201
|
The role of brain structure in the association between pubertal timing and depression risk in an early adolescent sample (the ABCD Study®): A registered report. Dev Cogn Neurosci 2023; 60:101223. [PMID: 36870214 PMCID: PMC10009199 DOI: 10.1016/j.dcn.2023.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Earlier pubertal timing is associated with higher rates of depressive disorders in adolescence. Neuroimaging studies report brain structural associations with both pubertal timing and depression. However, whether brain structure mediates the relationship between pubertal timing and depression remains unclear. METHODS The current registered report examined associations between pubertal timing (indexed via perceived pubertal development), brain structure (cortical and subcortical metrics, and white matter microstructure) and depressive symptoms in a large sample (N = ∼5000) of adolescents (aged 9-13 years) from the Adolescent Brain Cognitive Development (ABCD) Study. We used three waves of follow-up data when the youth were aged 10-11 years, 11-12 years, and 12-13 years, respectively. We used generalised linear-mixed models (H1) and structural equation modelling (H2 & H3) to test our hypotheses. HYPOTHESES We hypothesised that earlier pubertal timing at Year 1 would be associated with increased depressive symptoms at Year 3 (H1), and that this relationship would be mediated by global (H2a-b) and regional (H3a-g) brain structural measures at Year 2. Global measures included reduced cortical volume, thickness, surface area and sulcal depth. Regional measures included reduced cortical thickness and volume in temporal and fronto-parietal areas, increased cortical volume in the ventral diencephalon, increased sulcal depth in the pars orbitalis, and reduced fractional anisotropy in the cortico-striatal tract and corpus callosum. These regions of interest were informed by our pilot analyses using baseline ABCD data when the youth were aged 9-10 years. RESULTS Earlier pubertal timing was associated with increased depressive symptoms two years later. The magnitude of effect was stronger in female youth and the association remained significant when controlling for parental depression, family income, and BMI in females but not in male youth. Our hypothesised brain structural measures did not however mediate the association between earlier pubertal timing and later depressive symptoms. CONCLUSION The present results demonstrate that youth, particularly females, who begin puberty ahead of their peers are at an increased risk for adolescent-onset depression. Future work should explore additional biological and socio-environmental factors that may affect this association so that we can identify targets for intervention to help these at-risk youth.
Collapse
|
202
|
Jog MA, Anderson C, Kubicki A, Boucher M, Leaver A, Hellemann G, Iacoboni M, Woods R, Narr K. Transcranial direct current stimulation (tDCS) in depression induces structural plasticity. Sci Rep 2023; 13:2841. [PMID: 36801903 PMCID: PMC9938111 DOI: 10.1038/s41598-023-29792-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique involving administration of well-tolerated electrical current to the brain through scalp electrodes. TDCS may improve symptoms in neuropsychiatric disorders, but mixed results from recent clinical trials underscore the need to demonstrate that tDCS can modulate clinically relevant brain systems over time in patients. Here, we analyzed longitudinal structural MRI data from a randomized, double-blind, parallel-design clinical trial in depression (NCT03556124, N = 59) to investigate whether serial tDCS individually targeted to the left dorso-lateral prefrontal cortex (DLPFC) can induce neurostructural changes. Significant (FWEc p < 0.05) treatment-related gray matter changes were observed with active high-definition (HD) tDCS relative to sham tDCS within the left DLPFC stimulation target. No changes were observed with active conventional tDCS. A follow-up analysis within individual treatment groups revealed significant gray matter increases with active HD-tDCS in brain regions functionally connected with the stimulation target, including the bilateral DLPFC, bilateral posterior cingulate cortex, subgenual anterior cingulate cortex, and the right hippocampus, thalamus and left caudate brain regions. Integrity of blinding was verified, no significant differences in stimulation-related discomfort were observed between treatment groups, and tDCS treatments were not augmented by any other adjunct treatments. Overall, these results demonstrate that serial HD-tDCS leads to neurostructural changes at a predetermined brain target in depression and suggest that such plasticity effects may propagate over brain networks.
Collapse
Affiliation(s)
- Mayank A Jog
- Department of Neurology, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
| | - Cole Anderson
- Diagnostic Imaging Sciences Center, University of Washington, Seattle, WA, 98195, USA
| | - Antoni Kubicki
- Department of Neurology, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Michael Boucher
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Amber Leaver
- Department of Radiology, Northwestern University, Evanston, IL, 60208, USA
| | - Gerhard Hellemann
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Roger Woods
- Department of Neurology, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Katherine Narr
- Department of Neurology, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
203
|
Glahn DC. Editorial: Irritable Imaging: Interpreting Null Results in Psychiatric Neuroimaging. J Am Acad Child Adolesc Psychiatry 2023; 62:130-132. [PMID: 36427758 DOI: 10.1016/j.jaac.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
There is a growing appreciation that clinically impairing irritability is an important transdiagnostic symptom among children and adolescents with mental illness. Severe irritability, defined by frequent, developmentally inappropriate temper outbursts and low frustration tolerance, is one of the most common reasons that youths are referred for psychiatric evaluation and care.1 Although chronic irritability is the primary symptom in disruptive mood dysregulation disorder, the symptom is common in a diverse set of DSM-5 diagnoses, including major depressive disorder, autism spectrum disorder, oppositional defiant disorder, bipolar disorder, and generalized anxiety disorder.1 Given that clinically impairing irritability is often predictive of poor outcomes in childhood and worse clinical course in adulthood, a concerted effort is being made to refine the definition of this symptom and determine if severe irritability could be better understood and treated as an independent diagnosis.1.
Collapse
Affiliation(s)
- David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, Massachusetts, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
204
|
Murck H, Lehr L, Jezova D. A viewpoint on aldosterone and BMI related brain morphology in relation to treatment outcome in patients with major depression. J Neuroendocrinol 2023; 35:e13219. [PMID: 36539978 DOI: 10.1111/jne.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
An abundance of knowledge has been collected describing the involvement of neuroendocrine parameters in major depression. The hypothalamic-pituitary-adrenocortical (HPA) axis regulating cortisol release has been extensively studied; however, attempts to target the HPA axis pharmacologically to treat major depression have failed. This review focuses on the importance of the adrenocortical stress hormone aldosterone, which is released by adrenocorticotropic hormone and angiotensin, and the mineralocorticoid receptor (MR) in depression. Depressed patients, in particular those with atypical depression, have signs of central hyperactivation of the aldosterone sensitive MR, potentially as a consequence of a reactive aldosterone release induced by low blood pressure and as a result of low sensitivity of peripheral MR. This is reflected in reduced heart rate variability, increased salt appetite and sleep changes in this group of patients. In addition, enlarged brain ventricles, compressed corpus callosum and changes of the choroid plexus are associated with increased aldosterone (in relation to cortisol). Furthermore, subjects with these features often show obesity. These characteristics are related to a worse antidepressant treatment outcome. Alterations in choroid plexus function as a consequence of increased aldosterone levels, autonomic dysregulation, metabolic changes and/or inflammation may be involved. The characterization of this regulatory system is in its early days but may identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Harald Murck
- Philipps-University Marburg, Marburg, Germany
- Murck-Neuroscience LLC Westfield, Westfield, NJ, USA
| | - Lisa Lehr
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniela Jezova
- Slovak Academy of Sciences, Biomedical Research Center, Institute of Experimental Endocrinology, Bratislava, Slovakia
| |
Collapse
|
205
|
Xue K, Guo L, Zhu W, Liang S, Xu Q, Ma L, Liu M, Zhang Y, Liu F. Transcriptional signatures of the cortical morphometric similarity network gradient in first-episode, treatment-naive major depressive disorder. Neuropsychopharmacology 2023; 48:518-528. [PMID: 36253546 PMCID: PMC9852427 DOI: 10.1038/s41386-022-01474-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023]
Abstract
Recent studies have shown that major depressive disorder (MDD) is accompanied by alterations in functional and structural network gradients. However, whether changes are present in the cortical morphometric similarity (MS) network gradient, and the relationship between alterations of the gradient and gene expression remains largely unknown. In this study, the MS network was constructed, and its gradient was calculated in 71 patients with first-episode, treatment-naive MDD, and 69 demographically matched healthy controls. Between-group comparisons were performed to investigate abnormalities in the MS network gradient, and partial least squares regression analysis was conducted to explore the association between gene expression profiles and MS network gradient-based alternations in MDD. We found that the gradient was primarily significantly decreased in sensorimotor regions in patients with MDD compared with healthy controls, and increased in visual-related regions. In addition, the altered principal MS network gradient in the left postcentral cortex and right lingual cortex exhibited significant correlations with symptom severity. The abnormal gradient pattern was spatially correlated with the brain-wide expression of genes enriched for neurobiologically relevant pathways, downregulated in the MDD postmortem brain, and preferentially expressed in different cell types and cortical layers. These results demonstrated alterations of the principal MS network gradient in MDD and suggested the molecular mechanisms for structural alternations underlying MDD.
Collapse
Affiliation(s)
- Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenshuang Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Sixiang Liang
- Tianjin Anding Hospital, Tianjin, 300222, China
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yong Zhang
- Tianjin Anding Hospital, Tianjin, 300222, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
206
|
Luo Q, Chen J, Li Y, Lin X, Yu H, Lin X, Wu H, Peng H. Cortical thickness and curvature abnormalities in patients with major depressive disorder with childhood maltreatment: Neural markers of vulnerability? Asian J Psychiatr 2023; 80:103396. [PMID: 36508912 DOI: 10.1016/j.ajp.2022.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Childhood maltreatment has been related to various disadvantageous lifetime outcomes. However, the brain structural alterations that occur in major depressive disorder (MDD) patients with childhood maltreatment are incompletely investigated. METHODS We extensively explored the cortical abnormalities including cortical volume, surface area, thickness, sulcal depth, and curvature in maltreated MDD patients. Twoway ANOVA was performed to distinguish the effects of childhood maltreatment and depression on structural abnormalities. Partial correlation analysis was performed to explore the relationship between childhood maltreatment and cortical abnormalities. Moreover, we plotted the receiver operating characteristic curve to examine whether the observed cortical abnormalities could be used as neuro biomarkers to identify maltreated MDD patients. RESULTS We reach the following findings: (i) relative to MDD without childhood maltreatment, MDD patients with childhood maltreatment existed increased cortical curvature in inferior frontal gyrus; (ii) compared to HC without childhood maltreatment, decreased cortical thickness was observed in anterior cingulate cortex and medial prefrontal cortex in MDD patients with childhood maltreatment; (iii) we confirmed the inseparable relationship between cortical curvature alterations in inferior frontal gyrus as well as childhood maltreatment; (iv) cortical curvature abnormality in inferior frontal gyrus could be applied as neural biomarker for clinical identification of MDD patients with childhood maltreatment. CONCLUSIONS Childhood maltreatment have a significant effects on cortical thickness and curvature abnormalities involved in inferior frontal gyrus, anterior cingulate cortex and medial prefrontal cortex, constituting the vulnerability to depression.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xiaohui Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|
207
|
Cortical profiles of numerous psychiatric disorders and normal development share a common pattern. Mol Psychiatry 2023; 28:698-709. [PMID: 36380235 DOI: 10.1038/s41380-022-01855-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
The neurobiological bases of the association between development and psychopathology remain poorly understood. Here, we identify a shared spatial pattern of cortical thickness (CT) in normative development and several psychiatric and neurological disorders. Principal component analysis (PCA) was applied to CT of 68 regions in the Desikan-Killiany atlas derived from three large-scale datasets comprising a total of 41,075 neurotypical participants. PCA produced a spatially broad first principal component (PC1) that was reproducible across datasets. Then PC1 derived from healthy adult participants was compared to the pattern of CT differences associated with psychiatric and neurological disorders comprising a total of 14,886 cases and 20,962 controls from seven ENIGMA disease-related working groups, normative maturation and aging comprising a total of 17,697 scans from the ABCD Study® and the IMAGEN developmental study, and 17,075 participants from the ENIGMA Lifespan working group, as well as gene expression maps from the Allen Human Brain Atlas. Results revealed substantial spatial correspondences between PC1 and widespread lower CT observed in numerous psychiatric disorders. Moreover, the PC1 pattern was also correlated with the spatial pattern of normative maturation and aging. The transcriptional analysis identified a set of genes including KCNA2, KCNS1 and KCNS2 with expression patterns closely related to the spatial pattern of PC1. The gene category enrichment analysis indicated that the transcriptional correlations of PC1 were enriched to multiple gene ontology categories and were specifically over-represented starting at late childhood, coinciding with the onset of significant cortical maturation and emergence of psychopathology during the prepubertal-to-pubertal transition. Collectively, the present study reports a reproducible latent pattern of CT that captures interregional profiles of cortical changes in both normative brain maturation and a spectrum of psychiatric disorders. The pubertal timing of the expression of PC1-related genes implicates disrupted neurodevelopment in the pathogenesis of the spectrum of psychiatric diseases emerging during adolescence.
Collapse
|
208
|
Huang X, Lai S, Lu X, Wang Y, Zhang Y, Chen G, Chen P, Ye K, Duan M, Song K, Zhong S, Jia Y. Cognitive dysfunction and neurometabolic alternations in major depressive disorder with gastrointestinal symptoms. J Affect Disord 2023; 322:180-186. [PMID: 36372125 DOI: 10.1016/j.jad.2022.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Brain biochemical abnormalities have been associated with major depressive disorder (MDD) and cognitive impairments. However, the cognitive performance and neurometabolic alterations of MDD patients accompanied by gastrointestinal (GI) symptoms remain to be elucidated. We aimed to reveal the features and correlation between cognitive impairments and brain biochemical abnormalities of depressed patients with GI symptoms. METHODS Fifty MDD patients with GI symptoms (GI group), 46 patients without GI symptoms (NGI group) and 50 demographically matched healthy controls (HCs) underwent Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) assessments. In addition, proton magnetic resonance spectroscopy (1H-MRS) was used to obtain ratios of N-acetyl aspartate to creatine (NAA/Cr) and choline-containing compounds to creatine (Cho/Cr) in the thalamus, putamen and anterior cingulate cortex (ACC). Finally, association analysis was conducted to investigate the relationships of these measurements. RESULTS Compared to HCs, participants in both the GI and NGI groups had significantly reduced performance in the six MCCB cognitive domains (all p < 0.05), except for reasoning and problem solving. Higher Cho/Cr ratios in the right thalamus (p < 0.05) and lower NAA/Cr ratios in the left putamen (p < 0.05) were found in the NGI group than in the GI group. The severity of GI symptoms was negatively correlated with Cho/Cr ratios in the right ACC (r = -0.288, p = 0.037). In addition, the T-scores of visual learning were negatively correlated with NAA/Cr ratios in the right ACC (r = -0.443, p = 0.001) and right thalamus (r = -0.335, p = 0.015). CONCLUSION Our findings suggest that MDD patients with GI symptoms may exhibit greater neurometabolic alternations than those without GI symptoms, while both show similar cognitive dysfunction. In addition, neurometabolic alterations in the ACC and thalamus may underlie the neural basis of GI symptoms and cognitive impairment in MDD.
Collapse
Affiliation(s)
- Xiaosi Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kaiwei Ye
- School of Management, Jinan University, Guangzhou 510316, China
| | - Manying Duan
- School of Management, Jinan University, Guangzhou 510316, China
| | - Kailin Song
- School of Management, Jinan University, Guangzhou 510316, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
209
|
Lima-Filho R, Fortuna JS, Cozachenco D, Isaac AR, Lyra e Silva N, Saldanha A, Santos LE, Ferreira ST, Lourenco MV, De Felice FG. Brain FNDC5/Irisin Expression in Patients and Mouse Models of Major Depression. eNeuro 2023; 10:ENEURO.0256-22.2023. [PMID: 36697257 PMCID: PMC9927507 DOI: 10.1523/eneuro.0256-22.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Major depressive disorder (MDD) is a major cause of disability in adults. MDD is both a comorbidity and a risk factor for Alzheimer's disease (AD), and regular physical exercise has been associated with reduced incidence and severity of MDD and AD. Irisin is an exercise-induced myokine derived from proteolytic processing of fibronectin type III domain-containing protein 5 (FNDC5). FNDC5/irisin is reduced in the brains of AD patients and mouse models. However, whether brain FNDC5/irisin expression is altered in depression remains elusive. Here, we investigate changes in fndc5 expression in postmortem brain tissue from MDD individuals and mouse models of depression. We found decreased fndc5 expression in the MDD prefrontal cortex, both with and without psychotic traits. We further demonstrate that the induction of depressive-like behavior in male mice by lipopolysaccharide decreased fndc5 expression in the frontal cortex, but not in the hippocampus. Conversely, chronic corticosterone administration increased fndc5 expression in the frontal cortex, but not in the hippocampus. Social isolation in mice did not result in altered fndc5 expression in either frontal cortex or hippocampus. Finally, fluoxetine, but not other antidepressants, increased fndc5 gene expression in the mouse frontal cortex. Results indicate a region-specific modulation of fndc5 in depressive-like behavior and by antidepressant in mice. Our finding of decreased prefrontal cortex fndc5 expression in MDD individuals differs from results in mice, highlighting the importance of carefully interpreting observations in mice. The reduction in fndc5 mRNA suggests that decreased central FNDC5/irisin could comprise a shared pathologic mechanism between MDD and AD.
Collapse
Affiliation(s)
- Ricardo Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Juliana S. Fortuna
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Alinny R. Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Natalia Lyra e Silva
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Alice Saldanha
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Luis E. Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- D’Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
| |
Collapse
|
210
|
Stepanous J, Munford L, Qualter P, Banaschewski T, Nees F, Elliott R. Social environment and brain structure in adolescent mental health: A cross-sectional structural equation modelling study using IMAGEN data. PLoS One 2023; 18:e0280062. [PMID: 36603003 DOI: 10.1371/journal.pone.0280062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Adolescent mental health is impacted by a myriad of factors, including the developing brain, socioeconomic conditions and changing social relationships. Studies to date have neglected investigating those factors simultaneously, despite evidence of their interacting effects and distinct profiles for males and females. The current study addressed that gap by applying structural equation modelling to IMAGEN data from adolescents aged 14 years (n = 1950). A multi-group model split by sex was tested with the variables of socioeconomic stress, family support, peer problems, and brain structure as predictors, and emotional symptoms as the main outcome. Findings indicated that, for both sexes, peer problems were positively associated with emotional symptoms, and socioeconomic stress was negatively associated with family support. Additionally, there were sex-specific findings within the full models: ventromedial prefrontal cortex grey matter volume was negatively associated with emotional symptoms for males when corrected for whole brain volume, and socioeconomic stress was negatively associated with whole brain volume for females. This study underscores the importance of the peer environment for early adolescent emotional symptoms in both boys and girls, but goes further to suggest distinct gender associations with socioeconomic factors and brain structure which provides a multi-level view of risk and resilience. Future research could exploit existing IMAGEN longitudinal data to strengthen causal claims and to determine the potential longstanding impact of social environment and brain development on adolescent mental health.
Collapse
Affiliation(s)
- Jessica Stepanous
- Division of Psychology and Mental Health, University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Luke Munford
- Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Pamela Qualter
- Manchester Institute of Education, University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Rebecca Elliott
- Division of Psychology and Mental Health, University of Manchester, Manchester, Greater Manchester, United Kingdom
| |
Collapse
|
211
|
Harris AD, Amiri H, Bento M, Cohen R, Ching CRK, Cudalbu C, Dennis EL, Doose A, Ehrlich S, Kirov II, Mekle R, Oeltzschner G, Porges E, Souza R, Tam FI, Taylor B, Thompson PM, Quidé Y, Wilde EA, Williamson J, Lin AP, Bartnik-Olson B. Harmonization of multi-scanner in vivo magnetic resonance spectroscopy: ENIGMA consortium task group considerations. Front Neurol 2023; 13:1045678. [PMID: 36686533 PMCID: PMC9845632 DOI: 10.3389/fneur.2022.1045678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impact, however, has been limited due to small sample sizes and methodological variability in addition to intrinsic limitations of the method itself such as its sensitivity to motion. The lack of standardization from a data acquisition and data processing perspective makes it difficult to pool multiple studies and/or conduct multisite studies that are necessary for supporting clinically relevant findings. Based on the experience of the ENIGMA MRS work group and a review of the literature, this manuscript provides an overview of the current state of MRS data harmonization. Key factors that need to be taken into consideration when conducting both retrospective and prospective studies are described. These include (1) MRS acquisition issues such as pulse sequence, RF and B0 calibrations, echo time, and SNR; (2) data processing issues such as pre-processing steps, modeling, and quantitation; and (3) biological factors such as voxel location, age, sex, and pathology. Various approaches to MRS data harmonization are then described including meta-analysis, mega-analysis, linear modeling, ComBat and artificial intelligence approaches. The goal is to provide both novice and experienced readers with the necessary knowledge for conducting MRS data harmonization studies.
Collapse
Affiliation(s)
- Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Houshang Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mariana Bento
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Ronald Cohen
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, United States
| | - Christina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Arne Doose
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ivan I. Kirov
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY, United States
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eric Porges
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Roberto Souza
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Friederike I. Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Brian Taylor
- Division of Diagnostic Imaging, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, United States
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Elisabeth A. Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - John Williamson
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Alexander P. Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
212
|
Qiu H, Liang K, Lu L, Gao Y, Li H, Hu X, Xing H, Huang X, Gong Q. Efficacy and safety of repetitive transcranial magnetic stimulation in children and adolescents with depression: A systematic review and preliminary meta-analysis. J Affect Disord 2023; 320:305-312. [PMID: 36174786 DOI: 10.1016/j.jad.2022.09.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/21/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) benefits adults with depression while its efficacy and safety in children and adolescents with major depressive disorder (MDD) remain unclear. We conducted a preliminary meta-analysis here to objectively appraise rTMS in the youth with MDD to inform future research and clinical practice. METHODS We searched Pubmed, Embase, Web of Science and the Cochrane Central Register of Controlled Trials from their inception to December 1, 2021. Studies with a control group or self-controlled designs and evaluating the Hamilton Depression Scale (HAM-D) or the Children's Depression Rating Scale-Revised (CDRS-R) at baseline and post-rTMS treatment were included. Two reviewers independently selected eligible studies, retrieved data in a structured fashion and assessed studies' quality. Hedges'g with 95 % confidence intervals and withdrawal rate with 95 % confidential intervals were separately used to evaluate the efficacy and safety of rTMS. RESULTS Thirteen studies with six datasets (165 patients, 61.8 % female, age range from 10 to 25 years old) were included and our meta-analysis found children and adolescents with MDD benefited from rTMS treatment (Hedges'g 1.37, 95 % CI 0.85 to 1.90, P = 0.001). In addition, 4 % of patients (95 % CI 0.02 to 0.09) withdrew during rTMS treatment for reasons including fear, mood swings, suicide ideation and adverse events. LIMITATIONS This conclusion is tempered by a small number of studies included and a potentially existing placebo effect. CONCLUSIONS Our findings suggest rTMS could benefit children and adolescents with MDD in a relatively safe manner, and this result may help guide clinical practice.
Collapse
Affiliation(s)
- Hui Qiu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Kaili Liang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xinyue Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Haoyang Xing
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; School of Physical Science and Technology, Sichuan University, Chengdu, PR China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, PR China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, PR China
| |
Collapse
|
213
|
Chen Y, Chen Y, Zheng R, Jiang Y, Zhou B, Xue K, Li S, Pang J, Li H, Zhang Y, Han S, Cheng J. Convergent molecular and structural neuroimaging signatures of first-episode depression. J Affect Disord 2023; 320:22-28. [PMID: 36181910 DOI: 10.1016/j.jad.2022.09.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Convergent studies have demonstrated morphological abnormalities in various brain regions in depression patients. However, the molecular underpinnings of the structural impairments remain largely unknown, despite a pressing need for treatment targets and mechanisms. Here, we investigated the gray matter volume (GMV) alteration in patients with depression and its underlying molecular architecture. METHODS We recruited 195 first-episode, treatment-naïve depression patients and 78 gender-, age-, and education level-matched healthy controls (HCs) who underwent high-resolution T1-weighted magnetic resonance scans. Voxel-based morphometry (VBM) was adopted to calculate the GMV differences between two groups. Then we analyzed the spatial correlation between depression-induced alteration in GMV and density maps of 10 receptors/transporters deriving from prior molecular imaging in healthy people. RESULTS Compared to HCs, the depression group had significantly increased GMV in the left ventral portions of the ventral medial prefrontal cortex, parahippocampal gyrus, amygdala, the right superior parietal lobule and precuneus while decreased GMV in the bilateral hippocampus extending to the thalamus and cerebellum. The GMV alteration introduced by depression was spatially correlated with serotonin receptors (5-HT1a, 5-HT1b, and 5-HT2a), dopamine receptors (D1 and D2) and GABAergic receptor (GABAa) densities. LIMITATIONS The conclusions drawn in this study were obtained from a single dataset. CONCLUSIONS This study reveals abnormal GMV alteration and provides a series of neurotransmitters receptors possibly related to GMV alteration in depression, which facilitates an integrative understanding of the molecular mechanism underlying the structural abnormalities in depression and may provide clues to new treatment strategies.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Yi Chen
- Clinical Research Service Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianyue Pang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hengfen Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, Henan 450052, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, Henan 450052, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450052, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
214
|
Higher polygenic risk scores for anxiety disorders are associated with reduced area in the anterior cingulate gyrus. J Affect Disord 2023; 320:291-297. [PMID: 36150406 DOI: 10.1016/j.jad.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023]
Abstract
Anxiety disorders are heterogeneous, show a moderate genetic contribution and are associated with inconsistent cortical structure alterations. Here, we investigated whether genetic factors for anxiety disorders contribute to cortical alterations by conducting polygenic risk score (PRS) analyses. We calculated PRSs for anxiety disorders at several P value thresholds (from PT ≤ 5.0 × 10-8 to PT ≤ 1.0) based on the latest large-scale genome-wide association study of anxiety disorders from the UK biobank (25,453 cases; 58,113 controls) in an independent sample of psychiatrically and physically healthy subjects (n = 174). Using regression after adjusting for confounding factors, we tested whether these PRSs were associated with the surface area and cortical thickness in 34 bilateral brain regions extracted using FreeSurfer. A higher PRS for anxiety disorders at PT ≤ 1.0 was significantly associated with a reduced right caudal anterior cingulate area (beta = -0.25, puncorrected = 9.51 × 10-4, pcorrected = 0.032). PRSs based on more common SNPs, especially from PT ≤ 0.01 to PT ≤ 1.0, were associated with the right caudal anterior cingulate area (a maximum at PT ≤ 0.5: R2 = 0.066, beta = -0.27, puncorr = 3.81 × 10-4, pcorr = 0.013). Furthermore, individuals in the highest quartile for anxiety disorder PRS had lower surface area and volume in the right anterior cingulate gyrus than those in the lowest quartile. We suggest a shared genetic etiology between anxiety disorders and structural features of the anterior cingulate gyrus, possibly contributing to the pathogenesis of anxiety disorders via emotional dysregulations. Our findings suggest the potential usefulness of PRS to reduce pathological heterogeneity among anxiety disorders.
Collapse
|
215
|
Wang H, Xu J, Yu M, Zhou G, Ren J, Wang Y, Zheng H, Sun Y, Wu J, Liu W. Functional and structural alterations as diagnostic imaging markers for depression in de novo Parkinson's disease. Front Neurosci 2023; 17:1101623. [PMID: 36908791 PMCID: PMC9992430 DOI: 10.3389/fnins.2023.1101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Background Depression in Parkinson's disease (PD) is identified and diagnosed with behavioral observations and neuropsychological measurements. Due to the large overlaps of depression and PD symptoms in clinical manifestations, it is challenging for neurologists to distinguish and diagnose depression in PD (DPD) in the early clinical stage of PD. The advancement in magnetic resonance imaging (MRI) technology provides potential clinical utility in the diagnosis of DPD. This study aimed to explore the alterations of functional and structural MRI in DPD to produce neuroimaging markers in discriminating DPD from non-depressed PD (NDPD) and healthy controls (HC). Methods We recruited 20 DPD, 37 NDPD, and 41 HC matched in age, gender, and education years. The patients' diagnosis with PD was de novo. The differences in regional homogeneity (ReHo), voxel-wise degree centrality (DC), cortical thickness, cortical gray matter (GM) volumes, and subcortical GM volumes among these groups were detected, and the relationship between altered indicators and depression was analyzed. Moreover, the receiver operating characteristic (ROC) analysis was performed to assess the diagnostic efficacy of altered indicators for DPD. Results Compared to NDPD and HC, DPD showed significantly increased ReHo in left dorsolateral superior frontal gyrus (DSFG) and DC in left inferior temporal gyrus (ITG), and decreased GM volumes in left temporal lobe and right Amygdala. Among these altered indicators, ReHo value in left DSFG and DC values in left ITG and left DSFG were significantly correlated with the severity of depression in PD patients. Comparing DPD and NDPD, the ROC analysis revealed a better area under the curve value for the combination of ReHo value in left DSFG and DC value in left ITG, followed by each independent indicator. However, the difference is not statistically significant. Conclusion This study demonstrates that both functional and structural impairments are present in DPD. Among them, ReHo value of left DSFG and DC value of left ITG are equally well suited for the diagnosis and differential diagnosis of DPD, with a combination of them being slightly preferable. The multimodal MRI technique represents a promising approach for the classification of subjects with PD.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Jianxia Xu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gaiyan Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huifen Zheng
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Laboratory of Children Medical Imaging Research, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jun Wu
- Department of Clinical Laboratory, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
216
|
Tamman AJF, Jiang L, Averill CL, Mason GF, Averill LA, Abdallah CG. Biological embedding of early trauma: the role of higher prefrontal synaptic strength. Eur J Psychotraumatol 2023; 14:2246338. [PMID: 37642398 PMCID: PMC10467533 DOI: 10.1080/20008066.2023.2246338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 08/31/2023] Open
Abstract
Background: Early trauma predicts poor psychological and physical health. Glutamatergic synaptic processes offer one avenue for understanding this relationship, given glutamate's abundance and involvement in reward and stress sensitivity, emotion, and learning. Trauma-induced glutamatergic excitotoxicity may alter neuroplasticity and approach/avoidance tendencies, increasing risk for psychiatric disorders. Studies examine upstream or downstream effects instead of glutamatergic synaptic processes in vivo, limiting understanding of how trauma affects the brain.Objective: In a pilot study using a previously published data set, we examine associations between early trauma and a proposed measure of synaptic strength in vivo in one of the largest human samples to undergo Carbon-13 (13C MRS) magnetic resonance spectroscopy. Participants were 18 healthy controls and 16 patients with PTSD (male and female).Method: Energy per cycle (EPC), which represents the ratio of neuronal oxidative energy production to glutamate neurotransmitter cycling, was generated as a putative measure of glutamatergic synaptic strength.Results: Results revealed that early trauma was positively correlated with EPC in individuals with PTSD, but not in healthy controls. Increased synaptic strength was associated with reduced behavioural inhibition, and EPC showed stronger associations between reward responsivity and early trauma for those with higher EPC.Conclusion: In the largest known human sample to undergo 13C MRS, we show that early trauma is positively correlated with EPC, a direct measure of synaptic strength. Our study findings have implications for pharmacological treatments thought to impact synaptic plasticity, such as ketamine and psilocybin.
Collapse
Affiliation(s)
- Amanda J. F. Tamman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Christopher L. Averill
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Yale School of Medicine, New Haven, CT, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- US Department of Veterans Affairs, National Center for PTSD – Clinical Neurosciences Division, West Haven, CT, USA
| | | | - Lynnette A. Averill
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Yale School of Medicine, New Haven, CT, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- US Department of Veterans Affairs, National Center for PTSD – Clinical Neurosciences Division, West Haven, CT, USA
| | - Chadi G. Abdallah
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Yale School of Medicine, New Haven, CT, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- US Department of Veterans Affairs, National Center for PTSD – Clinical Neurosciences Division, West Haven, CT, USA
- Baylor College of Medicine, Core for Advanced Magnetic Resonance Imaging (CAMRI), Houston, TX, USA
| |
Collapse
|
217
|
Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2023; 48:104-112. [PMID: 36123427 PMCID: PMC9700802 DOI: 10.1038/s41386-022-01389-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses are required to produce this effect (e.g., hallucinogenic doses vs. "microdoses"), and how long purported changes in neuroplasticity last. Finally, we discuss the likely consequences of psychedelics' effects on neuroplasticity for both patients and healthy people, and we identify important research questions that would further scientific understanding of psychedelics' effects on neuroplasticity and its potential clinical applications.
Collapse
Affiliation(s)
- Abigail E Calder
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
218
|
Dintica CS, Habes M, Erus G, Simone T, Schreiner P, Yaffe K. Long-term depressive symptoms and midlife brain age. J Affect Disord 2023; 320:436-441. [PMID: 36202300 PMCID: PMC10115134 DOI: 10.1016/j.jad.2022.09.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Evidence suggests that depression may be a risk factor for dementia in older adults, but the link between depressive symptoms and brain health earlier in life is less understood. Our aim was to investigate the association between long-term depressive symptoms in young to mid-adulthood and a measure of brain age derived from structural MRI. METHODS From the Coronary Artery Risk Development in Young Adults study, we identified 649 participants (age 23-36 at baseline) with brain MRI and cognitive testing. Long-term depressive symptoms were measured with the Center for Epidemiological Studies Depression scale (CESD) six times across 25 years and analyzed as time-weighted averages (TWA). Brain age was derived using previously validated high dimensional neuroimaging pattern analysis, quantifying individual differences in age-related atrophy. Elevated depressive symptoms were defined as CES-D ≥16. Linear regression was used to test the association between TWA depressive symptoms, brain aging, and cognition. RESULTS Each standard deviation (5-points) increment in TWA depression symptoms over 25 years was associated with one-year greater brain age (β: 1.14, 95 % confidence interval [CI]: 0.57 to 1.71). Participants with elevated TWA depressive symptoms had on average a 3-year greater brain age (β: 2.75, 95 % CI: 0.43 to 5.08). Moreover, elevated depressive symptoms were associated with higher odds of poor cognitive function in midlife (OR: 3.30, 95 % CI: 1.37 to 7.97). LIMITATIONS Brain age was assessed at one time, limiting our ability to evaluate the temporality of depressive symptoms and brain aging. CONCLUSIONS Elevated depressive symptoms in early adulthood may have implications for brain health as early as in midlife.
Collapse
Affiliation(s)
| | - Mohamad Habes
- University of Pennsylvania, Philadelphia, PA, USA; Neuroimage Analytics Laboratory (NAL) and the Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, TX, USA.
| | - Guray Erus
- University of Pennsylvania, Philadelphia, PA, USA.
| | - Tamar Simone
- Northern California Institute for Research and Education, San Francisco, CA, USA.
| | - Pamela Schreiner
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA.
| | - Kristine Yaffe
- University of California, San Francisco, California, CA, USA; VA Medical Center, San Francisco, CA, USA.
| |
Collapse
|
219
|
Huntley JH, Rezvani Habibabadi R, Vaishnavi S, Khoshpouri P, Kraut MA, Yousem DM. Transcranial Magnetic Stimulation and its Imaging Features in Patients With Depression, Post-traumatic Stress Disorder, and Traumatic Brain Injury. Acad Radiol 2023; 30:103-112. [PMID: 35437218 DOI: 10.1016/j.acra.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a type of noninvasive neurostimulation used increasingly often in clinical medicine. While most studies to date have focused on TMS's ability to treat major depressive disorder, it has shown promise in several other conditions including post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI). As different treatment protocols are often used across studies, the ability to predict patient outcomes and evaluate immediate and long-term changes using imaging becomes increasingly important. Several imaging features, such as thickness, connectedness, and baseline activity of a variety of cortical and subcortical areas, have been found to be correlated with a greater response to TMS therapy. Intrastimulation imaging can reveal in real time how TMS applied to superficial areas activates or inhibits activity in deeper brain regions. Functional imaging performed weeks to months after treatment can offer an understanding of how long-term effects on brain activity relate to clinical improvement. Further work should be done to expand our knowledge of imaging features relevant to TMS therapy and how they vary across patients with different neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Joseph H Huntley
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sandeep Vaishnavi
- MindPath Care Centers Clinical Research Institute, Raleigh, North Carolina
| | - Parisa Khoshpouri
- Department of Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael A Kraut
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
220
|
Sherif MA, Khalil MZ, Shukla R, Brown JC, Carpenter LL. Synapses, predictions, and prediction errors: A neocortical computational study of MDD using the temporal memory algorithm of HTM. Front Psychiatry 2023; 14:976921. [PMID: 36911109 PMCID: PMC9995817 DOI: 10.3389/fpsyt.2023.976921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION Synapses and spines play a significant role in major depressive disorder (MDD) pathophysiology, recently highlighted by the rapid antidepressant effect of ketamine and psilocybin. According to the Bayesian brain and interoception perspectives, MDD is formalized as being stuck in affective states constantly predicting negative energy balance. To understand how spines and synapses relate to the predictive function of the neocortex and thus to symptoms, we used the temporal memory (TM), an unsupervised machine-learning algorithm. TM models a single neocortical layer, learns in real-time, and extracts and predicts temporal sequences. TM exhibits neocortical biological features such as sparse firing and continuous online learning using local Hebbian-learning rules. METHODS We trained a TM model on random sequences of upper-case alphabetical letters, representing sequences of affective states. To model depression, we progressively destroyed synapses in the TM model and examined how that affected the predictive capacity of the network. We found that the number of predictions decreased non-linearly. RESULTS Destroying 50% of the synapses slightly reduced the number of predictions, followed by a marked drop with further destruction. However, reducing the synapses by 25% distinctly dropped the confidence in the predictions. Therefore, even though the network was making accurate predictions, the network was no longer confident about these predictions. DISCUSSION These findings explain how interoceptive cortices could be stuck in limited affective states with high prediction error. Connecting ketamine and psilocybin's proposed mechanism of action to depression pathophysiology, the growth of new synapses would allow representing more futuristic predictions with higher confidence. To our knowledge, this is the first study to use the TM model to connect changes happening at synaptic levels to the Bayesian formulation of psychiatric symptomatology. Linking neurobiological abnormalities to symptoms will allow us to understand the mechanisms of treatments and possibly, develop new ones.
Collapse
Affiliation(s)
- Mohamed A Sherif
- Lifespan Physician Group, Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Carney Institute for Brain Science, Norman Prince Neurosciences Institute, Providence, RI, United States
| | - Mostafa Z Khalil
- Department of Psychiatry and Behavioral Health, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Rammohan Shukla
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Joshua C Brown
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| | - Linda L Carpenter
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| |
Collapse
|
221
|
Wu Y, Kong L, Yang A, Xin K, Lu Y, Yan X, Liu W, Zhu Y, Guo Y, Jiang X, Zhou Y, Sun Q, Tang Y, Wu F. Gray matter volume reduction in orbitofrontal cortex correlated with plasma glial cell line-derived neurotrophic factor (GDNF) levels within major depressive disorder. Neuroimage Clin 2023; 37:103341. [PMID: 36739789 PMCID: PMC9932451 DOI: 10.1016/j.nicl.2023.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental disorder characterized by reduced gray matter volume (GMV). To date, the pathogenesis of MDD remains unclear, but neurotrophic factors play an essential role in the pathophysiological alterations of MDD during disease development. In particular, plasma glial cell line-derived neurotrophic factor (GDNF) has been suggested as a potential biomarker that may be associated with disease activity and neurological progression in MDD. Our study investigated whether plasma GDNF levels in MDD patients and healthy controls (HCs) are correlated with GMV alterations. METHODS We studied 54 MDD patients and 48 HCs. The effect of different diagnoses on whole-brain GMV was investigated using ANOVA (Analysis of Variance). The threshold of significance was p < 0.05, and Gaussian random-field (GRF) correction for error was used. All analyses were controlled for covariates such as ethnicity, handedness, age, and gender that could affect GMV. RESULT Compared with the HC group, the GMV in the MDD group was significantly reduced in the right inferior orbitofrontal cortex (OFC), and plasma GDNF levels were significantly higher in the MDD group than in the HC group. In the right inferior OFC, the GDNF levels were positively correlated with GMV reduction in the MDD group, whereas in the HC group, a negative correlation was observed between GDNF levels and GMV reduction. CONCLUSION Although increased production of GDNF in MDD may help repair neural damage in brain regions associated with brain disease, its repairing effects may be interfered with and hindered by underlying neuroinflammatory processes.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Anqi Yang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Kaiqi Xin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yihui Lu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xintong Yan
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Wen Liu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yingrui Guo
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Qikun Sun
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Department of Geriatric Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
222
|
Zhang X, Cao J, Huang Q, Hong S, Dai L, Chen X, Chen J, Ai M, Gan Y, He J, Kuang L. Severity related neuroanatomical and spontaneous functional activity alteration in adolescents with major depressive disorder. Front Psychiatry 2023; 14:1157587. [PMID: 37091700 PMCID: PMC10113492 DOI: 10.3389/fpsyt.2023.1157587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Background Major depressive disorder (MDD) is a disabling and severe psychiatric disorder with a high rate of prevalence, and adolescence is one of the most probable periods for the first onset. The neurobiological mechanism underlying the adolescent MDD remains unexplored. Methods In this study, we examined the cortical and subcortical alterations of neuroanatomical structures and spontaneous functional activation in 50 unmedicated adolescents with MDD vs. 39 healthy controls through the combined structural and resting-state functional magnetic resonance imaging. Results Significantly altered regional gray matter volume was found at broader frontal-temporal-parietal and subcortical brain areas involved with various forms of information processing in adolescent MDD. Specifically, the increased GM volume at the left paracentral lobule and right supplementary motor cortex was significantly correlated with depression severity in adolescent MDD. Furthermore, lower cortical thickness at brain areas responsible for visual and auditory processing as well as motor movements was found in adolescent MDD. The lower cortical thickness at the superior premotor subdivision was positively correlated with the course of the disease. Moreover, higher spontaneous neuronal activity was found at the anterior cingulum and medial prefrontal cortex, and this hyperactivity was also negatively correlated with the course of the disease. It potentially reflected the rumination, impaired concentration, and physiological arousal in adolescent MDD. Conclusion The abnormal structural and functional findings at cortico-subcortical areas implied the dysfunctional cognitive control and emotional regulations in adolescent depression. The findings might help elaborate the underlying neural mechanisms of MDD in adolescents.
Collapse
Affiliation(s)
- Xiaoliu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaoliu Zhang ;
| | - Jun Cao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Huang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Hong
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linqi Dai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaorong Chen
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Gan
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinglan He
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
223
|
Ma Y, Kvarta MD, Adhikari BM, Chiappelli J, Du X, van der Vaart A, Goldwaser EL, Bruce H, Hatch KS, Gao S, Summerfelt A, Jahanshad N, Thompson PM, Nichols TE, Hong LE, Kochunov P. Association between brain similarity to severe mental illnesses and comorbid cerebral, physical, and cognitive impairments. Neuroimage 2023; 265:119786. [PMID: 36470375 PMCID: PMC9910181 DOI: 10.1016/j.neuroimage.2022.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Severe mental illnesses (SMIs) are often associated with compromised brain health, physical comorbidities, and cognitive deficits, but it is incompletely understood whether these comorbidities are intrinsic to SMI pathophysiology or secondary to having SMIs. We tested the hypothesis that cerebral, cardiometabolic, and cognitive impairments commonly observed in SMIs can be observed in non-psychiatric individuals with SMI-like brain patterns of deviation as seen on magnetic resonance imaging. 22,883 participants free of common neuropsychiatric conditions from the UK Biobank (age = 63.4 ± 7.5 years, range = 45-82 years, 50.9% female) were split into discovery and replication samples. The regional vulnerability index (RVI) was used to quantify each participant's respective brain similarity to meta-analytical patterns of schizophrenia spectrum disorder, bipolar disorder, and major depressive disorder in gray matter thickness, subcortical gray matter volume, and white matter integrity. Cluster analysis revealed five clusters with distinct RVI profiles. Compared with a cluster with no RVI elevation, a cluster with RVI elevation across all SMIs and brain structures showed significantly higher volume of white matter hyperintensities (Cohen's d = 0.59, pFDR < 10-16), poorer cardiovascular (Cohen's d = 0.30, pFDR < 10-16) and metabolic (Cohen's d = 0.12, pFDR = 1.3 × 10-4) health, and slower speed of information processing (|Cohen's d| = 0.11-0.17, pFDR = 1.6 × 10-3-4.6 × 10-8). This cluster also had significantly higher level of C-reactive protein and alcohol use (Cohen's d = 0.11 and 0.28, pFDR = 4.1 × 10-3 and 1.1 × 10-11). Three other clusters with respective RVI elevation in gray matter thickness, subcortical gray matter volume, and white matter integrity showed intermediate level of white matter hyperintensities, cardiometabolic health, and alcohol use. Our results suggest that cerebral, physical, and cognitive impairments in SMIs may be partly intrinsic via shared pathophysiological pathways with SMI-related brain anatomical changes.
Collapse
Affiliation(s)
- Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Mark D Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew van der Vaart
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric L Goldwaser
- Department of Psychiatry, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, NY, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathryn S Hatch
- School of Medicine, University of California, San Diego, CA, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Thomas E Nichols
- Big Data Science Institute, Department of Statistics, University of Oxford, Oxford, UK
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
224
|
Rakesh D, Zalesky A, Whittle S. The Role of School Environment in Brain Structure, Connectivity, and Mental Health in Children: A Multimodal Investigation. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:32-41. [PMID: 35123109 DOI: 10.1016/j.bpsc.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Much work has been dedicated to understanding the effects of adverse home environments on brain development. While the school social and learning environment plays a role in child development, little work has been done to investigate the impact of the school environment on the developing brain. The goal of the present study was to examine associations between the school environment, brain structure and connectivity, and mental health. METHODS In this preregistered study we investigated these questions in a large sample of adolescents (9-10 years of age) from the Adolescent Brain Cognitive Development (ABCD) Study. We examined the association between school environment and gray matter (n = 10,435) and white matter (n = 10,770) structure and functional connectivity (n = 9528). We then investigated multivariate relationships between school-associated brain measures and mental health. RESULTS School environment was associated with connectivity of the auditory and retrosplenial temporal network as well as of higher-order cognitive networks like the cingulo-opercular, default mode, ventral attention, and frontoparietal networks. Multivariate analyses revealed that connectivity of the cingulo-opercular and default mode networks was also associated with mental health. CONCLUSIONS Findings shed light on the neural mechanisms through which favorable school environments may contribute to positive mental health outcomes in children. Our findings have implications for interventions targeted at promoting positive youth functioning through improving school environments.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia; Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
| |
Collapse
|
225
|
Rong B, Gao G, Sun L, Zhou M, Zhao H, Huang J, Wang H, Xiao L, Wang G. Preliminary findings on the effect of childhood trauma on the functional connectivity of the anterior cingulate cortex subregions in major depressive disorder. Front Psychiatry 2023; 14:1159175. [PMID: 37139313 PMCID: PMC10150086 DOI: 10.3389/fpsyt.2023.1159175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Objectives Childhood trauma (CT) is a known risk factor for major depressive disorder (MDD), but the mechanisms linking CT and MDD remain unknown. The purpose of this study was to examine the influence of CT and depression diagnosis on the subregions of the anterior cingulate cortex (ACC) in MDD patients. Methods The functional connectivity (FC) of ACC subregions was evaluated in 60 first-episode, drug-naïve MDD patients (40 with moderate-to-severe and 20 with no or low CT), and 78 healthy controls (HC) (19 with moderate-to-severe and 59 with no or low CT). The correlations between the anomalous FC of ACC subregions and the severity of depressive symptoms and CT were investigated. Results Individuals with moderate-to severe CT exhibited increased FC between the caudal ACC and the middle frontal gyrus (MFG) than individuals with no or low CT, regardless of MDD diagnosis. MDD patients showed lower FC between the dorsal ACC and the superior frontal gyrus (SFG) and MFG. They also showed lower FC between the subgenual/perigenual ACC and the middle temporal gyrus (MTG) and angular gyrus (ANG) than the HCs, regardless of CT severity. The FC between the left caudal ACC and the left MFG mediated the correlation between the Childhood Trauma Questionnaire (CTQ) total score and HAMD-cognitive factor score in MDD patients. Conclusion Functional changes of caudal ACC mediated the correlation between CT and MDD. These findings contribute to our understanding of the neuroimaging mechanisms of CT in MDD.
Collapse
Affiliation(s)
- Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guoqing Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingzhe Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haomian Zhao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhua Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanling Wang
- Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Ling Xiao,
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Gaohua Wang,
| |
Collapse
|
226
|
Baagil H, Hohenfeld C, Habel U, Eickhoff SB, Gur RE, Reetz K, Dogan I. Neural correlates of impulse control behaviors in Parkinson's disease: Analysis of multimodal imaging data. Neuroimage Clin 2023; 37:103315. [PMID: 36610308 PMCID: PMC9850204 DOI: 10.1016/j.nicl.2023.103315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Impulse control behaviors (ICB) are frequently observed in patients with Parkinson's disease (PD) and are characterized by compulsive and repetitive behavior resulting from the inability to resist internal drives. OBJECTIVES In this study, we aimed to provide a better understanding of structural and functional brain alterations and clinical parameters related to ICB in PD patients. METHODS We utilized a dataset from the Parkinson's Progression Markers Initiative including 36 patients with ICB (PDICB+) compared to 76 without ICB (PDICB-) and 61 healthy controls (HC). Using multimodal MRI data we assessed gray matter brain volume, white matter integrity, and graph topological properties at rest. RESULTS Compared with HC, PDICB+ showed reduced gray matter volume in the bilateral superior and middle temporal gyrus and in the right middle occipital gyrus. Compared with PDICB-, PDICB+ showed volume reduction in the left anterior insula. Depression and anxiety were more prevalent in PDICB+ than in PDICB- and HC. In PDICB+, lower gray matter volume in the precentral gyrus and medial frontal cortex, and higher axial diffusivity in the superior corona radiata were related to higher depression score. Both PD groups showed disrupted functional topological network pattern within the cingulate cortex compared with HC. PDICB+ vs PDICB- displayed reduced topological network pattern in the anterior cingulate cortex, insula, and nucleus accumbens. CONCLUSIONS Our results suggest that structural alterations in the insula and abnormal topological connectivity pattern in the salience network and the nucleus accumbens may lead to impaired decision making and hypersensitivity towards reward in PDICB+. Moreover, PDICB+ are more prone to suffer from depression and anxiety.
Collapse
Affiliation(s)
- Hamzah Baagil
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Germany
| | - Christian Hohenfeld
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA‑BRAIN, Jülich‑Aachen Research Alliance, Institute of Brain Structure-Function Relationships, Aachen, Germany
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Germany
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Germany.
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Germany
| |
Collapse
|
227
|
Holmes SE, Abdallah C, Esterlis I. Imaging synaptic density in depression. Neuropsychopharmacology 2023; 48:186-190. [PMID: 35768568 PMCID: PMC9700860 DOI: 10.1038/s41386-022-01368-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Major depressive disorder is a prevalent and heterogeneous disorder with treatment resistance in at least 50% of individuals. Most of the initial studies focused on the monoamine system; however, recently other mechanisms have come under investigation. Specific to the current issue, studies show synaptic involvement in depression. Other articles in this issue report on reductions in synaptic density, dendritic spines, boutons and glia associated with stress and depression. Importantly, it appears that some drugs (e.g., ketamine) may lead to rapid synaptic restoration or synaptogenesis. Direct evidence for this comes from preclinical work. However, neuroimaging studies, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have become useful in assessing these changes in vivo. Here, we describe the use of neuroimaging techniques in the evaluation of synaptic alterations associated with depression in humans, as well as measurement of synaptic restoration after administration of ketamine. Although more research is desired, use of these techniques widen our understanding of depression and move us further along the path to targeted and effective treatment for depression.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Chadi Abdallah
- Baylor College of Medicine, Houston, TX, USA
- National Center for PTSD, Houston, TX, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- National Center for PTSD, Houston, TX, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
228
|
Environmental neuroscience linking exposome to brain structure and function underlying cognition and behavior. Mol Psychiatry 2023; 28:17-27. [PMID: 35790874 DOI: 10.1038/s41380-022-01669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
Individual differences in human brain structure, function, and behavior can be attributed to genetic variations, environmental exposures, and their interactions. Although genome-wide association studies have identified many genetic variants associated with brain imaging phenotypes, environmental exposures associated with these phenotypes remain largely unknown. Here, we propose that environmental neuroscience should pay more attention on exploring the associations between lifetime environmental exposures (exposome) and brain imaging phenotypes and identifying both cumulative environmental effects and their vulnerable age windows during the life course. Exposome-neuroimaging association studies face several challenges including the accurate measurement of the totality of environmental exposures varied in space and time, the highly correlated structure of the exposome, and the lack of standardized approaches for exposome-wide association studies. By agnostically scanning the effects of environmental exposures on brain imaging phenotypes and their interactions with genomic variations, exposome-neuroimaging association analyses will improve our understanding of causal factors associated with individual differences in brain structure and function as well as their relations with cognitive abilities and neuropsychiatric disorders.
Collapse
|
229
|
Prolonged Longitudinal Transcutaneous Auricular Vagus Nerve Stimulation Effect on Striatal Functional Connectivity in Patients with Major Depressive Disorder. Brain Sci 2022; 12:brainsci12121730. [PMID: 36552189 PMCID: PMC9776392 DOI: 10.3390/brainsci12121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) is effective for treating major depressive disorder (MDD). We aimed to explore the modulating effect of prolonged longitudinal taVNS on the striatal subregions' functional connectivity (FC) in MDD patients. METHODS Sixteen MDD patients were enrolled and treated with taVNS for 8 weeks. Sixteen healthy control subjects (HCs) were recruited without intervention. The resting-state FC (rsFC) based on striatal subregion seed points and the Hamilton Depression Scale (HAMD) were evaluated in the MDD patients and HCs at baseline and after 8 weeks. A two-way ANCOVA test was performed on each rsFC metric to obtain the (group-by-time) interactions. RESULTS The rsFC values between the left ventral caudate (vCa) and right ventral prefrontal cortex (vPFC), and between the right nucleus accumbens (NAc) and right dorsal medial prefrontal cortex (dmPFC) and ventrolateral prefrontal cortex (vlPFC) are lower in the MDD patients compared to the HCs at baseline, and increase following taVNS; the rsFC values between the left vCa and right, superior occipital gyrus (SOG), and between the left dorsal caudate (dCa) and right cuneus are higher in MDD patients and decrease following taVNS. CONCLUSIONS Prolonged longitudinal taVNS can modulate the striatum rsFC with the prefrontal cortex, occipital cortex, temporal cortex, and intra-striatum, and these changes partly underlie any symptomatic improvements. The results indicate that prolonged longitudinal taVNS may produce beneficial treatment effects by modulating the cortical striatum circuitry in patients with MDD.
Collapse
|
230
|
Fowler CH, Gaffrey MS. Reduced cortical surface area globally and in reward-related cortex is associated with elevated depressive symptoms in preschoolers. J Affect Disord 2022; 319:286-293. [PMID: 36162658 DOI: 10.1016/j.jad.2022.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Elevated depressive symptoms in early childhood strongly predict depression onset in youth. Nevertheless, little is known about the neural correlates of these symptoms, information that is key for understanding the early development of depression. As a result, the present study conducted a novel investigation of the association between cortical structure and depressive symptoms in preschoolers. METHODS Forty-six preschool age children (Mage = 5.90, SD = 0.75), some (N = 15) at high risk for depression, participated in the study. Data included parent-report of child depressive symptoms and measures of child whole brain and regional cortical structure acquired via 3T MRI. RESULTS After adjustment for maternal depression, socio-economic status, child age, child sex, and intracranial volume, reduced total cortical surface area and reduced surface area of the lateral orbitofrontal cortex were associated with elevated depressive symptoms. Cortical thickness was not associated with depressive symptoms. LIMITATIONS The present data are cross-sectional, limiting any causal interpretations. CONCLUSIONS Results suggest that reduced cortical surface area, rather than thickness, is a neural correlate of depressive symptoms in preschoolers. Findings highlight the importance of surface area in reward processing regions (i.e., lateral orbitofrontal cortex) in particular. The present results provide novel insight into early emerging associations between brain structure and features of depression in young children and underscore early childhood as an important developmental period for understanding depression.
Collapse
Affiliation(s)
- Carina H Fowler
- Duke University, Department of Psychology & Neuroscience, Durham, NC 27708, United States of America.
| | - Michael S Gaffrey
- Duke University, Department of Psychology & Neuroscience, Durham, NC 27708, United States of America
| |
Collapse
|
231
|
Gradone AM, Champion G, McGregor KM, Nocera JR, Barber SJ, Krishnamurthy LC, Dotson VM. Rostral anterior cingulate connectivity in older adults with subthreshold depressive symptoms: A preliminary study. AGING BRAIN 2022; 3:100059. [PMID: 36911261 PMCID: PMC9997166 DOI: 10.1016/j.nbas.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Subthreshold depressive symptoms are highly prevalent among older adults and are associated with numerous health risks including cognitive decline and decreased physical health. One brain region central to neuroanatomical models of depressive disorders is the anterior cingulate cortex (ACC). The rostral portion of the ACC-comprised of the pregenual ACC and subgenual ACC-is implicated in emotion control and reward processing. The goal of the current study was to examine how functional connectivity in subregions of the rostral ACC relate to depressive symptoms, measured by the Beck Depression Inventory-Second Edition, in an ethnically diverse sample of 28 community-dwelling older adults. Based on meta-analyses of previous studies in primarily young adults with clinical depression, we hypothesized that greater depressive symptoms would be associated with primarily increased resting-state functional connectivity from both the subgenual ACC and pregenual ACC to default mode network regions and the dorsolateral PFC. We instead found that higher depressive symptoms were associated with lower functional connectivity of the ACC to the dorsolateral PFC and regions within the default mode network, including from the subgenual ACC to the dorsolateral PFC and anterior cingulate and from the pregenual ACC to the middle cingulate gyrus. This preliminary study highlights brain alterations at subthreshold levels of depressive symptoms in older adults, which could serve as targets for interventions.
Collapse
Affiliation(s)
- Andrew M. Gradone
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Gabriell Champion
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- VA Rehabilitation Research & Development Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
| | - Keith M. McGregor
- VA Rehabilitation Research & Development Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Birmingham VA Geriatrics Research Education and Clinical Center, Birmingham, AL, United States
- University of Alabama –Birmingham, School of Health Professions, Department of Clinical and Diagnostic Sciences, Birmingham, United States
| | - Joe R. Nocera
- VA Rehabilitation Research & Development Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Sarah J. Barber
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Gerontology Institute, Georgia State University, Atlanta, GA, United States
| | - Lisa C. Krishnamurthy
- VA Rehabilitation Research & Development Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Vonetta M. Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Gerontology Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
232
|
Individual- and Connectivity-Based Real-Time fMRI Neurofeedback to Modulate Emotion-Related Brain Responses in Patients with Depression: A Pilot Study. Brain Sci 2022; 12:brainsci12121714. [PMID: 36552173 PMCID: PMC9775232 DOI: 10.3390/brainsci12121714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Individual real-time functional magnetic resonance imaging neurofeedback (rtfMRI NF) might be a promising adjuvant in treating depressive symptoms. Further studies showed functional variations and connectivity-related changes in the dorsolateral prefrontal cortex (dlPFC) and the insular cortex. OBJECTIVES The aim of this pilot study was to investigate whether individualized connectivity-based rtfMRI NF training can improve symptoms in depressed patients as an adjunct to a psychotherapeutic programme. The novel strategy chosen for this was to increase connectivity between individualized regions of interest, namely the insula and the dlPFC. METHODS Sixteen patients diagnosed with major depressive disorder (MDD, ICD-10) and 19 matched healthy controls (HC) participated in a rtfMRI NF training consisting of two sessions with three runs each, within an interval of one week. RtfMRI NF was applied during a sequence of negative emotional pictures to modulate the connectivity between the dlPFC and the insula. The MDD REAL group was divided into a Responder and a Non-Responder group. Patients with an increased connectivity during the second NF session or during both the first and the second NF session were identified as "MDD REAL Responder" (N = 6). Patients that did not show any increase in connectivity and/or a decreased connectivity were identified as "MDD REAL Non-Responder" (N = 7). RESULTS Before the rtfMRI sessions, patients with MDD showed higher neural activation levels in ventromedial PFC and the insula than HC; by contrast, HC revealed increased hemodynamic activity in visual processing areas (primary visual cortex and visual association cortex) compared to patients with MDD. The comparison of hemodynamic responses during the first compared to during the last NF session demonstrated significantly increased BOLD-activation in the medial orbitofrontal cortex (mOFC) in patients and HC, and additionally in the lateral OFC in patients with MDD. These findings were particularly due to the MDD Responder group, as the MDD Non-Responder group showed no increase in this region during the last NF run. There was a decrease of neural activation in emotional processing brain regions in both groups in the last NF run compared to the first: HC showed differences in the insula, parahippocampal gyrus, basal ganglia, and cingulate gyrus. Patients with MDD demonstrated deceased responses in the parahippocampal gyrus. There was no significant reduction of BDI scores after NF training in patients. CONCLUSIONS Increased neural activation in the insula and vmPFC in MDD suggests an increased emotional reaction in patients with MDD. The activation of the mOFC could be associated with improved control-strategies and association-learning processes. The increased lOFC activation could indicate a stronger sensitivity to failed NF attempts in MDD. A stronger involvement of visual processing areas in HC may indicate better adaptation to negative emotional stimuli after repeated presentation. Overall, the rtfMRI NF had an impact on neurobiological mechanisms, but not on psychometric measures in patients with MDD.
Collapse
|
233
|
Zwaan IS, Felmingham K, Vijayakumar N, Patton G, Mundy L, Byrne ML, Simmons J, Whittle S. Estradiol variability is associated with brain structure in early adolescent females. Psychoneuroendocrinology 2022; 146:105943. [PMID: 36162183 DOI: 10.1016/j.psyneuen.2022.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
One-third of adolescents are diagnosed with a psychiatric disorder by age 16, with female adolescents twice as likely to experience an internalizing (i.e., depression or anxiety) disorder as their male peers. Individual differences in pubertal factors may partially underlie this disparity, potentially via the role of pubertal hormones in shaping brain development. While research has examined links between estradiol levels and brain structure, individual variation in estradiol levels has not been considered. Using longitudinal data from 44 female adolescents (baseline age M = 11.7; follow-up age M= 13.3), we examined associations between both average estradiol and estradiol variability, and brain gray matter structure at baseline. We used a hypothesis-driven region of interest (ROI) approach focusing on subcortical and ventromedial prefrontal regions, in addition to an exploratory whole-brain analysis. We also investigated whether brain structure mediated the association between estradiol measures and internalizing (i.e., anxious and depressive) symptoms at follow-up. ROI analyses revealed a significant negative association between estradiol variability and thickness of the right medial orbitofrontal cortex (OFC, β = -0.39, FDR corrected p = .010). There were, however, no significant associations between average estradiol or estradiol variability and internalizing symptoms, nor was there evidence of mediation. Our results indicate that increased variation in estradiol levels across a month is associated with decreased cortical thickness in a brain region implicated in emotion processing, although implications for mental health are unclear. Findings, however, highlight the importance of considering individual variation in estradiol when examining links to brain development.
Collapse
Affiliation(s)
- Isabel S Zwaan
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| | - Kim Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Nandi Vijayakumar
- School of Psychology, Faculty of Health, Deakin University, Australia
| | - George Patton
- Department of Paediatrics, The University of Melbourne, Australia; Centre for Adolescent Health, The Royal Children's Hospital, Australia
| | - Lisa Mundy
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Australia
| | - Michelle L Byrne
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Australia
| | - Julian Simmons
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| |
Collapse
|
234
|
Zhang Y, Xu B, Kim HH, Muetzel R, Delaney SW, Tiemeier H. Differences in cortical morphology and child internalizing or externalizing problems: Accounting for the co-occurrence. JCPP ADVANCES 2022; 2:e12114. [PMID: 37431413 PMCID: PMC10242825 DOI: 10.1002/jcv2.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/13/2022] [Indexed: 09/20/2024] Open
Abstract
Background Childhood internalizing and externalizing problems frequently co-occur. Many studies report neural correlates of either internalizing or externalizing problems, but few account for their co-occurrence. We aimed to assess specific cortical substrates of these psychiatric problems. Methods We used data from 9635 children aged 9-11 years in the baseline Adolescent Brain Cognitive Development Study. Internalizing and externalizing problem composite scales scores were derived from the Child Behavior Checklist. We standardized FreeSurfer-derived volumes of 68 cortical regions. We examined internalizing and externalizing problems separately and jointly (covariate-adjustment) in relation to cortical volumes, with and without adjusting for total brain volume (TBV) in multivariate linear regressions adjusted for demographics and multiple comparisons. We fit bifactor models to confirm the consistency of patterns exploring specific internalizing and specific externalizing problems. Sensitivity analyses included a vertex-wide analysis and a replication in another large population-based study. Results In separate TBV-unadjusted analyses, externalizing and internalizing problems were associated with smaller cortical volumes. If adjusted for externalizing behavior, however, larger cortical volumes were associated with internalizing problems, while smaller cortical volumes remained associated with externalizing problems after adjustment for internalizing problems. The bifactor model produced similar results, which were consistently replicated in another pre-adolescent neuroimaging sample. These associations likely represent global effects: adjusting for TBV rendered most associations non-significant. Vertex-wise analyses confirmed global patterns. Conclusion Our results suggest that internalizing and externalizing problems have globally opposing, and non-specific associations with cortical morphology in childhood, which are only apparent if analyses account for their co-occurrence.
Collapse
Affiliation(s)
- Yingzhe Zhang
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Bing Xu
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Hannah H. Kim
- Department of Social and Behavioral SciencesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Ryan Muetzel
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Scott W. Delaney
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Henning Tiemeier
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MC University Medical CenterRotterdamThe Netherlands
- Department of Social and Behavioral SciencesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
235
|
Wei J, Zhang Z, Du Y, Yang X, Zhao L, Ni P, Ni R, Gong M, Ma X. A combination of neuroimaging and plasma metabolomic analysis suggests inflammation is associated with white matter structural connectivity in major depressive disorder. J Affect Disord 2022; 318:7-15. [PMID: 36057287 DOI: 10.1016/j.jad.2022.08.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/17/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a common mental disorder with unknown pathophysiology. The abnormality of white matter structural connectivity and dysregulation of metabolome in MDD had been widely reported previously. Exploration of the relationship between white matter structural connectivity and plasma metabolites would be helpful for explanation of molecular mechanism for the findings from neuroimaging researches in MDD. METHODS The diffusion spectrum imaging data were collected for identification of difference of white matter structural connectivity between MDD (n = 49) and HC (n = 68). The plasma metabolite profiles were acquired by liquid chromatography-mass spectrometry analysis and clustered as co-expression modules. The correlation analysis was performed to identify structural connectivity associated metabolite. RESULTS We identified two structural connectivity related metabolite modules. One module was correlated with fractional anisotropy (FA) value between left middle temporal gyrus and left inferior temporal gyrus, which were enriched in tryptophan metabolism pathway; another module was correlated with fiber numbers (FN) between right fusiform gyrus and right inferior temporal gyrus, which was enriched in lysophosphatidylcholine (LPC), lysophosphatidylinositol (LPI) and lysophosphatidylglycerol (LPG) lipid sets. l-Kynurenine in tryptophan metabolism pathway was negatively correlated with FN between right fusiform gyrus and right inferior temporal gyrus, and LPC was positively correlated with FA value between left middle temporal gyrus and left inferior temporal gyrus in MDD. LIMITATIONS First, the sample size was relatively small. Second, the long-term effects of antidepressants were not excluded. CONCLUSION The results suggested inflammation-related mechanism was associated with white matter structural connectivity in MDD.
Collapse
Affiliation(s)
- Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zijian Zhang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Du
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Peiyan Ni
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Rongjun Ni
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
236
|
Lada G, Talbot PS, Chinoy H, Warren RB, McFarquhar M, Kleyn CE. Brain structure and connectivity in psoriasis and associations with depression and inflammation; findings from the UK biobank. Brain Behav Immun Health 2022; 26:100565. [PMID: 36471870 PMCID: PMC9719019 DOI: 10.1016/j.bbih.2022.100565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Psoriasis is a chronic systemic inflammatory skin disease, coexisting with depression in up to 25% of patients. Little is known about the drivers of comorbidity, including shared neurobiology and depression brain imaging patterns in patients. An immune-mediated crosstalk between the brain and skin has been hypothesized in psoriasis. With the aim of investigating brain structure and connectivity in psoriasis in relation to depression comorbidity, we conducted a brain imaging study including the largest psoriasis patient sample to date (to our knowledge) and the first to investigate the role of depression and systemic inflammation in brain measures. Effects of coexisting psoriatic arthritis (PsA), which represents joint involvement in psoriasis and a higher putative inflammatory state, were further explored. Methods Brain magnetic resonance imaging (MRI) data of 1,048 UK Biobank participants were used (131 comorbid patients with psoriasis and depression, age-and sex-matched to: 131 non-depressed psoriasis patients; 393 depressed controls; and 393 non-depressed controls). Interaction effects of psoriasis and depression on volume, thickness and surface of a-priori defined regions of interest (ROIs), white matter tracts and 55x55 partial correlation resting-state connectivity matrices were investigated using general linear models. Linear regression was employed to test associations of brain measures with C-reactive protein (CRP) and neutrophil counts. Results No differences in regional or global brain volumes or white matter integrity were found in patients with psoriasis compared to controls without psoriasis or PsA. Thickness in right precuneus was increased in psoriasis patients compared to controls, only when depression was present (β = 0.26, 95% CI [Confidence Intervals] 0.08, 0.44; p = 0.02). In further analysis, psoriasis patients who had PsA exhibited fronto-occipital decoupling in resting-state connectivity compared to patients without joint involvement (β = 0.39, 95% CI 0.13, 0.64; p = 0.005) and controls (β = 0.49, 95% CI 0.25, 0.74; p < 0.001), which was unrelated to depression comorbidity. Precuneus thickness and fronto-occipital connectivity were not predicted by CRP or neutrophil counts. Precuneus thickening among depressed psoriasis patients showed a marginal correlation with recurrent lifetime suicidality. Conclusions Our findings provide evidence for a combined effect of psoriasis and depression on the precuneus, which is not directly linked to systemic inflammation, and may relate to suicidality or altered somatosensory processing. The use of the UK Biobank may limit generalizability of results in populations with severe disease.
Collapse
Affiliation(s)
- Georgia Lada
- Dermatology Centre, Salford Royal NHS Foundation Trust, National Institute for Health Research Manchester Biomedical Research Centre, The University of Manchester, Manchester, M13 9PL, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Peter S. Talbot
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Hector Chinoy
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, M13 9PL, UK
| | - Richard B. Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, National Institute for Health Research Manchester Biomedical Research Centre, The University of Manchester, Manchester, M13 9PL, UK
| | - Martyn McFarquhar
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - C. Elise Kleyn
- Dermatology Centre, Salford Royal NHS Foundation Trust, National Institute for Health Research Manchester Biomedical Research Centre, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
237
|
Roeckner AR, Sogani S, Michopoulos V, Hinrichs R, van Rooij SJH, Rothbaum BO, Jovanovic T, Ressler KJ, Stevens JS. Sex-dependent risk factors for PTSD: a prospective structural MRI study. Neuropsychopharmacology 2022; 47:2213-2220. [PMID: 36114284 PMCID: PMC9630503 DOI: 10.1038/s41386-022-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Female individuals are more likely to be diagnosed with PTSD following trauma exposure than males, potentially due, in part, to underlying neurobiological factors. Several brain regions underlying fear learning and expression have previously been associated with PTSD, with the hippocampus, amygdala, dorsal anterior cingulate cortex (dACC), and rostral ACC (rACC) showing altered volume and function in those with PTSD. However, few studies have examined how sex impacts the predictive value of subcortical volumes and cortical thickness in longitudinal PTSD studies. As part of an emergency department study completed at the Grady Trauma Project in Atlanta, GA, N = 93 (40 Female) participants were enrolled within 24 h following a traumatic event. Multi-echo T1-weighted MRI images were collected one-month post-trauma exposure. Bilateral amygdala and hippocampal volumes and rACC and dACC cortical thickness were segmented. To assess the longitudinal course of PTSD, the PTSD Symptom Scale (PSS) was collected 6 months post-trauma. We investigated whether regional volume/thickness interacted with sex to predict later PTSD symptom severity, controlling for PSS score at time of scan, age, race, and trauma type, as well as intracranial volume (ICV) for subcortical volumes. There was a significant interaction between sex and rACC for 6-month PSS, such that right rACC thickness was positively correlated with 6-month PSS scores in females, but not in males. In examining PTSD symptom subtypes and depression symptoms, greater rACC thickness in females predicted greater avoidance symptoms, while smaller rACC thickness in males predicted greater depression symptoms. Amygdala and hippocampus volume and dACC thickness showed no main effect or interaction with sex. The current findings provide evidence for sex-based differences in how brain volume predicts future PTSD severity and symptoms and supports the rACC as being a vital region regarding PTSD. Gender differences should be assessed in future longitudinal PTSD MRI studies for more accurate identification of future PTSD risk following trauma.
Collapse
|
238
|
Ho TC, Shah R, Mishra J, May AC, Tapert SF. Multi-level predictors of depression symptoms in the Adolescent Brain Cognitive Development (ABCD) study. J Child Psychol Psychiatry 2022; 63:1523-1533. [PMID: 35307818 PMCID: PMC9489813 DOI: 10.1111/jcpp.13608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND While identifying risk factors for adolescent depression is critical for early prevention and intervention, most studies have sought to understand the role of isolated factors rather than across a broad set of factors. Here, we sought to examine multi-level factors that maximize the prediction of depression symptoms in US children participating in the Adolescent Brain and Cognitive Development (ABCD) study. METHODS A total of 7,995 participants from ABCD (version 3.0 release) provided complete data at baseline and 1-year follow-up data. Depression symptoms were measured with the Child Behavior Checklist. Predictive features included child demographic, environmental, and structural and resting-state fMRI variables, parental depression history and demographic characteristics. We used linear (elastic net regression, EN) and non-linear (gradient-boosted trees, GBT) predictive models to identify which set of features maximized prediction of depression symptoms at baseline and, separately, at 1-year follow-up. RESULTS Both linear and non-linear models achieved comparable results for predicting baseline (EN: MAE = 3.757; R2 = 0.156; GBT: MAE = 3.761; R2 = 0.147) and 1-year follow-up (EN: MAE = 4.255; R2 = 0.103; GBT: MAE = 4.262; R2 = 0.089) depression. Parental history of depression, greater family conflict, and shorter child sleep duration were among the top predictors of concurrent and future child depression symptoms across both models. Although resting-state fMRI features were relatively weaker predictors, functional connectivity of the caudate was consistently the strongest neural feature associated with depression symptoms at both timepoints. CONCLUSIONS Consistent with prior research, parental mental health, family environment, and child sleep quality are important risk factors for youth depression. Functional connectivity of the caudate is a relatively weaker predictor of depression symptoms but may represent a biomarker for depression risk.
Collapse
Affiliation(s)
- Tiffany C. Ho
- Department of Psychiatry & Behavioral Sciences; Weill Institute of Neurosciences; University of California, San Francisco, San Francisco, CA
| | - Rutvik Shah
- Department of Psychiatry & Behavioral Sciences; Weill Institute of Neurosciences; University of California, San Francisco, San Francisco, CA
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - Jyoti Mishra
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| | - April C. May
- Department of Psychiatry, University of California, San Diego, San Diego, CA
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA
| | - Susan F. Tapert
- Department of Psychiatry, University of California, San Diego, San Diego, CA
| |
Collapse
|
239
|
Hettwer MD, Larivière S, Park BY, van den Heuvel OA, Schmaal L, Andreassen OA, Ching CRK, Hoogman M, Buitelaar J, van Rooij D, Veltman DJ, Stein DJ, Franke B, van Erp TGM, Jahanshad N, Thompson PM, Thomopoulos SI, Bethlehem RAI, Bernhardt BC, Eickhoff SB, Valk SL. Coordinated cortical thickness alterations across six neurodevelopmental and psychiatric disorders. Nat Commun 2022; 13:6851. [PMID: 36369423 PMCID: PMC9652311 DOI: 10.1038/s41467-022-34367-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropsychiatric disorders are increasingly conceptualized as overlapping spectra sharing multi-level neurobiological alterations. However, whether transdiagnostic cortical alterations covary in a biologically meaningful way is currently unknown. Here, we studied co-alteration networks across six neurodevelopmental and psychiatric disorders, reflecting pathological structural covariance. In 12,024 patients and 18,969 controls from the ENIGMA consortium, we observed that co-alteration patterns followed normative connectome organization and were anchored to prefrontal and temporal disease epicenters. Manifold learning revealed frontal-to-temporal and sensory/limbic-to-occipitoparietal transdiagnostic gradients, differentiating shared illness effects on cortical thickness along these axes. The principal gradient aligned with a normative cortical thickness covariance gradient and established a transcriptomic link to cortico-cerebello-thalamic circuits. Moreover, transdiagnostic gradients segregated functional networks involved in basic sensory, attentional/perceptual, and domain-general cognitive processes, and distinguished between regional cytoarchitectonic profiles. Together, our findings indicate that shared illness effects occur in a synchronized fashion and along multiple levels of hierarchical cortical organization.
Collapse
Affiliation(s)
- M D Hettwer
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - S Larivière
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - B Y Park
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - O A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neuroscience and Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - O A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - C R K Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - M Hoogman
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D J Veltman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neuroscience and Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - D J Stein
- South African Medical Research Council Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - B Franke
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine Hall, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - N Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - P M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - S I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - R A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - B C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - S B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| | - S L Valk
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
240
|
Hansen JY, Shafiei G, Markello RD, Smart K, Cox SML, Nørgaard M, Beliveau V, Wu Y, Gallezot JD, Aumont É, Servaes S, Scala SG, DuBois JM, Wainstein G, Bezgin G, Funck T, Schmitz TW, Spreng RN, Galovic M, Koepp MJ, Duncan JS, Coles JP, Fryer TD, Aigbirhio FI, McGinnity CJ, Hammers A, Soucy JP, Baillet S, Guimond S, Hietala J, Bedard MA, Leyton M, Kobayashi E, Rosa-Neto P, Ganz M, Knudsen GM, Palomero-Gallagher N, Shine JM, Carson RE, Tuominen L, Dagher A, Misic B. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat Neurosci 2022; 25:1569-1581. [PMID: 36303070 PMCID: PMC9630096 DOI: 10.1038/s41593-022-01186-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/20/2022] [Indexed: 01/13/2023]
Abstract
Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.
Collapse
Affiliation(s)
- Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Golia Shafiei
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Ross D Markello
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Sylvia M L Cox
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Martin Nørgaard
- Department of Psychology, Center for Reproducible Neuroscience, Stanford University, Stanford, CA, USA
- Neurobiology Research Unit, Cimbi & OpenNeuroPET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Cimbi & OpenNeuroPET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yanjun Wu
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jean-Dominique Gallezot
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Étienne Aumont
- Cognitive Pharmacology Research Unit, UQAM, Montréal, QC, Canada
| | - Stijn Servaes
- McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, QC, Canada
| | | | | | | | - Gleb Bezgin
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, QC, Canada
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Taylor W Schmitz
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - R Nathan Spreng
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Marian Galovic
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont Saint Peter, UK
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont Saint Peter, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont Saint Peter, UK
| | - Jonathan P Coles
- Department of Medicine, Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Colm J McGinnity
- King's College London and Guy's and St. Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Alexander Hammers
- King's College London and Guy's and St. Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Jean-Paul Soucy
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Sylvain Baillet
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Synthia Guimond
- Department of Psychiatry, Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC, Canada
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Marc-André Bedard
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Cognitive Pharmacology Research Unit, UQAM, Montréal, QC, Canada
| | - Marco Leyton
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Eliane Kobayashi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, QC, Canada
| | - Melanie Ganz
- Neurobiology Research Unit, Cimbi & OpenNeuroPET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Cimbi & OpenNeuroPET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - James M Shine
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lauri Tuominen
- Department of Psychiatry, Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Alain Dagher
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
241
|
Kochunov P, Ma Y, Hatch KS, Gao S, Jahanshad N, Thompson PM, Adhikari BM, Bruce H, Van der vaart A, Goldwaser EL, Sotiras A, Kvarta MD, Ma T, Chen S, Nichols TE, Hong LE. Brain-wide versus genome-wide vulnerability biomarkers for severe mental illnesses. Hum Brain Mapp 2022; 43:4970-4983. [PMID: 36040723 PMCID: PMC9582367 DOI: 10.1002/hbm.26056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 01/06/2023] Open
Abstract
Severe mental illnesses (SMI), including major depressive (MDD), bipolar (BD), and schizophrenia spectrum (SSD) disorders have multifactorial risk factors and capturing their complex etiopathophysiology in an individual remains challenging. Regional vulnerability index (RVI) was used to measure individual's brain-wide similarity to the expected SMI patterns derived from meta-analytical studies. It is analogous to polygenic risk scores (PRS) that measure individual's similarity to genome-wide patterns in SMI. We hypothesized that RVI is an intermediary phenotype between genome and symptoms and is sensitive to both genetic and environmental risks for SMI. UK Biobank sample of N = 17,053/19,265 M/F (age = 64.8 ± 7.4 years) and an independent sample of SSD patients and controls (N = 115/111 M/F, age = 35.2 ± 13.4) were used to test this hypothesis. UKBB participants with MDD had significantly higher RVI-MDD (Cohen's d = 0.20, p = 1 × 10-23 ) and PRS-MDD (d = 0.17, p = 1 × 10-15 ) than nonpsychiatric controls. UKBB participants with BD and SSD showed significant elevation in the respective RVIs (d = 0.65 and 0.60; p = 3 × 10-5 and .009, respectively) and PRS (d = 0.57 and 1.34; p = .002 and .002, respectively). Elevated RVI-SSD were replicated in an independent sample (d = 0.53, p = 5 × 10-5 ). RVI-MDD and RVI-SSD but not RVI-BD were associated with childhood adversity (p < .01). In nonpsychiatric controls, elevation in RVI and PRS were associated with lower cognitive performance (p < 10-5 ) in six out of seven domains and showed specificity with disorder-associated deficits. In summary, the RVI is a novel brain index for SMI and shows similar or better specificity for SMI than PRS, and together they may complement each other in the efforts to characterize the genomic to brain level risks for SMI.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Kathryn S. Hatch
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics InstituteKeck School of Medicine of USCLos AngelesCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics InstituteKeck School of Medicine of USCLos AngelesCaliforniaUSA
| | - Bhim M. Adhikari
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Andrew Van der vaart
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Eric L. Goldwaser
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Aris Sotiras
- Institute of Informatics, University of WashingtonSchool of MedicineSt. LouisMissouriUSA
| | - Mark D. Kvarta
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Tianzhou Ma
- Department of Epidemiology and BiostatisticsUniversity of MarylandCollege ParkMarylandUSA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Thomas E. Nichols
- Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
242
|
Minami F, Hirano J, Ueda R, Takamiya A, Yamagishi M, Kamiya K, Mimura M, Yamagata B. Intergenerational concordance of brain structure between depressed mothers and their never-depressed daughters. Psychiatry Clin Neurosci 2022; 76:579-586. [PMID: 36082981 DOI: 10.1111/pcn.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
AIM Parents have significant genetic and environmental influences, which are known as intergenerational effects, on the cognition, behavior, and brain of their offspring. These intergenerational effects are observed in patients with mood disorders, with a particularly strong association of depression between mothers and daughters. The main purpose of our study was to investigate female-specific intergenerational transmission patterns in the human brain among patients with depression and their never-depressed offspring. METHODS We recruited 78 participants from 34 families, which included remitted parents with a history of depression and their never-depressed biological offspring. We used source-based and surface-based morphometry analyses of magnetic resonance imaging data to examine the degree of associations in brain structure between four types of parent-offspring dyads (i.e. mother-daughter, mother-son, father-daughter, and father-son). RESULTS Using independent component analysis, we found a significant positive correlation of gray matter structure between exclusively the mother-daughter dyads within brain regions located in the default mode and central executive networks, such as the bilateral anterior cingulate cortex, posterior cingulate cortex, precuneus, middle frontal gyrus, middle temporal gyrus, superior parietal lobule, and left angular gyrus. These similar observations were not identified in other three parent-offspring dyads. CONCLUSIONS The current study provides biological evidence for greater vulnerability of daughters, but not sons, in developing depression whose mothers have a history of depression. Our findings extend our knowledge on the pathophysiology of major psychiatric conditions that show sex biases and may contribute to the development of novel interventions targeting high-risk individuals.
Collapse
Affiliation(s)
- Fusaka Minami
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Mika Yamagishi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kei Kamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
243
|
Stoyanov D, Khorev V, Paunova R, Kandilarova S, Simeonova D, Badarin A, Hramov A, Kurkin S. Resting-State Functional Connectivity Impairment in Patients with Major Depressive Episode. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14045. [PMID: 36360924 PMCID: PMC9656256 DOI: 10.3390/ijerph192114045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
AIM This study aims to develop new approaches to characterize brain networks to potentially contribute to a better understanding of mechanisms involved in depression. METHOD AND SUBJECTS We recruited 90 subjects: 49 healthy controls (HC) and 41 patients with a major depressive episode (MDE). All subjects underwent clinical evaluation and functional resting-state MRI. The data were processed investigating functional connectivity network measures across the two groups using Brain Connectivity Toolbox. The statistical inferences were developed at a functional network level, using a false discovery rate method. Linear discriminant analysis was used to differentiate between the two groups. RESULTS AND DISCUSSION Significant differences in functional connectivity (FC) between depressed patients vs. healthy controls was demonstrated, with brain regions including the lingual gyrus, cerebellum, midcingulate cortex and thalamus more prominent in healthy subjects as compared to depression where the orbitofrontal cortex emerged as a key node. Linear discriminant analysis demonstrated that full-connectivity matrices were the most precise in differentiating between depression vs. health subjects. CONCLUSION The study provides supportive evidence for impaired functional connectivity networks in MDE patients.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vladimir Khorev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Denitsa Simeonova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Artem Badarin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Neuroscience Research Institute, Samara State Medical University, 443001 Samara, Russia
| | - Alexander Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Neuroscience Research Institute, Samara State Medical University, 443001 Samara, Russia
| | - Semen Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Neuroscience Research Institute, Samara State Medical University, 443001 Samara, Russia
| |
Collapse
|
244
|
Liu M, Huang Y, Li X, Liu Y, Yu R, Long Y, Lv F, Zhou X. Aberrant frontolimbic circuit in female depressed adolescents with and without suicidal attempts: A resting-state functional magnetic resonance imaging study. Front Psychiatry 2022; 13:1007144. [PMID: 36386991 PMCID: PMC9641155 DOI: 10.3389/fpsyt.2022.1007144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background The neurobiological basis of suicidal behaviors among female adolescents with major depressive disorder (MDD) remains largely unclear. Materials and methods Fifty-eight drug-naïve, first-episode female adolescent MDD [including 31 patients with suicidal attempt (SA group) and 27 patients without SA (non-SA group)], and 36 matched healthy controls (HCs) participated in the present study. Resting-state functional magnetic resonance imaging (MRI) was performed on each subject. The metrics of the amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) were compared among the three groups. Then seed-based functional connectivity (FC) was conducted based on the ALFF/fALFF and ReHo results, which were then correlated to clinical variables. Results Compared with the non-SA group, the SA group exhibited increased fALFF in the bilateral insula and right precentral gyrus, and enhanced ReHo in the left superior temporal gyrus, left middle cingulate cortex, right insula, and right precentral gyrus. Relative to the HCs, the SA group demonstrated additionally reduced fALFF and ReHo in the left middle frontal gyrus. Moreover, the SA group showed increased FC between the right precentral gyrus and the left middle frontal gyrus and left insula, and between the right insula and anterior/middle cingulate cortex compared to the non-SA and HC groups. In addition, the fALFF in the left middle frontal gyrus was positively correlated with the 17-item Hamilton Depression Rating Scale scores, and the values in the fALFF/ReHo in the right insula were positively correlated with the duration of MDD within the patient group. Conclusion These findings highlight the multiple abnormalities of the frontolimbic circuit, which may enhance our understanding of the neurobiological basis underlying female MDD with SA during adolescence.
Collapse
Affiliation(s)
- Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yicheng Long
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
245
|
Mapping the genetic architecture of cortical morphology through neuroimaging: progress and perspectives. Transl Psychiatry 2022; 12:447. [PMID: 36241627 PMCID: PMC9568576 DOI: 10.1038/s41398-022-02193-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Cortical morphology is a key determinant of cognitive ability and mental health. Its development is a highly intricate process spanning decades, involving the coordinated, localized expression of thousands of genes. We are now beginning to unravel the genetic architecture of cortical morphology, thanks to the recent availability of large-scale neuroimaging and genomic data and the development of powerful biostatistical tools. Here, we review the progress made in this field, providing an overview of the lessons learned from genetic studies of cortical volume, thickness, surface area, and folding as captured by neuroimaging. It is now clear that morphology is shaped by thousands of genetic variants, with effects that are region- and time-dependent, thereby challenging conventional study approaches. The most recent genome-wide association studies have started discovering common genetic variants influencing cortical thickness and surface area, yet together these explain only a fraction of the high heritability of these measures. Further, the impact of rare variants and non-additive effects remains elusive. There are indications that the quickly increasing availability of data from whole-genome sequencing and large, deeply phenotyped population cohorts across the lifespan will enable us to uncover much of the missing heritability in the upcoming years. Novel approaches leveraging shared information across measures will accelerate this process by providing substantial increases in statistical power, together with more accurate mapping of genetic relationships. Important challenges remain, including better representation of understudied demographic groups, integration of other 'omics data, and mapping of effects from gene to brain to behavior across the lifespan.
Collapse
|
246
|
Yi S, Wang Z, Yang W, Huang C, Liu P, Chen Y, Zhang H, Zhao G, Li W, Fang J, Liu J. Neural activity changes in first-episode, drug-naïve patients with major depressive disorder after transcutaneous auricular vagus nerve stimulation treatment: A resting-state fMRI study. Front Neurosci 2022; 16:1018387. [PMID: 36312012 PMCID: PMC9597483 DOI: 10.3389/fnins.2022.1018387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Major depressive disorder (MDD) is a disease with prominent individual, medical, and economic impacts. Drug therapy and other treatment methods (such as Electroconvulsive therapy) may induce treatment-resistance and have associated side effects including loss of memory, decrease of reaction time, and residual symptoms. Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel and non-invasive treatment approach which stimulates brain structures with no side-effects. However, it remains little understood whether and how the neural activation is modulated by taVNS in MDD patients. Herein, we used the regional homogeneity (ReHo) to investigate the brain activity in first-episode, drug-naïve MDD patients after taVNS treatment. Materials and methods Twenty-two first-episode, drug-naïve MDD patients were enrolled in the study. These patients received the first taVNS treatment at the baseline time, and underwent resting-state MRI scanning twice, before and after taVNS. All the patients then received taVNS treatments for 4 weeks. The severity of depression was assessed by the 17-item Hamilton Depression Rating Scale (HAMD) at the baseline time and after 4-week’s treatment. Pearson analysis was used to assess the correlation between alterations of ReHo and changes of the HAMD scores. Two patients were excluded due to excessive head movement, two patients lack clinical data in the fourth week, thus, imaging analysis was performed in 20 patients, while correlation analysis between clinical and imaging data was performed in only 18 patients. Results There were significant differences in the ReHo values in first-episode, drug-naïve MDD patients between pre- or post- taVNS. The primary finding is that the patients exhibited a significantly lower ReHo in the left/right median cingulate cortex, the left precentral gyrus, the left postcentral gyrus, the right calcarine cortex, the left supplementary motor area, the left paracentral lobule, and the right lingual gyrus. Pearson analysis revealed a positive correlation between changes of ReHo in the right median cingulate cortex/the left supplementary motor area and changes of HAMD scores after taVNS. Conclusion The decreased ReHo were found after taVNS. The sensorimotor, limbic and visual-related brain regions may play an important role in understanding the underlying neural mechanisms and be the target brain regions in the further therapy.
Collapse
Affiliation(s)
- Sijie Yi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Wang
- Department of Radiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjing Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Guangju Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weihui Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu,
| | - Jiliang Fang
- Department of Radiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Jiliang Fang,
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center, Changsha, China
- Weihui Li,
| |
Collapse
|
247
|
Du X, Wei X, Ding H, Yu Y, Xie Y, Ji Y, Zhang Y, Chai C, Liang M, Li J, Zhuo C, Yu C, Qin W. Unraveling schizophrenia replicable functional connectivity disruption patterns across sites. Hum Brain Mapp 2022; 44:156-169. [PMID: 36222054 PMCID: PMC9783440 DOI: 10.1002/hbm.26108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Functional connectivity (FC) disruption is a remarkable characteristic of schizophrenia. However, heterogeneous patterns reported across sites severely hindered its clinical generalization. Based on qualified nodal-based FC of 340 schizophrenia patients (SZ) and 348 normal controls (NC) acquired from seven different scanners, this study compared four commonly used site-effect correction methods in removing the site-related heterogeneities, and then tried to cluster the abnormal FCs into several replicable and independent disrupted subnets across sites, related them to clinical symptoms, and evaluated their potentials in schizophrenia classification. Among the four site-related heterogeneity correction methods, ComBat harmonization (F1 score: 0.806 ± 0.145) achieved the overall best balance between sensitivity and false discovery rate in unraveling the aberrant FCs of schizophrenia in the local and public data sets. Hierarchical clustering analysis identified three replicable FC disruption subnets across the local and public data sets: hypo-connectivity within sensory areas (Net1), hypo-connectivity within thalamus, striatum, and ventral attention network (Net2), and hyper-connectivity between thalamus and sensory processing system (Net3). Notably, the derived composite FC within Net1 was negatively correlated with hostility and disorientation in the public validation set (p < .05). Finally, the three subnet-specific composite FCs (Best area under the receiver operating characteristic curve [AUC] = 0.728) can robustly and meaningfully discriminate the SZ from NC with comparable performance with the full identified FCs features (best AUC = 0.765) in the out-of-sample public data set (Z = -1.583, p = .114). In conclusion, ComBat harmonization was most robust in detecting aberrant connectivity for schizophrenia. Besides, the three subnet-specific composite FC measures might be replicable neuroimaging markers for schizophrenia.
Collapse
Affiliation(s)
- Xiaotong Du
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Xiaotong Wei
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hao Ding
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Ying Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yingying Xie
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yi Ji
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yu Zhang
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Chao Chai
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Meng Liang
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Jie Li
- Department of Psychiatry Functional Neuroimaging LaboratoryTianjin Mental Health Center, Tianjin Anding HospitalTianjinChina
| | - Chuanjun Zhuo
- Department of Psychiatry Functional Neuroimaging LaboratoryTianjin Mental Health Center, Tianjin Anding HospitalTianjinChina
| | - Chunshui Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Wen Qin
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
248
|
Nazarova A, Schmidt M, Cookey J, Uher R. Neural markers of familial risk for depression - A systematic review. Dev Cogn Neurosci 2022; 58:101161. [PMID: 36242901 PMCID: PMC9557819 DOI: 10.1016/j.dcn.2022.101161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 01/13/2023] Open
Abstract
Structural and functional brain alterations are found in adults with depression. It is not known whether these changes are a result of illness or exist prior to disorder onset. Asymptomatic offspring of parents with depression offer a unique opportunity to research neural markers of familial risk to depression and clarify the temporal sequence between brain changes and disorder onset. We conducted a systematic review to investigate whether asymptomatic offspring at high familial risk have structural and functional brain changes like those reported in adults with depression. Our literature search resulted in 44 studies on 18,645 offspring ranging from 4 weeks to 25 years old. Reduced cortical thickness and white matter integrity, and altered striatal reward processing were the most consistent findings in high-risk offspring across ages. These alterations are also present in adults with depression, suggesting the existence of neural markers of familial risk for depression. Additional studies reproducing current results, streamlining fMRI data analyses, and investigating underexplored topics (i.e intracortical myelin, gyrification, subcortical shape) may be among the next steps required to improve our understanding of neural markers indexing the vulnerability to depression.
Collapse
Affiliation(s)
- Anna Nazarova
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Memorial Building QEII Health Sciences Centre, B3H 2E2 Halifax, NS, Canada,Nova Scotia Health Authority, 5909 Veterans’ Memorial Lane, B3H 2E2 Halifax, NS, Canada
| | - Matthias Schmidt
- Nova Scotia Health Authority, 5909 Veterans’ Memorial Lane, B3H 2E2 Halifax, NS, Canada,Department of Diagnostic Radiology, Dalhousie University, Victoria Building, Office of the Department Head, Room 307, 1276 South Park Street PO BOX 9000, B3H 2Y9 Halifax NS, Canada
| | - Jacob Cookey
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Memorial Building QEII Health Sciences Centre, B3H 2E2 Halifax, NS, Canada,Nova Scotia Health Authority, 5909 Veterans’ Memorial Lane, B3H 2E2 Halifax, NS, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Memorial Building QEII Health Sciences Centre, B3H 2E2 Halifax, NS, Canada,Nova Scotia Health Authority, 5909 Veterans’ Memorial Lane, B3H 2E2 Halifax, NS, Canada,Corresponding author at: Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Abbie J. Lane Memorial Building QEII Health Sciences Centre, B3H 2E2 Halifax, NS, Canada.
| |
Collapse
|
249
|
Hu X, Jiang P, Gao Y, Sun J, Zhou X, Zhang L, Qiu H, Li H, Cao L, Liu J, Gong Q, Huang X. Brain morphometric abnormalities and their associations with affective symptoms in males with methamphetamine use disorder during abstinence. Front Psychiatry 2022; 13:1003889. [PMID: 36299549 PMCID: PMC9588977 DOI: 10.3389/fpsyt.2022.1003889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Methamphetamine (METH) use induces neurotoxic effects in brain structures and affective symptoms that persist during abstinence. However, the brain morphometry of individuals with METH use disorder (MUD) remains unclear, as well as their associations with affective symptoms during abstinence. Methods Forty-eight abstinent males with MUD and 66 age-, sex-, and education-matched healthy controls (HCs) underwent high-resolution T1-weighted magnetic resonance imaging. Cortical thickness, surface area, volume, local gyrification index (LGI), and subcortical volume were obtained with FreeSurfer software. Brain morphometry differences between groups and their associations with affective symptoms and drug abuse history within the males with MUD were examined, with intracranial volume, age, and years of education as covariates. Results Compared with the HCs, the individuals with MUD showed a significantly higher LGI in the right cuneus gyrus, left lingual gyrus, bilateral supramarginal gyrus, right inferior parietal gyrus (IPG), and right dorsal anterior cingulate cortex (clusterwise p < 0.05, Monte Carlo-corrected), as well as a smaller volume of the left nucleus accumbens (NAcc) (p < 0.05, FDR-corrected). However, there were no significant group differences in cortical thickness, area or volume. In addition, the LGI in the right IPG was positively associatedwith the severity of depression and anxiety symptoms in MUDs (p < 0.05, FDR-corrected). Conclusion Brain morphometric abnormalities in abstinent males with MUD were characterized by hypergyrification across multiple mid-posterior brain regions anda smaller volume of the left NAcc.Gyrification of the right IPG may be a potential neural substrate underlying the affective symptoms experienced by MUDs during abstinence.
Collapse
Affiliation(s)
- Xinyue Hu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Jiang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
- West China Medical Publishers, West China Hospital of Sichuan University, Chengdu, China
| | - Yingxue Gao
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaobo Zhou
- Department of Psychosomatics, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Lianqing Zhang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Qiu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Hailong Li
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Lingxiao Cao
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Liu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
250
|
Beliveau V, Hedeboe E, Fisher PM, Dam VH, Jørgensen MB, Frokjaer VG, Knudsen GM, Ganz M. Generalizability of treatment outcome prediction in major depressive disorder using structural MRI: A NeuroPharm study. Neuroimage Clin 2022; 36:103224. [PMID: 36252556 PMCID: PMC9668596 DOI: 10.1016/j.nicl.2022.103224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
Brain morphology has been suggested to be predictive of drug treatment outcome in major depressive disorders (MDD). The current study aims at evaluating the performance of pretreatment structural brain magnetic resonance imaging (MRI) measures in predicting the outcome of a drug treatment of MDD in a large single-site cohort, and, importantly, to assess the generalizability of these findings in an independent cohort. The random forest, boosted trees, support vector machines and elastic net classifiers were evaluated in predicting treatment response and remission following an eight week drug treatment of MDD using structural brain measures derived with FastSurfer (FreeSurfer). Models were trained and tested within a nested cross-validation framework using the NeuroPharm dataset (n = 79, treatment: escitalopram); their generalizability was assessed using an independent clinical dataset, EMBARC (n = 64, treatment: sertraline). Prediction of antidepressant treatment response in the Neuropharm cohort was statistically significant for the random forest (p = 0.048), whereas none of the models could significantly predict remission. Furthermore, none of the models trained using the entire NeuroPharm dataset could significantly predict treatment outcome in the EMBARC dataset. Although our primary findings in the NeuroPharm cohort support some, but limited value in using pretreatment structural brain MRI to predict drug treatment outcome in MDD, the models did not generalize to an independent cohort suggesting limited clinical applicability. This study emphasizes the importance of assessing model generalizability for establishing clinical utility.
Collapse
Affiliation(s)
- Vincent Beliveau
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria,Corresponding author at: Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Ella Hedeboe
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Patrick M. Fisher
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibeke H. Dam
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Martin B. Jørgensen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Vibe G. Frokjaer
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Gitte M. Knudsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|