201
|
Cheng W. The Density Code for the Development of a Vaccine? J Pharm Sci 2016; 105:3223-3232. [PMID: 27649885 PMCID: PMC5102155 DOI: 10.1016/j.xphs.2016.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/17/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
The development of prophylactic vaccines remains largely empirical in nature and rarely have general rules been applied in the strategic decision and the formulation of a viral vaccine. Currently, there are a total of 15 virus agents from 12 unique virus families with vaccines licensed by the U.S. Food and Drug Administration. Extensive structural information on these viral particles and potential mechanisms of protection are available for the majority of these virus pathogens and their respective vaccines. Here I review the quantitative features of these viral surface antigens in relation to the molecular mechanisms of B-cell activation and point out a potential correlation between the density of immunogenic proteins displayed on the surface of the vaccine antigen carrier and the success of a vaccine. These features help us understand the humoral immunity induced by viral vaccines on a quantitative ground and re-emphasize the importance of antigen density on the activation of the immune system. Although the detailed mechanisms behind this phenomenon remain to be explored, it implies that both the size of antigen carriers and the density of immunogenic proteins displayed on these carriers are important parameters that may need to be optimized for the formulation of a vaccine.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
202
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
203
|
Bui VC, Nguyen TH. Insights into the interaction of CD4 with anti-CD4 antibodies. Immunobiology 2016; 222:148-154. [PMID: 27773661 DOI: 10.1016/j.imbio.2016.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/15/2016] [Indexed: 01/13/2023]
Abstract
Knowledge about the mechanism by which some antibodies can block HIV-1 entry is critical to our understanding of their function and may offer new avenues for controlling the adhesion of HIV-1 to the host cells. While much progress has been made, this mechanism remains unclear. Here, atomic force microscopy, isothermal titration calorimetry (ITC), and circular dichroism spectroscopy were used to measure some biophysical characteristics of the interaction of four-domains (D1-D4) membrane protein CD4 with anti-D3 antibody OKT4 and with HIV-1 entry blocking anti-D1 antibody Leu3a. The results showed that at 37°C they bind with similar binding strength, thermodynamics, and kinetics but with different assembly states. Further analyzing the interactions at different temperatures by ITC showed that binding of CD4 with Leu3a is characteristic for specific hydrophobic binding as well as for protein folding while with OKT4 comes from an extensive additional hydration upon binding and charge-related interactions within the binding site. Comparing these characteristics with those of HIV-1 gp120-CD4 interaction revealed that Leu3a binds to CD4 faster than HIV-1 followed by changing local structure of D1 to which HIV-1 binds leading to a prevention of viral entry.
Collapse
Affiliation(s)
- Van-Chien Bui
- Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University Medicine Greifswald, 17489 Greifswald, Germany; Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany.
| |
Collapse
|
204
|
Wen YM, Mu L, Shi Y. Immunoregulatory functions of immune complexes in vaccine and therapy. EMBO Mol Med 2016; 8:1120-1133. [PMID: 27572622 PMCID: PMC5048363 DOI: 10.15252/emmm.201606593] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
Abstract
Clinical and experimental preparations of IgG/soluble antigen complexes, as well as those formed following antibody therapy in vivo, are multifaceted immune regulators. These immune complexes (ICs) have been tested in humans and animal models, mostly in forms of experimental or clinical vaccination, for at least a century. With intensified research on Fcγ receptor-mediated immune modulation, as well as with immune complex-directed antigen processing, presentation, and inflammatory responses, there are renewed interests of using ICs in vaccines and immunotherapies. Currently, IC-based immune therapy has been broadly experimented in HBV and HIV viral infection control and antitumor treatments. However, mechanistic insights of IC-based treatments are relatively recent subjects of study; strong efforts are needed to establish links to connect laboratory findings with clinical practices. This review covers the history, mechanisms, and in vivo outcomes of this safe and effective therapeutic tool, with a clear aim to bridge laboratory findings with evolving clinical applications.
Collapse
Affiliation(s)
- Yu-Mei Wen
- Key Laboratory of Molecular Medical Virology, MOE/MOH, School of Basic Medical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Libing Mu
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology Tsinghua University, Beijing, China
| | - Yan Shi
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology Tsinghua University, Beijing, China Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
205
|
Williams KL, Cortez V, Dingens AS, Gach JS, Rainwater S, Weis JF, Chen X, Spearman P, Forthal DN, Overbaugh J. HIV-specific CD4-induced Antibodies Mediate Broad and Potent Antibody-dependent Cellular Cytotoxicity Activity and Are Commonly Detected in Plasma From HIV-infected humans. EBioMedicine 2016; 2:1464-77. [PMID: 26629541 PMCID: PMC4634620 DOI: 10.1016/j.ebiom.2015.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023] Open
Abstract
HIV-specific antibodies (Abs) can reduce viral burden by blocking new rounds of infection or by destroying infected cells via activation of effector cells through Fc–FcR interaction. This latter process, referred to as antibody-dependent cellular cytotoxicity (ADCC), has been associated with viral control and improved clinical outcome following both HIV and SIV infections. Here we describe an HIV viral-like particle (VLP)-based sorting strategy that led to identification of HIV-specificmemory B cells encoding Abs that mediate ADCC froma subtype A-infected Kenyan woman at 914 days post-infection. Using this strategy, 12 HIV-envelope-specific monoclonal antibodies (mAbs) were isolated and three mediated potent ADCC activitywhen compared to well-characterized ADCC mAbs. The ADCC-mediating Abs also mediated antibody-dependent cell-mediated virus inhibition (ADCVI), which provides a net measure of Fc receptor-triggered effects against replicating virus. Two of the three ADCC-mediating Abs targeted a CD4-induced (CD4i) epitope also bound by the mAb C11; the third antibody targeted the N-terminus of V3. Both CD4i Abs identified here demonstrated strong cross-clade breadth with activity against 10 of 11 envelopes tested, including those from clades A, B, C, A/D and C/D, whereas the V3-specific antibody showed more limited breadth. Variants of these CD4i, C11-like mAbs engineered to interrupt binding to FcγRs inhibited a measurable percentage of the donor's ADCC activity starting as early as 189 days post-infection. C11-like antibodies also accounted for between 18–78% of ADCC activity in 9 chronically infected individuals from the same cohort study. Further, the two CD4i Abs originated from unique B cells, suggesting that antibodies targeting this epitope can be commonly produced. Taken together, these data provide strong evidence that CD4i, C11-like antibodies develop within the first 6 months of infection and they can arise fromunique B-cell lineages in the same individual. Further, thesemAbsmediate potent plasma IgG-specificADCC breadth and potency and contribute to ADCC activity in other HIV-infected individuals.
Collapse
|
206
|
Van Regenmortel MHV. Structure-Based Reverse Vaccinology Failed in the Case of HIV Because it Disregarded Accepted Immunological Theory. Int J Mol Sci 2016; 17:E1591. [PMID: 27657055 PMCID: PMC5037856 DOI: 10.3390/ijms17091591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022] Open
Abstract
Two types of reverse vaccinology (RV) should be distinguished: genome-based RV for bacterial vaccines and structure-based RV for viral vaccines. Structure-based RV consists in trying to generate a vaccine by first determining the crystallographic structure of a complex between a viral epitope and a neutralizing monoclonal antibody (nMab) and then reconstructing the epitope by reverse molecular engineering outside the context of the native viral protein. It is based on the unwarranted assumption that the epitope designed to fit the nMab will have acquired the immunogenic capacity to elicit a polyclonal antibody response with the same protective capacity as the nMab. After more than a decade of intensive research using this type of RV, this approach has failed to deliver an effective, preventive HIV-1 vaccine. The structure and dynamics of different types of HIV-1 epitopes and of paratopes are described. The rational design of an anti-HIV-1 vaccine is shown to be a misnomer since investigators who claim that they design a vaccine are actually only improving the antigenic binding capacity of one epitope with respect to only one paratope and not the immunogenic capacity of an epitope to elicit neutralizing antibodies. Because of the degeneracy of the immune system and the polyspecificity of antibodies, each epitope studied by the structure-based RV procedure is only one of the many epitopes that the particular nMab is able to recognize and there is no reason to assume that this nMab must have been elicited by this one epitope of known structure. Recent evidence is presented that the trimeric Env spikes of the virus possess such an enormous plasticity and intrinsic structural flexibility that it is it extremely difficult to determine which Env regions are the best candidate vaccine immunogens most likely to elicit protective antibodies.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- UMR 7242 Biotechnologie et Signalisation Cellulaire, Université de Strasbourg-CNRS, 300, Boulevard Sébastien Brant, CS 10413, 67412 Illkirch Cedex, France.
| |
Collapse
|
207
|
Richard J, Pacheco B, Gohain N, Veillette M, Ding S, Alsahafi N, Tolbert WD, Prévost J, Chapleau JP, Coutu M, Jia M, Brassard N, Park J, Courter JR, Melillo B, Martin L, Tremblay C, Hahn BH, Kaufmann DE, Wu X, Smith AB, Sodroski J, Pazgier M, Finzi A. Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins. EBioMedicine 2016; 12:208-218. [PMID: 27633463 PMCID: PMC5078604 DOI: 10.1016/j.ebiom.2016.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc) able to “push” Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV + sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV + sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS). Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1. CD4-mimetics fail to enhance recognition of infected cells by anti-cluster A antibodies (Abs). Co-receptor binding site Abs in conjunction with CD4-mimetics allow binding of Env by anti-cluster A Abs. Co-receptor binding site Abs help CD4-mimetics sensitize HIV-1-infected cells to ADCC.
HIV-1 developed sophisticated strategies to conceal vulnerable epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. CD4-mimetics (CD4mc) were shown to sensitize HIV-1-infected cells to ADCC induced by HIV + sera. Here we show that this response requires a sequential opening of Env at the surface of HIV-1-infected cells. Co-receptor binding site antibodies, also present in HIV + sera, are required to expose ADCC-mediating epitopes recognized by anti-cluster A antibodies upon CD4mc addition. The understanding of the conformational changes required to expose anti-cluster A epitopes might be important in the design of new strategies aimed at fighting HIV-1.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | | | - Neelakshi Gohain
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maxime Veillette
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nirmin Alsahafi
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - William D Tolbert
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY, USA
| | | | - Jongwoo Park
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Joel R Courter
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bruno Melillo
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Cécile Tremblay
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139-3583, USA; Department of Medicine, Université de Montréal, Montreal, QC H3C 3T5, Canada; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Marzena Pazgier
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, QC H2X 0A9, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
208
|
Foss S, Watkinson R, Sandlie I, James LC, Andersen JT. TRIM21: a cytosolic Fc receptor with broad antibody isotype specificity. Immunol Rev 2016; 268:328-39. [PMID: 26497531 PMCID: PMC4670481 DOI: 10.1111/imr.12363] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibodies are key molecules in the fight against infections. Although previously thought to mediate protection solely in the extracellular environment, recent research has revealed that antibody-mediated protection extends to the cytosolic compartment of cells. This postentry viral defense mechanism requires binding of the antibody to a cytosolic Fc receptor named tripartite motif containing 21 (TRIM21). In contrast to other Fc receptors, TRIM21 shows remarkably broad isotype specificity as it does not only bind IgG but also IgM and IgA. When viral pathogens coated with these antibody isotypes enter the cytosol, TRIM21 is rapidly recruited and efficient neutralization occurs before the virus has had the time to replicate. In addition, inflammatory signaling is induced. As such, TRIM21 acts as a cytosolic sensor that engages antibodies that have failed to protect against infection in the extracellular environment. Here, we summarize our current understanding of how TRIM21 orchestrates humoral immunity in the cytosolic environment.
Collapse
Affiliation(s)
- Stian Foss
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Ruth Watkinson
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Inger Sandlie
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Terje Andersen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| |
Collapse
|
209
|
Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies. PLoS Pathog 2016; 12:e1005767. [PMID: 27487086 PMCID: PMC4972253 DOI: 10.1371/journal.ppat.1005767] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/24/2016] [Indexed: 11/23/2022] Open
Abstract
In the context of HIV vaccine design and development, HIV-1 spike mimetics displaying a range of stabilities were evaluated to determine whether more stable, well-ordered trimers would more efficiently elicit neutralizing antibodies. To begin, in vitro analysis of trimers derived from the cysteine-stabilized SOSIP platform or the uncleaved, covalently linked NFL platform were evaluated. These native-like trimers, derived from HIV subtypes A, B, and C, displayed a range of thermostabilities, and were “stress-tested” at varying temperatures as a prelude to in vivo immunogenicity. Analysis was performed both in the absence and in the presence of two different adjuvants. Since partial trimer degradation was detected at 37°C before or after formulation with adjuvant, we sought to remedy such an undesirable outcome. Cross-linking (fixing) of the well-ordered trimers with glutaraldehyde increased overall thermostability, maintenance of well-ordered trimer integrity without or with adjuvant, and increased resistance to solid phase-associated trimer unfolding. Immunization of unfixed and fixed well-ordered trimers into animals revealed that the elicited tier 2 autologous neutralizing activity correlated with overall trimer thermostability, or melting temperature (Tm). Glutaraldehyde fixation also led to higher tier 2 autologous neutralization titers. These results link retention of trimer quaternary packing with elicitation of tier 2 autologous neutralizing activity, providing important insights for HIV-1 vaccine design. As the sole determinant exposed on the viral surface to the host B cells, development of native-like HIV-1 envelope glycoprotein (Env) functional spikes has been a major initial objective in HIV-1 vaccine design. As immunogens, these trimer mimetics should remain stable in a native-like conformation to preferentially present conserved neutralizing epitopes, as opposed to non-neutralizing epitopes, to better elicit neutralizing B cell responses and antibodies in vivo during the immune response. We assessed SOSIP or NFL trimers displaying a range of stabilities, including chemical fixation. We demonstrate that increased resistance to high temperature-induced unfolding correlated with enhanced elicitation of tier 2 autologous neutralizing antibodies that are capable of penetrating this well-shielded viral pathogen, an important consideration for HIV vaccine development.
Collapse
|
210
|
Lamers SL, Fogel GB, Liu ES, Salemi M, McGrath MS. On the Physicochemical and Structural Modifications Associated with HIV-1 Subtype B Tropism Transition. AIDS Res Hum Retroviruses 2016; 32:829-40. [PMID: 27071630 DOI: 10.1089/aid.2015.0373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
HIV-1 enters immune cells via binding the viral envelope to a host cell CD4 receptor, and then a secondary co-receptor, usually CCR5 (R5) or CXCR4 (X4), and some HIV can utilize both co-receptors (R5X4). Although a small set of amino-acid properties such as charge and sequence length applied to HIV-1 envelope V3 loop sequence data can be used to predict co-receptor usage, we sought to expand the fundamental understanding of the physiochemical basis of tropism by analyzing many, perhaps less obvious, amino-acid properties over a diverse array of HIV sequences. We examined 74 amino-acid physicochemical scales over 1,559 V3 loop sequences with biologically tested tropisms downloaded from the Los Alamos HIV sequence database. Linear regressions were then calculated for each feature relative to three tropism transitions (R5→X4; R5→R5X4; R5X4→X4). Independent correlations were rank ordered to determine informative features. A structural analysis of the V3 loop was performed to better interpret these findings relative to HIV tropism states. Similar structural changes are required for R5 and R5X4 to transition to X4, thus suggesting that R5 and R5X4 types are more similar than either phenotype is to X4. Overall, the analysis suggests a continuum of viral tropism that is only partially related to charge; in fact, the analysis suggests that charge modification may be primarily attributed to decreased R5 usage, and further structural changes, particularly those associated with β-sheet structure, are likely required for full X4 usage.
Collapse
Affiliation(s)
| | | | | | - Marco Salemi
- Department of Pathology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Michael S. McGrath
- Department of Laboratory Medicine, Pathology, and Medicine, and the AIDS and Cancer Specimen Resource, University of California, San Francisco, California
| |
Collapse
|
211
|
Host-Pathogen Coevolution and the Emergence of Broadly Neutralizing Antibodies in Chronic Infections. PLoS Genet 2016; 12:e1006171. [PMID: 27442127 PMCID: PMC4956326 DOI: 10.1371/journal.pgen.1006171] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/14/2016] [Indexed: 01/21/2023] Open
Abstract
The vertebrate adaptive immune system provides a flexible and diverse set of molecules to neutralize pathogens. Yet, viruses such as HIV can cause chronic infections by evolving as quickly as the adaptive immune system, forming an evolutionary arms race. Here we introduce a mathematical framework to study the coevolutionary dynamics between antibodies and antigens within a host. We focus on changes in the binding interactions between the antibody and antigen populations, which result from the underlying stochastic evolution of genotype frequencies driven by mutation, selection, and drift. We identify the critical viral and immune parameters that determine the distribution of antibody-antigen binding affinities. We also identify definitive signatures of coevolution that measure the reciprocal response between antibodies and viruses, and we introduce experimentally measurable quantities that quantify the extent of adaptation during continual coevolution of the two opposing populations. Using this analytical framework, we infer rates of viral and immune adaptation based on time-shifted neutralization assays in two HIV-infected patients. Finally, we analyze competition between clonal lineages of antibodies and characterize the fate of a given lineage in terms of the state of the antibody and viral populations. In particular, we derive the conditions that favor the emergence of broadly neutralizing antibodies, which may have relevance to vaccine design against HIV.
Collapse
|
212
|
Cimbro R, Peterson FC, Liu Q, Guzzo C, Zhang P, Miao H, Van Ryk D, Ambroggio X, Hurt DE, De Gioia L, Volkman BF, Dolan MA, Lusso P. Tyrosine-sulfated V2 peptides inhibit HIV-1 infection via coreceptor mimicry. EBioMedicine 2016; 10:45-54. [PMID: 27389109 PMCID: PMC5006643 DOI: 10.1016/j.ebiom.2016.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 11/06/2022] Open
Abstract
Tyrosine sulfation is a post-translational modification that facilitates protein-protein interaction. Two sulfated tyrosines (Tys173 and Tys177) were recently identified within the second variable (V2) loop of the major HIV-1 envelope glycoprotein, gp120, and shown to contribute to stabilizing the intramolecular interaction between V2 and the third variable (V3) loop. Here, we report that tyrosine-sulfated peptides derived from V2 act as structural and functional mimics of the CCR5 N-terminus and potently block HIV-1 infection. Nuclear magnetic and surface plasmon resonance analyses indicate that a tyrosine-sulfated V2 peptide (pV2α-Tys) adopts a CCR5-like helical conformation and directly interacts with gp120 in a CD4-dependent fashion, competing with a CCR5 N-terminal peptide. Sulfated V2 mimics, but not their non-sulfated counterparts, inhibit HIV-1 entry and fusion by preventing coreceptor utilization, with the highly conserved C-terminal sulfotyrosine, Tys177, playing a dominant role. Unlike CCR5 N-terminal peptides, V2 mimics inhibit a broad range of HIV-1 strains irrespective of their coreceptor tropism, highlighting the overall structural conservation of the coreceptor-binding site in gp120. These results document the use of receptor mimicry by a retrovirus to occlude a key neutralization target site and provide leads for the design of therapeutic strategies against HIV-1. Tyrosine-sulfated peptides derived from the V2 domain of HIV-1 gp120 mimic the N-terminal domain of the CCR5 coreceptor. Tyrosine-sulfated V2 peptides are potent and broad-spectrum inhibitors of HIV-1 infection.
Understanding how HIV-1 protects its outer envelope from the immune system may help devise effective strategies for treatment and vaccine. We derived synthetic peptides from the V2 loop of the external HIV-1 envelope glycoprotein, gp120, which contains sulfate-modified tyrosines that contribute to maintaining the envelope in an antibody-protected configuration. We found that these peptides mimic the structure and function of CCR5, a key cellular coreceptor for HIV-1, interacting with and occluding a major CCR5-binding site in gp120. Tyrosine-sulfated V2 peptides potently block HIV-1 entry and may serve as templates for the design of new antiviral inhibitors.
Collapse
Affiliation(s)
- Raffaello Cimbro
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Christina Guzzo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Xavier Ambroggio
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Darrell E Hurt
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
213
|
Li H, Wang S, Kong R, Ding W, Lee FH, Parker Z, Kim E, Learn GH, Hahn P, Policicchio B, Brocca-Cofano E, Deleage C, Hao X, Chuang GY, Gorman J, Gardner M, Lewis MG, Hatziioannou T, Santra S, Apetrei C, Pandrea I, Alam SM, Liao HX, Shen X, Tomaras GD, Farzan M, Chertova E, Keele BF, Estes JD, Lifson JD, Doms RW, Montefiori DC, Haynes BF, Sodroski JG, Kwong PD, Hahn BH, Shaw GM. Envelope residue 375 substitutions in simian-human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proc Natl Acad Sci U S A 2016; 113:E3413-22. [PMID: 27247400 PMCID: PMC4914158 DOI: 10.1073/pnas.1606636113] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most simian-human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains fail to infect rhesus macaques (RMs). We hypothesized that inefficient Env binding to rhesus CD4 (rhCD4) limits virus entry and replication and could be enhanced by substituting naturally occurring simian immunodeficiency virus Env residues at position 375, which resides at a critical location in the CD4-binding pocket and is under strong positive evolutionary pressure across the broad spectrum of primate lentiviruses. SHIVs containing primary or transmitted/founder HIV-1 subtype A, B, C, or D Envs with genotypic variants at residue 375 were constructed and analyzed in vitro and in vivo. Bulky hydrophobic or basic amino acids substituted for serine-375 enhanced Env affinity for rhCD4, virus entry into cells bearing rhCD4, and virus replication in primary rhCD4 T cells without appreciably affecting antigenicity or antibody-mediated neutralization sensitivity. Twenty-four RMs inoculated with subtype A, B, C, or D SHIVs all became productively infected with different Env375 variants-S, M, Y, H, W, or F-that were differentially selected in different Env backbones. Notably, SHIVs replicated persistently at titers comparable to HIV-1 in humans and elicited autologous neutralizing antibody responses typical of HIV-1. Seven animals succumbed to AIDS. These findings identify Env-rhCD4 binding as a critical determinant for productive SHIV infection in RMs and validate a novel and generalizable strategy for constructing SHIVs with Env glycoproteins of interest, including those that in humans elicit broadly neutralizing antibodies or bind particular Ig germ-line B-cell receptors.
Collapse
Affiliation(s)
- Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rui Kong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Wenge Ding
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Fang-Hua Lee
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Zahra Parker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Eunlim Kim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ben Policicchio
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | | | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Xingpei Hao
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Matthew Gardner
- Department of Infectious Disease, Scripps Research Institute, Jupiter, FL 33458
| | | | | | - Sampa Santra
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - S Munir Alam
- Department of Medicine, Duke University, Durham, NC 27710
| | - Hua-Xin Liao
- Department of Medicine, Duke University, Durham, NC 27710
| | - Xiaoying Shen
- Department of Medicine, Duke University, Durham, NC 27710
| | | | - Michael Farzan
- Department of Infectious Disease, Scripps Research Institute, Jupiter, FL 33458
| | - Elena Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Robert W Doms
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | | | | | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Peter D Kwong
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
214
|
Kong R, Xu K, Zhou T, Acharya P, Lemmin T, Liu K, Ozorowski G, Soto C, Taft JD, Bailer RT, Cale EM, Chen L, Choi CW, Chuang GY, Doria-Rose NA, Druz A, Georgiev IS, Gorman J, Huang J, Joyce MG, Louder MK, Ma X, McKee K, O'Dell S, Pancera M, Yang Y, Blanchard SC, Mothes W, Burton DR, Koff WC, Connors M, Ward AB, Kwong PD, Mascola JR. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 2016; 352:828-33. [PMID: 27174988 DOI: 10.1126/science.aae0474] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Abstract
The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. Here, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showed that the N-terminal portion of the fusion peptide can be solvent-exposed. These results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.
Collapse
Affiliation(s)
- Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin D Taft
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chang W Choi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinghe Huang
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02142, USA
| | - Wayne C Koff
- International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
215
|
Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds. J Virol 2016; 90:5031-5046. [PMID: 26962221 DOI: 10.1128/jvi.03211-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/26/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.
Collapse
|
216
|
Liang Y, Guttman M, Davenport TM, Hu SL, Lee KK. Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition. Biochemistry 2016; 55:2197-213. [PMID: 27003615 PMCID: PMC5479570 DOI: 10.1021/acs.biochem.5b01354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antibody-antigen interactions are governed by recognition of specific residues and structural complementarity between the antigen epitope and antibody paratope. While X-ray crystallography has provided detailed insights into static conformations of antibody-antigen complexes, factors such as conformational flexibility and dynamics, which are not readily apparent in the structures, can also have an impact on the binding event. Here we investigate the contribution of dynamics in the HIV-1 gp120 glycoprotein to antibody recognition of conserved conformational epitopes, including the CD4- and coreceptor-binding sites, and an inner domain site that is targeted by ADCC-active antibodies. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) was used to measure local structural dynamics across a panel of variable loop truncation mutants of HIV-1 gp120, including full-length gp120, ΔV3, ΔV1/V2, and extended core, which includes ΔV1/V2 and V3 loop truncations. CD4-bound full-length gp120 was also examined as a reference state. HDX-MS revealed a clear trend toward an increased level of order of the conserved subunit core resulting from loop truncation. Combined with biolayer interferometry and enzyme-linked immunosorbent assay measurements of antibody-antigen binding, we demonstrate that an increased level of ordering of the subunit core was associated with better recognition by an array of antibodies targeting complex conformational epitopes. These results provide detailed insight into the influence of structural dynamics on antibody-antigen interactions and suggest the importance of characterizing the structural stability of vaccine candidates to improve antibody recognition of complex epitopes.
Collapse
Affiliation(s)
- Yu Liang
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Thaddeus M. Davenport
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
217
|
Good MF, Yanow SK. Cryptic epitope for antibodies should not be forgotten in vaccine design. Expert Rev Vaccines 2016; 15:675-6. [DOI: 10.1586/14760584.2016.1154791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
218
|
Abstract
Antibodies (Abs) are a critical component of the human immune response against viral infections. In HIV-infected patients, a robust Ab response against the virus develops within months of infection; however, due to numerous strategies, the virus usually escapes the biological effects of the various Abs. Here we provide an overview of the different viral evasion mechanisms, including glycosylation, high mutation rate, and conformational masking by the envelope glycoproteins of the virus. In response to virus infection and to its evolution within a host, "conventional Abs" are generated, and these can also be induced by immunization; generally, these Abs are limited in their neutralization breadth and potency. In contrast, "exceptional Abs" require extended exposure to virus to generate the required hypermutation in the immunoglobulin variable regions, and they occur only in rare HIV-infected individuals, but they display impressive breadth and potency. In this review, we describe the major regions of the HIV envelope spike that are targeted by conventional and exceptional Abs. These include the first, second, and third variable loops (V1, V2, and V3) located at the apex of the envelope trimer, the CD4 binding site, and the membrane-proximal external region of the gp41 ectodomain. Lastly, we discuss the challenging task of HIV immunogen design and approaches for choosing which immunogens might be used to elicit protective Abs.
Collapse
|
219
|
Zolla-Pazner S, Cohen SS, Boyd D, Kong XP, Seaman M, Nussenzweig M, Klein F, Overbaugh J, Totrov M. Structure/Function Studies Involving the V3 Region of the HIV-1 Envelope Delineate Multiple Factors That Affect Neutralization Sensitivity. J Virol 2016; 90:636-49. [PMID: 26491157 PMCID: PMC4702699 DOI: 10.1128/jvi.01645-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/04/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Antibodies (Abs) specific for the V3 loop of the HIV-1 gp120 envelope neutralize most tier 1 and many tier 2 viruses and are present in essentially all HIV-infected individuals as well as immunized humans and animals. Vaccine-induced V3 Abs are associated with reduced HIV infection rates in humans and affect the nature of transmitted viruses in infected vaccinees, despite the fact that V3 is often occluded in the envelope trimer. Here, we link structural and experimental data showing how conformational alterations of the envelope trimer render viruses exceptionally sensitive to V3 Abs. The experiments interrogated the neutralization sensitivity of pseudoviruses with single amino acid mutations in various regions of gp120 that were predicted to alter packing of the V3 loop in the Env trimer. The results indicate that the V3 loop is metastable in the envelope trimer on the virion surface, flickering between states in which V3 is either occluded or available for binding to chemokine receptors (leading to infection) and to V3 Abs (leading to virus neutralization). The spring-loaded V3 in the envelope trimer is easily released by disruption of the stability of the V3 pocket in the unliganded trimer or disruption of favorable V3/pocket interactions. Formation of the V3 pocket requires appropriate positioning of the V1V2 domain, which is, in turn, dependent on the conformation of the bridging sheet and on the stability of the V1V2 B-C strand-connecting loop. IMPORTANCE The levels of antibodies to the third variable region (V3) of the HIV envelope protein correlate with reduced HIV infection rates. Previous studies showed that V3 is often occluded, as it sits in a pocket of the envelope trimer on the surface of virions; however, the trimer is flexible, allowing occluded portions of the envelope (like V3) to flicker into an exposed position that binds antibodies. Here we provide a systematic interrogation of mechanisms by which single amino acid changes in various regions of gp120 (i) render viruses sensitive to neutralization by V3 antibodies, (ii) result in altered packing of the V3 loop, and (iii) activate an open conformation that exposes V3 to the effects of V3 Abs. Taken together, these and previous studies explain how V3 antibodies can protect against HIV-1 infection and why they should be one of the targets of vaccine-induced antibodies.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- Veterans Affairs New York Harbor Healthcare System, New York, New York, USA Departments of Pathology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Sandra Sharpe Cohen
- Departments of Pathology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - David Boyd
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Xiang-Peng Kong
- Departments of Pathology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Michael Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | - Julie Overbaugh
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Max Totrov
- Molsoft, L.L.C., San Diego, California, USA
| |
Collapse
|
220
|
Sliepen K, Sanders RW. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Rev Vaccines 2016; 15:349-65. [PMID: 26654478 DOI: 10.1586/14760584.2016.1129905] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.
Collapse
Affiliation(s)
- Kwinten Sliepen
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - Rogier W Sanders
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands.,b Department of Microbiology and Immunology , Weill Medical College of Cornell University , New York , NY , USA
| |
Collapse
|
221
|
Abstract
Purpose of review This review highlights recent developments in HIV-1 antibody engineering and discusses the effects of increased polyreactivity on serum half-lives of engineered antibodies. Recent findings Recent studies have uncovered a wealth of information about the relationship between the sequences and efficacies of anti-HIV-1 antibodies through a combination of bioinformatics, structural characterization and in vivo studies. This knowledge has stimulated efforts to enhance antibody breadth and potency for therapeutic use. Although some engineered antibodies have shown increased polyreactivity and short half-lives, promising efforts are circumventing these problems. Summary Antibodies are desirable as therapeutics due to their ability to recognize targets with both specificity and high affinity. Furthermore, the ability of antibodies to stimulate Fc-mediated effector functions can increase their utility. Thus, mAbs have become central to strategies for the treatment of various diseases. Using both targeted and library-based approaches, antibodies can be engineered to improve their therapeutic properties. This article will discuss recent antibody engineering efforts to improve the breadth and potency of anti-HIV-1 antibodies. The polyreactivity of engineered HIV-1 bNAbs and the effect on serum half-life will be explored along with strategies to overcome problems introduced by engineering antibodies. Finally, advances in creating bispecific anti-HIV-1 reagents are discussed.
Collapse
|
222
|
Abstract
Recent biological, structural, and technical advances are converging within the HIV-1 vaccine field to harness the power of antibodies for prevention and therapy. Numerous monoclonal antibodies with broad neutralizing activity against diverse HIV-1 isolates have now been identified, revealing at least five sites of vulnerability on the envelope (Env) glycoproteins. While there are practical and technological barriers blocking a clear path from broadly neutralizing antibodies (bNAb) to a protective vaccine, this is not a dead end. Scientists are revisiting old approaches with new technology, cutting new trails through unexplored territory, and paving new roads in the hopes of preventing HIV-1 infection. Other promising avenues to capitalize on the power of bNAbs are also being pursued, such as passive antibody immunotherapy and gene therapy approaches. Moreover, non-neutralizing antibodies have inhibitory activities that could have protective potential, alone or in combination with bNAbs. With a new generation of bNAbs, and a clinical trial that associated antibodies with reduced acquisition, the field is closer than ever to developing strategies to use antibodies against HIV-1.
Collapse
Affiliation(s)
- S Abigail Smith
- Yerkes National Primate Research Center, Atlanta, Georgia, 30322, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, 30322, USA; Yerkes National Primate Research Center, Atlanta, Georgia, 30322, USA
| |
Collapse
|
223
|
MacRaild CA, Richards JS, Anders RF, Norton RS. Antibody Recognition of Disordered Antigens. Structure 2015; 24:148-157. [PMID: 26712277 DOI: 10.1016/j.str.2015.10.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
Abstract
Disordered proteins are important antigens in a range of infectious diseases. Little is known, however, about the molecular details of recognition of disordered antigens by their cognate antibodies. Using a large dataset of protein antigens, we show that disordered epitopes are as likely to be recognized by antibodies as ordered epitopes. Moreover, the affinity with which antigens are recognized is, unexpectedly, only weakly dependent on the degree of disorder within the epitope. Structurally defined complexes of ordered and disordered protein antigens with their cognate antibodies reveal that disordered epitopes are smaller than their ordered counterparts, but are more efficient in their interactions with antibody. Our results demonstrate that disordered antigens are bona fide targets of antibody recognition, and that recognition of disordered epitopes is particularly sensitive to epitope variation, a finding with implications for the effects of disorder on the specificity of molecular recognition more generally.
Collapse
Affiliation(s)
- Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Jack S Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
224
|
Sadanand S, Suscovich TJ, Alter G. Broadly Neutralizing Antibodies Against HIV: New Insights to Inform Vaccine Design. Annu Rev Med 2015; 67:185-200. [PMID: 26565674 DOI: 10.1146/annurev-med-091014-090749] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HIV-1 poses immense immunological challenges to the humoral immune response because of its ability to shield itself and replicate and evolve rapidly. Although most currently licensed vaccines provide protection via the induction of antibodies (Abs) that can directly block infection ( 1 ), 30 years of HIV-1 vaccine research has failed to successfully elicit such Abs against globally relevant HIV strains. However, mounting evidence suggests that these broadly neutralizing antibodies (bNAbs) do emerge naturally in a significant fraction of infected subjects, albeit after years of infection, indicating that these responses can be selected naturally by the immune response but take long periods of time to evolve. We review the basic structural characteristics of broadly neutralizing antibodies and how they recognize the virus, and we discuss new vaccination strategies that aim to mimic natural evolution to guide B cells to produce protective Abs against HIV-1.
Collapse
Affiliation(s)
- Saheli Sadanand
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139-3583; , ,
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139-3583; , ,
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139-3583; , ,
| |
Collapse
|
225
|
Yang S, Rubin A, Eshghi ST, Zhang H. Chemoenzymatic method for glycomics: Isolation, identification, and quantitation. Proteomics 2015; 16:241-56. [PMID: 26390280 DOI: 10.1002/pmic.201500266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/15/2015] [Accepted: 09/15/2015] [Indexed: 01/03/2023]
Abstract
Over the past decade, considerable progress has been made with respect to the analytical methods for analysis of glycans from biological sources. Regardless of the specific methods that are used, glycan analysis includes isolation, identification, and quantitation. Derivatization is indispensable to increase their identification. Derivatization of glycans can be performed by permethylation or carbodiimide coupling/esterification. By introducing a fluorophore or chromophore at their reducing end, glycans can be separated by electrophoresis or chromatography. The fluorogenically labeled glycans can be quantitated using fluorescent detection. The recently developed approaches using solid-phase such as glycoprotein immobilization for glycan extraction and on-tissue glycan mass spectrometry imaging demonstrate advantages over methods performed in solution. Derivatization of sialic acids is favorably implemented on the solid support using carbodiimide coupling, and the released glycans can be further modified at the reducing end or permethylated for quantitative analysis. In this review, methods for glycan isolation, identification, and quantitation are discussed.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins University, Baltimore, USA
| | - Abigail Rubin
- Department of Pathology, Johns Hopkins University, Baltimore, USA
| | | | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
226
|
Brandenberg OF, Magnus C, Regoes RR, Trkola A. The HIV-1 Entry Process: A Stoichiometric View. Trends Microbiol 2015; 23:763-774. [PMID: 26541228 DOI: 10.1016/j.tim.2015.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/31/2015] [Accepted: 09/16/2015] [Indexed: 11/15/2022]
Abstract
HIV-1 infection starts with fusion of the viral and the host cell membranes, a process mediated by the HIV-1 envelope glycoprotein trimer. The number of trimers required to complete membrane fusion, referred to as HIV-1 entry stoichiometry, remains under debate. A precise definition of HIV-1 entry stoichiometry is important as it reflects the efficacy of the viral entry process and steers the infectivity of HIV-1 virion populations. Initial estimates suggested a unanimous entry stoichiometry across HIV-1 strains while recent findings showed that HIV-1 strains can differ in entry stoichiometry. Here, we review current analyses of HIV-1 entry stoichiometry and point out future research directions to further define the interplay between entry stoichiometry, virus entry fitness, transmission, and susceptibility to antibody neutralization.
Collapse
Affiliation(s)
- Oliver F Brandenberg
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Carsten Magnus
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
227
|
Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. J Virol 2015; 90:813-28. [PMID: 26512083 PMCID: PMC4702668 DOI: 10.1128/jvi.01942-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023] Open
Abstract
Major neutralizing antibody immune evasion strategies of the HIV-1 envelope glycoprotein (Env) trimer include conformational and structural instability. Stabilized soluble trimers such as BG505 SOSIP.664 mimic the structure of virion-associated Env but nevertheless sample different conformational states. Here we demonstrate that treating BG505 SOSIP.664 trimers with glutaraldehyde or a heterobifunctional cross-linker introduces additional stability with relatively modest effects on antigenicity. Thus, most broadly neutralizing antibody (bNAb) epitopes were preserved after cross-linking, whereas the binding of most weakly or nonneutralizing antibodies (non-NAb) was reduced. Cross-linking stabilized all Env conformers present within a mixed population, and individual conformers could be isolated by bNAb affinity chromatography. Both positive selection of cross-linked conformers using the quaternary epitope-specific bNAbs PGT145, PGT151, and 3BC315 and negative selection with non-NAbs against the V3 region enriched for trimer populations with improved antigenicity for bNAbs. Similar results were obtained using the clade B B41 SOSIP.664 trimer. The cross-linking method may, therefore, be useful for countering the natural conformational heterogeneity of some HIV-1 Env proteins and, by extrapolation, also vaccine immunogens from other pathogens. IMPORTANCE The development of a vaccine to induce protective antibodies against HIV-1 is of primary public health importance. Recent advances in immunogen design have provided soluble recombinant envelope glycoprotein trimers with near-native morphology and antigenicity. However, these trimers are conformationally flexible, potentially reducing B-cell recognition of neutralizing antibody epitopes. Here we show that chemical cross-linking increases trimer stability, reducing binding of nonneutralizing antibodies while largely maintaining neutralizing antibody binding. Cross-linking followed by positive or negative antibody affinity selection of individual stable conformational variants further improved the antigenic and morphological characteristics of the trimers. This approach may be generally applicable to HIV-1 Env and also to other conformationally flexible pathogen antigens.
Collapse
|
228
|
Discovery and optimization of novel small-molecule HIV-1 entry inhibitors using field-based virtual screening and bioisosteric replacement. Bioorg Med Chem Lett 2015; 24:5439-45. [PMID: 25454268 DOI: 10.1016/j.bmcl.2014.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/22/2022]
Abstract
With the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The inhibition of HIV-1 entry is an attractive, yet underexploited therapeutic approach with implications for salvage and preexposure prophylactic regimens, as well as topical microbicides. Using the combination of a field-derived bioactive conformation template to perform virtual screening and iterative bioisosteric replacements, coupled with in silico predictions of absorption, distribution, metabolism, and excretion, we have identified new leads for HIV-1 entry inhibitors.
Collapse
|
229
|
Gallerano D, Cabauatan CR, Sibanda EN, Valenta R. HIV-Specific Antibody Responses in HIV-Infected Patients: From a Monoclonal to a Polyclonal View. Int Arch Allergy Immunol 2015; 167:223-41. [PMID: 26414324 DOI: 10.1159/000438484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV infections represent a major global health threat, affecting more than 35 million individuals worldwide. High infection rates and problems associated with lifelong antiretroviral treatment emphasize the need for the development of prophylactic and therapeutic immune intervention strategies. It is conceivable that insights for the design of new immunogens capable of eliciting protective immune responses may come from the analysis of HIV-specific antibody responses in infected patients. Using sophisticated technologies, several monoclonal neutralizing antibodies were isolated from HIV-infected individuals. However, the majority of polyclonal antibody responses found in infected patients are nonneutralizing. Comprehensive analyses of the molecular targets of HIV-specific antibody responses identified that during natural infection antibodies are mainly misdirected towards gp120 epitopes outside of the CD4-binding site and against regions and proteins that are not exposed on the surface of the virus. We therefore argue that vaccines aiming to induce protective responses should include engineered immunogens, which are capable of focusing the immune response towards protective epitopes.
Collapse
Affiliation(s)
- Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
230
|
Stieh DJ, King DF, Klein K, Aldon Y, McKay PF, Shattock RJ. Discrete partitioning of HIV-1 Env forms revealed by viral capture. Retrovirology 2015; 12:81. [PMID: 26399966 PMCID: PMC4581120 DOI: 10.1186/s12977-015-0207-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Background The structure of HIV-1 envelope glycoprotein (Env) is flexible and heterogeneous on whole virions. Although functional Env complexes are thought to require trimerization of cleaved gp41/gp120 heterodimers, variable processing can result in the potential incorporation of non-functional uncleaved proteins (gp160), non-trimeric arrangements of gp41/gp120 heterodimers, and gp120 depleted gp41 stumps. The potential distribution of functional and non-functional Env forms across replication-competent viral populations may have important implications for neutralizing and non-neutralizing antibody functions. This study applied an immuno-bead viral capture assay (VCA) to interrogate the potential distribution (heterologous vs homologous) of functional and non-functional forms of virion associated Env. Results The VCA revealed a significant association between depletion of infectious virions and virion Env incorporation, but not between infectivity and p24-gag. Three distinct subpopulations of virions were identified within pools of genetically homogenous viral particles. Critically, a significant subpopulation of infectious virions were exclusively captured by neutralizing antibodies (nAbs) indicative of a homologous distribution of functional trimeric Env forms. A second infectious subpopulation bound both neutralizing and non-neutralizing antibodies (nnAbs) representative of a heterologous distribution of Env forms, while a third non-infectious subpopulation was predominantly bound by nnAbs recognizing gp41 stumps. Conclusions The observation that a distinct and significant subpopulation of infectious virions is exclusively captured by neutralizing antibodies has important implications for understanding antibody binding and neutralization, as well as other antibody effector functions. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel J Stieh
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Deborah F King
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Katja Klein
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Yoann Aldon
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Paul F McKay
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Robin J Shattock
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
231
|
Abstract
In this brief review, we discuss immune tolerance as a factor that determines the magnitude and quality of serum antibody responses to HIV-1 infection and vaccination in the context of recent work. We propose that many conserved, neutralizing epitopes of HIV-1 are weakly immunogenic because they mimic host antigens. In consequence, B cells that strongly bind these determinants are removed by the physiological process of immune tolerance. This structural mimicry may represent a significant impediment to designing protective HIV-1 vaccines, but we note that several vaccine strategies may be able to mitigate this evolutionary adaptation of HIV and other microbial pathogens.
Collapse
|
232
|
Broad spectrum assessment of the epitope fluctuation--Immunogenicity hypothesis. Vaccine 2015; 33:5945-9. [PMID: 26187254 DOI: 10.1016/j.vaccine.2015.06.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/13/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022]
Abstract
Prediction of immunogenicity is a substantial barrier in vaccine design. Here, a molecular dynamics approach to assessing the immunogenicity of nanoparticles based on structure is presented. Molecular properties of epitopes on nonenveloped viral particles are quantified via a set of metrics. One such metric, epitope fluctuation (and implied flexibility), is shown to be inversely correlated with immunogenicity for each of a broad spectrum of nonenveloped viruses. The molecular metrics and experimentally determined immunogenicities for these viruses are archived in the open-source vaccine computer-aided design database. Results indicate the promise of computer-aided vaccine design to bring greater efficiency to traditional lab-based vaccine discovery approaches.
Collapse
|
233
|
Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding. Emerg Microbes Infect 2015; 4:e44. [PMID: 26251831 PMCID: PMC4522616 DOI: 10.1038/emi.2015.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 01/07/2023]
Abstract
The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitope peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence (433)AMYAPPI(439), it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.
Collapse
|
234
|
Kwon YD, Pancera M, Acharya P, Georgiev IS, Crooks ET, Gorman J, Joyce MG, Guttman M, Ma X, Narpala S, Soto C, Terry DS, Yang Y, Zhou T, Ahlsen G, Bailer RT, Chambers M, Chuang GY, Doria-Rose NA, Druz A, Hallen MA, Harned A, Kirys T, Louder MK, O'Dell S, Ofek G, Osawa K, Prabhakaran M, Sastry M, Stewart-Jones GBE, Stuckey J, Thomas PV, Tittley T, Williams C, Zhang B, Zhao H, Zhou Z, Donald BR, Lee LK, Zolla-Pazner S, Baxa U, Schön A, Freire E, Shapiro L, Lee KK, Arthos J, Munro JB, Blanchard SC, Mothes W, Binley JM, McDermott AB, Mascola JR, Kwong PD. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat Struct Mol Biol 2015; 22:522-31. [PMID: 26098315 PMCID: PMC4706170 DOI: 10.1038/nsmb.3051] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022]
Abstract
As the sole viral antigen on the HIV-1-virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1-Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.
Collapse
Affiliation(s)
- Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma T Crooks
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Goran Ahlsen
- 1] Department of Biochemistry &Molecular Biophysics, Columbia University, New York, New York, USA. [2] Department of Systems Biology, Columbia University, New York, New York, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Hallen
- 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Adam Harned
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tatsiana Kirys
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul V Thomas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tishina Tittley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hong Zhao
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Zhou Zhou
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Bruce R Donald
- 1] Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA. [2] Department of Chemistry, Duke University, Durham, North Carolina, USA. [3] Department of Computer Science, Duke University, Durham, North Carolina, USA
| | - Lawrence K Lee
- Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Susan Zolla-Pazner
- 1] New York University School of Medicine, New York, New York, USA. [2] New York Veterans Affairs Harbor Healthcare System, New York, New York, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lawrence Shapiro
- 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Biochemistry &Molecular Biophysics, Columbia University, New York, New York, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James B Munro
- 1] Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James M Binley
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
235
|
Richardson SI, Gray ES, Mkhize NN, Sheward DJ, Lambson BE, Wibmer CK, Masson L, Werner L, Garrett N, Passmore JAS, Karim QA, Karim SSA, Williamson C, Moore PL, Morris L. South African HIV-1 subtype C transmitted variants with a specific V2 motif show higher dependence on α4β7 for replication. Retrovirology 2015; 12:54. [PMID: 26105197 PMCID: PMC4479312 DOI: 10.1186/s12977-015-0183-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/15/2015] [Indexed: 12/03/2022] Open
Abstract
Background The integrin α4β7 mediates the trafficking of immune cells to the gut associated lymphoid tissue (GALT) and is an attachment factor for the HIV gp120 envelope glycoprotein. We developed a viral replication inhibition assay to more clearly evaluate the role of α4β7 in HIV infection and the contribution of viral and host factors. Results Replication of 60 HIV-1 subtype C viruses collected over time from 11 individuals in the CAPRISA cohort were partially inhibited by antibodies targeting α4β7. However, dependence on α4β7 for replication varied substantially among viral isolates from different individuals as well as over time in some individuals. Among 8 transmitted/founder (T/F) viruses, α4β7 reactivity was highest for viruses having P/SDI/V tri-peptide binding motifs. Mutation of T/F viruses that had LDI/L motifs to P/SDI/V resulted in greater α4β7 reactivity, whereas mutating P/SDI/V to LDI/L motifs was associated with reduced α4β7 binding. P/SDI/V motifs were more common among South African HIV subtype C viruses (35%) compared to subtype C viruses from other regions of Africa (<8%) and to other subtypes, due in part to a founder effect. In addition, individuals with bacterial vaginosis (BV) and who had higher concentrations of IL-7, IL-8 and IL-1α in the genital tract had T/F viruses with higher α4β7 dependence for replication, suggesting that viruses with P/SDI/V motifs may be preferentially transmitted in the presence of BV in this population. Conclusions Collectively, these data suggest a role for α4β7 in HIV infection that is influenced by both viral and host factors including the sequence of the α4β7 binding motif, the cytokine milieu and BV in the genital tract. The higher frequency of P/SDI/V sequences among South African HIV-1 subtype C viruses may have particular significance for the role of α4β7 in this geographical region. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0183-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone I Richardson
- Centre for HIV and STI's, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa. .,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Elin S Gray
- Centre for HIV and STI's, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa. .,ECU Melanoma Research Foundation, Edith Cowan University (ECU), Perth, WA, 6027, Australia.
| | - Nonhlanhla N Mkhize
- Centre for HIV and STI's, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa. .,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Daniel J Sheward
- Divison of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Bronwen E Lambson
- Centre for HIV and STI's, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa. .,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Constantinos Kurt Wibmer
- Centre for HIV and STI's, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa. .,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Lindi Masson
- Divison of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Lise Werner
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Jo-Ann S Passmore
- Divison of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa. .,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,National Health Laboratory Service, Groote Schuur Hospital, Observatory, Cape Town, South Africa.
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Department of Epidemiology, Columbia University, New York, NY, USA.
| | - Carolyn Williamson
- Divison of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa. .,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,National Health Laboratory Service, Groote Schuur Hospital, Observatory, Cape Town, South Africa.
| | - Penny L Moore
- Centre for HIV and STI's, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa. .,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Lynn Morris
- Centre for HIV and STI's, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, 1 Modderfontein Road, Sandringham, Johannesburg, 2131, South Africa. .,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
236
|
Immunogens Modeling a Fusion-Intermediate Conformation of gp41 Elicit Antibodies to the Membrane Proximal External Region of the HIV Envelope Glycoprotein. PLoS One 2015; 10:e0128562. [PMID: 26087072 PMCID: PMC4472232 DOI: 10.1371/journal.pone.0128562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/28/2015] [Indexed: 12/02/2022] Open
Abstract
The membrane proximal external region (MPER) of the gp41 subunit of the HIV-1 envelope glycoprotein (Env) contains determinants for broadly neutralizing antibodies and has remained an important focus of vaccine design. However, creating an immunogen that elicits broadly neutralizing antibodies to this region has proven difficult in part due to the relative inaccessibility of the MPER in the native conformation of Env. Here, we describe the antigenicity and immunogenicity of a panel of oligomeric gp41 immunogens designed to model a fusion-intermediate conformation of Env in order to enhance MPER exposure in a relevant conformation. The immunogens contain segments of the gp41 N- and C-heptad repeats to mimic a trapped intermediate, followed by the MPER, with variations that include different N-heptad lengths, insertion of extra epitopes, and varying C-termini. These well-characterized immunogens were evaluated in two different immunization protocols involving gp41 and gp140 proteins, gp41 and gp160 DNA primes, and different immunization schedules and adjuvants. We found that the immunogens designed to reduce extension of helical structure into the MPER elicited the highest MPER antibody binding titers, but these antibodies lacked neutralizing activity. The gp41 protein immunogens also elicited higher MPER titers than the gp140 protein immunogen. In prime-boost studies, the best MPER responses were seen in the groups that received DNA priming with gp41 vectors followed by gp41 protein boosts. Finally, although titers to the entire protein immunogen were similar in the two immunization protocols, MPER-specific titers differed, suggesting that the immunization route, schedule, dose, or adjuvant may differentially influence MPER immunogenicity. These findings inform the design of future MPER immunogens and immunization protocols.
Collapse
|
237
|
The V1V2 Region of HIV-1 gp120 Forms a Five-Stranded Beta Barrel. J Virol 2015; 89:8003-10. [PMID: 26018158 PMCID: PMC4505664 DOI: 10.1128/jvi.00754-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/16/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The region consisting of the first and second variable regions (V1V2) of gp120 plays vital roles in the functioning of the HIV-1 envelope (Env). V1V2, which harbors multiple glycans and is highly sequence diverse, is located at the Env apex and stabilizes the trimeric gp120 spike on the virion surface. It shields V3 and the coreceptor binding sites in the prefusion state and exposes them upon CD4 binding. Data from the RV144 human HIV-1 vaccine trial suggested that antibody responses targeting the V1V2 region inversely correlated with the risk of infection; thus, understanding the antigenic structure of V1V2 can contribute to vaccine design. We have determined a crystal structure of a V1V2 scaffold molecule (V1V2ZM109-1FD6) in complex with 830A, a human monoclonal antibody that recognizes a V1V2 epitope overlapping the integrin-binding motif in V2. The structure revealed that V1V2 assumes a five-stranded beta barrel structure with the region of the integrin-binding site (amino acids [aa] 179 to 181) included in a "kink" followed by an extra beta strand. The complete barrel structure naturally presents the glycans on its outer surface and packs into its core conserved hydrophobic residues, including the Ile at position 181 which was highly correlated with vaccine efficacy in RV144. The epitope of monoclonal antibody 830A is discontinuous and composed of three segments: (i) Thr175, Tyr177, Leu179, and Asp180 at the kink overlapping the integrin-binding site; (ii) Arg153 and Val154 in V1; and (iii) Ile194 at the C terminus of V2. This report thus provides the atomic details of the immunogenic "V2i epitope." IMPORTANCE Data from the RV144 phase III clinical trial suggested that the presence of antibodies to the first and second variable regions (V1V2) of gp120 was associated with the modest protection afforded by the vaccine. V1V2 is a highly variable and immunogenic region of HIV-1 surface glycoprotein gp120, and structural information about this region and its antigenic landscape will be crucial in the design of an effective HIV-1 vaccine. We have determined a crystal structure of V1V2 in complex with human MAb 830A and have shown that MAb 830A recognizes a region overlapping the α4β7 integrin-binding site. We also showed that V1V2 forms a 5-stranded beta barrel, an elegant structure allowing sequence variations in the strand-connecting loops while preserving a conserved core.
Collapse
|
238
|
Han J, Liu S, Guo W, Bao Z, Wang X, Li L, Liu Y, Zhuang D, Li H, Jia L, Gui T, Sui H, Li T, Li J. Development of an HIV-1 Subtype Panel in China: Isolation and Characterization of 30 HIV-1 Primary Strains Circulating in China. PLoS One 2015; 10:e0127696. [PMID: 26018591 PMCID: PMC4446268 DOI: 10.1371/journal.pone.0127696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background The complex epidemic and significant diversity of HIV-1 strains in China pose serious challenges for surveillance and diagnostic assays, vaccine development and clinical management. There is a lack of HIV-1 isolates in current canonical HIV-1 subtype panels that can represent HIV-1 diversity in China; an HIV-1 subtype panel for China is urgently needed. Methods Blood samples were collected from HIV-1 infected patients participating in the drug-resistance surveillance program in China. The samples were isolated, cultured and stored as neat culture supernatant. The HIV-1 isolates were fully characterized. The panel was used to compare 2 viral load assays and 2 p24 assays as the examples of how this panel could be used. Results An HIV-1 subtype panel for China composed of 30 HIV-1 primary strains of four subtypes (B [including Thai-B], CRF01_AE, CRF07_BC and G) was established. The samples were isolated and cultured to a high-titer (106-109 copies/ml)/high-volume (40ml). The HIV-1 isolates were fully characterized by the final viral load, p24 concentration, gag-pol and envC2V3 sequencing, co-receptor prediction, determination of the four amino acids at the tip of the env V3-loop, glycosylation sites in the V3 loop and the drug-resistance mutations. The comparison of two p24 assays and two viral load assays on the isolates illustrated how this panel may be used for the evaluation of diagnostic assay performance. The Pearson value between p24 assays were 0.938. The viral load results showed excellent concordance and agreement for samples of Thai-B, but lower correlations for samples of CRF01_AE. Conclusion The current panel of 30 HIV-1 isolates served as a basis for the development of a comprehensive panel of fully characterized viral isolates, which could reflect the current dynamic and complex HIV-1 epidemic in China. This panel will be available to support HIV-1 research, assay evaluation, vaccine and drug development.
Collapse
Affiliation(s)
- Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Siyang Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Wei Guo
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Zuoyi Bao
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Daomin Zhuang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Tao Gui
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Hongshuai Sui
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 0007, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
239
|
Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope. J Virol 2015; 89:8130-51. [PMID: 26018167 DOI: 10.1128/jvi.01221-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Antibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen. IMPORTANCE Many in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.
Collapse
|
240
|
Georgiev IS, Joyce MG, Yang Y, Sastry M, Zhang B, Baxa U, Chen RE, Druz A, Lees CR, Narpala S, Schön A, Van Galen J, Chuang GY, Gorman J, Harned A, Pancera M, Stewart-Jones GBE, Cheng C, Freire E, McDermott AB, Mascola JR, Kwong PD. Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed HIV-1 Env. J Virol 2015; 89:5318-29. [PMID: 25740988 PMCID: PMC4442528 DOI: 10.1128/jvi.03451-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Similar to other type I fusion machines, the HIV-1 envelope glycoprotein (Env) requires proteolytic activation; specifically, cleavage of a gp160 precursor into gp120 and gp41 subunits creates an N-terminal gp41 fusion peptide and permits folding from an immature uncleaved state to a mature closed state. While the atomic-level consequences of cleavage for HIV-1 Env are still being determined, the uncleaved state is antigenically distinct from the mature closed state, and cleavage has been reported to be essential for mimicry of the mature viral spike by soluble versions of Env. Here we report the redesign of a current state-of-the-art soluble Env mimic, BG505.SOSIP, to make it cleavage independent. Specifically, we replaced the furin cleavage site between gp120 and gp41 with Gly-Ser linkers of various lengths. The resultant linked gp120-gp41 constructs, termed single-chain gp140 (sc-gp140), exhibited different levels of structural and antigenic mimicry of the parent cleaved BG505.SOSIP. When constructs were subjected to negative selection to remove subspecies recognized by poorly neutralizing antibodies, trimers of high antigenic mimicry of BG505.SOSIP could be obtained; negative-stain electron microscopy indicated these to resemble the mature closed state. Higher proportions of BG505.SOSIP-trimer mimicry were observed in sc-gp140s with linkers of 6 or more residues, with a linker length of 15 residues exhibiting especially promising traits. Overall, flexible linkages between gp120 and gp41 in BG505.SOSIP can thus substitute for cleavage, and sc-gp140s that closely mimicked the vaccine-preferred mature closed state of Env could be obtained. IMPORTANCE The trimeric HIV-1 envelope glycoprotein (Env) is the sole target of virus-directed neutralizing antibody responses and a primary focus of vaccine design. Soluble mimics of Env have proven challenging to obtain and have been thought to require proteolytic cleavage into two-component subunits, gp120 and gp41, to achieve structural and antigenic mimicry of mature Env spikes on virions. Here we show that replacement of the cleavage site between gp120 and gp41 in a lead soluble gp140 construct, BG505.SOSIP, with flexible linkers can result in molecules that do not require cleavage to fold efficiently into the mature closed state. Our results provide insights into the impact of cleavage on HIV-1 Env folding. In some contexts such as genetic immunization, optimized cleavage-independent soluble gp140 constructs may have utility over the parental BG505.SOSIP, as they would not require furin cleavage to achieve mimicry of mature Env spikes on virions.
Collapse
Affiliation(s)
- Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rita E Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher R Lees
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph Van Galen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam Harned
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
241
|
Johnson QR, Lindsay RJ, Petridis L, Shen T. Investigation of Carbohydrate Recognition via Computer Simulation. Molecules 2015; 20:7700-18. [PMID: 25927900 PMCID: PMC6272577 DOI: 10.3390/molecules20057700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Recently, interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. We focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.
Collapse
Affiliation(s)
- Quentin R Johnson
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN 37996, USA.
| | - Richard J Lindsay
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Loukas Petridis
- Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, TN 37830, USA.
| | - Tongye Shen
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
242
|
Abstract
PURPOSE OF REVIEW T follicular helper (Tfh) cells play a critical role as providers of B-cell help and dysfunction in Tfh/B-cell interactions can lead to autoimmunity or immunodeficiency. These observations have generated a great deal of interest in understanding how these cells are affected during HIV infection and how their functional changes might affect antibody responses. RECENT FINDINGS Recent studies have shown that HIV/simian immunodeficiency virus (SIV) infection affects both Tfh-cell frequency and function and suggest that Tfh-cell perturbations might contribute to the relative inefficiency of HIV-infected individuals to generate broadly neutralizing antibodies (bNAbs). SUMMARY The present review will highlight these recent findings addressing the role of Tfh cells in HIV infection as well as the impact HIV infection has on Tfh and circulating memory Tfh (cTfh) cell frequency and function.
Collapse
|
243
|
Mengistu M, Ray K, Lewis GK, DeVico AL. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells. PLoS Pathog 2015; 11:e1004772. [PMID: 25807494 PMCID: PMC4373872 DOI: 10.1371/journal.ppat.1004772] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/02/2015] [Indexed: 12/17/2022] Open
Abstract
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo. A major strategy for blocking HIV-1 infection is to target antiviral antibodies or drugs to sites of vulnerability on the surface proteins of the virus. It is a relatively straightforward matter to explore these sites on the surfaces of free HIV-1 particles or on isolated viral envelope antigens. However, one difficulty presented by HIV-1 is that its surface proteins are flexible and change shape once the virus has attached to its host cell. To date, it has been difficult to predict how cell-bound HIV-1 exposes its sites of vulnerability. Yet the antiviral activities of certain antibodies indirectly suggest that there must be unique sites on cell-bound HIV-1 that are not found on free virus. Here, we use new techniques and tools to determine how HIV-1 exposes unique sites of vulnerability after attaching to host cells. We find that the virus exposes a remarkable array of these sites, including ones previously believed hidden. These exposure patterns explain the antiviral activities of various anti-HIV-1 antibodies and provide a new view of how HIV-1 might interact with the immune system. Our study also provides insights for how to target HIV-1 with antiviral antibodies, vaccines, or antiviral agents.
Collapse
Affiliation(s)
- Meron Mengistu
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| | - Krishanu Ray
- Center for Fluorescence Spectroscopy of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - George K. Lewis
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anthony L. DeVico
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| |
Collapse
|
244
|
Carrillo J, Molinos-Albert LM, de la Concepción MLR, Marfil S, García E, Derking R, Sanders RW, Clotet B, Blanco J. Gp120/CD4 blocking antibodies are frequently elicited in ART-naïve chronically HIV-1 infected individuals. PLoS One 2015; 10:e0120648. [PMID: 25803681 PMCID: PMC4372395 DOI: 10.1371/journal.pone.0120648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/25/2015] [Indexed: 11/24/2022] Open
Abstract
Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- Jorge Carrillo
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- * E-mail:
| | - Luis Manuel Molinos-Albert
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | - Silvia Marfil
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
| | - Elisabet García
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Bonaventura Clotet
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
- Universitat de Vic-Central de Catalunya, UVIC-UCC, Vic, Barcelona, Spain
- Fundació Lluita contra la SIDA, Badalona, Barcelona, Spain
| | - Julià Blanco
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
- Universitat de Vic-Central de Catalunya, UVIC-UCC, Vic, Barcelona, Spain
| |
Collapse
|
245
|
Different clinical, virological, serological and tissue tropism outcomes of two new and one old Belgian type 1 subtype 1 porcine reproductive and respiratory virus (PRRSV) isolates. Vet Res 2015; 46:37. [PMID: 25885416 PMCID: PMC4367851 DOI: 10.1186/s13567-015-0166-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/18/2015] [Indexed: 12/02/2022] Open
Abstract
In this study, the pathogenic behavior of PRRSV 13V091 and 13V117, isolated in 2013 from two different Belgian farms with enzootic respiratory problems shortly after weaning in the nursery, were compared with the Belgian strain 07V063 isolated in 2007. Full-length genome sequencing was performed to identify their origin. Twelve weeks-old pigs were inoculated intranasally (IN) with 13V091, 13V117 or 07V063 (9 pigs/group). At 10 days post inoculation (dpi), 4 animals from each group were euthanized and tissues were collected for pathology, virological and serological analysis. 13V091 infection resulted in the highest respiratory disease scores and longest period of fever. Gross lung lesions were more pronounced for 13V091 (13%), than for 13V117 (7%) and 07V063 (11%). The nasal shedding and viremia was also most extensive with 13V091. The 13V091 group showed the highest virus replication in conchae, tonsils and retropharyngeal lymph nodes. 13V117 infection resulted in the lowest virus replication in lymphoid tissues. 13V091 showed higher numbers of sialoadhesin− infected cells/mm2 in conchae, tonsils and spleen than 13V117 and 07V063. Neutralizing antibody response with 07V063 was stronger than with 13V091 and 13V117. It can be concluded that (i) 13V091 is a highly pathogenic type 1 subtype 1 PRRSV strain that replicates better than 07V063 and 13V117 and has a strong tropism for sialoadhesin− cells and (ii) despite the close genetic relationship between 13V117 and 07V063, 13V117 has an increased nasal replication and shedding, but a decreased replication in lymphoid tissues compared to 07V063.
Collapse
|
246
|
MacRaild CA, Zachrdla M, Andrew D, Krishnarjuna B, Nováček J, Žídek L, Sklenář V, Richards JS, Beeson JG, Anders RF, Norton RS. Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2. PLoS One 2015; 10:e0119899. [PMID: 25742002 PMCID: PMC4351039 DOI: 10.1371/journal.pone.0119899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/16/2015] [Indexed: 12/14/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
- * E-mail:
| | - Milan Zachrdla
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| | - Jiří Nováček
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lukáš Žídek
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Vladimír Sklenář
- NCBR, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - James G. Beeson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, 3004, Australia
| | - Robin F. Anders
- Department of Biochemistry, La Trobe University, Victoria, 3086, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Australia
| |
Collapse
|
247
|
Acharya P, Lusvarghi S, Bewley CA, Kwong PD. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 2015; 19:765-83. [PMID: 25724219 DOI: 10.1517/14728222.2015.1010513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high-affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. AREAS COVERED An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. EXPERT OPINION The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms that have evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target.
Collapse
Affiliation(s)
- Priyamvada Acharya
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Vaccine Research Center, Structural Biology Section , Room 4609B, 40 Convent Drive, Bethesda, MD 20892 , USA
| | | | | | | |
Collapse
|
248
|
Wang S, Mata-Fink J, Kriegsman B, Hanson M, Irvine DJ, Eisen HN, Burton DR, Wittrup KD, Kardar M, Chakraborty AK. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies. Cell 2015; 160:785-797. [PMID: 25662010 PMCID: PMC4357364 DOI: 10.1016/j.cell.2015.01.027] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/03/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023]
Abstract
Generation of potent antibodies by a mutation-selection process called affinity maturation is a key component of effective immune responses. Antibodies that protect against highly mutable pathogens must neutralize diverse strains. Developing effective immunization strategies to drive their evolution requires understanding how affinity maturation happens in an environment where variants of the same antigen are present. We present an in silico model of affinity maturation driven by antigen variants which reveals that induction of cross-reactive antibodies often occurs with low probability because conflicting selection forces, imposed by different antigen variants, can frustrate affinity maturation. We describe how variables such as temporal pattern of antigen administration influence the outcome of this frustrated evolutionary process. Our calculations predict, and experiments in mice with variant gp120 constructs of the HIV envelope protein confirm, that sequential immunization with antigen variants is preferred over a cocktail for induction of cross-reactive antibodies focused on the shared CD4 binding site epitope.
Collapse
Affiliation(s)
- Shenshen Wang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jordi Mata-Fink
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Barry Kriegsman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Melissa Hanson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Darrell J Irvine
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Herman N Eisen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Dennis R Burton
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Arup K Chakraborty
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139.
| |
Collapse
|
249
|
Guttman M, Cupo A, Julien JP, Sanders RW, Wilson IA, Moore JP, Lee KK. Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. Nat Commun 2015; 6:6144. [PMID: 25652336 PMCID: PMC4338595 DOI: 10.1038/ncomms7144] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022] Open
Abstract
HIV’s envelope glycoprotein (Env) is the sole target for neutralizing antibodies. The structures of many broadly neutralizing antibodies (bNAbs) in complex with truncated Env subunits or components have been reported. However, their interaction with the intact Env trimer, and the structural determinants that underlie neutralization resistance in this more native context are less well understood. Here we use hydrogen/deuterium-exchange to examine the interactions between a panel of bNAbs and native-like Env trimers (SOSIP.664 trimers). Highly potent bNAbs cause only localized effects at their binding interface, while the binding of less potent antibodies is associated with elaborate changes throughout the trimer. In conjunction with binding kinetics, our results suggest that poorly neutralizing antibodies can only bind when the trimer transiently samples an open state. We propose that the kinetics of such opening motions varies among isolates, with Env from neutralization-sensitive viruses opening more frequently than Env from resistant viruses.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, Washington 98195, USA
| | - Albert Cupo
- Weill Cornell Medical College, New York, New York 10021, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Rogier W Sanders
- 1] Weill Cornell Medical College, New York, New York 10021, USA [2] Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John P Moore
- Weill Cornell Medical College, New York, New York 10021, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, Washington 98195, USA
| |
Collapse
|
250
|
Moulaei T, Alexandre KB, Shenoy SR, Meyerson JR, Krumpe LR, Constantine B, Wilson J, Buckheit RW, McMahon JB, Subramaniam S, Wlodawer A, O'Keefe BR. Griffithsin tandemers: flexible and potent lectin inhibitors of the human immunodeficiency virus. Retrovirology 2015; 12:6. [PMID: 25613831 PMCID: PMC4419512 DOI: 10.1186/s12977-014-0127-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 12/14/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The lectin griffithsin (GRFT) is a potent antiviral agent capable of prevention and treatment of infections caused by a number of enveloped viruses and is currently under development as an anti-HIV microbicide. In addition to its broad antiviral activity, GRFT is stable at high temperature and at a broad pH range, displays little toxicity and immunogenicity, and is amenable to large-scale manufacturing. Native GRFT is a domain-swapped homodimer that binds to viral envelope glycoproteins and has displayed mid-picomolar activity in cell-based anti-HIV assays. Previously, we have engineered and analyzed several monomeric forms of this lectin (mGRFT) with anti-HIV EC50 values ranging up to 323 nM. Based on our previous analysis of mGRFT, we hypothesized that the orientation and spacing of the carbohydrate binding domains GRFT were key to its antiviral activity. RESULTS Here we present data on engineered tandem repeats of mGRFT (mGRFT tandemers) with antiviral activity at concentrations as low as one picomolar in whole-cell anti-HIV assays. mGRFT tandemers were analyzed thermodynamically, both individually and in complex with HIV-1 gp120. We also demonstrate by dynamic light scattering and cryo-electron microscopy that mGRFT tandemers do not aggregate HIV virions. This establishes that, although the intra-virion crosslinking of HIV envelope glycoproteins is likely integral to their activity, the antiviral activity of these lectins is not due to virus aggregation caused by inter-virion crosslinking. CONCLUSIONS The engineered tandemer constructs of mGRFT may provide novel and powerful agents for prevention of infection by HIV and other enveloped viruses.
Collapse
Affiliation(s)
- Tinoush Moulaei
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
| | - Kabamba B Alexandre
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | - Shilpa R Shenoy
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA.
| | - Joel R Meyerson
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Lauren Rh Krumpe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA.
| | - Brian Constantine
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | - Jennifer Wilson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | | | - James B McMahon
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| |
Collapse
|