201
|
Wissing KM, Pipeleers L. Obesity, metabolic syndrome and diabetes mellitus after renal transplantation: prevention and treatment. Transplant Rev (Orlando) 2013; 28:37-46. [PMID: 24507957 DOI: 10.1016/j.trre.2013.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/18/2013] [Indexed: 02/06/2023]
Abstract
The prevalence of the metabolic syndrome in dialysis patients is high and further increases after transplantation due to weight gain and the detrimental metabolic effects of immunosuppressive drugs. Corticosteroids cause insulin resistance, hyperlipidemia, abnormal glucose metabolism and arterial hypertension. The calcineurin inhibitor tacrolimus is diabetogenic by inhibiting insulin secretion, whereas cyclosporine causes hypertension and increases cholesterol levels. Mtor antagonists are responsible for hyperlipidemia and abnormal glucose metabolism by mechanisms that also implicate insulin resistance. The metabolic syndrome in transplant recipients has numerous detrimental effects such as increasing the risk of new onset diabetes, cardiovascular disease events and patient death. In addition, it has also been linked with accelerated loss of graft function, proteinuria and ultimately graft loss. Prevention and management of the metabolic syndrome are based on increasing physical activity, promotion of weight loss and control of cardiovascular risk factors. Bariatric surgery before or after renal transplantation in patients with body mass index >35 kg/m(2) is an option but its long term effects on graft and patient survival have not been investigated. Steroid withdrawal and replacement of tacrolimus with cyclosporine facilitate control of diabetes, whereas replacement of cyclosporine and mtor antagonists can improve hyperlipidemia. The new costimulation inhibitor belatacept has potent immunosuppressive properties without metabolic adverse effects and will be an important component of immunosuppressive regimens with better metabolic risk profile. Medical treatment of cardiovascular risk factors has to take potential drug interactions with immunosuppressive medication and drug accumulation due to renal insufficiency into account.
Collapse
Affiliation(s)
- Karl Martin Wissing
- Nephrology Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium; Nephrology and Dialysis Clinic, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium.
| | - Lissa Pipeleers
- Nephrology Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
202
|
McCaughan JA, McKnight AJ, Maxwell AP. Genetics of new-onset diabetes after transplantation. J Am Soc Nephrol 2013; 25:1037-49. [PMID: 24309190 DOI: 10.1681/asn.2013040383] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
New-onset diabetes after transplantation is a common complication that reduces recipient survival. Research in renal transplant recipients has suggested that pancreatic β-cell dysfunction, as opposed to insulin resistance, may be the key pathologic process. In this study, clinical and genetic factors associated with new-onset diabetes after transplantation were identified in a white population. A joint analysis approach, with an initial genome-wide association study in a subset of cases followed by de novo genotyping in the complete case cohort, was implemented to identify single-nucleotide polymorphisms (SNPs) associated with the development of new-onset diabetes after transplantation. Clinical variables associated with the development of diabetes after renal transplantation included older recipient age, female sex, and percentage weight gain within 12 months of transplantation. The genome-wide association study identified 26 SNPs associated with new-onset diabetes after transplantation; this association was validated for eight SNPs (rs10484821, rs7533125, rs2861484, rs11580170, rs2020902, rs1836882, rs198372, and rs4394754) by de novo genotyping. These associations remained significant after multivariate adjustment for clinical variables. Seven of these SNPs are associated with genes implicated in β-cell apoptosis. These results corroborate recent clinical evidence implicating β-cell dysfunction in the pathophysiology of new-onset diabetes after transplantation and support the pursuit of therapeutic strategies to protect β cells in the post-transplant period.
Collapse
Affiliation(s)
- Jennifer A McCaughan
- Nephrology Research Group, Queen's University, Belfast, Northern Ireland; and Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland
| | - Amy Jayne McKnight
- Nephrology Research Group, Queen's University, Belfast, Northern Ireland; and
| | - Alexander P Maxwell
- Nephrology Research Group, Queen's University, Belfast, Northern Ireland; and Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland
| |
Collapse
|
203
|
Andersson O. Role of adenosine signalling and metabolism in β-cell regeneration. Exp Cell Res 2013; 321:3-10. [PMID: 24315942 DOI: 10.1016/j.yexcr.2013.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 01/09/2023]
Abstract
Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells - a primary cause of type I diabetes and a secondary contributor of type II diabetes - leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration.
Collapse
Affiliation(s)
- Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, 17177 Stockholm, Sweden.
| |
Collapse
|
204
|
Mayo PR, Ling SY, Huizinga RB, Freitag DG, Aspeslet LJ, Foster RT. Population PKPD of voclosporin in renal allograft patients. J Clin Pharmacol 2013; 54:537-45. [PMID: 24243422 DOI: 10.1002/jcph.237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/14/2013] [Indexed: 11/12/2022]
Abstract
The aims of this population-pharmacokinetic/pharmacodynamic (POP-PKPD) analysis of voclosporin in renal allograft patients were to build a POP-PKPD model for voclosporin and calcineurin activity (CNa) and identify clinically relevant covariates that could assist dosing of the drug. POP-PKPD modeling was performed using a stochastic approximation of the standard expectation maximization (SAEM) algorithm for nonlinear mixed-effects as implemented in Monolix™ 3.2. Voclosporin whole blood concentrations were obtained from de novo renal allograft patients and assayed using a validated LC/MS/MS assay. CNa was measured using a (32)P-radiolabeled assay. A two-compartment model with simultaneous sigmoid inhibitory Emax model was used to describe the PKPD relationship between voclosporin concentration and CNa. The POP-PKPD model was then utilized to simulate an optimal initial dosing strategy. Eighty-seven patients were included in the POP-PKPD study. Population mean estimates (relative standard error, rse) for oral clearance (CL/F) and first compartment volume of distribution (V1), were 717 mL min(-1) (35%) and 2010 mL (17%), respectively. Maximum CNa Inhibition (Imax), effective concentration (C50), and baseline immunosuppression (S0) were 0.87 pmol/min/mg (8.0%), 123 ng/mL (10%), and 1.15 pmol/min/mg (4.0%), respectively. Covariate analyses demonstrated that age and body surface area significantly influenced CL/F: CLi=717(Agei/48.8)-0.57(BSAi/1.99)1.1, while serum triglycerides significantly altered S0: S0i=1.15(TRIGi/1.97)0.15.
Collapse
Affiliation(s)
- P R Mayo
- Isotechnika Pharma Inc., Edmonton, AB, Canada
| | - S Y Ling
- Isotechnika Pharma Inc., Edmonton, AB, Canada
| | | | - D G Freitag
- Isotechnika Pharma Inc., Edmonton, AB, Canada
| | | | - R T Foster
- Isotechnika Pharma Inc., Edmonton, AB, Canada
| |
Collapse
|
205
|
Abstract
Osteoarthritis (OA) was once viewed originally as a mechanical disease of "wear and tear," but advances made during the past two decades suggest that abnormal biomechanics contribute to active dysregulation of chondrocyte biology, leading to catabolism of the cartilage matrix. A number of signaling and transcriptional mechanisms have been studied in relation to the regulation of this catabolic program, but how they specifically regulate the initiation or progression of the disease is poorly understood. Here, we demonstrate that cartilage-specific ablation of Nuclear factor of activated T cells c1 (Nfatc1) in Nfatc2(-/-) mice leads to early onset, aggressive OA affecting multiple joints. This model recapitulates features of human OA, including loss of proteoglycans, collagen and aggrecan degradation, osteophyte formation, changes to subchondral bone architecture, and eventual progression to cartilage effacement and joint instability. Consistent with the notion that NFATC1 is an OA-suppressor gene, NFATC1 expression was significantly down-regulated in paired lesional vs. macroscopically normal cartilage samples from OA patients. The highly penetrant, early onset, and severe nature of this model make it an attractive platform for the preclinical development of treatments to alter the course of OA. Furthermore, these findings indicate that NFATs are key suppressors of OA, and regulating NFATs or their transcriptional targets in chondrocytes may lead to novel disease-modifying OA therapies.
Collapse
|
206
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
207
|
New onset of diabetes after transplantation - an overview of epidemiology, mechanism of development and diagnosis. Transpl Immunol 2013; 30:52-8. [PMID: 24184293 DOI: 10.1016/j.trim.2013.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
New onset of diabetes after transplantation (NODAT) is a serious and common complication following solid organ transplantation. NODAT has been reported to occur in 2% to 53% of renal transplant recipients. Several risk factors are associated with NODAT, however the mechanisms underlying were unclear. Renal transplant recipients who develop NODAT are reported to be at increased risk of infections, cardiovascular events, graft loss and patient loss. It has been reported that the incidence of NODAT is high in the early transplant period due to the exposure to the high doses of corticosteroids, calcineurin inhibitors and the physical inactivity during that period. In addition to these risk factors the traditional risk factors also play a major role in developing NODAT. Early detection is crucial in the management and control of NODAT which can be achieved through pretransplant screening there by identifying high risk patients and implementing the measures to reduce the development of NODAT. In the present article we reviewed the literature on the epidemiology, risk factors, mechanisms involved and the diagnostic criteria in the development of NODAT. Development of diagnostic tools for the assessment of β-cell function and determination of the role of glycemic control would include future area of research.
Collapse
|
208
|
Abstract
Pancreatic beta-cell mass expands through beta-cell proliferation and neogenesis while it decreases mainly via apoptosis. The loss of balance between beta-cell death and regeneration leads to a reduction of beta-cell functional mass, thus contributing to the pathogenesis of type 2 diabetes mellitus (T2DM). The pathogenetic mechanisms causing T2DM are complex, and also include a significant reduction of the incretin effect. A better understanding of the role of incretin hormones in glucose homeostasis has led to the development of incretin-based therapies. Recently, incretin hormones have been shown to stimulate the beta-cell growth and differentiation from pancreas-derived stem/progenitor cells, as well as to exert cytoprotective, antiapoptotic effects on beta-cells. However, the role and the molecular mechanisms by which GLP-1 and its agonists regulate beta-cell mass have not been fully investigated. This review focuses the current findings and the missing understanding of the effects of incretin hormones on beta-cell mass expansion.
Collapse
Affiliation(s)
- Federica Tortosa
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari School of Medicine , Bari , Italy and
| | | |
Collapse
|
209
|
Toaiari M, Davì MV, Dalle Carbonare L, Boninsegna L, Castellani C, Falconi M, Francia G. Presentation, diagnostic features and glucose handling in a monocentric series of insulinomas. J Endocrinol Invest 2013; 36:753-8. [PMID: 23608735 DOI: 10.3275/8942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND New aspects have emerged in the clinical and diagnostic scenarios of insulinoma: current guidelines have lowered the diagnostic insulin threshold to 3 μU/ml in the presence of hypoglycemia (<55 mg/dl); post-prandial hypoglycemia has been reported as the only presenting symptom; preexisting diabetes mellitus (DM) was recognized in some patients. AIM To evaluate clinical features, diagnostic criteria and glucose metabolic profile in a monocentric series of patients affected by insulinomas including two subgroups: sporadic and multiple endocrine neoplasia type-1 syndrome (MEN-1). SUBJECTS AND METHODS Clinical, pathological and biochemical data regarding 33 patients were analyzed. RESULTS following the current guidelines the 72-h fasting test was initially positive in all cases but one. In this case the test, initially negative, became positive after a 2-yr follow-up. Nadir insulin level was ≥ 3 μU/ml but <6 μU/ml in 3 patients and ≥ 6 μU/ml in the remaining 30 cases. At presentation, 27 patients (82%) reported only fasting symptoms, 3 (9%) only post-prandial and 3 (9%) both. Seven cases (21%) had previously been affected by type 2 DM or impaired glucose metabolism. CONCLUSIONS In our series the new cut-off of insulin increased the sensitivity of the 72-h fasting test from 87% to 97%. The absence of hypoglycemia during the test cannot definitively rule out the diagnosis and the test should be repeated in every highly suspicious case. Post-prandial hypoglycemia can be the only presenting symptom. DM may be associated with the occurrence of insulinoma. So that a possible diagnosis of insulinoma must not be ignored if previous impaired glucose handling is evident.
Collapse
Affiliation(s)
- M Toaiari
- Department of Internal Medicine D, "G.B. Rossi" University Hospital, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
210
|
Shin J, Lee JC, Baek KH. A single extra copy of Dscr1 improves survival of mice developing spontaneous lung tumors through suppression of tumor angiogenesis. Cancer Lett 2013; 342:70-81. [PMID: 24051307 DOI: 10.1016/j.canlet.2013.08.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 01/01/2023]
Abstract
The incidence of most solid tumors is remarkably reduced in individuals with Down syndrome. Using mouse models of Down syndrome, we have previously shown that this decrease in tumor incidence is due, in part, to suppression of tumor angiogenesis as a consequence of attenuated calcineurin signaling in endothelial cells. Our prior studies utilized xenografted tumors in a transgenic mouse model with three copies of the Down syndrome critical region-1 (Dscr1) gene, a chromosome 21-encoded endogenous calcineurin inhibitor. These data indicate that upregulated Dscr1 contributes to broad cancer protection by suppressing tumor angiogenesis through inhibiting the calcineurin pathway in the vascular endothelium. However, it still remains to be confirmed whether a single extra copy of Dscr1 is also sufficient to suppress tumor angiogenesis in slow growing spontaneous tumors that more accurately recapitulate molecular features of human malignancies. In this study, utilizing LSL-Kras(G12D) mice, an inducible and autochthonous model of human lung adenocarcinoma, on a Dscr1 transgenic mouse background, we show that a single extra transgenic copy of Dscr1 provides a survival advantage in these mice developing spontaneous lung tumors driven by oncogenic Kras(G12D) without affecting either initiation or progression of spontaneous lung tumors. Furthermore, we show that Dscr1 trisomy significantly reduces microvessel density in lung tumors and thus limits the growth of lung tumors through decreased proliferation and increased apoptosis of lung tumor cells. These data provide evidence that a single extra copy of Dscr1 is sufficient to suppress tumor angiogenesis during spontaneous lung tumorigenesis and further support our hypothesis that suppression of tumor angiogenesis by an additional copy of Dscr1 contributes to the reduced cancer incidence in individuals with Down syndrome and the calcineurin pathway in the tumor vasculature is a potential target for cancer treatment.
Collapse
Affiliation(s)
- Jimin Shin
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 440-746, Republic of Korea
| | | | | |
Collapse
|
211
|
Lee JC, Shin J, Baek KH. Trisomy of the Dscr1 gene suppresses early progression of pancreatic intraepithelial neoplasia driven by oncogenic Kras. Biochem Biophys Res Commun 2013; 440:50-5. [PMID: 24041692 DOI: 10.1016/j.bbrc.2013.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022]
Abstract
Individuals with Down syndrome exhibit remarkably reduced incidence of most solid tumors including pancreatic cancer. Multiple mechanisms arising from the genetic complexity underlying Down syndrome has been suggested to contribute to such a broad cancer protection. In this study, utilizing a genetically engineered mouse model of pancreatic cancer, we demonstrate that trisomy of the Down syndrome critical region-1 (Dscr1), an endogenous calcineurin inhibitor localized on chromosome 21, suppresses the progression of pancreatic intraepithelial neoplasia-1A (PanIN-1A) to PanIN-1B lesions without affecting the initiation of PanIN lesions mediated by oncogenic Kras(G12D). In addition, we show that Dscr1 trisomy attenuates nuclear localization of nuclear factor of activated T-cells (NFAT) accompanied by upregulation of the p15(Ink4b) tumor suppressor and reduction of cell proliferation in early PanIN lesions. Our data suggest that attenuation of calcineurin-NFAT signaling in neoplastic pancreatic ductal epithelium by a single extra copy of Dscr1 is sufficient to inhibit the progression of early PanIN lesions driven by oncogenic Kras, and thus may be a potential mechanism underlying reduced incidence of pancreatic cancer in Down syndrome individuals.
Collapse
Affiliation(s)
- Jang Choon Lee
- Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 440-746, Republic of Korea
| | | | | |
Collapse
|
212
|
Hecking M, Kainz A, Werzowa J, Haidinger M, Döller D, Tura A, Karaboyas A, Hörl WH, Wolzt M, Sharif A, Roden M, Moro E, Pacini G, Port FK, Säemann MD. Glucose metabolism after renal transplantation. Diabetes Care 2013; 36:2763-71. [PMID: 23656979 PMCID: PMC3747896 DOI: 10.2337/dc12-2441] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We determined prevalence, risk factors, phenotype, and pathophysiological mechanism of new-onset diabetes after transplantation (NODAT) to generate strategies for optimal pharmacological management of hyperglycemia in NODAT patients. RESEARCH DESIGN AND METHODS Retrospective cohort study comparing demographics, laboratory data, and oral glucose tolerance test (OGTT)-derived metabolic parameters from kidney transplant recipients versus subjects not receiving transplants. RESULTS Among 1,064 stable kidney transplant recipients (≥ 6 months posttransplantation), 113 (11%) had a history of NODAT and 132 (12%) had pretransplant diabetes. In the remaining patients, randomly assigned OGTTs showed a high prevalence of abnormal glucose metabolism (11% diabetes; 32% impaired fasting glucose, impaired glucose tolerance, or both), predominantly in older patients who received tacrolimus as the primary immunosuppressant. Compared with 1,357 nontransplant subjects, stable kidney transplant recipients had lower basal glucose, higher glycated hemoglobin, lower insulin secretion, and greater insulin sensitivity in each of the three subgroups, defined by OGTT 2-h glucose (<140, 140-199, ≥ 200 mg/dL). These findings were reinforced in linear spline interpolation models of insulin secretion and sensitivity (all P < 0.001) and in another regression model in which the estimated oral glucose insulin sensitivity index was substantially higher (by 79-112 mL/min m(2)) for transplant versus nontransplant subjects despite adjustments for age, sex, and BMI (all P < 0.001). CONCLUSIONS Glucose metabolism differs substantially between kidney transplant recipients and nontransplant controls. Because impaired insulin secretion appears to be the predominant pathophysiological feature after renal transplantation, early therapeutic interventions that preserve, maintain, or improve β-cell function are potentially beneficial in this population.
Collapse
Affiliation(s)
- Manfred Hecking
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Pdx-1 activates islet α- and β-cell proliferation via a mechanism regulated by transient receptor potential cation channels 3 and 6 and extracellular signal-regulated kinases 1 and 2. Mol Cell Biol 2013; 33:4017-29. [PMID: 23938296 DOI: 10.1128/mcb.00469-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The homeodomain transcription factor Pdx-1 has important roles in pancreatic development and β-cell function and survival. In the present study, we demonstrate that adenovirus-mediated overexpression of Pdx-1 in rat or human islets also stimulates cell replication. Moreover, cooverexpression of Pdx-1 with another homeodomain transcription factor, Nkx6.1, has an additive effect on proliferation compared to either factor alone, implying discrete activating mechanisms. Consistent with this, Nkx6.1 stimulates mainly β-cell proliferation, whereas Pdx-1 stimulates both α- and β-cell proliferation. Furthermore, cyclins D1/D2 are upregulated by Pdx-1 but not by Nkx6.1, and inhibition of cdk4 blocks Pdx-1-stimulated but not Nkx6.1-stimulated islet cell proliferation. Genes regulated by Pdx-1 but not Nkx6.1 were identified by microarray analysis. Two members of the transient receptor potential cation (TRPC) channel family, TRPC3 and TRPC6, are upregulated by Pdx-1 overexpression, and small interfering RNA (siRNA)-mediated knockdown of TRPC3/6 or TRPC6 alone inhibits Pdx-1-induced but not Nkx6.1-induced islet cell proliferation. Pdx-1 also stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, an effect partially blocked by knockdown of TRPC3/6, and blockade of ERK1/2 activation with a MEK1/2 inhibitor partially impairs Pdx-1-stimulated proliferation. These studies define a pathway by which overexpression of Pdx-1 activates islet cell proliferation that is distinct from and additive to a pathway activated by Nkx6.1.
Collapse
|
214
|
Wan X, Guloglu FB, VanMorlan AM, Rowland LM, Zaghouani S, Cascio JA, Dhakal M, Hoeman CM, Zaghouani H. Recovery from overt type 1 diabetes ensues when immune tolerance and β-cell formation are coupled with regeneration of endothelial cells in the pancreatic islets. Diabetes 2013; 62:2879-89. [PMID: 23715620 PMCID: PMC3717841 DOI: 10.2337/db12-1281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune modulation of pancreatic inflammation induces recovery from type 1 diabetes (T1D), but remission was not durable, perhaps because of an inability to sustain the formation and function of new pancreatic β-cells. We have previously shown that Ig-GAD2, carrying GAD 206-220 peptide, induced in hyperglycemic mice immune modulation that was able to control pancreatic inflammation, stimulate β-cell regeneration, and prevent T1D progression. Herein, we show that the same Ig-GAD2 regimen given to mice with overt T1D was unable to reverse the course of disease despite eradication of Th1 and Th17 cells from the pancreas. However, the regimen was able to sustain recovery from T1D when Ig-GAD2 was accompanied with transfer of bone marrow (BM) cells from healthy donors. Interestingly, alongside immune modulation, there was concomitant formation of new β-cells and endothelial cells (ECs) in the pancreas. The new β-cells were of host origin while the donor BM cells gave rise to the ECs. Moreover, transfer of purified BM endothelial progenitors instead of whole BM cells sustained both β-cell and EC formation and reversal of diabetes. Thus, overcoming T1D requires both immune modulation and repair of the islet vascular niche to preserve newly formed β-cells.
Collapse
Affiliation(s)
- Xiaoxiao Wan
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri
| | - F. Betul Guloglu
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri
| | - Amie M. VanMorlan
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri
| | - Linda M. Rowland
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri
| | - Sarah Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri
| | - Jason A. Cascio
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri
| | - Mermagya Dhakal
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri
| | - Christine M. Hoeman
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri
- Department of Neurology, University of Missouri School of Medicine, Columbia, Missouri
- Corresponding author: Habib Zaghouani,
| |
Collapse
|
215
|
Vasu S, McClenaghan NH, McCluskey JT, Flatt PR. Cellular responses of novel human pancreatic β-cell line, 1.1B4 to hyperglycemia. Islets 2013; 5:170-7. [PMID: 23985558 DOI: 10.4161/isl.26184] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The novel human-derived pancreatic β-cell line, 1.1B4 exhibits insulin secretion and β-cell enriched gene expression. Recent investigations of the cellular responses of this novel cell line to lipotoxicity and cytokine toxicity revealed similarities to primary human β cells. The current study has investigated the responses of 1.1B4 cells to chronic 48 and 72 h exposure to hyperglycemia to probe mechanisms of human β-cell dysfunction and cell death. Exposure to 25 mM glucose significantly reduced insulin content (p<0.05) and glucokinase activity (p<0.01) after 72 h. Basal insulin release was unaffected but acute secretory response to 16.7 mM glucose was impaired (p<0.05). Insulin release stimulated by alanine, GLP-1, KCl, elevated Ca (2+) and forskolin was also markedly reduced after exposure to hyperglycemia (p<0.001). In addition, PDX1 protein expression was reduced by 58% by high glucose (p<0.05). Effects of hyperglycemia on secretory function were accompanied by decreased mRNA expression of INS, GCK, PCSK1, PCSK2, PPP3CB, GJA1, ABCC8, and KCNJ11. In contrast, exposure to hyperglycemia upregulated the transcription of GPX1, an antioxidant enzyme involved in detoxification of hydrogen peroxide and HSPA4, a molecular chaperone involved in ER stress response. Hyperglycemia-induced DNA damage was demonstrated by increased % tail DNA and olive tail moment, assessed by comet assay. Hyperglycemia-induced apoptosis was evident from increased activity of caspase 3/7 and decreased BCL2 protein. These observations reveal significant changes in cellular responses and gene expression in novel human pancreatic 1.1B4 β cells exposed to hyperglycemia, illustrating the usefulness of this novel human-derived cell line for studying human β-cell biology and diabetes.
Collapse
Affiliation(s)
- Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes; University of Ulster; Coleraine, Northern Ireland, UK
| | | | | | | |
Collapse
|
216
|
Abstract
Previous work in insulinoma cell lines has established that calcineurin plays a critical role in the activation of cAMP-responsive element binding protein (Creb), a key transcription factor required for β-cell function and survival, by dephosphorylating the Creb coactivator Creb-regulated transcription coactivator (Crtc)2 at 2 regulatory sites, Ser171 and Ser275. Here, we report that Crtc2 is essential both for glucose-stimulated insulin secretion and cell survival in the β-cell. Endogenous Crtc2 activation is achieved via increasing glucose levels to the physiological feeding range, indicating that Crtc2 is a sensor that couples ambient glucose concentrations to Creb activity in the β-cell. Immunosuppressant drugs such as cyclosporin A and tacrolimus that target the protein phosphatase calcineurin are commonly administered after organ transplantation. Chronic use is associated with reduced insulin secretion and new onset diabetes, suggestive of pancreatic β-cell dysfunction. Importantly, we show that overexpression of a Crtc2 mutant rendered constitutively active by introduction of nonphosphorylatable alanine residues at Ser171 and Ser275 permits Creb target gene activation under conditions when calcineurin is inhibited. Taken together, these data suggest that promoting Crtc2-Creb activity is required for β-cell function and proliferation and promoting this pathway could ameliorate symptoms of new onset diabetes after transplantation.
Collapse
Affiliation(s)
- Chandra E Eberhard
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
217
|
Lacritin and the tear proteome as natural replacement therapy for dry eye. Exp Eye Res 2013; 117:39-52. [PMID: 23769845 DOI: 10.1016/j.exer.2013.05.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/23/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Tear proteins are potential biomarkers, drug targets, and even biotherapeutics. As a biotherapeutic, a recombinant tear protein might physiologically rescue the ocular surface when a deficiency is detected. Such a strategy pays more attention to the natural prosecretory and protective properties of the tear film and seeks to alleviate symptoms by addressing cause, rather than the current palliative, non-specific and temporary approaches. Only a handful of tear proteins appear to be selectively downregulated in dry eye, the most common eye disease. Lacritin and lipocalin-1 are two tear proteins selectively deficient in dry eye. Both proteins influence ocular surface health. Lacritin is a prosecretory mitogen that promotes basal tearing when applied topically. Levels of active monomeric lacritin are negatively regulated by tear tissue transglutaminase, whose expression is elevated in dry eye with ocular surface inflammation. Lipocalin-1 is the master lipid sponge of the ocular surface, without which residual lipids could interfere with epithelial wetting. It also is a carrier for vitamins and steroid hormones, and is a key endonuclease. Accumulation of DNA in tears is thought to be proinflammatory. Functions of these and other tear proteins may be influenced by protein-protein interactions. Here we discuss new advances in lacritin biology and provide an overview on lipocalin-1, and newly identified members of the tear proteome.
Collapse
|
218
|
Arda HE, Benitez CM, Kim SK. Gene regulatory networks governing pancreas development. Dev Cell 2013; 25:5-13. [PMID: 23597482 DOI: 10.1016/j.devcel.2013.03.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 12/13/2022]
Abstract
Elucidation of cellular and gene regulatory networks (GRNs) governing organ development will accelerate progress toward tissue replacement. Here, we have compiled reference GRNs underlying pancreas development from data mining that integrates multiple approaches, including mutant analysis, lineage tracing, cell purification, gene expression and enhancer analysis, and biochemical studies of gene regulation. Using established computational tools, we integrated and represented these networks in frameworks that should enhance understanding of the surging output of genomic-scale genetic and epigenetic studies of pancreas development and diseases such as diabetes and pancreatic cancer. We envision similar approaches would be useful for understanding the development of other organs.
Collapse
Affiliation(s)
- H Efsun Arda
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | | | |
Collapse
|
219
|
Affiliation(s)
- Reid A Aikin
- McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
220
|
Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 2013; 153:747-58. [PMID: 23623304 DOI: 10.1016/j.cell.2013.04.008] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
Replenishing insulin-producing pancreatic β cell mass will benefit both type I and type II diabetics. In adults, pancreatic β cells are generated primarily by self-duplication. We report on a mouse model of insulin resistance that induces dramatic pancreatic β cell proliferation and β cell mass expansion. Using this model, we identify a hormone, betatrophin, that is primarily expressed in liver and fat. Expression of betatrophin correlates with β cell proliferation in other mouse models of insulin resistance and during gestation. Transient expression of betatrophin in mouse liver significantly and specifically promotes pancreatic β cell proliferation, expands β cell mass, and improves glucose tolerance. Thus, betatrophin treatment could augment or replace insulin injections by increasing the number of endogenous insulin-producing cells in diabetics.
Collapse
Affiliation(s)
- Peng Yi
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
221
|
Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 2013. [PMID: 23623304 DOI: 10.1016/j.cell] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Replenishing insulin-producing pancreatic β cell mass will benefit both type I and type II diabetics. In adults, pancreatic β cells are generated primarily by self-duplication. We report on a mouse model of insulin resistance that induces dramatic pancreatic β cell proliferation and β cell mass expansion. Using this model, we identify a hormone, betatrophin, that is primarily expressed in liver and fat. Expression of betatrophin correlates with β cell proliferation in other mouse models of insulin resistance and during gestation. Transient expression of betatrophin in mouse liver significantly and specifically promotes pancreatic β cell proliferation, expands β cell mass, and improves glucose tolerance. Thus, betatrophin treatment could augment or replace insulin injections by increasing the number of endogenous insulin-producing cells in diabetics.
Collapse
Affiliation(s)
- Peng Yi
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
222
|
Abstract
OBJECTIVES Triptolide (TPL) possesses profound immunosuppressive effects and has potential in allograft transplantation. We investigated whether TPL treatment prevents autoimmune diabetes in nonobese diabetic (NOD) mice and prolongs the survival of islet grafts against autoimmune attack or allograft rejection. METHODS Diabetic incidence was monitored in TPL-treated NOD mice. Nonobese diabetic or BALB/c islets were transplanted into diabetic recipients treated with TPL. Different T-cell subsets in grafts or spleen were analyzed. The proliferation, apoptosis, cytokines, and activities of AKT, NFκB, and caspases 3, 8, and 9 of T cells were determined. RESULTS Diabetic incidence was reduced and inflammatory cytokines were decreased in islets and spleen under TPL treatment. T-cell proliferation was reduced and the survival of syngeneic or allogeneic grafts was significantly increased in TPL-treated mice. The populations of CD4, CD8, CD4CD69, CD8CD69, and interferon-γ-producing T cells in islet grafts and spleen were reduced. Triptolide treatment increased the apoptosis of T cells in the spleen of recipients. Levels of phosphorylated protein kinase B and phosphorylated inhibitor of kappa B in splenocytes were reduced and caspases 3, 8, and 9 were increased in TPL-treated mice. CONCLUSIONS Triptolide treatment not only reduced the diabetic incidence in NOD mice but also prolonged the survival of syngeneic or allogeneic grafts.
Collapse
|
223
|
Auer VJ, Janas E, Ninichuk V, Eppler E, Weiss TS, Kirchner S, Otto AM, Stangl MJ. Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets. Clin Exp Immunol 2013; 170:238-47. [PMID: 23039895 DOI: 10.1111/j.1365-2249.2012.04645.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Approximately 60% of transplanted islets undergo apoptosis within the first week post-transplantation into the liver attributed to poor engraftment, immune rejection and toxicity of immunosuppressive drugs. Understanding how extracellular matrix (ECM) components, immunosuppressive drugs and proinflammatory cytokines affect insulin secretion will contribute to an improved clinical outcome of islet transplantations. In this study, functional activity of isolated murine islets was measured by glucose-stimulated insulin secretion (GSIS) and by electrophysiological measurements using patch-clamp. Cultivating islets with soluble fibronectin or laminin, as opposed to with coated laminin, markedly increased GSIS. Addition of cyclosporin A reduced GSIS and suppressed glucose-induced spike activity. Tacrolimus affected neither GSIS nor spike activity, indicating a different mechanism. To evaluate the influence of proinflammatory cytokines, islets were incubated with interleukin (IL)-1β, tumour necrosis factor (TNF)-α or with supernatants from cultured Kupffer cells, the main mediators of inflammation in the hepatic sinusoids. IL-1β exerted a bimodal effect on insulin secretion, stimulating below 2 ng/ml and suppressing above 10 ng/ml. Soluble laminin in combination with a stimulatory IL-1β concentration further increased insulin secretion by 20% compared to IL-1β alone, while with high IL-1β concentrations soluble laminin slightly attenuated GSIS inhibition. TNF-α alone did not affect GSIS, but with stimulatory IL-1β concentrations completely abolished it. Similarly, supernatants derived from Kupffer cells exerted a bimodal effect on GSIS. Our data suggest that improved insulin secretion of transplanted islets could be achieved by including soluble laminin and low IL-1β concentrations in the islet cultivation medium, and by a simultaneous inhibition of cytokine secretion from Kupffer cells.
Collapse
Affiliation(s)
- V J Auer
- Institute of Medical Engineering, Technische Universität München (IMETUM), Garching Center for Liver Cell Research, Department of Pediatrics and Adolescent Medicine, University of Regensburg Hospital Hepacult GmbH, Biopark Regensburg, Regensburg, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Zanin MP, Mackenzie KD, Peiris H, Pritchard MA, Keating DJ. RCAN1 regulates vesicle recycling and quantal release kinetics via effects on calcineurin activity. J Neurochem 2013; 124:290-9. [PMID: 23134420 DOI: 10.1111/jnc.12086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/11/2012] [Accepted: 11/06/2012] [Indexed: 11/29/2022]
Abstract
We have previously shown that Regulator of Calcineurin 1 (RCAN1) regulates multiple stages of vesicle exocytosis. However, the mechanisms by which RCAN1 affects secretory vesicle exocytosis and quantal release kinetics remain unknown. Here, we use carbon fibre amperometry to detect exocytosis from chromaffin cells and identify these underlying mechanisms. We observe reduced exocytosis with repeated stimulations in chromaffin cells over-expressing RCAN1 (RCAN1(ox)), but not in wild-type (WT) cells, indicating a negative effect of RCAN1 on vesicle recycling and endocytosis. Acute exposure to calcineurin inhibitors, cyclosporine A and FK-506, replicates this effect in WT cells but has no additional effect in RCAN1(ox) cells. When we chronically expose WT cells to cyclosporine A and FK-506 we find that catecholamine release per vesicle and pre-spike foot (PSF) signal parameters are decreased, similar to that in RCAN1(ox) cells. Inhibiting calcineurin activity in RCAN1(ox) cells has no additional effect on the amount of catecholamine release per vesicle but further reduces PSF signal parameters. Although electron microscopy studies indicate these changes are not because of altered vesicle number or distribution in RCAN1(ox) cells, the smaller vesicle and dense core size we observe in RCAN1(ox) cells may underlie the reduced quantal release in these cells. Thus, our results indicate that RCAN1 most likely affects vesicle recycling and quantal release kinetics via the inhibition of calcineurin activity.
Collapse
Affiliation(s)
- Mark P Zanin
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
225
|
Suk HY, Zhou C, Yang TTC, Zhu H, Yu RYL, Olabisi O, Yang X, Brancho D, Kim JY, Scherer PE, Frank PG, Lisanti MP, Calvert JW, Lefer DJ, Molkentin JD, Ghigo A, Hirsch E, Jin J, Chow CW. Ablation of calcineurin Aβ reveals hyperlipidemia and signaling cross-talks with phosphodiesterases. J Biol Chem 2013; 288:3477-88. [PMID: 23258544 PMCID: PMC3561567 DOI: 10.1074/jbc.m112.419150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/18/2012] [Indexed: 01/26/2023] Open
Abstract
Insulin resistance, hyperlipidemia, and cardiovascular complications are common dysregulations of metabolic syndrome. Transplant patients treated with immunosuppressant drugs such as cyclosporine A (CsA), an inhibitor of calcineurin phosphatase, frequently develop similar metabolic complications. Although calcineurin is known to mediate insulin sensitivity by regulating β-cell growth and adipokine gene transcription, its role in lipid homeostasis is poorly understood. Here, we examined lipid homeostasis in mice lacking calcineurin Aβ (CnAβ(-/-)). We show that mice lacking calcineurin Aβ are hyperlipidemic and develop age-dependent insulin resistance. Hyperlipidemia found in CnAβ(-/-) mice is, in part, due to increased lipolysis in adipose tissues, a process mediated by β-adrenergic G-protein-coupled receptor signaling pathways. CnAβ(-/-) mice also exhibit additional pathophysiological phenotypes caused by the potentiated GPCR signaling pathways. A cell autonomous mechanism with sustained cAMP/PKA activation is found in CnAβ(-/-) mice or upon CsA treatment to inhibit calcineurin. Increased PKA activation and cAMP accumulation in CnAβ(-/-) mice, however, are sensitive to phosphodiesterase inhibitor. Indeed, we show that calcineurin regulates degradation of phosphodiesterase 3B, in addition to phosphodiesterase 4D. These results establish a role for calcineurin in lipid homeostasis. These data also indicate that potentiated cAMP signaling pathway may provide an alternative molecular pathogenesis for the metabolic complications elicited by CsA in transplant patients.
Collapse
Affiliation(s)
- Hee Yun Suk
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Chen Zhou
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Teddy T. C. Yang
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hong Zhu
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Raymond Y. L. Yu
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Opeyemi Olabisi
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - XiaoYong Yang
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Deborah Brancho
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ja-Young Kim
- the Touchstone Diabetes Center, Department of Internal Medicine & Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Philipp E. Scherer
- the Touchstone Diabetes Center, Department of Internal Medicine & Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Philippe G. Frank
- the Kimmel Cancer Center, Departments of Cancer Biology & Molecular Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Michael P. Lisanti
- the Kimmel Cancer Center, Departments of Cancer Biology & Molecular Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - John W. Calvert
- the Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, Georgia 30308
| | - David J. Lefer
- the Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, Georgia 30308
| | - Jeffery D. Molkentin
- the Molecular Cardiovascular Biology Program, Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229
| | - Alessandra Ghigo
- the Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy, and
| | - Emilio Hirsch
- the Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy, and
| | - Jianping Jin
- the Department of Biochemistry & Molecular Biology, University of Texas Medical School of Houston, Houston, Texas 77030
| | - Chi-Wing Chow
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
226
|
Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes. Cell Signal 2013; 25:570-9. [DOI: 10.1016/j.cellsig.2012.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/08/2012] [Indexed: 01/09/2023]
|
227
|
Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res 2013; 22:1748-59. [PMID: 22955986 PMCID: PMC3431491 DOI: 10.1101/gr.136127.111] [Citation(s) in RCA: 543] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies have been successful in identifying single nucleotide polymorphisms (SNPs) associated with a large number of phenotypes. However, an associated SNP is likely part of a larger region of linkage disequilibrium. This makes it difficult to precisely identify the SNPs that have a biological link with the phenotype. We have systematically investigated the association of multiple types of ENCODE data with disease-associated SNPs and show that there is significant enrichment for functional SNPs among the currently identified associations. This enrichment is strongest when integrating multiple sources of functional information and when highest confidence disease-associated SNPs are used. We propose an approach that integrates multiple types of functional data generated by the ENCODE Consortium to help identify “functional SNPs” that may be associated with the disease phenotype. Our approach generates putative functional annotations for up to 80% of all previously reported associations. We show that for most associations, the functional SNP most strongly supported by experimental evidence is a SNP in linkage disequilibrium with the reported association rather than the reported SNP itself. Our results show that the experimental data sets generated by the ENCODE Consortium can be successfully used to suggest functional hypotheses for variants associated with diseases and other phenotypes.
Collapse
Affiliation(s)
- Marc A Schaub
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
228
|
Hecking M, Werzowa J, Haidinger M, Hörl WH, Pascual J, Budde K, Luan FL, Ojo A, de Vries APJ, Porrini E, Pacini G, Port FK, Sharif A, Säemann MD. Novel views on new-onset diabetes after transplantation: development, prevention and treatment. Nephrol Dial Transplant 2013; 28:550-66. [PMID: 23328712 DOI: 10.1093/ndt/gfs583] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
New-onset diabetes after transplantation (NODAT) is associated with increased risk of allograft failure, cardiovascular disease and mortality, and therefore, jeopardizes the success of renal transplantation. Increased awareness of NODAT and the prediabetic states (impaired fasting glucose and impaired glucose tolerance, IGT) has fostered previous and present recommendations, based on the management of type 2 diabetes mellitus (T2DM). Unfortunately, the idea that NODAT merely resembles T2DM is potentially misleading, because the opportunity to initiate adequate anti-hyperglycaemic treatment early after transplantation might be given away for 'tailored' immunosuppression in patients who have developed NODAT or carry personal risk factors. Risk factor-independent mechanisms, however, seem to render postoperative hyperglycaemia with subsequent development of overt or 'full-blown' NODAT, the unavoidable consequence of the transplant and immunosuppressive process itself, at least in many cases. A proof of the concept that timely preventive intervention with exogenous insulin against post-transplant hyperglycaemia may decrease NODAT was recently provided by a small clinical trial, which is awaiting confirmation from a multicentre study. However, because early insulin therapy aimed at beta-cell protection seems to contrast the currently recommended, stepwise approach of 'watchful waiting' prior to pancreatic decompensation, we here aim at reviewing recent concepts regarding the development, prevention and treatment of NODAT, some of which seem to challenge the traditional view on T2DM and NODAT. In summary, we suggest a novel, risk factor-independent management approach to NODAT, which includes glycaemic monitoring and anti-hyperglycaemic treatment in virtually everybody after transplantation. This approach has widespread implications for future research and is intended to tackle NODAT and also ultimately cardiovascular disease.
Collapse
Affiliation(s)
- Manfred Hecking
- Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Kipanyula MJ, Woodhoo A, Rahman M, Payne D, Jessen KR, Mirsky R. Calcineurin-nuclear factor of activated T cells regulation of Krox-20 expression in Schwann cells requires elevation of intracellular cyclic AMP. J Neurosci Res 2013; 91:105-15. [PMID: 23073893 PMCID: PMC5722200 DOI: 10.1002/jnr.23131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/09/2012] [Accepted: 07/20/2012] [Indexed: 12/13/2022]
Abstract
The transcription factor Krox-20 (Egr2) is a master regulator of Schwann cell myelination. In mice from which calcineurin B had been excised in cells of the neural crest lineage, calcineurin-nuclear factor of activated T cells (NFAT) signaling was required for neuregulin-related Schwann cell myelination (Kao et al. [2009] Immunity 12:359-372). Whether NFAT signaling required simultaneous elevation of intracellular cAMP levels was not explored. In vivo, Krox-20 expression requires continuous axon-Schwann cell signaling that in Schwann cell cultures can be mimicked by elevation of intracellular cAMP. We have investigated the role of the calcineurin-NFAT pathway in Krox-20 induction in purified rat Schwann cell cultures. Activation of this pathway requires elevation of intracellular Ca(2+) levels. The calcium ionophore A23187 or ionomycin was used to increase intracellular Ca(2+) levels in Schwann cell cultures that had been treated with dibutyryl cAMP to induce Krox-20. Increase in Ca(2+) levels significantly potentiated Krox-20 induction, determined by Krox-20 immunolabeling of individual cells and Western blotting. Levels of the myelin proteins periaxin and P(0) were also elevated. The potentiating effect was blocked by cyclosporin A, a specific blocker of the calcineurin-NFAT pathway. We found that, in the absence of cAMP elevation, treatment with A23187 alone failed to induce Krox-20 expression, indicating that NFAT upregulation of Krox-20 requires elevation of cAMP levels in Schwann cells. P-VIVIT, another specific inhibitor of calcineurin-NFAT interaction, blocked Krox-20 induction in response to dibutyryl cAMP and ionophore. HA-NFAT1 (1-460)-GFP translocated to the nucleus on treatment with dibutyryl cAMP with or without added ionophore. NFAT isoforms 1-4 were detected in purified Schwann cells by quantitative RT-PCR.
Collapse
Affiliation(s)
- Maulilio J. Kipanyula
- Department of Veterinary Anatomy, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| | - Ashwin Woodhoo
- Metabolomics Unit, CICbioGune, Parque Tecnológico de Bizcaia, Derio, Bizcaia, Spain
| | - Mary Rahman
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Donna Payne
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Kristján R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
230
|
Ting C, Bansal V, Batal I, Mounayar M, Chabtini L, El Akiki G, Azzi J. Impairment of immune systems in diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:62-75. [PMID: 23393672 DOI: 10.1007/978-1-4614-5441-0_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that involves the progressive destruction of the insulin-producing beta cells in the islets of langerhans. It is a complex process that results from the loss of tolerance to insulin and other beta-cell-specific antigens. Various genetic and environmental factors have been studied so far, but precise causation has yet to be established. Numerous studies in rodents and human subjects have been performed in order to elucidate the role of B and T cells, which determine the risk of development and progression of diabetes. These studies have demonstrated that while T1DM is fundamentally a T-cell-mediated autoimmune response, the development of this disease results from complex interactions between the adaptive and innate immune systems, with numerous cell types thought to contribute to pathogenesis. Like any complex disease, the variation in severity and incidence of T1DM can be attributed to a combination of genetic and environmental factors.
Collapse
Affiliation(s)
- Christopher Ting
- Transplantation Research Center Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Peiris H, Raghupathi R, Jessup CF, Zanin MP, Mohanasundaram D, Mackenzie KD, Chataway T, Clarke JN, Brealey J, Coates PT, Pritchard MA, Keating DJ. Increased expression of the glucose-responsive gene, RCAN1, causes hypoinsulinemia, β-cell dysfunction, and diabetes. Endocrinology 2012; 153:5212-21. [PMID: 23011918 DOI: 10.1210/en.2011-2149] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RCAN1 is a chromosome 21 gene that controls secretion in endocrine cells, regulates mitochondrial function, and is sensitive to oxidative stress. Regulator of calcineurin 1 (RCAN1) is also an endogenous inhibitor of the protein phosphatase calcineurin, the inhibition of which leads to hypoinsulinemia and diabetes in humans and mice. However, the presence or the role of RCAN1 in insulin-secreting β-cells and its potential role in the pathogenesis of diabetes is unknown. Hence, the aim of this study is to investigate the presence of RCAN1 in β-cells and identify its role in β-cell function. RCAN1 is expressed in mouse islets and in the cytosol of pancreatic β-cells. We find RCAN1 is a glucose-responsive gene with a 1.5-fold increase in expression observed in pancreatic islets in response to chronic hyperglycemia. The overexpression of the human RCAN1.1 isoform in mice under the regulation of its endogenous promoter causes diabetes, age-associated hyperglycemia, reduced glucose tolerance, hypoinsulinemia, loss of β-cells, reduced β-cell insulin secretion, aberrant mitochondrial reactive oxygen species production, and the down-regulation of key β-cell genes. Our data therefore identifies a novel molecular link between the overexpression of RCAN1 and β-cell dysfunction. The glucose-responsive nature of RCAN1 provides a potential mechanism of action associated with the β-cell dysfunction observed in diabetes.
Collapse
Affiliation(s)
- Heshan Peiris
- Flinders Medical Science and Technology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Goodyer WR, Gu X, Liu Y, Bottino R, Crabtree GR, Kim SK. Neonatal β cell development in mice and humans is regulated by calcineurin/NFAT. Dev Cell 2012; 23:21-34. [PMID: 22814600 DOI: 10.1016/j.devcel.2012.05.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/04/2012] [Accepted: 05/19/2012] [Indexed: 11/29/2022]
Abstract
Little is known about the mechanisms governing neonatal growth and maturation of organs. Here we demonstrate that calcineurin/Nuclear Factor of Activated T cells (Cn/NFAT) signaling regulates neonatal pancreatic development in mouse and human islets. Inactivation of calcineurin b1 (Cnb1) in mouse islets impaired dense core granule biogenesis, decreased insulin secretion, and reduced cell proliferation and mass, culminating in lethal diabetes. Pancreatic β cells lacking Cnb1 failed to express genes revealed to be direct NFAT targets required for replication, insulin storage, and secretion. In contrast, glucokinase activation stimulated Cn-dependent expression of these genes. Calcineurin inhibitors, such as tacrolimus, used for human immunosuppression, induce diabetes. Tacrolimus exposure reduced Cn/NFAT-dependent expression of factors essential for insulin dense core granule formation and secretion and neonatal β cell proliferation, consistent with our genetic studies. Discovery of conserved pathways regulating β cell maturation and proliferation suggests new strategies for controlling β cell growth or replacement in human islet diseases.
Collapse
Affiliation(s)
- William R Goodyer
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
233
|
Kragl M, Lammert E. Calcineurin/NFATc signaling: role in postnatal β cell development and diabetes mellitus. Dev Cell 2012; 23:7-8. [PMID: 22814597 DOI: 10.1016/j.devcel.2012.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pancreatic islets are aggregates of endocrine cells required for blood glucose control and diabetes prevention after birth. In this issue of Developmental Cell, Goodyer et al. (2012) reveal a function of calcineurin, a calcium-activated serine/threonine phosphatase, in postnatal NFATc-regulated expression of genes that help β cells to form insulin-containing vesicles and enter the cell cycle.
Collapse
Affiliation(s)
- Martin Kragl
- Institute of Metabolic Physiology and German Diabetes Center (DDZ), Heinrich Heine University, Düsseldorf, Germany
| | | |
Collapse
|
234
|
Abstract
Hyperglycaemia has multiple effects on β-cells, some clearly prosecretory, including hyperplasia and elevated insulin content, but eventually, a 'glucotoxic' effect which leads to pancreatic β-cell dysfunction, reduced β-cell mass and insulin deficiency, is an important part of diabetes pathophysiology. Myriad underlying cellular and molecular processes could lead to such dysfunction. High glucose will stimulate glycolysis and oxidative phosphorylation, which will in turn increase β-cell membrane excitability through K(ATP) channel closure. Chronic hyperexcitability will then lead to persistently elevated [Ca(2+)](i), a key trigger to insulin secretion. Thus, at least a part of the consequence of 'hyperstimulation' by glucose has been suggested to be a result of 'hyperexcitability' and chronically elevated [Ca(2+)](i). This link is lost when the [glucose], K(ATP) -channel activity link is broken, either pharmacologically or genetically. In isolated islets, such studies reveal that hyperexcitability causes a largely reversible chronic loss of insulin content, but in vivo chronic hyperexcitability per se does not lead to β-cell death or loss of insulin content. On the other hand, chronic inexcitability in vivo leads to systemic diabetes and consequential β-cell death, even while [Ca(2+)](i) remains low.
Collapse
Affiliation(s)
- C G Nichols
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
235
|
Herchuelz A, Nguidjoe E, Jiang L, Pachera N. β-Cell preservation and regeneration in diabetes by modulation of β-cell Ca²⁺ homeostasis. Diabetes Obes Metab 2012; 14 Suppl 3:136-42. [PMID: 22928574 DOI: 10.1111/j.1463-1326.2012.01649.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) extrusion from the β-cell is mediated by two processes the Na/Ca exchanger (NCX) and the plasma membrane Ca(2+) -ATPase (PMCA). Gain of function studies show that overexpression of NCX or PMCA leads to endoplasmic reticulum (ER) Ca(2+) depletion with subsequent ER stress, decrease in β-cell proliferation and β-cell death by apoptosis. Interestingly, chronic exposure to cytokines or high free fatty acid concentrations also induce ER Ca(2+) depletion and β-cell death in diabetes. Loss of function studies show, on the contrary, that heterozygous inactivation of NCX1 (Ncx1(+/-)) leads to an increase in β-cell function (insulin production and release), and a fivefold increase in both β-cell mass and proliferation. The mutation also increases β-cell resistance to hypoxia, and Ncx1(+/-) islets show a two to four times higher rate of diabetes cure than Ncx1(+/+) islets when transplanted in diabetic animals. Thus, down-regulation of the Na/Ca exchanger leads to various changes in β-cell function that are opposite to the major abnormalities seen in diabetes. This provides a unique model for the prevention and treatment of β-cell dysfunction in diabetes and following islet transplantation.
Collapse
Affiliation(s)
- A Herchuelz
- Laboratoire de Pharmacodynamie et de Thérapeutique, Université Libre de Bruxelles, Faculté de Médicine, B-1070, Brussels, Belgium.
| | | | | | | |
Collapse
|
236
|
Zhang B, Shi W, Ma J, Sloan A, Faul C, Wei C, Reiser J, Yang Y, Liu S, Wang W. The calcineurin-NFAT pathway allows for urokinase receptor-mediated beta3 integrin signaling to cause podocyte injury. J Mol Med (Berl) 2012; 90:1407-20. [PMID: 23015147 DOI: 10.1007/s00109-012-0960-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 09/09/2012] [Accepted: 09/14/2012] [Indexed: 11/26/2022]
Abstract
Circulating and podocyte-bound urokinase receptor (uPAR) is a mediator of podocyte injury, proteinuria, and focal segmental glomerulosclerosis (FSGS) allowing pathological activation of the uPAR-β3 integrin signaling axis. Clinically, calcineurin inhibitors (e.g., cyclosporine A, CsA) are known to suppress T cells, yet are also being used to reduce proteinuria in FSGS, suggesting the possibility of signal cross talk between uPAR and calcineurin. Calcineurin is known to facilitate the nuclear translocation of the nuclear factor of activated T cells (NFAT). Accordingly, in vivo conditional NFATc1 activation in podocytes leads to proteinuria in mice, yet the downstream targets of NFAT remain unclear. Here, we show that inducible podocyte-specific expression of constitutively active NFATc1 increased podocyte uPAR expression by binding to the Plaur gene promoter (encoding uPAR) in chromatin immunoprecipitation assays. Pathological uPAR signals in podocytes are independent of T cells and affect cell motility via activation, but not expression, changes of the β3 integrin and can be blocked by CsA, NFAT-siRNA, or the cell-permeable NFAT inhibitor (11R-VIVIT) using rodent models of glomerular disease (LPS; 5/6 nephrectomized rats). Taken together, these findings identify podocyte uPAR as a downstream target of NFAT and provide further insights into the pathogenesis of FSGS.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Kulkarni RN, Mizrachi EB, Ocana AG, Stewart AF. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes 2012; 61:2205-13. [PMID: 22751699 PMCID: PMC3425429 DOI: 10.2337/db12-0018] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major goal in diabetes research is to find ways to enhance the mass and function of insulin secreting β-cells in the endocrine pancreas to prevent and/or delay the onset or even reverse overt diabetes. In this Perspectives in Diabetes article, we highlight the contrast between the relatively large body of information that is available in regard to signaling pathways, proteins, and mechanisms that together provide a road map for efforts to regenerate β-cells in rodents versus the scant information in human β-cells. To reverse the state of ignorance regarding human β-cell signaling, we suggest a series of questions for consideration by the scientific community to construct a human β-cell proliferation road map. The hope is that the knowledge from the new studies will allow the community to move faster towards developing therapeutic approaches to enhance human β-cell mass in the long-term goal of preventing and/or curing type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Rohit N. Kulkarni
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Corresponding authors: Rohit N. Kulkarni, , and Andrew F. Stewart,
| | - Ernesto-Bernal Mizrachi
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Adolfo Garcia Ocana
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew F. Stewart
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Corresponding authors: Rohit N. Kulkarni, , and Andrew F. Stewart,
| |
Collapse
|
238
|
Hinke SA, Navedo MF, Ulman A, Whiting JL, Nygren PJ, Tian G, Jimenez-Caliani AJ, Langeberg LK, Cirulli V, Tengholm A, Dell'Acqua ML, Santana LF, Scott JD. Anchored phosphatases modulate glucose homeostasis. EMBO J 2012; 31:3991-4004. [PMID: 22940692 PMCID: PMC3474922 DOI: 10.1038/emboj.2012.244] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023] Open
Abstract
AKAP150 knockout- and mutant knock-in alleles reveal an unexpected role of the adaptor in anchoring phosphatase 2B for efficient insulin secretion from pancreatic β-cells and thus glucose homeostasis. Endocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic β-cells involves ion channels and mobilization of Ca2+ and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-β-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice. Loss of AKAP150 impacts L-type Ca2+ currents, and attenuates cytoplasmic accumulation of Ca2+ and cAMP in β-cells. Yet surprisingly AKAP150 null animals display improved glucose handling and heightened insulin sensitivity in skeletal muscle. More refined analyses of AKAP150 knock-in mice unable to anchor protein kinase A or protein phosphatase 2B uncover an unexpected observation that tethering of phosphatases to a seven-residue sequence of the anchoring protein is the predominant molecular event underlying these metabolic phenotypes. Thus anchored signalling events that facilitate insulin secretion and glucose homeostasis may be set by AKAP150 associated phosphatase activity.
Collapse
Affiliation(s)
- Simon A Hinke
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Metukuri MR, Zhang P, Basantani MK, Chin C, Stamateris RE, Alonso LC, Takane KK, Gramignoli R, Strom SC, O’Doherty RM, Stewart AF, Vasavada RC, Garcia-Ocaña A, Scott DK. ChREBP mediates glucose-stimulated pancreatic β-cell proliferation. Diabetes 2012; 61:2004-15. [PMID: 22586588 PMCID: PMC3402328 DOI: 10.2337/db11-0802] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose stimulates rodent and human β-cell replication, but the intracellular signaling mechanisms are poorly understood. Carbohydrate response element-binding protein (ChREBP) is a lipogenic glucose-sensing transcription factor with unknown functions in pancreatic β-cells. We tested the hypothesis that ChREBP is required for glucose-stimulated β-cell proliferation. The relative expression of ChREBP was determined in liver and β-cells using quantitative RT-PCR (qRT-PCR), immunoblotting, and immunohistochemistry. Loss- and gain-of-function studies were performed using small interfering RNA and genetic deletion of ChREBP and adenoviral overexpression of ChREBP in rodent and human β-cells. Proliferation was measured by 5-bromo-2'-deoxyuridine incorporation, [(3)H]thymidine incorporation, and fluorescence-activated cell sorter analysis. In addition, the expression of cell cycle regulatory genes was measured by qRT-PCR and immunoblotting. ChREBP expression was comparable with liver in mouse pancreata and in rat and human islets. Depletion of ChREBP decreased glucose-stimulated proliferation in β-cells isolated from ChREBP(-/-) mice, in INS-1-derived 832/13 cells, and in primary rat and human β-cells. Furthermore, depletion of ChREBP decreased the glucose-stimulated expression of cell cycle accelerators. Overexpression of ChREBP amplified glucose-stimulated proliferation in rat and human β-cells, with concomitant increases in cyclin gene expression. In conclusion, ChREBP mediates glucose-stimulated proliferation in pancreatic β-cells.
Collapse
Affiliation(s)
- Mallikarjuna R. Metukuri
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Pili Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mahesh K. Basantani
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Connie Chin
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rachel E. Stamateris
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura C. Alonso
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karen K. Takane
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roberto Gramignoli
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen C. Strom
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert M. O’Doherty
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew F. Stewart
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rupangi C. Vasavada
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adolfo Garcia-Ocaña
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donald K. Scott
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
- Corresponding author: Donald K. Scott,
| |
Collapse
|
240
|
Is the antiproteinuric effect of cyclosporine a independent of its immunosuppressive function in T cells? Int J Nephrol 2012; 2012:809456. [PMID: 22778954 PMCID: PMC3384901 DOI: 10.1155/2012/809456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/20/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022] Open
Abstract
The antiproteinuric effect of cyclosporine A(CsA) has been believed to result from its immunosuppressive effect on the transcription factor NFAT in T cells. However, current evidences supporting this hypothesis are missing. A recent study showed that CsA has a direct antiproteinuric effect on podocytes, suggesting a novel non-immunosuppressive mechanism for CsA's antiproteinuric effect. Conditional NFATc1 activation in podoyctes per se is sufficient to induce proteinuria in mice, indicating that NFAT activation in podocytes is a critical pathogenic molecular event leading to podocyte injury and proteinuria. Meanwhile, evidence showed that TRPC6-mediated Ca(2+) influx stimulates NFAT-dependent TRPC6 expression. Altogether, these advances in podocyte research indicate that calcineurin-NFAT signal or calcineurin-synaptopodin axis has a direct proteinuric effect on podocytes which raises the possibility of developing specific antiproteinuric drugs that lack the unwanted effects of calcineurin or NFAT inhibition.
Collapse
|
241
|
Müller I, Rössler OG, Wittig C, Menger MD, Thiel G. Critical role of Egr transcription factors in regulating insulin biosynthesis, blood glucose homeostasis, and islet size. Endocrinology 2012; 153:3040-53. [PMID: 22597533 DOI: 10.1210/en.2012-1064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of early growth response protein (Egr)-1, a protein of the Egr family of zinc finger transcription factors, is stimulated in glucose-treated pancreatic β-cells and insulinoma cells. The purpose of this study was to elucidate the role of Egr transcription factors in pancreatic β-cells in vivo. To overcome the problem associated with redundancy of functions between Egr proteins, conditional transgenic mice were generated expressing a dominant-negative mutant of Egr-1 in pancreatic β-cells. The Egr-1 mutant interferes with DNA binding of all Egr proteins and thus impairs the biological functions of the entire Egr family. Expression of the Egr-1 mutant reduced expression of TGFβ and basic fibroblast growth factor, known target genes of Egr-1, whereas the expression of Egr-1, Egr-3, Ets-like gene-1 (Elk-1), and specificity protein-3 was not changed in the presence of the Egr-1 mutant. Expression of the homeobox protein pancreas duodenum homeobox-1, a major regulator of insulin biosynthesis, was reduced in islets expressing the Egr-1 mutant. Accordingly, insulin mRNA and protein levels were reduced by 75 or 25%, respectively, whereas expression of glucagon and somatostatin was not altered after expression of the Egr-1 mutant in β-cells. Glucose tolerance tests revealed that transgenic mice expressing the Egr-1 mutant in pancreatic β-cells displayed impaired glucose tolerance. In addition, increased caspase-3/7 activity was detected as a result of transgene expression, leading to a 20% decrease of the size of the islets. These results show that Egr proteins play an important role in controlling insulin biosynthesis, glucose homeostasis, and islet size of pancreatic β-cells in vivo.
Collapse
Affiliation(s)
- Isabelle Müller
- Department of Medical Biochemistry and Molecular Biology, Building 44, University of Saarland Medical Center, d-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
242
|
Gunasekaran U, Hudgens CW, Wright BT, Maulis MF, Gannon M. Differential regulation of embryonic and adult β cell replication. Cell Cycle 2012; 11:2431-42. [PMID: 22659844 PMCID: PMC3404874 DOI: 10.4161/cc.20545] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetes results from an inadequate functional β cell mass, either due to autoimmune destruction (Type 1 diabetes) or insulin resistance combined with β cell failure (Type 2 diabetes). Strategies to enhance β cell regeneration or increase cell proliferation could improve outcomes for patients with diabetes. Research conducted over the past several years has revealed that factors regulating embryonic β cell mass expansion differ from those regulating replication ofβ cells post-weaning. This article aims to compare and contrast factors known to control embryonic and postnatal β cell replication. In addition, we explore the possibility that connective tissue growth factor (CTGF) could increase adult β cell replication. We have already shown that CTGF is required for embryonicβ cell proliferation and is sufficient to induce replication of embryonic β cells. Here we examine whether adult β cell replication and expansion of β cell mass can be enhanced by increased CTGF expression in mature β cells.
Collapse
Affiliation(s)
- Uma Gunasekaran
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
243
|
Singh VP, Lakshmi BJ, Singh S, Shah V, Goel S, Sarathi DP, Kumar S. Lack of Wdr13 gene in mice leads to enhanced pancreatic beta cell proliferation, hyperinsulinemia and mild obesity. PLoS One 2012; 7:e38685. [PMID: 22715406 PMCID: PMC3371019 DOI: 10.1371/journal.pone.0038685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/08/2012] [Indexed: 11/18/2022] Open
Abstract
WD-repeat proteins are very diverse, yet these are structurally related proteins that participate in a wide range of cellular functions. WDR13, a member of this family, is conserved from fishes to humans and localizes into the nucleus. To understand the in vivo function(s) of Wdr13 gene, we have created and characterized a mutant mouse strain lacking this gene. The mutant mice had higher serum insulin levels and increased pancreatic islet mass as a result of enhanced beta cell proliferation. While a known cell cycle inhibitor, p21, was downregulated in the mutant islets, over expression of WDR13 in the pancreatic beta cell line (MIN6) resulted in upregulation of p21, accompanied by retardation of cell proliferation. We suggest that WDR13 is a novel negative regulator of the pancreatic beta cell proliferation. Given the higher insulin levels and better glucose clearance in Wdr13 gene deficient mice, we propose that this protein may be a potential candidate drug target for ameliorating impaired glucose metabolism in diabetes.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - B. Jyothi Lakshmi
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Shalu Singh
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Vanya Shah
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Sandeep Goel
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - D. Partha Sarathi
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Satish Kumar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| |
Collapse
|
244
|
Lee HC. Post-renal transplant diabetes mellitus in korean subjects: superimposition of transplant-related immunosuppressant factors on genetic and type 2 diabetic risk factors. Diabetes Metab J 2012; 36:199-206. [PMID: 22737659 PMCID: PMC3380123 DOI: 10.4093/dmj.2012.36.3.199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Postrenal transplantation diabetes mellitus (PTDM), or new-onset diabetes after organ transplantation, is an important chronic transplant-associated complication. Similar to type 2 diabetes, decreased insulin secretion and increased insulin resistance are important to the pathophysiologic mechanism behind the development of PTDM. However, β-cell dysfunction rather than insulin resistance seems to be a greater contributing factor in the development of PTDM. Increased age, family history of diabetes, ethnicity, genetic variation, obesity, and hepatitis C are partially accountable for an increased underlying risk of PTDM in renal allograft recipients. In addition, the use of and kinds of immunosuppressive agents are key transplant-associated risk factors. Recently, a number of genetic variants or polymorphisms susceptible to immunosuppressants have been reported to be associated with calcineurin inhibition-induced β-cell dysfunction. The identification of high risk factors of PTDM would help prevent PTDM and improve long-term patient outcomes by allowing for personalized immunosuppressant regimens and by managing cardiovascular risk factors.
Collapse
Affiliation(s)
- Hyun Chul Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
245
|
Benitez CM, Goodyer WR, Kim SK. Deconstructing pancreas developmental biology. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012401. [PMID: 22587935 DOI: 10.1101/cshperspect.a012401] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5329, USA
| | | | | |
Collapse
|
246
|
Cho IS, Jung M, Kwon KS, Moon E, Cho JH, Yoon KH, Kim JW, Lee YD, Kim SS, Suh-Kim H. Deregulation of CREB signaling pathway induced by chronic hyperglycemia downregulates NeuroD transcription. PLoS One 2012; 7:e34860. [PMID: 22509362 PMCID: PMC3318007 DOI: 10.1371/journal.pone.0034860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 03/08/2012] [Indexed: 01/05/2023] Open
Abstract
CREB mediates the transcriptional effects of glucose and incretin hormones in insulin-target cells and insulin-producing β-cells. Although the inhibition of CREB activity is known to decrease the β-cell mass, it is still unknown what factors inversely alter the CREB signaling pathway in β-cells. Here, we show that β-cell dysfunctions occurring in chronic hyperglycemia are not caused by simple inhibition of CREB activity but rather by the persistent activation of CREB due to decreases in protein phophatase PP2A. When freshly isolated rat pancreatic islets were chronically exposed to 25 mM (high) glucose, the PP2A activity was reduced with a concomitant increase in active pCREB. Brief challenges with 15 mM glucose or 30 µM forskolin after 2 hour fasting further increased the level of pCREB and consequently induced the persistent expression of ICER. The excessively produced ICER was sufficient to repress the transcription of NeuroD, insulin, and SUR1 genes. In contrast, when islets were grown in 5 mM (low) glucose, CREB was transiently activated in response to glucose or forskolin stimuli. Thus, ICER expression was transient and insufficient to repress those target genes. Importantly, overexpression of PP2A reversed the adverse effects of chronic hyperglycemia and successfully restored the transient activation of CREB and ICER. Conversely, depletion of PP2A with siRNA was sufficient to disrupt the negative feedback regulation of CREB and induce hyperglycemic phenotypes even under low glucose conditions. Our findings suggest that the failure of the negative feedback regulation of CREB is the primary cause for β-cell dysfunctions under conditions of pathogenic hyperglycemia, and PP2A can be a novel target for future therapies aiming to protect β-cells mass in the late transitional phase of non-insulin dependent type 2 diabetes (NIDDM).
Collapse
Affiliation(s)
- In-Su Cho
- Department of Anatomy, Ajou University, Suwon, South Korea
- Graduate Neuroscience Program, Ajou University, Suwon, South Korea
- BK21, Division of Cell Transformation and Restoration, Ajou University, Suwon, South Korea
| | - Miyoung Jung
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Eunpyo Moon
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Jang-Hyeon Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kun-Ho Yoon
- Department of Endocrinology, Catholic University, School of Medicine, Seoul, South Korea
| | - Ji-Won Kim
- Department of Endocrinology, Catholic University, School of Medicine, Seoul, South Korea
| | - Young-Don Lee
- Department of Anatomy, Ajou University, Suwon, South Korea
- Molecular Science and Technology, Ajou University, Suwon, South Korea
- Control for Cell Death Regulating Biodrug, Ajou University, Suwon, South Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University, Suwon, South Korea
- Control for Cell Death Regulating Biodrug, Ajou University, Suwon, South Korea
- * E-mail: (HS-K); (S-SK)
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University, Suwon, South Korea
- Graduate Neuroscience Program, Ajou University, Suwon, South Korea
- BK21, Division of Cell Transformation and Restoration, Ajou University, Suwon, South Korea
- * E-mail: (HS-K); (S-SK)
| |
Collapse
|
247
|
Kondo T, Sasaki K, Matsuyama R, Morino-Koga S, Adachi H, Suico MA, Kawashima J, Motoshima H, Furukawa N, Kai H, Araki E. Hyperthermia with mild electrical stimulation protects pancreatic β-cells from cell stresses and apoptosis. Diabetes 2012; 61:838-47. [PMID: 22362176 PMCID: PMC3314363 DOI: 10.2337/db11-1098] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Induction of heat shock protein (HSP) 72 improves metabolic profiles in diabetic model mice. However, its effect on pancreatic β-cells is not known. The current study investigated whether HSP72 induction can reduce β-cell stress signaling and apoptosis and preserve β-cell mass. MIN6 cells and db/db mice were sham-treated or treated with heat shock (HS) and mild electrical stimulation (MES) (HS+MES) to induce HSP72. Several cellular markers, metabolic parameters, and β-cell mass were evaluated. HS+MES treatment or HSP72 overexpression increased HSP72 protein levels and decreased tumor necrosis factor (TNF)-α-induced Jun NH(2)-terminal kinase (JNK) phosphorylation, endoplasmic reticulum (ER) stress, and proapoptotic signal in MIN6 cells. In db/db mice, HS+MES treatment for 12 weeks significantly improved insulin sensitivity and glucose homeostasis. Upon glucose challenge, a significant increase in insulin secretion was observed in vivo. Compared with sham treatment, levels of HSP72, insulin, pancreatic duodenal homeobox-1, GLUT2, and insulin receptor substrate-2 were upregulated in the pancreatic islets of HS+MES-treated mice, whereas JNK phosphorylation, nuclear translocation of forkhead box class O-1, and nuclear factor-κB p65 were reduced. Apoptotic signals, ER stress, and oxidative stress markers were attenuated. Thus, HSP72 induction by HS+MES treatment protects β-cells from apoptosis by attenuating JNK activation and cell stresses. HS+MES combination therapy may preserve pancreatic β-cell volume to ameliorate glucose homeostasis in diabetes.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazunari Sasaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Rina Matsuyama
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori Morino-Koga
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Kumamoto, Japan
| | - Hironori Adachi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Kumamoto, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Noboru Furukawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Corresponding author: Eiichi Araki,
| |
Collapse
|
248
|
LIU FEI, SUN QIANQIAN, WANG LINGXIAO, NIE SHUANGSHUANG, LI JUN. Bioinformatics analysis of abnormal DNA methylation in muscle samples from monozygotic twins discordant for type 2 diabetes. Mol Med Rep 2012; 12:351-6. [DOI: 10.3892/mmr.2015.3452] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 02/06/2015] [Indexed: 11/05/2022] Open
|
249
|
Abstract
Abstract
BACKGROUND
The Ca2+-dependent protein phosphatase enzyme calcineurin (Cn) (protein phosphatase 3) is best known for its role as director of the adaptive immune response. One of its principal substrates is the nuclear factor of activated T cells (NFAT), which translocates to the nucleus after dephosphorylation to mediate gene transcription. Drugs targeting Cn (the Cn inhibitors tacrolimus and cyclosporin A) have revolutionized posttransplantation therapy in allograft recipients by considerably reducing rejection rates.
CONTENT
Owing primarily to intensive study of the side effects of the Cn inhibitors, the unique importance of Cn and Cn/NFAT signaling in the normal physiological processes of many other cell and tissue types is becoming more evident. During the last decade, it has become clear that an extensive and diverse array of clinical conditions can be traced back, at least in part, to a disturbed Cn-signaling axis. Hence, both diagnostics and therapeutic monitoring could benefit from a technique that conveniently reads out Cn/NFAT operative status.
SUMMARY
This review outlines the current knowledge on the pathologic conditions that have calcineurin as a common denominator and reports on the progress that has been made toward successfully applying Cn and Cn/NFAT activity markers in molecular diagnostics.
Collapse
Affiliation(s)
- Ruben E A Musson
- Departments of Clinical Chemistry and
- Toxicogenetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
250
|
Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proc Natl Acad Sci U S A 2012; 109:3915-20. [PMID: 22345561 DOI: 10.1073/pnas.1201149109] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a pathological condition characterized by relative insulin deficiency, persistent hyperglycemia, and, consequently, diffuse micro- and macrovascular disease. One therapeutic strategy is to amplify insulin-secretion capacity by increasing the number of the insulin-producing β cells without triggering a generalized proliferative response. Here, we present the development of a small-molecule screening platform for the identification of molecules that increase β-cell replication. Using this platform, we identify a class of compounds [adenosine kinase inhibitors (ADK-Is)] that promote replication of primary β cells in three species (mouse, rat, and pig). Furthermore, the replication effect of ADK-Is is cell type-selective: treatment of islet cell cultures with ADK-Is increases replication of β cells but not that of α cells, PP cells, or fibroblasts. Short-term in vivo treatment with an ADK-I also increases β-cell replication but not exocrine cell or hepatocyte replication. Therefore, we propose ADK inhibition as a strategy for the treatment of diabetes.
Collapse
|