University , Cambridge, UK
| | | | - Luca Scorrano
- Department of Biology, University of Padua , Padua, Italy
| | - Richard A Knight
- Medical Research Council, Toxicology Unit, Department of Pathology, Cambridge University , Cambridge, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Department of Pathology, Cambridge University , Cambridge, UK.,Department of Experimental Medicine, TOR, University of Rome Tor Vergata , Rome, Italy.,School of Life Sciences, University of Nottingham , Nottingham, UK
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Department of Pathology, Cambridge University , Cambridge, UK.,Department of Experimental Medicine, TOR, University of Rome Tor Vergata , Rome, Italy
| |
Collapse
|
205
|
Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov 2020; 6:53. [PMID: 32595984 PMCID: PMC7305227 DOI: 10.1038/s41420-020-0287-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the second most frequent cause of cancer-related death globally. The main histological subtype is hepatocellular carcinoma (HCC), which is derived from hepatocytes. According to the epidemiologic studies, the most important risk factors of HCC are chronic viral infections (HBV, HCV, and HIV) and metabolic disease (metabolic syndrome). Interestingly, these carcinogenic factors that contributed to HCC are associated with MDM2-p53 axis dysfunction, which presented with inactivation of p53 and overactivation of MDM2 (a transcriptional target and negative regulator of p53). Mechanically, the homeostasis of MDM2-p53 feedback loop plays an important role in controlling the initiation and progression of HCC, which has been found to be dysregulated in HCC tissues. To maintain long-term survival in hepatocytes, hepatitis viruses have lots of ways to destroy the defense strategies of hepatocytes by inducing TP53 mutation and silencing, promoting MDM2 overexpression, accelerating p53 degradation, and stabilizing MDM2. As a result, genetic instability, chronic ER stress, oxidative stress, energy metabolism switch, and abnormalities in antitumor genes can be induced, all of which might promote hepatocytes' transformation into hepatoma cells. In addition, abnormal proliferative hepatocytes and precancerous cells cannot be killed, because of hepatitis viruses-mediated exhaustion of Kupffer cells and hepatic stellate cells (HSCs) and CD4+T cells by disrupting their MDM2-p53 axis. Moreover, inefficiency of hepatic immune response can be further aggravated when hepatitis viruses co-infected with HIV. Unlike with chronic viral infections, MDM2-p53 axis might play a dual role in glucolipid metabolism of hepatocytes, which presented with enhancing glucolipid catabolism, but promoting hepatocyte injury at the early and late stages of glucolipid metabolism disorder. Oxidative stress, fatty degeneration, and abnormal cell growth can be detected in hepatocytes that were suffering from glucolipid metabolism disorder, and all of which could contribute to HCC initiation. In this review, we focus on the current studies of the MDM2-p53 axis in HCC, and specifically discuss the impact of MDM2-p53 axis dysfunction by viral infection and metabolic disease in the transformation of normal hepatocytes into hepatoma cells. We also discuss the therapeutic avenues and potential targets that are being developed to normalize the MDM2-p53 axis in HCC.
Collapse
Affiliation(s)
- Hui Cao
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Zhijun Wang
- Department of Traditional Chinese Medicine, Putuo People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Wang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Wei Zhang
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030 China
| |
Collapse
|
206
|
Gatti V, Bernassola F, Talora C, Melino G, Peschiaroli A. The Impact of the Ubiquitin System in the Pathogenesis of Squamous Cell Carcinomas. Cancers (Basel) 2020; 12:cancers12061595. [PMID: 32560247 PMCID: PMC7352818 DOI: 10.3390/cancers12061595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin system is a dynamic regulatory pathway controlling the activity, subcellular localization and stability of a myriad of cellular proteins, which in turn affects cellular homeostasis through the regulation of a variety of signaling cascades. Aberrant activity of key components of the ubiquitin system has been functionally linked with numerous human diseases including the initiation and progression of human tumors. In this review, we will contextualize the importance of the two main components of the ubiquitin system, the E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs), in the etiology of squamous cell carcinomas (SCCs). We will discuss the signaling pathways regulated by these enzymes, emphasizing the genetic and molecular determinants underlying their deregulation in SCCs.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
- Correspondence:
| |
Collapse
|
207
|
Zhao Y, Kang X, Barsegian A, He J, Guzman A, Lau RP, Biniwale R, Wadhra M, Reemtsen B, Garg M, Halnon N, Quintero-Rivera F, Grody WW, Van Arsdell G, Nelson SF, Touma M. Gene-environment regulation of chamber-specific maturation during hypoxemic perinatal circulatory transition. J Mol Med (Berl) 2020; 98:1009-1020. [PMID: 32533200 DOI: 10.1007/s00109-020-01933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Chamber-specific and temporally regulated perinatal cardiac growth and maturation is critical for functional adaptation of the heart and may be altered significantly in response to perinatal stress, such as systemic hypoxia (hypoxemia), leading to significant pathology, even mortality. Understanding transcriptome regulation of neonatal heart chambers in response to hypoxemia is necessary to develop chamber-specific therapies for infants with cyanotic congenital heart defects (CHDs). We sought to determine chamber-specific transcriptome programming during hypoxemic perinatal circulatory transition. We performed transcriptome-wide analysis on right ventricle (RV) and left ventricle (LV) of postnatal day 3 (P3) mouse hearts exposed to perinatal hypoxemia. Hypoxemia decreased baseline differences between RV and LV leading to significant attenuation of ventricular patterning (AVP), which involved several molecular pathways, including Wnt signaling suppression and cell cycle induction. Notably, robust changes in RV transcriptome in hypoxemic condition contributed significantly to the AVP. Remarkably, suppression of epithelial mesenchymal transition (EMT) and dysregulation of the TP53 signaling were prominent hallmarks of the AVP genes in neonatal mouse heart. Furthermore, members of the TP53-related gene family were dysregulated in the hypoxemic RVs of neonatal mouse and cyanotic Tetralogy of Fallot hearts. Integrated analysis of chamber-specific transcriptome revealed hypoxemia-specific changes that were more robust in RVs compared with LVs, leading to previously uncharacterized AVP induced by perinatal hypoxemia. Remarkably, reprogramming of EMT process and dysregulation of the TP53 network contributed to transcriptome remodeling of neonatal heart during hypoxemic circulatory transition. These insights may enhance our understanding of hypoxemia-induced pathogenesis in newborn infants with cyanotic CHD phenotypes. KEY MESSAGES: During perinatal circulatory transition, transcriptome programming is a major driving force of cardiac chamber-specific maturation and adaptation to hemodynamic load and external environment. During hypoxemic perinatal transition, transcriptome reprogramming may affect chamber-specific growth and development, particularly in newborns with congenital heart defects (CHDs). Chamber-specific transcriptome changes during hypoxemic perinatal transition are yet to be fully elucidated. Systems-based analysis of hypoxemic neonatal hearts at postnatal day 3 reveals chamber-specific transcriptome signatures during hypoxemic perinatal transition, which involve attenuation of ventricular patterning (AVP) and repression of epithelial mesenchymal transition (EMT). Key regulatory circuits involved in hypoxemia response were identified including suppression of Wnt signaling, induction of cellular proliferation and dysregulation of TP53 network.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Xuedong Kang
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander Barsegian
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Jian He
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Alejandra Guzman
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Ryan P Lau
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Reshma Biniwale
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Madhuri Wadhra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian Reemtsen
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Meena Garg
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA
| | - Nancy Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Glen Van Arsdell
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stanley F Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marlin Touma
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles 675 Charles E. Young Dr S, 3762 MacDonald Research Laboratories, Los Angeles, CA, 90024, USA. .,Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Children's Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,The Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Stem Cell Institute, University of California Los Angeles, Los Angeles, CA, USA. .,Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
208
|
Abstract
Transcription factor p53 is activated in response to numerous stress stimuli in order to promote repair and survival or death of abnormal cells. For decades, regulatory mechanisms and downstream targets that execute the many biological functions of tumour suppressor p53 largely focused on the products of protein-coding genes. Recently, an entirely new class of molecules, termed long non-coding RNAs (lncRNAs), were discovered as key regulatory players in shaping p53 activity and biological outcomes. Many p53-regulated lncRNAs are now reported to either directly or indirectly intervene in p53-regulatory networks, generally in fine-tuning p53's tumour surveillance programme. Recent studies reveal that signals that converge upon p53 to regulate its activity, and molecules that implement downstream p53-response include both proteins and lncRNAs. In this review, we discuss the non-proteomic component of p53-regulatory networks, focusing on lncRNAs regulated by p53 and/or that regulate p53 activity, and their impact on biological outcomes.
Collapse
Affiliation(s)
- Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
209
|
Gupta R, Malvi P, Parajuli KR, Janostiak R, Bugide S, Cai G, Zhu LJ, Green MR, Wajapeyee N. KLF7 promotes pancreatic cancer growth and metastasis by up-regulating ISG expression and maintaining Golgi complex integrity. Proc Natl Acad Sci U S A 2020; 117:12341-12351. [PMID: 32430335 PMCID: PMC7275752 DOI: 10.1073/pnas.2005156117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a dismal prognosis. Currently, there is no effective therapy for PDAC, and a detailed molecular and functional evaluation of PDACs is needed to identify and develop better therapeutic strategies. Here we show that the transcription factor Krüppel-like factor 7 (KLF7) is overexpressed in PDACs, and that inhibition of KLF7 blocks PDAC tumor growth and metastasis in cell culture and in mice. KLF7 expression in PDACs can be up-regulated due to activation of a MAP kinase pathway or inactivation of the tumor suppressor p53, two alterations that occur in a large majority of PDACs. ShRNA-mediated knockdown of KLF7 inhibits the expression of IFN-stimulated genes (ISGs), which are necessary for KLF7-mediated PDAC tumor growth and metastasis. KLF7 knockdown also results in the down-regulation of Discs Large MAGUK Scaffold Protein 3 (DLG3), resulting in Golgi complex fragmentation, and reduced protein glycosylation, leading to reduced secretion of cancer-promoting growth factors, such as chemokines. Genetic or pharmacologic activation of Golgi complex fragmentation blocks PDAC growth and metastasis similar to KLF7 inhibition. Our results demonstrate a therapeutically amenable, KLF7-driven pathway that promotes PDAC growth and metastasis by activating ISGs and maintaining Golgi complex integrity.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Keshab Raj Parajuli
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233;
| |
Collapse
|
210
|
The S100B Protein and Partners in Adipocyte Response to Cold Stress and Adaptive Thermogenesis: Facts, Hypotheses, and Perspectives. Biomolecules 2020; 10:biom10060843. [PMID: 32486507 PMCID: PMC7356379 DOI: 10.3390/biom10060843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
In mammals, adipose tissue is an active secretory tissue that responds to mild hypothermia and as such is a genuine model to study molecular and cellular adaptive responses to cold-stress. A recent study identified a mammal-specific protein of the endoplasmic reticulum that is strongly induced in the inguinal subcutaneous white adipocyte upon exposure to cold, calsyntenin 3β (CLSTN3β). CLSTN3β regulates sympathetic innervation of thermogenic adipocytes and contributes to adaptive non-shivering thermogenesis. The calcium- and zinc-binding S100B is a downstream effector in the CLSTN3β pathways. We review, here, the literature on the transcriptional regulation of the S100b gene in adipocyte cells. We also rationalize the interactions of the S100B protein with its recognized or hypothesized intracellular (p53, ATAD3A, CYP2E1, AHNAK) and extracellular (Receptor for Advanced Glycation End products (RAGE), RPTPσ) target proteins in the context of adipocyte differentiation and adaptive thermogenesis. We highlight a chaperon-associated function for the intracellular S100B and point to functional synergies between the different intracellular S100B target proteins. A model of non-classical S100B secretion involving AHNAK/S100A10/annexin2-dependent exocytosis by the mean of exosomes is also proposed. Implications for related areas of research are noted and suggestions for future research are offered.
Collapse
|
211
|
Browning JWL, Rambo TME, McKay BC. Comparative genomic analysis of the 3' UTR of human MDM2 identifies multiple transposable elements, an RLP24 pseudogene and a cluster of novel repeat sequences that arose during primate evolution. Gene 2020; 741:144557. [PMID: 32171824 DOI: 10.1016/j.gene.2020.144557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/08/2020] [Indexed: 01/09/2023]
Abstract
The MDM2 oncogene is a negative regulator of the p53 tumour suppressor. This relationship appears to have originated over a billion years ago. The human MDM2 gene encodes a variety of mRNAs with exceptionally long 3'UTRs (up to 5.7 kb); however, it was unclear whether MDM2 3'UTRs from other species are similarly long or conserved at the sequence level. Here, we report that all but one of the primate species most closely related to humans (greater and lesser apes) have similarly long 3'UTRs with high sequence similarity across their entire length. More distantly related species (Old world monkeys and new world monkeys) tend to have shorter MDM2 3'UTRs homologous to the corresponding position of the human MDM2 3'UTR while non-primate species exhibit little similarity at all. Remarkably, DNA sequences downstream of the shorter primate 3'UTRs are syntenic with distal regions in the human and other ape MDM2 3'UTRs. These homologous non-transcribed intergenic and transcribed 3'UTR-encoding regions are comprised of a variety of transposable elements, an RLP24 pseudogene and a cluster of novel repeat sequences suggestive of another unknown transposable element. Our analysis suggests that the primary difference between long and short MDM2 3'UTRs is a switch in polyA site usage to include conserved transposable elements that remain intergenic in more distantly related primates. It will be important to determine the relative contribution of these elements to post-transcriptional and translational regulation of MDM2 and hence p53-mediated tumour suppression.
Collapse
Affiliation(s)
| | | | - Bruce C McKay
- Department of Biology and Institute of Biochemistry, Ottawa, ON, Canada.
| |
Collapse
|
212
|
Kim J, Chee WY, Yabuta N, Kajiwara K, Nada S, Okada M. Atg5-mediated autophagy controls apoptosis/anoikis via p53/Rb pathway in naked mole-rat fibroblasts. Biochem Biophys Res Commun 2020; 528:146-153. [PMID: 32451084 DOI: 10.1016/j.bbrc.2020.05.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
The naked mole-rat (NMR, Heterocephalus glaber) is the longest-living known rodent species, with a maximum lifespan of over 30 years. NMRs exhibit negligible senescence, exceptional resistance to cancer, and high basal autophagy activity compared with mouse. The molecular mechanisms and physiological roles underlying the high basal autophagy activity in NMRs remain to be elucidated. We identified that the Atg12-Atg5 conjugate, a critical component of autophagosome formation, was highly expressed in NMR skin fibroblasts (NSFs) compared with that in mouse skin fibroblasts. Phenotypic analysis of Atg5 knockdown NSFs revealed that high basal autophagy activity in NSFs was associated with abundant expression of the Atg12-Atg5 conjugate. Atg5 knockdown in NSFs led to accumulation of dysfunctional mitochondria, and suppressed cell proliferation and cell adhesion ability, promoting apoptosis/anoikis accompanied by upregulation of the apoptosis-related genes, Bax and Noxa. Furthermore, inhibition of the p53/Rb pro-apoptotic pathway with SV40 large T antigen abolished Atg5 knockdown-induced increases in apoptosis/anoikis. Taken together, these findings suggest that high basal autophagy activity in NMR cells, mediated by Atg5, contributes to suppression of p53/Rb-induced apoptosis, which could benefit the longevity of NMR cells.
Collapse
Affiliation(s)
- Junhyeong Kim
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Woei-Yaw Chee
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Yabuta
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Okada
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
213
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
214
|
Garcia da Silva AC, Rodrigues BDS, Andrade WM, Marques Dos Santos TR, de Carvalho FS, Sanz G, Vaz BG, Lião LM, Menegatti R, Valadares MC. Antiangiogenic and antitumoral activity of LQFM126 prototype against B16F10 melanoma cells. Chem Biol Interact 2020; 325:109127. [PMID: 32437695 DOI: 10.1016/j.cbi.2020.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
Inhibition of mouse double minute 2 homolog (MDM2)-p53 interaction and reactivation of p53 signaling have been explored as effective anticancer therapeutic strategy. The potent and specific antitumor activity shown by Nutlins, first class of MDM2-p53 inhibitors discovered, has made these compounds potential antitumor candidates. To this end, we synthesized Nutlin-1 and Nutlin-2 analogs through molecular simplification and selected the compound with the most efficient antitumoral activity. Cytotoxicity of Nutlin-2 analog LQFM126 on B16F10 melanoma cells induced intense cytoplasmic vacuolization, reduction of cell size, chromatin condensation, cytoplasmic degeneration and nuclear fragmentation. LQFM126 antiproliferative effects mediated cell cycle retention in G0/G1 phase and increased the levels of cell cycle regulatory proteins p21 and p27. This Nutlin analog increased mitochondrial membrane potential, activated caspase-8, -9 and -3/7 and reduced VEGF levels in B16F10 cells. Therefore, LQFM126 promoted alterations suggestive of apoptosis, G0/G1 cell cycle arrest and suppression of angiogenesis through modulation of VEGF expression in B16F10 cells. Additionally, LQFM126 was classified as UN GHS category 4 (LD50 > 300-2000 mg/kg), suggesting it has low acute systemic toxicity. LQFM126 can be a promising prototype for anticancer therapy.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Bruna Dos Santos Rodrigues
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Wanessa Machado Andrade
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Thaís Rosa Marques Dos Santos
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Germán Sanz
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Boniek G Vaz
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Luciano M Lião
- Institute of Chemistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Ricardo Menegatti
- Laboratory of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Marize Campos Valadares
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
215
|
Li W, Peng X, Lang J, Xu C. Targeting Mouse Double Minute 2: Current Concepts in DNA Damage Repair and Therapeutic Approaches in Cancer. Front Pharmacol 2020; 11:631. [PMID: 32477121 PMCID: PMC7232544 DOI: 10.3389/fphar.2020.00631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 01/14/2023] Open
Abstract
Defects in DNA damage repair may cause genome instability and cancer development. The tumor suppressor gene p53 regulates cell cycle arrest to allow time for DNA repair. The oncoprotein mouse double minute 2 (MDM2) promotes cell survival, proliferation, invasion, and therapeutic resistance in many types of cancer. The major role of MDM2 is to inhibit p53 activity and promote its degradation. In this review, we describe the influence of MDM2 on genomic instability, the role of MDM2 on releasing p53 and binding DNA repair proteins to inhibit repair, and the regulation network of MDM2 including its transcriptional modifications, protein stability, and localization following DNA damage in genome integrity maintenance and in MDM2-p53 axis control. We also discuss p53-dependent and p53 independent oncogenic function of MDM2 and the outcomes of clinical trials that have been used with clinical inhibitors targeting p53-MDM2 to treat certain cancers.
Collapse
Affiliation(s)
- Wen Li
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinhao Peng
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Xu
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
216
|
Uzdensky AB. Multifunctional Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
217
|
Folding and structural polymorphism of p53 C-terminal domain: One peptide with many conformations. Arch Biochem Biophys 2020; 684:108342. [DOI: 10.1016/j.abb.2020.108342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 11/19/2022]
|
218
|
Cassandri M, Butera A, Amelio I, Lena AM, Montanaro M, Mauriello A, Anemona L, Candi E, Knight RA, Agostini M, Melino G. ZNF750 represses breast cancer invasion via epigenetic control of prometastatic genes. Oncogene 2020; 39:4331-4343. [PMID: 32313225 DOI: 10.1038/s41388-020-1277-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
Breast cancer is the second leading cause of cancer-related deaths among women, largely due to the progression of a significant fraction of primary tumours to the metastatic stage. Here, we show that zinc-finger protein 750 (ZNF750) opposes the migration and invasion of breast cancer cells by repressing a prometastatic transcriptional programme, which includes genes involved in focal adhesion and extracellular matrix interactions, such as LAMB3 and CTNNAL1. Mechanistically, ZNF750 recruits the epigenetic modifiers KDM1A and HDAC1 to the promoter regions of LAMB3 and CTNNAL1, influencing histone marks and transactivating these genomic sites. Gene expression analysis in cancer patient datasets indicated that ZNF750 and its targets were negative prognostic factors in breast cancer. Together, our findings shed light on the molecular mechanism by which ZNF750 regulates cell migration and invasion, suggesting a role in breast cancer metastasis.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
- Department of Oncohematology, Bambino Gesu' Children's Hospital, 00146, Rome, Italy
| | - Alessio Butera
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
- Department of Pathology, MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
- IDI-IRCCS, via Monti di Creta, 106, 00166, Rome, Italy
| | - Richard A Knight
- Department of Pathology, MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Department of Pathology, MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
219
|
Amelio I, Melino G. Context is everything: extrinsic signalling and gain-of-function p53 mutants. Cell Death Discov 2020; 6:16. [PMID: 32218993 PMCID: PMC7090043 DOI: 10.1038/s41420-020-0251-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
The TP53 genomic locus is a target of mutational events in at least half of cancers. Despite several decades of study, a full consensus on the relevance of the acquisition of p53 gain-of-function missense mutants has not been reached. Depending on cancer type, type of mutations and other unidentified factors, the relevance for tumour development and progression of the oncogenic signalling directed by p53 mutants might significantly vary, leading to inconsistent observations that have fuelled a long and fierce debate in the field. Here, we discuss how interaction with the microenvironment and stressors might dictate the gain-of-function effects exerted by individual mutants. We report evidence from the most recent literature in support of the context dependency of p53 mutant biology. This perspective article aims to raise a discussion in the field on the relevance that context might have on p53 gain-of-function mutants, assessing whether this should generally be considered a cell non-autonomous process.
Collapse
Affiliation(s)
- Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome ’’Tor Vergata”, 00133 Rome, Italy
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome ’’Tor Vergata”, 00133 Rome, Italy
- Toxicology Unit, University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP UK
| |
Collapse
|
220
|
Feng P, Li L, Deng T, Liu Y, Ling N, Qiu S, Zhang L, Peng B, Xiong W, Cao L, Zhang L, Ye M. NONO and tumorigenesis: More than splicing. J Cell Mol Med 2020; 24:4368-4376. [PMID: 32168434 PMCID: PMC7176863 DOI: 10.1111/jcmm.15141] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The non-POU domain-containing octamer-binding protein NONO/p54nrb , which belongs to the Drosophila behaviour/human splicing (DBHS) family, is a multifunctional nuclear protein rarely functioning alone. Emerging solid evidences showed that NONO engages in almost every step of gene regulation, including but not limited to mRNA splicing, DNA unwinding, transcriptional regulation, nuclear retention of defective RNA and DNA repair. NONO is involved in many biological processes including cell proliferation, apoptosis, migration and DNA damage repair. Dysregulation of NONO has been found in many types of cancer. In this review, we summarize the current and fast-growing knowledge about the regulation of NONO, its biological function and implications in tumorigenesis and cancer progression. Overall, significant findings about the roles of NONO have been made, which might make NONO to be a new biomarker or/and a possible therapeutic target for cancers.
Collapse
Affiliation(s)
- Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Yan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Siyuan Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Lin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Bo Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Wei Xiong
- Ophthalmology and Eye Research Center, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| |
Collapse
|
221
|
Agostini M, Ganini C, Candi E, Melino G. The role of noncoding RNAs in epithelial cancer. Cell Death Discov 2020; 6:13. [PMID: 32194993 PMCID: PMC7067833 DOI: 10.1038/s41420-020-0247-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Regulatory noncoding RNAs (ncRNAs) are a class of RNAs transcribed by regions of the human genome that do not encode for proteins. The three main members of this class, named microRNA, long noncoding RNA, and circular RNA play a key role in the regulation of gene expression, eventually shaping critical cellular processes. Compelling experimental evidence shows that ncRNAs function either as tumor suppressors or oncogenes by participating in the regulation of one or several cancer hallmarks, including evading cell death, and their expression is frequently deregulated during cancer onset, progression, and dissemination. More recently, preclinical and clinical studies indicate that ncRNAs are potential biomarkers for monitoring cancer progression, relapse, and response to cancer therapy. Here, we will discuss the role of noncoding RNAs in regulating cancer cell death, focusing on those ncRNAs with a potential clinical relevance.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carlo Ganini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- IDI-IRCCS, Via Monti di Creta 106, 00166 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- MRC Toxicology Unit, University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP UK
| |
Collapse
|
222
|
p53 CRISPR Deletion Affects DNA Structure and Nuclear Architecture. J Clin Med 2020; 9:jcm9020598. [PMID: 32098416 PMCID: PMC7073688 DOI: 10.3390/jcm9020598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
The TP53 gene is a key tumor suppressor. Although the tumor suppressor p53 was one of the first to be characterized as a transcription factor, with its main function potentiated by its interaction with DNA, there are still many unresolved questions about its mechanism of action. Here, we demonstrate a novel role for p53 in the maintenance of nuclear architecture of cells. Using three-dimensional (3D) imaging and spectral karyotyping, as well as super resolution microscopy of DNA structure, we observe significant differences in 3D telomere signatures, DNA structure and DNA-poor spaces as well gains or losses of chromosomes, between normal and tumor cells with CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-deleted or wild-type TP53. Additionally, treatment with Nutlin-3 results in differences in nuclear architecture of telomeres in wild-type but not in p53 knockout MCF-7 (Michigan Cancer Foundation-7) cells. Nutlin-3 binds to the p53-binding pocket of mouse double minute 2 (MDM2) and blocks the p53-MDM2 interaction. Moreover, we demonstrate that another p53 stabilizing small molecule, RITA (reactivation of p53 and induction of tumor cell apoptosis), also induces changes in 3D DNA structure, apparently in a p53 independent manner. These results implicate p53 activity in regulating nuclear organization and, additionally, highlight the divergent effects of the p53 targeting compounds Nutlin-3 and RITA.
Collapse
|
223
|
Lan Y, Lou J, Hu J, Yu Z, Lyu W, Zhang B. Downregulation of SNRPG induces cell cycle arrest and sensitizes human glioblastoma cells to temozolomide by targeting Myc through a p53-dependent signaling pathway. Cancer Biol Med 2020; 17:112-131. [PMID: 32296580 PMCID: PMC7142844 DOI: 10.20892/j.issn.2095-3941.2019.0164] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: Temozolomide (TMZ) is commonly used for glioblastoma multiforme (GBM) chemotherapy. However, drug resistance limits its therapeutic effect in GBM treatment. RNA-binding proteins (RBPs) have vital roles in posttranscriptional events. While disturbance of RBP-RNA network activity is potentially associated with cancer development, the precise mechanisms are not fully known. The SNRPG gene, encoding small nuclear ribonucleoprotein polypeptide G, was recently found to be related to cancer incidence, but its exact function has yet to be elucidated. Methods:SNRPG knockdown was achieved via short hairpin RNAs. Gene expression profiling and Western blot analyses were used to identify potential glioma cell growth signaling pathways affected by SNRPG. Xenograft tumors were examined to determine the carcinogenic effects of SNRPG on glioma tissues. Results: The SNRPG-mediated inhibitory effect on glioma cells might be due to the targeted prevention of Myc and p53. In addition, the effects of SNRPG loss on p53 levels and cell cycle progression were found to be Myc-dependent. Furthermore, SNRPG was increased in TMZ-resistant GBM cells, and downregulation of SNRPG potentially sensitized resistant cells to TMZ, suggesting that SNRPG deficiency decreases the chemoresistance of GBM cells to TMZ via the p53 signaling pathway. Our data confirmed that SNRPG suppression sensitizes GBM cells to TMZ by targeting Myc via the p53 signaling cascade. Conclusions: These results indicated that SNRPG is a probable molecular target of GBM and suggested that suppressing SNRPG in resistant GBM cells might be a substantially beneficial method for overcoming essential drug resistance.
Collapse
Affiliation(s)
- Yulong Lan
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jiliang Hu
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Zhikuan Yu
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Wen Lyu
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Bo Zhang
- Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
224
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
225
|
Baudier J, Deloulme JC, Shaw GS. The Zn 2+ and Ca 2+ -binding S100B and S100A1 proteins: beyond the myths. Biol Rev Camb Philos Soc 2020; 95:738-758. [PMID: 32027773 DOI: 10.1111/brv.12585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
The S100 genes encode a conserved group of 21 vertebrate-specific EF-hand calcium-binding proteins. Since their discovery in 1965, S100 proteins have remained enigmatic in terms of their cellular functions. In this review, we summarize the calcium- and zinc-binding properties of the dimeric S100B and S100A1 proteins and highlight data that shed new light on the extracellular and intracellular regulation and functions of S100B. We point out that S100B and S100A1 homodimers are not functionally interchangeable and that in a S100A1/S100B heterodimer, S100A1 acts as a negative regulator for the ability of S100B to bind Zn2+ . The Ca2+ and Zn2+ -dependent interactions of S100B with a wide array of proteins form the basis of its activities and have led to the derivation of some initial rules for S100B recognition of protein targets. However, recent findings have strongly suggested that these rules need to be revisited. Here, we describe a new consensus S100B binding motif present in intracellular and extracellular vertebrate-specific proteins and propose a new model for stable interactions of S100B dimers with full-length target proteins. A chaperone-associated function for intracellular S100B in adaptive cellular stress responses is also discussed. This review may help guide future studies on the functions of S100 proteins in general.
Collapse
Affiliation(s)
- Jacques Baudier
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Aix Marseille Université, 13288, Marseille Cedex 9, France
| | - Jean Christophe Deloulme
- Grenoble Institut des Neurosciences, INSERM U1216, Université Grenoble Alpes, 38000, Grenoble, France
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| |
Collapse
|
226
|
Jang H, Park S, Kim J, Kim JH, Kim SY, Cho S, Park SG, Park BC, Kim S, Kim JH. The Tumor Suppressor, p53, Negatively Regulates Non-Canonical NF-κB Signaling through miRNAInduced Silencing of NF-κB-Inducing Kinase. Mol Cells 2020; 43:23-33. [PMID: 31870133 PMCID: PMC6999715 DOI: 10.14348/molcells.2019.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
NF-κB signaling through both canonical and non-canonical pathways plays a central role in immune responses and inflammation. NF-κB-inducing kinase (NIK) stabilization is a key step in activation of the non-canonical pathway and its dysregulation implicated in various hematologic malignancies. The tumor suppressor, p53, is an established cellular gatekeeper of proliferation. Abnormalities of the TP53 gene have been detected in more than half of all human cancers. While the non-canonical NF-κB and p53 pathways have been explored for several decades, no studies to date have documented potential cross-talk between these two cancer-related mechanisms. Here, we demonstrate that p53 negatively regulates NIK in an miRNA-dependent manner. Overexpression of p53 decreased the levels of NIK, leading to inhibition of the non-canonical NF-κB pathway. Conversely, its knockdown led to increased levels of NIK, IKKα phosphorylation, and p100 processing. Additionally, miR-34b induced by nutlin-3 directly targeted the coding sequences (CDS) of NIK. Treatment with anti-miR-34b-5p augmented NIK levels and subsequent non-canonical NF-κB signaling. Our collective findings support a novel cross-talk mechanism between non-canonical NF-κB and p53.
Collapse
Affiliation(s)
- Hanbit Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
| | - Seulki Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113,
Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jong Hwan Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141,
Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141,
Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974,
Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113,
Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113,
Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113,
Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113,
Korea
| |
Collapse
|
227
|
Ewunkem AJ, Deve M, Harrison SH, Muganda PM. Diepoxybutane induces the expression of a novel p53-target gene XCL1 that mediates apoptosis in exposed human lymphoblasts. J Biochem Mol Toxicol 2020; 34:e22446. [PMID: 31953984 DOI: 10.1002/jbt.22446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
Diepoxybutane (DEB) is the most potent active metabolite of the environmental chemical 1,3-butadiene (BD). BD is a human carcinogen that exhibits multiorgan systems toxicity. Our previous studies demonstrated that the X-C motif chemokine ligand 1 (XCL1) gene expression was upregulated 3.3-fold in a p53-dependent manner in TK6 lymphoblasts undergoing DEB-induced apoptosis. The tumor-suppressor p53 protein is a transcription factor that regulates a wide variety of cellular processes, including apoptosis, through its various target genes. Thus, the objective of this study was to determine whether XCL1 is a novel direct p53 transcriptional target gene and deduce its role in DEB-induced toxicity in human lymphoblasts. We utilized the bioinformatics tool p53scan to search for known p53 consensus sequences within the XCL1 promoter region. The XCL1 gene promoter region was found to contain the p53 consensus sequences 5'-AGACATGCCTAGACATGCCT-3' at three positions relative to the transcription start site (TSS). Furthermore, the XCL1 promoter region was found, through reporter gene assays, to be transactivated at least threefold by wild-type p53 promoter in DEB-exposed human lymphoblasts. Inactivation of the XCL1 promoter p53-binding motif located at -2.579 kb relative to TSS reduced the transactivation function of p53 on this promoter in DEB-exposed cells by 97%. Finally, knockdown of XCL1 messenger RNA with specific small interfering RNA inhibited DEB-induced apoptosis in human lymphoblasts by 50%. These observations demonstrate, for the first time, that XCL1 is a novel DEB-induced direct p53 transcriptional target gene that mediates apoptosis in DEB-exposed human lymphoblasts.
Collapse
Affiliation(s)
- Akamu J Ewunkem
- Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, North Carolina
| | - Maya Deve
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Scott H Harrison
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Perpetua M Muganda
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
228
|
Suzuki S, Tsutsumi S, Chen Y, Ozeki C, Okabe A, Kawase T, Aburatani H, Ohki R. Identification and characterization of the binding sequences and target genes of p53 lacking the 1st transactivation domain. Cancer Sci 2020; 111:451-466. [PMID: 31834974 PMCID: PMC7004532 DOI: 10.1111/cas.14279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor gene p53 encodes a transcriptional activator that has two transactivation domains (TAD) located in its amino terminus. These two TAD can transactivate genes independently, and at least one TAD is required for p53 transactivation function. The 1st TAD (a.a. 1‐40) is essential for the induction of numerous classical p53 target genes, while the second TAD (a.a. 41‐61) suffices for tumor suppression, although its precise molecular function remains unclear. In this study, we comprehensively identified the sites to which p53 lacking the 1st TAD (Δ1stTAD‐p53) binds, as well as its potential target genes. We found that the binding sequences for Δ1stTAD‐p53 are divergent and include not only the canonical p53 consensus binding sequences but also sequences similar to those recognized by a number of other known transcription factors. We identified and analyzed the functions of three Δ1stTAD‐p53 target genes, PTP4A1, PLK2 and RPS27L. All three genes were induced by both full‐length p53 and Δ1stTAD‐p53, and were dependent on the transactivation activity of the 2nd TAD. We also found that two of these, PTP4A1 and PLK2, are endoplasmic reticulum (ER) stress‐inducible genes. We found that upon ER stress, PTP4A1 suppresses apoptosis while PLK2 induces apoptosis. These results reveal a novel Δ1stTAD‐p53 downstream pathway that is dependent on the transcription activation activity of the 2nd TAD.
Collapse
Affiliation(s)
- Shiori Suzuki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yu Chen
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Chikako Ozeki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsushi Okabe
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Kawase
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
229
|
Campione E, Lanna C, Diluvio L, Cannizzaro MV, Grelli S, Galluzzo M, Talamonti M, Annicchiarico-Petruzzelli M, Mancini M, Melino G, Candi E, Schiavone G, Wang Y, Shi Y, Bianchi L. Skin immunity and its dysregulation in atopic dermatitis, hidradenitis suppurativa and vitiligo. Cell Cycle 2020; 19:257-267. [PMID: 31905036 DOI: 10.1080/15384101.2019.1707455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
While the epidermis is the frontline defense against infections and indeed, it is a peripheral lymphoid organ, the same immunological mechanisms may initiate and sustain pathological conditions. Indeed, a deregulated action against exogenous pathogens could activate a T cell response in atopic dermatitis, hidradenitis suppurativa and vitiligo. Atopic dermatitis (AD) is a chronic inflammatory skin condition with a complex pathophysiology. Although T helper 2 immunity dysregulation is thought to be the main cause of AD etiopathogenesis, the triggering mechanism is not well understood, and the treatment is often difficult. As the AD, hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with a dramatic impact on the quality of life of the affected patients. The exact pathophysiology of HS is still unclear, but many evidences report a follicular obstruction and subsequent inflammation with TNF-α, interleukin (IL)-1β, IL-10, and IL-17 involvement. Vitiligo is an autoimmune epidermal disorder which consists of melanocytes destruction and skin depigmentation. Melanocytes destruction is mainly due to their increased oxidative-stress sensitivity with a consequent activation of innate first and adaptative immunity (CD8+ T cells) later. The understanding of the triggering mechanisms of AD, HS and Vitiligo is pivotal to outline novel therapies aimed at regaining the physiological immune homeostasis of healthy skin. The aim of this review is to provide new insight on the pathogenesis of these skin diseases and to highlight on the new therapeutic approaches adopted in the treatment of AD, HS and Vitiligo.
Collapse
Affiliation(s)
- Elena Campione
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Lanna
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Diluvio
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marco Galluzzo
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marina Talamonti
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Mara Mancini
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Schiavone
- Plastic Surgery and Regenerative Surgery Unit, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine and Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Luca Bianchi
- Unit of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
230
|
Patiño-Morales CC, Soto-Reyes E, Arechaga-Ocampo E, Ortiz-Sánchez E, Antonio-Véjar V, Pedraza-Chaverri J, García-Carrancá A. Curcumin stabilizes p53 by interaction with NAD(P)H:quinone oxidoreductase 1 in tumor-derived cell lines. Redox Biol 2020; 28:101320. [PMID: 31526948 PMCID: PMC6807312 DOI: 10.1016/j.redox.2019.101320] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a natural phytochemical with potent anti-neoplastic properties including modulation of p53. Targeting p53 activity has been suggested as an important strategy in cancer therapy. The purpose of this study was to describe a mechanism by which curcumin restores p53 levels in human cancer cell lines. HeLa, SiHa, CaSki and MDA-MB-231 cells were exposed to curcumin and a pulse and chase and immunoprecipitation assays were performed. Here we showed that curcumin increases the half-life of p53 by a physical interaction between p53-NQO1 (p53 - NAD(P)H:quinone oxidoreductase 1) proteins after treatment with curcumin. Interestingly, the cell viability assay after treatment with curcumin showed that the cytotoxic activity was selectively higher in cervical cancer cells contained wild type p53 but not in breast cancer cells contained mutated p53. The cytotoxic effect of curcumin in cervical cancer cells was related to the complex p53-NQO1 that avoids the interaction between p53 and its negative regulator ubiquitin ligase E6-associated protein (E6AP). Finally, we demonstrated that in pancreatic epithelioid carcinoma cells (PANC1) that are knockout for NQO1, the reestablishment of NQO1 expression can stabilize p53 in presence of curcumin. Collectively, our findings showed that curcumin is necessary to promote the protein interaction of NQO1 with p53, therefore, it increases the half-life of p53, and permits the cytotoxic effect of curcumin in cancer cells containing wild type p53. Our findings suggest that the use of curcumin may reactivate the p53 pathway in cancer cells with p53 wild-type.
Collapse
Affiliation(s)
- Carlos César Patiño-Morales
- Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, 05300, Mexico; División de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, 14080, Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, 05300, Mexico
| | - Elena Arechaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, 05300, Mexico
| | - Elizabeth Ortiz-Sánchez
- División de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, 14080, Mexico
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo Guerrero, 39080, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, 14080, Mexico.
| |
Collapse
|
231
|
Chen SN, Lombardi R, Karmouch J, Tsai JY, Czernuszewicz G, Taylor MRG, Mestroni L, Coarfa C, Gurha P, Marian AJ. DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated With LMNA (Lamin A/C) Mutations. Circ Res 2019; 124:856-873. [PMID: 30696354 DOI: 10.1161/circresaha.118.314238] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Mutations in the LMNA gene, encoding LMNA (lamin A/C), are responsible for laminopathies. Dilated cardiomyopathy (DCM) is a major cause of mortality and morbidity in laminopathies. OBJECTIVE To gain insights into the molecular pathogenesis of DCM in laminopathies. METHODS AND RESULTS We generated a tet-off bigenic mice expressing either a WT (wild type) or a mutant LMNA (D300N) protein in cardiac myocytes. LMNAD300N mutation is associated with DCM in progeroid syndromes. Expression of LMNAD300N led to severe myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. Administration of doxycycline suppressed LMNAD300N expression and prevented the phenotype. Whole-heart RNA sequencing in 2-week-old WT and LMNAD300N mice led to identification of ≈6000 differentially expressed genes. Gene Set Enrichment and Hallmark Pathway analyses predicted activation of E2F (E2F transcription factor), DNA damage response, TP53 (tumor protein 53), NFκB (nuclear factor κB), and TGFβ (transforming growth factor-β) pathways, which were validated by Western blotting, quantitative polymerase chain reaction of selected targets, and immunofluorescence staining. Differentially expressed genes involved cell death, cell cycle regulation, inflammation, and epithelial-mesenchymal differentiation. RNA sequencing of human hearts with DCM associated with defined LMNA pathogenic variants corroborated activation of the DNA damage response/TP53 pathway in the heart. Increased expression of CDKN2A (cyclin-dependent kinase inhibitor 2A)-a downstream target of E2F pathway and an activator of TP53-provided a plausible mechanism for activation of the TP53 pathway. To determine pathogenic role of TP53 pathway in DCM, Tp53 gene was conditionally deleted in cardiac myocytes in mice expressing the LMNAD300N protein. Deletion of Tp53 partially rescued myocardial fibrosis, apoptosis, proliferation of nonmyocyte cells, left ventricular dilatation and dysfunction, and slightly improved survival. CONCLUSIONS Cardiac myocyte-specific expression of LMNAD300N, associated with DCM, led to pathogenic activation of the E2F/DNA damage response/TP53 pathway in the heart and induction of myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. The findings denote the E2F/DNA damage response/TP53 axis as a responsible mechanism for DCM in laminopathies and as a potential intervention target.
Collapse
Affiliation(s)
- Suet Nee Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Division of Cardiology, Department of Advanced Biomedical Science, University of Naples Federico II, Italy (R.L.)
| | - Jennifer Karmouch
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,MD Anderson Cancer Center, Houston, TX (J.K.)
| | - Ju-Yun Tsai
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Thermo Fisher Scientific, Taiwan (J.-Y.T.)
| | - Grace Czernuszewicz
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| | - Matthew R G Taylor
- Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Luisa Mestroni
- Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Cristian Coarfa
- Department of Cell Biology, Baylor College of Medicine, Houston, TX (C.C.)
| | - Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| |
Collapse
|
232
|
Ho T, Tan BX, Lane D. How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor. Int J Mol Sci 2019; 21:ijms21010013. [PMID: 31861395 PMCID: PMC6982169 DOI: 10.3390/ijms21010013] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
It has been four decades since the discovery of p53, the designated ‘Guardian of the Genome’. P53 is primarily known as a master transcription factor and critical tumor suppressor, with countless studies detailing the mechanisms by which it regulates a host of gene targets and their consequent signaling pathways. However, transcription-independent functions of p53 also strongly define its tumor-suppressive capabilities and recent findings shed light on the molecular mechanisms hinted at by earlier efforts. This review highlights the transcription-independent mechanisms by which p53 influences the cellular response to genomic instability (in the form of replication stress, centrosome homeostasis, and transposition) and cell death. We also pinpoint areas for further investigation in order to better understand the context dependency of p53 transcription-independent functions and how these are perturbed when TP53 is mutated in human cancer.
Collapse
|
233
|
The Emerging Landscape of p53 Isoforms in Physiology, Cancer and Degenerative Diseases. Int J Mol Sci 2019; 20:ijms20246257. [PMID: 31835844 PMCID: PMC6941119 DOI: 10.3390/ijms20246257] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
p53, first described four decades ago, is now established as a master regulator of cellular stress response, the “guardian of the genome”. p53 contributes to biological robustness by behaving in a cellular-context dependent manner, influenced by several factors (e.g., cell type, active signalling pathways, the type, extent and intensity of cellular damage, cell cycle stage, nutrient availability, immune function). The p53 isoforms regulate gene transcription and protein expression in response to the stimuli so that the cell response is precisely tuned to the cell signals and cell context. Twelve isoforms of p53 have been described in humans. In this review, we explore the interactions between p53 isoforms and other proteins contributing to their established cellular functions, which can be both tumour-suppressive and oncogenic in nature. Evidence of p53 isoform in human cancers is largely based on RT-qPCR expression studies, usually investigating a particular type of isoform. Beyond p53 isoform functions in cancer, it is implicated in neurodegeneration, embryological development, progeroid phenotype, inflammatory pathology, infections and tissue regeneration, which are described in this review.
Collapse
|
234
|
Pitolli C, Wang Y, Mancini M, Shi Y, Melino G, Amelio I. Do Mutations Turn p53 into an Oncogene? Int J Mol Sci 2019; 20:E6241. [PMID: 31835684 PMCID: PMC6940991 DOI: 10.3390/ijms20246241] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The key role of p53 as a tumor suppressor became clear when it was realized that this gene is mutated in 50% of human sporadic cancers, and germline mutations expose carriers to cancer risk throughout their lifespan. Mutations in this gene not only abolish the tumor suppressive functions of p53, but also equip the protein with new pro-oncogenic functions. Here, we review the mechanisms by which these new functions gained by p53 mutants promote tumorigenesis.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.P.); (M.M.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Pathology Building, Tennis Court Road, Cambridge CB2 1PQ, UK
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 100012, China; (Y.W.); (Y.S.)
| | - Mara Mancini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.P.); (M.M.); (G.M.)
- IDI-IRCCS, Biochemistry Laboratory, 00167 Rome, Italy
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 100012, China; (Y.W.); (Y.S.)
- Institutes for Translational Medicine, Soochow University, Suzhou 215006, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.P.); (M.M.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Pathology Building, Tennis Court Road, Cambridge CB2 1PQ, UK
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.P.); (M.M.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Pathology Building, Tennis Court Road, Cambridge CB2 1PQ, UK
| |
Collapse
|
235
|
Huang SW, Chyuan IT, Shiue C, Yu MC, Hsu YF, Hsu MJ. Lovastatin-mediated MCF-7 cancer cell death involves LKB1-AMPK-p38MAPK-p53-survivin signalling cascade. J Cell Mol Med 2019; 24:1822-1836. [PMID: 31821701 PMCID: PMC6991643 DOI: 10.1111/jcmm.14879] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death.
Collapse
Affiliation(s)
- Shiu-Wen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan.,Department of Medical Research, Cathay General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Ching Shiue
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chieh Yu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
236
|
Rodkin S, Khaitin A, Pitinova M, Dzreyan V, Guzenko V, Rudkovskii M, Sharifulina S, Uzdensky A. The Localization of p53 in the Crayfish Mechanoreceptor Neurons and Its Role in Axotomy-Induced Death of Satellite Glial Cells Remote from the Axon Transection Site. J Mol Neurosci 2019; 70:532-541. [PMID: 31823284 DOI: 10.1007/s12031-019-01453-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Neuron and glia death after axon transection is regulated by various signaling proteins. Protein p53 is a key regulator of diverse cell functions including stress response, DNA repair, proliferation, and apoptosis. We showed that p53 was overexpressed in crayfish ganglia after bilateral axotomy. In the isolated crayfish stretch receptor, a simple natural neuroglial preparation, which consists of a single mechanoreceptor neuron (MRN) enveloped by glial cells, p53 regulated axotomy-induced death of glial cells remote from the axon transection site. In MRN, p53 immunofluorescence was highest in the nucleolus and in the narrow cytoplasmic ring around the nucleus; its levels in the nucleus and cytoplasm were lower. After axotomy, p53 accumulated in the neuronal perikaryon. Its immunofluorescence also increased in the neuronal and glial nuclei. However, p53 immunofluorescence in the most of neuronal nucleoli disappeared. Axotomy-induced apoptosis of remote glial cells increased in the presence of p53 activators WR-1065 and nutlin-3 but reduced by pifithrin-α that inhibits transcriptional activity of p53. Pifithrin-μ that inhibits p53 effect on mitochondria increased axotomy-induced apoptosis of remote glial cells but reduced their necrosis. Therefore, axotomy-induced apoptosis of remote glial cells was associated with p53 effect on transcription processes, whereas glial necrosis was rather associated with transcription-independent p53 effect on mitochondria. Apparently, the fate of remote glial cells in the axotomized crayfish stretch receptor is determined by the balance between different modalities of p53 activity.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Andrey Khaitin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Maria Pitinova
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Valeria Guzenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Mikhail Rudkovskii
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Svetlana Sharifulina
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia
| | - Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky prosp., of. 505, Rostov-on-Don, 344090, Russia.
| |
Collapse
|
237
|
Pitolli C, Wang Y, Candi E, Shi Y, Melino G, Amelio I. p53-Mediated Tumor Suppression: DNA-Damage Response and Alternative Mechanisms. Cancers (Basel) 2019; 11:E1983. [PMID: 31835405 PMCID: PMC6966539 DOI: 10.3390/cancers11121983] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor p53 regulates different cellular pathways involved in cell survival, DNA repair, apoptosis, and senescence. However, according to an increasing number of studies, the p53-mediated canonical DNA damage response is dispensable for tumor suppression. p53 is involved in mechanisms regulating many other cellular processes, including metabolism, autophagy, and cell migration and invasion, and these pathways might crucially contribute to its tumor suppressor function. In this review we summarize the canonical and non-canonical functions of p53 in an attempt to provide an overview of the potentially crucial aspects related to its tumor suppressor activity.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy; (C.P.); (E.C.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QP, UK
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100012, China;
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy; (C.P.); (E.C.); (G.M.)
- IDI-IRCCS, Biochemistry Laboratory, 00133 Rome, Italy
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100012, China;
- Institutes for Translational Medicine, Soochow University, Suzhou 215006, China;
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy; (C.P.); (E.C.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QP, UK
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy; (C.P.); (E.C.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
238
|
Friedrich D, Friedel L, Finzel A, Herrmann A, Preibisch S, Loewer A. Stochastic transcription in the p53-mediated response to DNA damage is modulated by burst frequency. Mol Syst Biol 2019; 15:e9068. [PMID: 31885199 PMCID: PMC6886302 DOI: 10.15252/msb.20199068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Discontinuous transcription has been described for different mammalian cell lines and numerous promoters. However, our knowledge of how the activity of individual promoters is adjusted by dynamic signaling inputs from transcription factors is limited. To address this question, we characterized the activity of selected target genes that are regulated by pulsatile accumulation of the tumor suppressor p53 in response to ionizing radiation. We performed time-resolved measurements of gene expression at the single-cell level by smFISH and used the resulting data to inform a mathematical model of promoter activity. We found that p53 target promoters are regulated by frequency modulation of stochastic bursting and can be grouped along three archetypes of gene expression. The occurrence of these archetypes cannot solely be explained by nuclear p53 abundance or promoter binding of total p53. Instead, we provide evidence that the time-varying acetylation state of p53's C-terminal lysine residues is critical for gene-specific regulation of stochastic bursting.
Collapse
Affiliation(s)
- Dhana Friedrich
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
- Department for BiologyHumboldt Universität zu BerlinBerlinGermany
| | - Laura Friedel
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
| | - Ana Finzel
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
| | - Andreas Herrmann
- Department for BiologyHumboldt Universität zu BerlinBerlinGermany
| | - Stephan Preibisch
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
- Janelia Research CampusHoward Hughes Medical InstituteVAAshburnUSA
| | - Alexander Loewer
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
| |
Collapse
|
239
|
β-HPV 8E6 Attenuates ATM and ATR Signaling in Response to UV Damage. Pathogens 2019; 8:pathogens8040267. [PMID: 31779191 PMCID: PMC6963835 DOI: 10.3390/pathogens8040267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Given the high prevalence of cutaneous genus beta human papillomavirus (β-HPV) infections, it is important to understand how they manipulate their host cells. This is particularly true for cellular responses to UV damage, since our skin is continually exposed to UV. The E6 protein from β-genus HPV (β-HPV E6) decreases the abundance of two essential UV-repair kinases (ATM and ATR). Although β-HPV E6 reduces their availability, the impact on downstream signaling events is unclear. We demonstrate that β-HPV E6 decreases ATM and ATR activation. This inhibition extended to XPA, an ATR target necessary for UV repair, lowering both its phosphorylation and accumulation. β-HPV E6 also hindered POLη accumulation and foci formation, critical steps in translesion synthesis. ATM’s phosphorylation of BRCA1 is also attenuated by β-HPV E6. While there was a striking decrease in phosphorylation of direct ATM/ATR targets, events further down the cascade were not reduced. In summary, despite being incomplete, β-HPV 8E6’s hindrance of ATM/ATR has functional consequences.
Collapse
|
240
|
Krüger A, Stier A, Fischbach A, Bürkle A, Hauser K, Mangerich A. Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy. Nucleic Acids Res 2019; 47:4843-4858. [PMID: 30892621 PMCID: PMC6511852 DOI: 10.1093/nar/gkz175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Due to multiple domains and in part intrinsically disordered regions, structural analyses of p53 remain a challenging task, particularly in complex with DNA and other macromolecules. Here, we applied a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic approach to investigate changes in secondary structure of full-length p53 induced by non-covalent interactions with DNA and poly(ADP-ribose) (PAR). To validate our approach, we confirmed a positive regulatory function of p53’s C-terminal domain (CTD) with regard to sequence-specific DNA binding and verified that the CTD mediates p53–PAR interaction. Further, we demonstrate that DNA and PAR interactions result in distinct structural changes of p53, indicating specific binding mechanisms via different domains. A time-dependent analysis of the interplay of DNA and PAR binding to p53 revealed that PAR represents p53’s preferred binding partner, which efficiently controls p53–DNA interaction. Moreover, we provide infrared spectroscopic data on PAR pointing to the absence of regular secondary structural elements. Finally, temperature-induced melting experiments via CD spectroscopy show that DNA binding stabilizes the structure of p53, while PAR binding can shift the irreversible formation of insoluble p53 aggregates to higher temperatures. In conclusion, this study provides detailed insights into the dynamic interplay of p53 binding to DNA and PAR at a formerly inaccessible molecular level.
Collapse
Affiliation(s)
- Annika Krüger
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Department of Chemistry, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Anna Stier
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Arthur Fischbach
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
241
|
The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5:e02624. [PMID: 31840114 PMCID: PMC6893087 DOI: 10.1016/j.heliyon.2019.e02624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively. Changes in the expression patterns of these isoforms are noted in many human cancers. Proteins of certain human herpesviruses, like Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), interact with p53 family members and alter their expressions in many malignancies. Upon infections in the B cells and epithelial cells, EBV expresses different lytic or latent proteins during viral replication and latency respectively to preserve viral copy number, chromosomal integrity and viral persistence inside the host. In this review, we have surveyed and summarised the interactions of EBV gene products, known so far, with the p53 family proteins. The interactions between P53 and EBV oncoproteins are observed in stomach cancer, non-Hodgkin's lymphoma (NHL) of the head and neck, Nasopharyngeal Cancer (NPC), Gastric carcinoma (GC) and Burkitt's lymphoma (BL). EBV latent protein EBNA1, EBNA3C, LMP-1, and lytic proteins BZLF-1 can alter p53 expressions in many cancer cell lines. Interactions of p63 with EBNA-1, 2, 5, LMP-2A and BARF-1 have also been investigated in several cancers. Similarly, associations of p73 isoform with EBV latent proteins EBNA3C and LMP-1 have been reported. Methylation and single nucleotide polymorphisms in p53 have also been found to be correlated with EBV infection. Therefore, interactions and altered expression strategies of the isoforms of p53 family proteins in EBV associated cancers propose an important field for further molecular research.
Collapse
|
242
|
Huang Y, Liu N, Liu J, Liu Y, Zhang C, Long S, Luo G, Zhang L, Zhang Y. Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle 2019; 18:3442-3455. [PMID: 31726940 DOI: 10.1080/15384101.2019.1688951] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
P53 is a critical tumor suppressor gene, activating p53 and its downstream targets to induce apoptosis is a promising way for cancer therapy. However, more than 50% of cancer patients have p53 mutations, which may cause cancer therapy resistance, and the underline mechanism is poorly understood. Here, we found that cell viability decrease and apoptosis induced by p53-dependent traditional drugs in colon cancer cells were eliminated in p53 mutant cells. Mutant p53 did not up-regulate the expression of its direct downstream targets PUMA and p21, due to the inhibition of PUMA transcription. Furthermore, mutant p53 could not bind to the promoter of PUMA to activate its transcription like WT p53 did, while overexpressed WT p53 rescued PUMA-induced subsequent apoptosis. In conclusion, our findings demonstrate mutant p53 may cause chemo-resistance of tumor because of inactivating PUMA transcription, which prompts some new insights for clinical therapy of cancer patients with mutant p53.Abbreviations: CRC: Colorectal cancer; CDKs: Cyclin-dependent kinases; PUMA: p53 up-regulated modulator of apoptosis; PDGF: the platelet-derived growth factor; WT p53: wild-type p53 protein; mutp53: mutant p53 proteins; BAX: Bcl-2-associated X protein; NOXA: Phorbol-12-myristate-13-acetate-induced protein 1.
Collapse
Affiliation(s)
- Yuan Huang
- College of Biology, Hunan University, Changsha, China
| | - Nannan Liu
- College of Biology, Hunan University, Changsha, China
| | - Jing Liu
- College of Biology, Hunan University, Changsha, China
| | - Yeying Liu
- College of Biology, Hunan University, Changsha, China
| | - Chuchu Zhang
- College of Biology, Hunan University, Changsha, China
| | - Shuaiyu Long
- College of Biology, Hunan University, Changsha, China
| | - Guang Luo
- College of Biology, Hunan University, Changsha, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yingjie Zhang
- College of Biology, Hunan University, Changsha, China.,Shenzhen Institute, Hunan University, Shenzhen, China
| |
Collapse
|
243
|
Giorgio V, Fogolari F, Lippe G, Bernardi P. OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. Br J Pharmacol 2019; 176:4247-4257. [PMID: 30291799 PMCID: PMC6887684 DOI: 10.1111/bph.14513] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
The permeability transition pore (PTP) is a latent, high-conductance channel of the inner mitochondrial membrane. When activated, it plays a key role in cell death and therefore in several diseases. The investigation of the PTP took an unexpected turn after the discovery that cyclophilin D (the target of the PTP inhibitory effect of cyclosporin A) binds to FO F1 (F)-ATP synthase, thus inhibiting its catalytic activity by about 30%. This observation was followed by the demonstration that binding occurs at a particular subunit of the enzyme, the oligomycin sensitivity conferral protein (OSCP), and that F-ATP synthase can form Ca2+ -activated, high-conductance channels with features matching those of the PTP, suggesting that the latter originates from a conformational change in F-ATP synthase. This review is specifically focused on the OSCP subunit of F-ATP synthase, whose unique features make it a potential pharmacological target both for modulation of F-ATP synthase and its transition to a pore. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Valentina Giorgio
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Federico Fogolari
- Department of Mathematics, Computer Sciences and PhysicsUniversity of UdineUdineItaly
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Paolo Bernardi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| |
Collapse
|
244
|
Buffa S, Borzì D, Chiarelli R, Crapanzano F, Lena AM, Nania M, Candi E, Triolo F, Ruvolo G, Melino G, Balistreri CR. Biomarkers for vascular ageing in aorta tissues and blood samples. Exp Gerontol 2019; 128:110741. [PMID: 31648011 DOI: 10.1016/j.exger.2019.110741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Functional and quantitative alterations and senescence of circulating and expanded endothelial progenitor cells (EPC), as well as systemic and tissue modifications of angiogenetic and inflammatory molecules, were evaluated for predicting age-related vessel wall remodeling, correlating them to intima media thickness (IMT) in the common carotid artery (CCA), a biomarker of early cardiovascular disease and aortic root dilation. POPULATIONS AND METHODS A homogenous Caucasian population was included in the study, constituted by 160 healthy subjects (80 old subjects, mean age 72 ± 6.4, range 66-83 years; and 80 younger blood donors, mean age 26.2 ± 3.4, range 21-33 years), and 60 old subjects (mean age 73 ± 1.4 (range 66-83) years) with aortic root dilatation and hypertension, and 60 old people (70 ± 2.8 (age range 66-83)) with sporadic ascending aorta aneurysm (AAA). In addition, 20 control individuals (10 men and 10 women, mean age: 65 ± 8), were also included in the study for evaluating the gene expression's levels, in aorta tissues. Appropriate techniques, practises, protocols, gating strategies and statistical analyses were performed in our evaluations. RESULTS Interestingly, old people had a significantly reduced functionality and a high grade of senescence (high SA-β-Gal activity and high levels of TP53, p21 and p16 genes) of EPC expanded than younger subjects. The values of related parameters progressively augmented from the old subjects, in good healthy shape, to subjects with hypertension and aorta dilation, and AAA. Moreover, they significantly impacted the endothelium than the alterations in EPC number. No changes, but rather increased systemic levels of VEGF and SDF-1 were also assessed in old people vs. younger donors. Old people also showed significantly increased systemic levels of inflammatory cytokines, and a reciprocal significant reduction of systemic s-Notch 1 than younger subjects. These parameters, also including the number EPC alterations, resulted to be significantly sustained in old people bearers of an inflammatory combined genotype. Consistent with these data, a reduced expression of Notch-1 gene, accompanied by a sustained expression of inflammatory genes (i.e. TLR4, IL-1β, IL-6 and IL-17) were detected in aortic tissues from old control people and AAA cases. Finally, we detected the biological effects induced by all the detected alterations on vessel wall age-related remodeling, by evaluating the IMT in the population studied and correlating it to these alterations. The analysis demonstrated that the unique independent risk predictors for vascular ageing are age, the EPC reduced migratory activity and senescence, high grade of expression of genes inducing EPC senescence and chronic tissue and systemic inflammation. CONCLUSIONS Thus, we propose these parameters, of easy determination in biological samples (i.e. blood and tissue samples) from alive human population, as optimal biomarkers for vascular ageing.
Collapse
Affiliation(s)
- Silvio Buffa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Davide Borzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Rita Chiarelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Floriana Crapanzano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Martina Nania
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy; Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - Fabio Triolo
- Department of Internal Medicine and Cardiovascular Disease, Division of Cardiology and Cardiovascular Rehabilitation, University Hospital Paolo Giaccone, Palermo, Italy
| | - Giovanni Ruvolo
- Cardiac Surgery Unit, Department of Surgical Science, Tor Vergata University Hospital, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy; MRC-Toxicology Unit, University of Cambridge, UK
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| |
Collapse
|
245
|
Lipid metabolism offers anticancer treatment by regulating ferroptosis. Cell Death Differ 2019; 26:2516-2519. [PMID: 31543514 DOI: 10.1038/s41418-019-0418-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023] Open
|
246
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
247
|
Ghate NB, Kim J, Shin Y, Situ A, Ulmer TS, An W. p32 is a negative regulator of p53 tetramerization and transactivation. Mol Oncol 2019; 13:1976-1992. [PMID: 31293051 PMCID: PMC6717765 DOI: 10.1002/1878-0261.12543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/03/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023] Open
Abstract
p53 is a sequence-specific transcription factor, and proper regulation of p53 transcriptional activity is critical for orchestrating different tumor-suppressive mechanisms. p32 is a multifunctional protein which interacts with a large number of viral proteins and transcription factors. Here, we investigate the effect of p32 on p53 transactivation and identify a novel mechanism by which p32 alters the functional characteristics of p53. Specifically, p32 attenuates p53-dependent transcription through impairment of p53 binding to its response elements on target genes. Upon p32 expression, p53 levels bound at target genes are decreased, and p53 target genes are inactivated, strongly indicating that p32 restricts p53 occupancy and function at target genes. The primary mechanism contributing to the observed action of p32 is the ability of p32 to interact with the p53 tetramerization domain and to block p53 tetramerization, which in turn enhances nuclear export and degradation of p53, leading to defective p53 transactivation. Collectively, these data establish p32 as a negative regulator of p53 function and suggest the therapeutic potential of targeting p32 for cancer treatment.
Collapse
Affiliation(s)
- Nikhil Baban Ghate
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jinman Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Alan Situ
- Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Tobias S. Ulmer
- Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
248
|
TAp63 represses transcription of MYCN/NCYM gene and its high levels of expression are associated with favorable outcome in neuroblastoma. Biochem Biophys Res Commun 2019; 518:311-318. [PMID: 31427086 DOI: 10.1016/j.bbrc.2019.08.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022]
Abstract
TAp63 is an isoform of p63 gene, a p53 family gene that suppresses tumorigenesis via transcriptional regulation. TAp63 represses transcription of MYC oncogene in glioblastomas; however, its role in another MYC family gene, MYCN, has remained elusive. In this study, we showed that TAp63 repressed transcription of the MYCN gene in human cancer cells. Overexpression of TAp63 in HeLa cells suppressed MYCN expression, whereas knockdown of TAp63 had the opposite effect. By binding to exon 1 of MYCN gene, TAp63 suppressed the promoter activities of MYCN and its cis-antisense gene, NCYM. Other p53 family members, p53 and TAp73, showed lesser ability to suppress MYCN/NCYM promoter activities compared with that of TAp63. All-trans-retinoic acid (ATRA) treatment of MYCN/NCYM-amplified neuroblastoma CHP134 cells induced TAp63 and reduced p53 expressions, accompanied by downregulation of MYCN/NCYM expressions. Meanwhile, TAp63 knockdown inhibited ATRA-induced repression of NCYM gene expression. Blocking the p53 family binding sites by CRISPR-dCas9 system in CHP134 cells induced MYCN/NCYM expression and promoted apoptotic cell death. Expression levels of TAp63 mRNA inversely correlated with those of MYCN/NCYM expression in primary neuroblastomas, which was associated with a favorable prognosis. Collectively, TAp63 repressed MYCN/NCYM bidirectional transcription, contributing to the suppression of neuroblastoma growth.
Collapse
|
249
|
Lanna C, Mancini M, Gaziano R, Cannizzaro MV, Galluzzo M, Talamonti M, Rovella V, Annicchiarico-Petruzzelli M, Melino G, Wang Y, Shi Y, Campione E, Bianchi L. Skin immunity and its dysregulation in psoriasis. Cell Cycle 2019; 18:2581-2589. [PMID: 31416396 DOI: 10.1080/15384101.2019.1653099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The skin is a peripheral lymphoid organ, being the first immunological defense against infections as the initial interface between the organism and the external background. The maintenance of the skin immune homeostasis depends on a finely equilibrium of well-regulated relations between different cells and exogenous pathogens. Inflammatory skin diseases are directly linked to the dysregulation of this equilibrium. The present review discusses the role of the immune system, of T cells, in the etiopathogenesis of psoriasis, illustrating a potential rationale for innovative therapeutic intervention.
Collapse
Affiliation(s)
- Caterina Lanna
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Mara Mancini
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS) , Rome , Italy
| | - Roberta Gaziano
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata , Rome , Italy
| | - Maria Vittoria Cannizzaro
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Marco Galluzzo
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Marina Talamonti
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Valentina Rovella
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS) , Rome , Italy
| | | | - Gerry Melino
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS) , Rome , Italy.,Department of Experimental Medicine, TOR, University of Rome Tor Vergata , Rome , Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai , China.,The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College , Suzhou , Jiangsu , 215123 , China
| | - Elena Campione
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Luca Bianchi
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| |
Collapse
|
250
|
Luczak MW, Krawic C, Zhitkovich A. p53 activation by Cr(VI): a transcriptionally limited response induced by ATR kinase in S-phase. Toxicol Sci 2019; 172:11-22. [PMID: 31388677 PMCID: PMC6813752 DOI: 10.1093/toxsci/kfz178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/30/2023] Open
Abstract
Cellular reduction of carcinogenic chromium(VI) causes several forms of Cr-DNA damage with different genotoxic properties. Chromate-treated cultured cells have shown a strong proapoptotic activity of the DNA damage-sensitive transcription factor p53. However, induction of p53 transcriptional targets by Cr(VI) in rodent lungs was weak or undetectable. We examined Cr(VI) effects on the p53 pathway in human cells with restored levels of ascorbate that acts as a principal reducer of Cr(VI) in vivo but is nearly absent in standard cell cultures. Ascorbate-restored H460 and primary human cells treated with Cr(VI) contained higher levels of p53 and its Ser15 phosphorylation, which were induced by ATR kinase. Cr(VI)-stimulated p53 phosphorylation occurred in S-phase by a diffusible pool of ATR that was separate from the chromatin-bound pool targeting DNA repair substrates at the sites of toxic mismatch repair of Cr-DNA adducts. Even when more abundantly present than after exposure to the radiomimetic bleomycin, Cr(VI)-stabilized p53 showed a much more limited activation of its target genes in two types of primary human cells. No increases in mRNA were found for nucleotide excision repair factors and a majority of proapoptotic genes. A weak transcription activity of Cr(VI)-upregulated p53 was associated with its low lysine acetylation in the regulatory C-terminal domain, resulting from the inability of Cr(VI) to activate ATM in ascorbate-restored cells. Thus, p53 activation by ascorbate-metabolized Cr(VI) represents a limited genome-protective response that is defective in upregulation of DNA repair genes and proapoptotic transcripts for elimination of damaged cells.
Collapse
Affiliation(s)
- Michal W Luczak
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Casey Krawic
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Anatoly Zhitkovich
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| |
Collapse
|