201
|
Kaitsuka T, Tomizawa K. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced-Pluripotent Stem Cells. Int J Mol Sci 2015; 16:26667-76. [PMID: 26561805 PMCID: PMC4661845 DOI: 10.3390/ijms161125986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 01/10/2023] Open
Abstract
Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS) cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Kumamoto 860-8556, Japan.
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Kumamoto 860-8556, Japan.
| |
Collapse
|
202
|
Davy PM, Lye KD, Mathews J, Owens JB, Chow AY, Wong L, Moisyadi S, Allsopp RC. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:135-48. [PMID: 26604802 PMCID: PMC4631407 DOI: 10.2147/sccaa.s86925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs) as well as induced cardiac-like progenitors (iCPs) derived from ASCs for the treatment of myocardial infarction. METHODS AND RESULTS Human bone marrow (BM)-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. CONCLUSION Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice.
Collapse
Affiliation(s)
- Philip Mc Davy
- Institute for Biogenesis Research, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Kevin D Lye
- John A. Burns School of Medicine, University of Hawaii at Mānoa, Honolulu, HI, USA ; Tissue Genesis, Inc., Honolulu, HI, USA
| | - Juanita Mathews
- Institute for Biogenesis Research, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Jesse B Owens
- Institute for Biogenesis Research, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Alice Y Chow
- Institute for Biogenesis Research, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Livingston Wong
- John A. Burns School of Medicine, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Richard C Allsopp
- Institute for Biogenesis Research, University of Hawaii at Mānoa, Honolulu, HI, USA
| |
Collapse
|
203
|
Modeling Huntington׳s disease with patient-derived neurons. Brain Res 2015; 1656:76-87. [PMID: 26459990 DOI: 10.1016/j.brainres.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/17/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
Huntington׳s Disease (HD) is a fatal neurodegenerative disorder caused by expanded polyglutamine repeats in the Huntingtin (HTT) gene. While the gene was identified over two decades ago, it remains poorly understood why mutant HTT (mtHTT) is initially toxic to striatal medium spiny neurons (MSNs). Models of HD using non-neuronal human patient cells and rodents exhibit some characteristic HD phenotypes. While these current models have contributed to the field, they are limited in disease manifestation and may vary in their response to treatments. As such, human HD patient MSNs for disease modeling could greatly expand the current understanding of HD and facilitate the search for a successful treatment. It is now possible to use pluripotent stem cells, which can generate any tissue type in the body, to study and potentially treat HD. This review covers disease modeling in vitro and, via chimeric animal generation, in vivo using human HD patient MSNs differentiated from embryonic stem cells or induced pluripotent stem cells. This includes an overview of the differentiation of pluripotent cells into MSNs, the established phenotypes found in cell-based models and transplantation studies using these cells. This review not only outlines the advancements in the rapidly progressing field of HD modeling using neurons derived from human pluripotent cells, but also it highlights several remaining controversial issues such as the 'ideal' series of pluripotent lines, the optimal cell types to use and the study of a primarily adult-onset disease in a developmental model. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
|
204
|
Reprogramming mature terminally differentiated adipocytes to induced pluripotent stem cells. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0796-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
205
|
Lim CS, Yang JE, Lee YK, Lee K, Lee JA, Kaang BK. Understanding the molecular basis of autism in a dish using hiPSCs-derived neurons from ASD patients. Mol Brain 2015; 8:57. [PMID: 26419846 PMCID: PMC4589208 DOI: 10.1186/s13041-015-0146-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social cognition, language development, and repetitive/restricted behaviors. Due to the complexity and heterogeneity of ASD and lack of a proper human cellular model system, the pathophysiological mechanism of ASD during the developmental process is largely unknown. However, recent progress in induced pluripotent stem cell (iPSC) technology as well as in vitro neural differentiation techniques have allowed us to functionally characterize neurons and analyze cortical development during neural differentiation. These technical advances will increase our understanding of the pathogenic mechanisms of heterogeneous ASD and help identify molecular biomarkers for patient stratification as well as personalized medicine. In this review, we summarize our current knowledge of iPSC generation, differentiation of specific neuronal subtypes from iPSCs, and phenotypic characterizations of human ASD patient-derived iPSC models. Finally, we discuss the current limitations of iPSC technology and future directions of ASD pathophysiology studies using iPSCs.
Collapse
Affiliation(s)
- Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Seoul, Gwanak-gu, 151-747, Korea
| | - Jung-Eun Yang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Seoul, Gwanak-gu, 151-747, Korea
| | - You-Kyung Lee
- Department of Biological Sciences and Biotechnology, College of Life Science and NanoTechnology, Hannam University, Jeonmin-dong 461-6, Daejeon, Yuseong-gu, 305-811, Korea
| | - Kyungmin Lee
- Department of Anatomy, Kyungpook National University Graduate School of Medicine, Dongin-dong 2-101, Daegu, Jung-gu, 700-422, Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Science and NanoTechnology, Hannam University, Jeonmin-dong 461-6, Daejeon, Yuseong-gu, 305-811, Korea.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Seoul, Gwanak-gu, 151-747, Korea.
| |
Collapse
|
206
|
Li W, Chen S, Li JY. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Prog Neurobiol 2015; 134:161-77. [PMID: 26408505 DOI: 10.1016/j.pneurobio.2015.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed.
Collapse
Affiliation(s)
- Wen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden.
| |
Collapse
|
207
|
Guillot PV. Induced pluripotent stem (iPS) cells from human fetal stem cells. Best Pract Res Clin Obstet Gynaecol 2015; 31:112-20. [PMID: 26427551 DOI: 10.1016/j.bpobgyn.2015.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications.
Collapse
Affiliation(s)
- Pascale V Guillot
- UCL Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
208
|
Chantzoura E, Skylaki S, Menendez S, Kim SI, Johnsson A, Linnarsson S, Woltjen K, Chambers I, Kaji K. Reprogramming Roadblocks Are System Dependent. Stem Cell Reports 2015; 5:350-364. [PMID: 26278041 PMCID: PMC4618455 DOI: 10.1016/j.stemcr.2015.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 12/20/2022] Open
Abstract
Since the first generation of induced pluripotent stem cells (iPSCs), several reprogramming systems have been used to study its molecular mechanisms. However, the system of choice largely affects the reprogramming efficiency, influencing our view on the mechanisms. Here, we demonstrate that reprogramming triggered by less efficient polycistronic reprogramming cassettes not only highlights mesenchymal-to-epithelial transition (MET) as a roadblock but also faces more severe difficulties to attain a pluripotent state even post-MET. In contrast, more efficient cassettes can reprogram both wild-type and Nanog(-/-) fibroblasts with comparable efficiencies, routes, and kinetics, unlike the less efficient reprogramming systems. Moreover, we attribute a previously reported variation in the N terminus of KLF4 as a dominant factor underlying these critical differences. Our data establish that some reprogramming roadblocks are system dependent, highlighting the need to pursue mechanistic studies with close attention to the systems to better understand reprogramming.
Collapse
Affiliation(s)
- Eleni Chantzoura
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Stavroula Skylaki
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sergio Menendez
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Shin-Il Kim
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Anna Johnsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1, 171 77 Stockholm, Sweden
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1, 171 77 Stockholm, Sweden
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland.
| |
Collapse
|
209
|
Han F, Baremberg D, Gao J, Duan J, Lu X, Zhang N, Chen Q. Development of stem cell-based therapy for Parkinson's disease. Transl Neurodegener 2015; 4:16. [PMID: 26339485 PMCID: PMC4559356 DOI: 10.1186/s40035-015-0039-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders of aging, characterized by the degeneration of dopamine neurons (DA neurons) in the substantial nigra, leading to the advent of both motor symptoms and non-motor symptoms. Current treatments include electrical stimulation of the affected brain areas and dopamine replacement therapy. Even though both categories are effective in treating PD patients, the disease progression cannot be stopped. The research advance into cell therapies provides exciting potential for the treatment of PD. Current cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and directly induced dopamine neurons (iDA neurons). Here, we evaluate the research progress in different cell sources with a focus on using iPSCs as a valuable source and propose key challenges for developing cells suitable for large-scale clinical applications in the treatment of PD.
Collapse
Affiliation(s)
- Fabin Han
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Deborah Baremberg
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Junyu Gao
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Jing Duan
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Xianjie Lu
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Nan Zhang
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Qingfa Chen
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| |
Collapse
|
210
|
Deng W, Cao X, Chen J, Zhang Z, Yu Q, Wang Y, Shao G, Zhou J, Gao X, Yu J, Xu X. MicroRNA Replacing Oncogenic Klf4 and c-Myc for Generating iPS Cells via Cationized Pleurotus eryngii Polysaccharide-based Nanotransfection. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18957-18966. [PMID: 26269400 DOI: 10.1021/acsami.5b06768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Induced pluripotent stem cells (iPSCs), resulting from the forced expression of cocktails out of transcription factors, such as Oct4, Sox2, Klf4, and c-Myc (OSKM), has shown tremendous potential in regenerative medicine. Although rapid progress has been made recently in the generation of iPSCs, the safety and efficiency remain key issues for further application. In this work, microRNA 302-367 was employed to substitute the oncogenic Klf4 and c-Myc in the OSKM combination as a safer strategy for successful iPSCs generation. The negatively charged plasmid mixture (encoding Oct4, Sox2, miR302-367) and the positively charged cationized Pleurotus eryngii polysaccharide (CPEPS) self-assembled into nanosized particles, named as CPEPS-OS-miR nanoparticles, which were applied to human umbilical cord mesenchymal stem cells for iPSCs generation after characterization of the physicochemical properties. The CPEPS-OS-miR nanoparticles possessed spherical shape, ultrasmall particle size, and positive surface charge. Importantly, the combination of plasmids Oct4, Sox2, and miR302-367 could not only minimize genetic modification but also show a more than 50 times higher reprogramming efficiency (0.044%) than any other single or possible double combinations of these factors (Oct4, Sox2, miR302-367). Altogether, the current study offers a simple, safe, and effective self-assembly approach for generating clinically applicable iPSCs.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Jingjing Chen
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Zhijian Zhang
- Center for Drug/Gene Delivery and Tissue Engineering, and School of Medical Science and Laboratory Medicine, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Qingtong Yu
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Genbao Shao
- Center for Drug/Gene Delivery and Tissue Engineering, and School of Medical Science and Laboratory Medicine, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Jie Zhou
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Xiangdong Gao
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| |
Collapse
|
211
|
Functional Restoration of gp91phox-Oxidase Activity by BAC Transgenesis and Gene Targeting in X-linked Chronic Granulomatous Disease iPSCs. Mol Ther 2015; 24:812-22. [PMID: 26316390 PMCID: PMC4886927 DOI: 10.1038/mt.2015.154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 08/14/2015] [Indexed: 12/11/2022] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited immunodeficiency, caused by the inability of neutrophils to produce functional NADPH oxidase required for fighting microbial infections. The X-linked form of CGD (X-CGD), which is due to mutations in the CYBB (gp91phox) gene, a component of NADPH oxidase, accounts for about two-thirds of CGD cases. We derived induced pluripotent stem cells (iPSCs) from X-CGD patient keratinocytes using a Flp recombinase excisable lentiviral reprogramming vector. For restoring gp91phox function, we applied two strategies: transposon-mediated bacterial artificial chromosome (BAC) transgenesis and gene targeting using vectors with a fixed 5' homology arm (HA) of 8 kb and 3'HA varying in size from 30 to 80 kb. High efficiency of homologous recombination (up to 22%) was observed with increased size of the 3'HA. Both, BAC transgenesis and gene targeting resulted in functional restoration of the gp91phox measured by an oxidase activity assay in X-CGD iPSCs differentiated into the myeloid lineage. In conclusion, we delivered an important milestone towards the use of genetically corrected autologous cells for the treatment of X-CGD and monogenic diseases in general.
Collapse
|
212
|
In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts. Sci Rep 2015; 5:13559. [PMID: 26315499 PMCID: PMC4551988 DOI: 10.1038/srep13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/30/2015] [Indexed: 01/01/2023] Open
Abstract
Recently, induced pluripotent stem cells (iPSCs) have been generated in vivo from reprogrammable mice. These in vivo iPSCs display features of totipotency, i.e., they differentiate into the trophoblast lineage, as well as all 3 germ layers. Here, we developed a new reprogrammable mouse model carrying an Oct4-GFP reporter gene to facilitate the detection of reprogrammed pluripotent stem cells. Without doxycycline administration, some of the reprogrammable mice developed aggressively growing teratomas that contained Oct4-GFP+ cells. These teratoma-derived in vivo PSCs were morphologically indistinguishable from ESCs, expressed pluripotency markers, and could differentiate into tissues of all 3 germ layers. However, these in vivo reprogrammed PSCs were more similar to in vitro iPSCs than ESCs and did not contribute to the trophectoderm of the blastocysts after aggregation with 8-cell embryos. Therefore, the ability to differentiate into the trophoblast lineage might not be a unique characteristic of in vivo iPSCs.
Collapse
|
213
|
Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, Imai H. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS One 2015; 10:e0135403. [PMID: 26287611 PMCID: PMC4544884 DOI: 10.1371/journal.pone.0135403] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/21/2015] [Indexed: 12/29/2022] Open
Abstract
Generation of pluripotent stem cells (PSCs) in large domestic animals has achieved only limited success; most of the PSCs obtained to date have been classified as primed PSCs, which possess very little capacity to produce chimeric offspring. By contrast, mouse PSCs have been classified as naïve PSCs that can contribute to most of the tissues of chimeras, including germ cells. Here, we describe the generation of two different types of bovine induced pluripotent stem cells (biPSCs) from amnion cells, achieved through introduction of piggyBac vectors containing doxycycline-inducible transcription factors (Oct3/4, Sox2, Klf4, and c-Myc). One type of biPSCs, cultured in medium supplemented with knockout serum replacement (KSR), FGF2, and bovine leukemia inhibitory factor (bLIF), had a flattened morphology like human PSCs; these were classified as primed-type. The other type biPSCs, cultured in KSR, bLIF, Mek/Erk inhibitor, GSK3 inhibitor and forskolin, had a compact morphology like mouse PSCs; these were classified as naïve-type. Cells could easily be switched between these two types of biPSCs by changing the culture conditions. Both types of biPSCs had strong alkaline phosphatase activity, expressed pluripotent markers (OCT3/4, NANOG, REX1, ESRRβ, STELLA, and SOCS3), and formed embryoid bodies that gave rise to differentiated cells from all three embryonic germ layers. However, only naïve-type biPSCs showed the hallmarks of naïve mouse PSCs, such as LIF-dependent proliferation, lack of FGF5 expression, and active XIST expression with two active X chromosomes. Furthermore, naïve-type biPSCs could contribute to the inner cell mass (ICM) of host blastocysts and most tissues within chimeric embryos. This is the first report of generation of biPSCs with several characteristics similar to those of naïve mouse PSCs and a demonstrated potential to contribute to chimeras.
Collapse
Affiliation(s)
- Takamasa Kawaguchi
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
| | - Tomoyuki Tsukiyama
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Koji Kimura
- Animal Feeding and Management Research Division, NARO Institute of Livestock and Grassland Science, Tochigi, Japan
| | - Shuichi Matsuyama
- Animal Feeding and Management Research Division, NARO Institute of Livestock and Grassland Science, Tochigi, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agricuture, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
214
|
Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2015; 16:18894-922. [PMID: 26274955 PMCID: PMC4581278 DOI: 10.3390/ijms160818894] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.
Collapse
|
215
|
Chang L, Gallego-Perez D, Zhao X, Bertani P, Yang Z, Chiang CL, Malkoc V, Shi J, Sen CK, Odonnell L, Yu J, Lu W, Lee LJ. Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. LAB ON A CHIP 2015; 15:3147-53. [PMID: 26105628 DOI: 10.1039/c5lc00553a] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Current transfection technologies lead to significant inter-clonal variations. Previously we introduced a unique electrotransfection technology, Nanochannel-Electroporation (NEP), which can precisely and benignly transfect small cell populations (~100-200 cells) with single-cell resolution. Here we report on the development of a novel 3D NEP system for large scale transfection. A properly-engineered array of nanochannels, capable of handling/transfecting ~60 000 cells cm(-2), was fabricated using cleanroom technologies. Positive dielectrophoresis was used to selectively position cells on the nanochannels, thus allowing highly efficient transfection. Single-cell dosage control was demonstrated using both small and large molecules, and different cell types. The potential clinical relevance of this system was tested with difficult-to-transfect natural killer cell suspensions, and plasmids encoding for the chimeric antigen receptor (CAR), a model of high relevance for adoptive immunotherapy. Our results show significantly higher CAR transfection efficiencies for the DEP-NEP system (>70% vs. <30%), as well as enhanced cell viabilities.
Collapse
Affiliation(s)
- Lingqian Chang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Wenker SD, Casalía M, Candedo VC, Casabona JC, Pitossi FJ. Cell reprogramming and neuronal differentiation applied to neurodegenerative diseases: Focus on Parkinson's disease. FEBS Lett 2015; 589:3396-406. [PMID: 26226418 DOI: 10.1016/j.febslet.2015.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/11/2022]
Abstract
Adult cells from patients can be reprogrammed to induced pluripotent stem cells (iPSCs) which successively can be used to obtain specific cells such as neurons. This remarkable breakthrough represents a new way of studying diseases and brought new therapeutic perspectives in the field of regenerative medicine. This is particular true in the neurology field, where few techniques are amenable to study the affected tissue of the patient during illness progression, in addition to the lack of neuroprotective therapies for many diseases. In this review we discuss the advantages and unresolved issues of cell reprogramming and neuronal differentiation. We reviewed evidence using iPSCs-derived neurons from neurological patients. Focusing on data obtained from Parkinson's disease (PD) patients, we show that iPSC-derived neurons possess morphological and functional characteristics of this disease and build a case for the use of this technology to study PD and other neuropathologies while disease is in progress. These data show the enormous impact that this new technology starts to have on different purposes such as the study and design of future therapies of neurological disease, especially PD.
Collapse
|
217
|
Abstract
DNA transposons offer an efficient nonviral method of permanently modifying the genomes of mammalian cells. The piggyBac transposon system has proven effective in genomic engineering of mammalian cells for preclinical applications, including gene discovery, simultaneous multiplexed genome modification, animal transgenesis, gene transfer in vivo achieving long-term gene expression in animals, and the genetic modification of clinically relevant cell types, such as induced pluripotent stem cells and human T lymphocytes. piggyBac has many desirable features, including seamless excision of transposons from the genomic DNA and the potential to target integration events to desired DNA sequences. In this review, we explore these recent applications and also highlight the unique advantages of using piggyBac for developing new molecular therapeutic strategies.
Collapse
Affiliation(s)
- Lauren E Woodard
- Department of Veterans Affairs, Tennessee Valley Health System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Veterans Affairs, Tennessee Valley Health System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
218
|
Multiple sclerosis: getting personal with induced pluripotent stem cells. Cell Death Dis 2015; 6:e1806. [PMID: 26158512 PMCID: PMC4650727 DOI: 10.1038/cddis.2015.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022]
Abstract
Human induced pluripotent stem (iPS) cells can be derived from lineage-restricted cells and represent an important tool to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. Recently, patient-derived iPS cells, containing donor genetic background, have offered a breakthrough approach to study human genetics of neurodegenerative diseases. By offering an unlimited source of patient-specific disease-relevant cells, iPS cells hold great promise for understanding disease mechanisms, identifying molecular targets and developing phenotypic screens for drug discovery. This review will discuss the potential impact of using iPS cell-derived models in multiple sclerosis (MS) research and highlight some of the current challenges and prospective for generating novel therapeutic treatments for MS patients.
Collapse
|
219
|
Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, Armstrong L. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells. Stem Cells 2015; 33:2643-51. [PMID: 26033645 DOI: 10.1002/stem.2070] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 12/16/2022]
Abstract
Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling.
Collapse
Affiliation(s)
- Chunbo Yang
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Princess Al Jawhara Center of Excellence in Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Miodrag Stojkovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Bernard Keavney
- Institute of Cardiovascular Sciences Core Technology, Manchester University, Manchester, United Kingdom
| | - Andrew Trafford
- Institute of Cardiovascular Sciences Core Technology, Manchester University, Manchester, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
220
|
Clayton ZE, Sadeghipour S, Patel S. Generating induced pluripotent stem cell derived endothelial cells and induced endothelial cells for cardiovascular disease modelling and therapeutic angiogenesis. Int J Cardiol 2015; 197:116-22. [PMID: 26123569 DOI: 10.1016/j.ijcard.2015.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/23/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
Standard therapy for atherosclerotic coronary and peripheral arterial disease is insufficient in a significant number of patients because extensive disease often precludes effective revascularization. Stem cell therapy holds promise as a supplementary treatment for these patients, as pre-clinical and clinical research has shown transplanted cells can promote angiogenesis via direct and paracrine mechanisms. Induced pluripotent stem cells (iPSCs) are a novel cell type obtained by reprogramming somatic cells using exogenous transcription factor cocktails, which have been introduced to somatic cells via viral or plasmid constructs, modified mRNA or small molecules. IPSCs are now being used in disease modelling and drug testing and are undergoing their first clinical trial, but despite recent advances, the inefficiency of the reprogramming process remains a major limitation, as does the lack of consensus regarding the optimum transcription factor combination and delivery method and the uncertainty surrounding the genetic and epigenetic stability of iPSCs. IPSCs have been successfully differentiated into vascular endothelial cells (iPSC-ECs) and, more recently, induced endothelial cells (iECs) have also been generated by direct differentiation, which bypasses the pluripotent intermediate. IPSC-ECs and iECs demonstrate endothelial functionality in vitro and have been shown to promote neovessel growth and enhance blood flow recovery in animal models of myocardial infarction and peripheral arterial disease. Challenges remain in optimising the efficiency, safety and fidelity of the reprogramming and endothelial differentiation processes and establishing protocols for large-scale production of clinical-grade, patient-derived cells.
Collapse
Affiliation(s)
- Z E Clayton
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Australia.
| | - S Sadeghipour
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
| | - S Patel
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
221
|
Piñero-Lambea C, Ruano-Gallego D, Fernández LÁ. Engineered bacteria as therapeutic agents. Curr Opin Biotechnol 2015; 35:94-102. [PMID: 26070111 DOI: 10.1016/j.copbio.2015.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 02/08/2023]
Abstract
Although bacteria are generally regarded as the causative agents of infectious diseases, most bacteria inhabiting the human body are non-pathogenic and some of them can be turned, after proper engineering, into 'smart' living therapeutics of defined properties for the treatment of different illnesses. This review focuses on recent developments to engineer bacteria for the treatment of diverse human pathologies, including inflammatory bowel diseases, autoimmune disorders, cancer, metabolic diseases and obesity, as well as to combat bacterial and viral infections. We discuss significant advances provided by synthetic biology to fully reprogram bacteria as human therapeutics, including novel measures for strict biocontainment.
Collapse
Affiliation(s)
- Carlos Piñero-Lambea
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
222
|
Sun HB, Schaniel C, Leong DJ, Wang JHC. Biology and mechano-response of tendon cells: Progress overview and perspectives. J Orthop Res 2015; 33:785-92. [PMID: 25728946 PMCID: PMC4422159 DOI: 10.1002/jor.22885] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/24/2015] [Indexed: 02/04/2023]
Abstract
In this review, we summarize the group discussions on Cell Biology & Mechanics from the 2014 ORS/ISMMS New Frontiers in Tendon Research Conference. The major discussion topics included: (1) the biology of tendon stem/progenitor cells (TSPCs) and the potential of stem cell-based tendon therapy using TSPCs and other types of stem cells, namely, embryonic and/or induced pluripotent stem cells (iPSCs), (2) the biological concept and potential impact of cellular senescence on tendon aging, tendon injury repair and the development of degenerative disease, and (3) the effects of tendon cells' mechano-response on tendon cell fate and metabolism. For each topic, a brief overview is presented which summarizes the major points discussed by the group participants. The focus of the discussions ranged from current research progress, challenges and opportunities, to future directions on these topics. In the preparation of this manuscript, authors consulted relevant references as a part of their efforts to present an accurate view on the topics discussed.
Collapse
Affiliation(s)
- Hui B. Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY
,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY
,Corresponding Author: 1300 Morris Park Avenue, Golding 101 Bronx, NY 10461 USA Tel: (718) 430-4291 Fax: (718) 430-3259
| | - Christoph Schaniel
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY
,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel J. Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY
,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY
| | - James H-C. Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
223
|
Isobe KI, Cheng Z, Nishio N, Suganya T, Tanaka Y, Ito S. Reprint of "iPSCs, aging and age-related diseases". N Biotechnol 2015; 32:169-79. [PMID: 25479728 DOI: 10.1016/j.nbt.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human histocompatibility antigens are quite heterogeneous and promote the rejection of transplanted tissue. Recent advances in stem cell research that enable the use of a patient's own stem cells for transplantation are very important because rejection could be avoided. In particular, Yamanaka’s group in Japan gave new hope to patients with incurable diseases when they developed induced murine pluripotent stem cells (iPSCs) in 2006 and human iPSCs in 2007. Whereas embryonic stem cells (ESCs) are derived from the inner cell mass and are supported in culture by LIF, iPSCs are derived from fetal or adult somatic cells. Through the application of iPSC technology, adult somatic cells can develop a pluripotent state. One advantage of using iPSCs instead of ESCs in regenerative medicine is that (theoretically) immune rejection could be avoided, although there is some debate about immune rejection of a patient's own iPSCs. Many diseases occur in elderly patients. In order to use regenerative medicine with the elderly, it is important to demonstrate that iPSCs can indeed be generated from older patients. Recent findings have shown that iPSCs can be established from aged mice and aged humans. These iPSCs can differentiate to cells from all three germ layers. However, it is not known whether iPSCs from aged mice or humans show early senescence. Before clinical use of iPSCs, issues related to copy number variation, tumorigenicity and immunogenicity must be resolved. It is particularly important that researchers have succeeded in generating iPSCs that have differentiated to somatic cells related to specific diseases of the elderly, including atherosclerosis, diabetes, Alzheimer's disease and Parkinson's disease. These efforts will facilitate the use of personalized stem cell transplantation therapy for currently incurable diseases.
Collapse
Affiliation(s)
- Ken-ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
224
|
Matsuda Y, Semi K, Yamada Y. Application of iPS cell technology to cancer epigenome study: uncovering the mechanism of cell status conversion for drug resistance in tumor. Pathol Int 2015; 64:299-308. [PMID: 25047500 DOI: 10.1111/pin.12180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022]
Abstract
Recent studies imply that cancer cells possess the ability to reversibly change their properties between a drug sensitive state and a drug resistant state accompanied by epigenetic changes. This evidence indicates that better understanding of cancer epigenetics is important for efficient cancer therapies. Nevertheless, it had been difficult to deeply examine the epigenetic mechanisms because of lack of the tools to actively modify coordinated epigenetic events. In this stagnant situation, the reprogramming technology established by Yamanaka and coworkers have shed a new light. The novel reprogramming technology has made it possible for researchers to artificially introduce epigenetic remodeling into somatic cells. Accordingly, we might be able to use this technology as a tool to introduce the coordinated epigenetic reorganization. In this review, we introduce the idea of cell state interconversion in cancer cells that is attributable to altered epigenetic regulations. We then depict the epigenetic modifications observed during the process of somatic cell reprogramming and give some examples of the difficulty in cancer cell reprogramming. Finally, we discuss how we can translate this reprogramming refractoriness of cancer cells into uncovering unique epigenetic regulations in cancer cells, which might be applicable eventually to the development of novel cancer therapeutics against drug resistant cancer cells.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Research Division, Chugai Pharmaceutical Co., Ltd, Kamakura, Japan
| | | | | |
Collapse
|
225
|
Alvarez Palomo AB, McLenachan S, Chen FK, Da Cruz L, Dilley RJ, Requena J, Lucas M, Lucas A, Drukker M, Edel MJ. Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration. FIBROGENESIS & TISSUE REPAIR 2015; 8:9. [PMID: 25984235 PMCID: PMC4432516 DOI: 10.1186/s13069-015-0026-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Since the discovery of induced pluripotent stem cells (iPSC) in 2006, the symptoms of many human diseases have been reversed in animal models with iPSC therapy, setting the stage for future clinical development. From the animal data it is clear that iPSC are rapidly becoming the lead cell type for cell replacement therapy and for the newly developing field of iPSC-derived body organ transplantation. The first human pathology that might be treated in the near future with iPSC is age-related macular degeneration (AMD), which has recently passed the criteria set down by regulators for phase I clinical trials with allogeneic human embryonic stem cell-derived cell transplantation in humans. Given that iPSC are currently in clinical trial in Japan (RIKEN) to treat AMD, the establishment of a set of international criteria to make clinical-grade iPSC and their differentiated progeny is the next step in order to prepare for future autologous cell therapy clinical trials. Armed with clinical-grade iPSC, we can then specifically test for their threat of cancer, for proper and efficient differentiation to the correct cell type to treat human disease and then to determine their immunogenicity. Such a rigorous approach sets a far more relevant paradigm for their intended future use than non-clinical-grade iPSC. This review focuses on the latest developments regarding the first possible use of iPSC-derived retinal pigment epithelial cells in treating human disease, covers data gathered on animal models to date and methods to make clinical-grade iPSC, suggests techniques to ensure quality control and discusses possible clinical immune responses.
Collapse
Affiliation(s)
- Ana Belen Alvarez Palomo
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), University of Western Australia, 2 Verdun Street, Nedlands, WA 6009 Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), University of Western Australia, 2 Verdun Street, Nedlands, WA 6009 Australia
| | - Lyndon Da Cruz
- Moorfields Eye Hospital, 162 City Road, London, EC1V 2PD England
| | - Rodney J Dilley
- Ear Sciences Centre, 1 Salvado Rd, Subiaco, WA 6008 Australia ; School of Surgery, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia
| | - Jordi Requena
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain
| | - Michaela Lucas
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia ; PathWest, SCGH Laboratories Hospital Ave, Nedlands, WA 6009 Australia
| | - Andrew Lucas
- Institute for Immunology and Infectious Diseases, Murdoch University, Building 390, Discovery Way, Murdoch, Perth, WA 6150 Australia
| | - Micha Drukker
- Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Institute of Stem Cell Research, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Michael J Edel
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain ; Division of Pediatrics and Child Health, Westmead Children's Hospital, Corner Hawkesbury Road and Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ; School of Anatomy, Physiology & Human Biology and Centre for Cell Therapy and Regenerative Medicine (CCTRM), University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009 Australia
| |
Collapse
|
226
|
Giannoukakis N, Trucco M. Cellular therapies based on stem cells and their insulin-producing surrogates: a 2015 reality check. Pediatr Diabetes 2015; 16:151-63. [PMID: 25652322 DOI: 10.1111/pedi.12259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 12/27/2022] Open
Abstract
Stem cell technology has recently gained a substantial amount of interest as one method to create a potentially limitless supply of transplantable insulin-producing cells to treat, and possibly cure diabetes mellitus. In this review, we summarize the state-of-the art of stem cell technology and list the potential sources of stem cells that have been shown to be useful as insulin-expressing surrogates. We also discuss the milestones that have been reached and those that remain to be addressed to generate bona fide beta cell-similar, insulin-producing surrogates. The caveats, limitations, and realistic expectations are also considered for current and future technology. In spite of the tremendous technical advances realized in the past decade, especially in the field of reprogramming adult somatic cells to become stem cells, the state-of-the art still relies on lengthy and cumbersome in vitro culture methods that yield cell populations that are not particularly glucose-responsive when transplanted into diabetic hosts. Despite the current impediments toward clinical translation, including the potential for immune rejection, the availability of technology to generate patient-specific reprogrammable stem cells has, and will be critical for, important insights into the genetics, epigenetics, biology, and physiology of insulin-producing cells in normal and pathologic states. This knowledge could accelerate the time to reach the desired breakthrough for safe and efficacious beta cell surrogates.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | | |
Collapse
|
227
|
Zhao B, Zhang WD, Duan YL, Lu YQ, Cun YX, Li CH, Guo K, Nie WH, Li L, Zhang R, Zheng P. Filia Is an ESC-Specific Regulator of DNA Damage Response and Safeguards Genomic Stability. Cell Stem Cell 2015; 16:684-98. [PMID: 25936915 DOI: 10.1016/j.stem.2015.03.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/16/2015] [Accepted: 03/22/2015] [Indexed: 12/20/2022]
Abstract
Pluripotent stem cells (PSCs) hold great promise in cell-based therapy, but the genomic instability seen in culture hampers their full application. A greater understanding of the factors that regulate genomic stability in PSCs could help address this issue. Here we describe the identification of Filia as a specific regulator of genomic stability in mouse embryonic stem cells (ESCs). Filia expression is induced by genotoxic stress. Filia promotes centrosome integrity and regulates the DNA damage response (DDR) through multiple pathways, including DDR signaling, cell-cycle checkpoints and damage repair, ESC differentiation, and apoptosis. Filia depletion causes ESC genomic instability, induces resistance to apoptosis, and promotes malignant transformation. As part of its role in DDR, Filia interacts with PARP1 and stimulates its enzymatic activity. Filia also constitutively resides on centrosomes and translocates to DNA damage sites and mitochondria, consistent with its multifaceted roles in regulating centrosome integrity, damage repair, and apoptosis.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wei-Dao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ying-Liang Duan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Qing Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yi-Xian Cun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chao-Hui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Kun Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Wen-Hui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Lei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute Cancer Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
228
|
Popowski M, Tucker H. Repressors of reprogramming. World J Stem Cells 2015; 7:541-546. [PMID: 25914761 PMCID: PMC4404389 DOI: 10.4252/wjsc.v7.i3.541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/10/2015] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have been the focal point of ever increasing interest and scrutiny as they hold the promise of personalized regenerative medicine. However, creation of iPSCs is an inefficient process that requires forced expression of potentially oncogenic proteins. In order to unlock the full potential of iPSCs, both for basic and clinical research, we must broaden our search for more reliable ways of inducing pluripotency in somatic cells. This review surveys an area of reprogramming that does not receive as much focus, barriers to reprogramming, in the hope of stimulating new ideas and approaches towards developing safer and more efficient methods of reprogramming. Better methods of iPSC creation will allow for more reliable disease modeling, better basic research into the pluripotent state and safer iPSCs that can be used in a clinical setting.
Collapse
|
229
|
|
230
|
Kim SI, Oceguera-Yanez F, Hirohata R, Linker S, Okita K, Yamada Y, Yamamoto T, Yamanaka S, Woltjen K. KLF4 N-terminal variance modulates induced reprogramming to pluripotency. Stem Cell Reports 2015; 4:727-743. [PMID: 25772473 PMCID: PMC4400650 DOI: 10.1016/j.stemcr.2015.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/04/2022] Open
Abstract
As the quintessential reprogramming model, OCT3/4, SOX2, KLF4, and c-MYC re-wire somatic cells to achieve induced pluripotency. Yet, subtle differences in methodology confound comparative studies of reprogramming mechanisms. Employing transposons, we systematically assessed cellular and molecular hallmarks of mouse somatic cell reprogramming by various polycistronic cassettes. Reprogramming responses varied in the extent of initiation and stabilization of transgene-independent pluripotency. Notably, the cassettes employed one of two KLF4 variants, differing only by nine N-terminal amino acids, which generated dissimilar protein stoichiometry. Extending the shorter variant by nine N-terminal amino acids or augmenting stoichiometry by KLF4 supplementation rescued both protein levels and phenotypic disparities, implicating a threshold in determining reprogramming outcomes. Strikingly, global gene expression patterns elicited by published polycistronic cassettes diverged according to each KLF4 variant. Our data expose a Klf4 reference cDNA variation that alters polycistronic factor stoichiometry, predicts reprogramming hallmarks, and guides comparison of compatible public data sets.
Collapse
Affiliation(s)
- Shin-Il Kim
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Fabian Oceguera-Yanez
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ryoko Hirohata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Sara Linker
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan; Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
231
|
Kolacsek O, Erdei Z, Apáti A, Sándor S, Izsvák Z, Ivics Z, Sarkadi B, Orbán TI. Excision efficiency is not strongly coupled to transgenic rate: cell type-dependent transposition efficiency of sleeping beauty and piggyBac DNA transposons. Hum Gene Ther Methods 2015; 25:241-52. [PMID: 25045962 DOI: 10.1089/hgtb.2013.149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Sleeping Beauty (SB) and piggyBac (PB) DNA transposons represent an emerging new gene delivery technology, potentially suitable for human gene therapy applications. Previous studies pointed to important differences between these transposon systems, depending on the cell types examined and the methodologies applied. However, efficiencies cannot always be compared because of differences in applications. In addition, "overproduction inhibition," a phenomenon believed to be a characteristic of DNA transposons, can remarkably reduce the overall transgenic rate, emphasizing the importance of transposase dose applied. Therefore, because of lack of comprehensive analysis, researchers are forced to optimize the technology for their own "in-house" platforms. In this study, we investigated the transposition of several SB (SB11, SB32, SB100X) and PB (mPB and hyPB) variants in various cell types at three levels: comparing the excision efficiency of the reaction by real-time PCR, testing the overall transgenic rate by detecting cells with stable integrations, and determining the average copy number when using different transposon systems and conditions. We concluded that high excision activity is not always followed by a higher transgenic rate, as exemplified by the hyperactive transposases, indicating that the excision and the integration steps of transposition are not strongly coupled as previously thought. In general, all levels of transposition show remarkable differences depending on the transposase used and cell lines examined, being the least efficient in human embryonic stem cells (hESCs). In spite of the comparably low activity in those special cell types, the hyperactive SB100X and hyPB systems could be used in hESCs with similar transgenic efficiency and with reasonably low (2-3) transgene copy numbers, indicating their potential applicability for gene therapy purposes in the future.
Collapse
Affiliation(s)
- Orsolya Kolacsek
- 1 Institute of Enzymology, Research Center for Natural Sciences , Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Abstract
Well into the second decade since its conception, cell transplantation continues to undergo intensive evaluation for the treatment of myocardial infarction. At a mechanistic level, its objectives remain to replace lost cardiac cell mass with new functioning cardiomyocytes and vascular cells, thereby minimizing infarct size and scar formation, and improving clinical outcomes by preventing adverse left ventricular remodeling and recurrent ischemic events. Many different cell types, including pluripotent stem cells and various adult-derived progenitor cells, have been shown to have therapeutic potential in preclinical studies, while early phase human trial experience has provided divergent outcomes and fundamental lessons, emphasizing that there remain key issues to address and challenges to overcome before cell therapy can be applied to wider clinical practice. The purpose of this review is to provide a balanced update on recent seminal developments in this exciting field and look to the next important steps to ensure its forward progression.
Collapse
|
233
|
Reprogramming with Small Molecules instead of Exogenous Transcription Factors. Stem Cells Int 2015; 2015:794632. [PMID: 25922608 PMCID: PMC4397468 DOI: 10.1155/2015/794632] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs.
Collapse
|
234
|
Driscoll CB, Tonne JM, El Khatib M, Cattaneo R, Ikeda Y, Devaux P. Nuclear reprogramming with a non-integrating human RNA virus. Stem Cell Res Ther 2015; 6:48. [PMID: 25889591 PMCID: PMC4415226 DOI: 10.1186/s13287-015-0035-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/10/2014] [Accepted: 03/03/2015] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Advances in the field of stem cells have led to novel avenues for generating induced pluripotent stem cells (iPSCs) from differentiated somatic cells. iPSCs are typically obtained by the introduction of four factors--OCT4, SOX2, KLF4, and cMYC--via integrating vectors. Here, we report the feasibility of a novel reprogramming process based on vectors derived from the non-integrating vaccine strain of measles virus (MV). METHODS We produced a one-cycle MV vector by substituting the viral attachment protein gene with the green fluorescent protein (GFP) gene. This vector was further engineered to encode for OCT4 in an additional transcription unit. RESULTS After verification of OCT4 expression, we assessed the ability of iPSC reprogramming. The reprogramming vector cocktail with the OCT4-expressing MV vector and SOX2-, KLF4-, and cMYC-expressing lentiviral vectors efficiently transduced human skin fibroblasts and formed iPSC colonies. Reverse transcription-polymerase chain reaction and immunostaining confirmed induction of endogenous pluripotency-associated marker genes, such as SSEA-4, TRA-1-60, and Nanog. Pluripotency of derived clones was confirmed by spontaneous differentiation into three germ layers, teratoma formation, and guided differentiation into beating cardiomyocytes. CONCLUSIONS MV vectors can induce efficient nuclear reprogramming. Given the excellent safety record of MV vaccines and the translational capabilities recently developed to produce MV-based vectors now used for cancer clinical trials, our MV vector system provides an RNA-based, non-integrating gene transfer platform for nuclear reprogramming that is amenable for immediate clinical translation.
Collapse
Affiliation(s)
- Christopher B Driscoll
- Department of Molecular Medicine, and Virology and Gene Therapy Graduate Track, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Jason M Tonne
- Department of Molecular Medicine, and Virology and Gene Therapy Graduate Track, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Moustafa El Khatib
- Department of Molecular Medicine, and Virology and Gene Therapy Graduate Track, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Roberto Cattaneo
- Department of Molecular Medicine, and Virology and Gene Therapy Graduate Track, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, and Virology and Gene Therapy Graduate Track, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Patricia Devaux
- Department of Molecular Medicine, and Virology and Gene Therapy Graduate Track, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
235
|
Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7:315-328. [PMID: 25815117 PMCID: PMC4369489 DOI: 10.4252/wjsc.v7.i2.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals.
Collapse
|
236
|
Lee-Kubli CA, Lu P. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury. Neural Regen Res 2015; 10:10-6. [PMID: 25788906 PMCID: PMC4357091 DOI: 10.4103/1673-5374.150638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2014] [Indexed: 02/06/2023] Open
Abstract
The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell therapies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.
Collapse
Affiliation(s)
- Corinne A Lee-Kubli
- Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| | - Paul Lu
- Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA ; Veterans Administration Medical Center, San Diego, CA, USA
| |
Collapse
|
237
|
Debowski K, Warthemann R, Lentes J, Salinas-Riester G, Dressel R, Langenstroth D, Gromoll J, Sasaki E, Behr R. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS One 2015; 10:e0118424. [PMID: 25785453 PMCID: PMC4365012 DOI: 10.1371/journal.pone.0118424] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings.
Collapse
Affiliation(s)
- Katharina Debowski
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail: (KD); (RB)
| | - Rita Warthemann
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jana Lentes
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gabriela Salinas-Riester
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Germany
| | - Daniel Langenstroth
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan, Keio Advanced Research Center, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rüdiger Behr
- Stem Cell Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- * E-mail: (KD); (RB)
| |
Collapse
|
238
|
Revilla A, González C, Iriondo A, Fernández B, Prieto C, Marín C, Liste I. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. J Tissue Eng Regen Med 2015; 10:893-907. [PMID: 25758460 DOI: 10.1002/term.2021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022]
Abstract
Over the last few years, the generation of induced pluripotent stem cells (iPSCs) from human somatic cells has proved to be one of the most potentially useful discoveries in regenerative medicine. iPSCs are becoming an invaluable tool to study the pathology of different diseases and for drug screening. However, several limitations still affect the possibility of applying iPS cell-based technology in therapeutic prospects. Most strategies for iPSCs generation are based on gene delivery via retroviral or lentiviral vectors, which integrate into the host's cell genome, causing a remarkable risk of insertional mutagenesis and oncogenic transformation. To avoid such risks, significant advances have been made with non-integrative reprogramming strategies. On the other hand, although many different kinds of somatic cells have been employed to generate iPSCs, there is still no consensus about the ideal type of cell to be reprogrammed. In this review we present the recent advances in the generation of human iPSCs, discussing their advantages and limitations in terms of safety and efficiency. We also present a selection of somatic cell sources, considering their capability to be reprogrammed and tissue accessibility. From a translational medicine perspective, these two topics will provide evidence to elucidate the most suitable combination of reprogramming strategy and cell source to be applied in each human iPSC-based therapy. The wide variety of diseases this technology could treat opens a hopeful future for regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ana Revilla
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Clara González
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Amaia Iriondo
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Bárbara Fernández
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Cristina Prieto
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Carlos Marín
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
239
|
Li Y, Balasubramanian U, Cohen D, Zhang PW, Mosmiller E, Sattler R, Maragakis NJ, Rothstein JD. A comprehensive library of familial human amyotrophic lateral sclerosis induced pluripotent stem cells. PLoS One 2015; 10:e0118266. [PMID: 25760436 PMCID: PMC4356618 DOI: 10.1371/journal.pone.0118266] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/12/2015] [Indexed: 01/27/2023] Open
Abstract
Amyotrophic lateral sclerosis is a progressive disease characterized by the loss of upper and lower motor neurons, leading to paralysis of voluntary muscles. About 10% of all ALS cases are familial (fALS), among which 15-20% are linked to Cu/Zn superoxide dismutase (SOD1) mutations, usually inherited in an autosomal dominant manner. To date only one FDA approved drug is available which increases survival moderately. Our understanding of ALS disease mechanisms is largely derived from rodent model studies, however due to the differences between rodents and humans, it is necessary to have humanized models for studies of disease pathogenesis as well as drug development. Therefore, we generated a comprehensive library of a total 22 of fALS patient-specific induced pluripotent stem cell (iPSC) lines. These cells were thoroughly characterized before being deposited into the library. The library of cells includes a variety of C9orf72 mutations, sod1 mutations, FUS, ANG and FIG4 mutations. Certain mutations are represented with more than one line, which allows for studies of variable genetic backgrounds. In addition, these iPSCs can be successfully differentiated to astroglia, a cell type known to play a critical role in ALS disease progression. This library represents a comprehensive resource that can be used for ALS disease modeling and the development of novel therapeutics.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, United States of America
- Brain Science Institute, Johns Hopkins University, Baltimore, Maryland, 21205, United States of America
| | - Umamahesw Balasubramanian
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, United States of America
- Brain Science Institute, Johns Hopkins University, Baltimore, Maryland, 21205, United States of America
| | - Devon Cohen
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, United States of America
- Brain Science Institute, Johns Hopkins University, Baltimore, Maryland, 21205, United States of America
| | - Ping-Wu Zhang
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, United States of America
- Brain Science Institute, Johns Hopkins University, Baltimore, Maryland, 21205, United States of America
| | - Elizabeth Mosmiller
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, United States of America
- Ansari ALS Center for Stem Cell and Regeneration Research at Johns Hopkins, Baltimore, Maryland, 21205, United States of America
| | - Rita Sattler
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, United States of America
- Brain Science Institute, Johns Hopkins University, Baltimore, Maryland, 21205, United States of America
| | - Nicholas J. Maragakis
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, United States of America
- Ansari ALS Center for Stem Cell and Regeneration Research at Johns Hopkins, Baltimore, Maryland, 21205, United States of America
| | - Jeffrey D. Rothstein
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, United States of America
- Brain Science Institute, Johns Hopkins University, Baltimore, Maryland, 21205, United States of America
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, United States of America
| |
Collapse
|
240
|
Yasuhara T, Kameda M, Agari T, Date I. Regenerative medicine for Parkinson's disease. Neurol Med Chir (Tokyo) 2015; 55:113-23. [PMID: 25746305 PMCID: PMC4533405 DOI: 10.2176/nmc.ra.2014-0264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regenerative medicine for Parkinson’s disease (PD) is expected to develop dramatically with the advancement of biotechnology as represented by induced pluripotent stem cells. Existing therapeutic strategy for PD consists of medication using L-DOPA, surgery such as deep brain stimulation and rehabilitation. Current treatment cannot stop the progression of the disease, although there is definite therapeutic effect. True neurorestoration is strongly desired by regenerative medicine. This review article describes the historical development of regenerative medicine for PD, with a focus on fetal nigral cell transplantation and glial cell line-derived neurotrophic factor infusion. Subsequently, the current status of regenerative medicine for PD in terms of cell therapy and gene therapy are reviewed. In the end, the future direction to realize regenerative medicine for PD is discussed.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine
| | | | | | | |
Collapse
|
241
|
Probert PME, Meyer SK, Alsaeedi F, Axon AA, Fairhall EA, Wallace K, Charles M, Oakley F, Jowsey PA, Blain PG, Wright MC. An expandable donor-free supply of functional hepatocytes for toxicology. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00214h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
The B-13 cell is a readily expandable rat pancreatic acinar-like cell that differentiates on simple plastic culture substrata into replicatively-senescent hepatocyte-like (B-13/H) cells in response to glucocorticoid exposure. B-13/H cells express a variety of liver-enriched and liver-specific genes, many at levels similar to hepatocytes in vivo. Furthermore, the B-13/H phenotype is maintained for at least several weeks in vitro, in contrast to normal hepatocytes which rapidly de-differentiate under the same simple – or even under more complex – culture conditions. The origin of the B-13 cell line and the current state of knowledge regarding differentiation to B-13/H cells are presented, followed by a review of recent advances in the use of B-13/H cells in a variety of toxicity endpoints. B-13 cells therefore offer Toxicologists a cost-effective and easy to use system to study a range of toxicologically-related questions. Dissecting the mechanism(s) regulating the formation of B-13/H cell may also increase the likelihood of engineering a human equivalent, providing Toxicologists with an expandable donor-free supply of functional rat and human hepatocytes, invaluable additions to the tool kit of in vitro toxicity tests.
Collapse
Affiliation(s)
- Philip M. E. Probert
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Stephanie K. Meyer
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fouzeyyah Alsaeedi
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Andrew A. Axon
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Emma A. Fairhall
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Karen Wallace
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Michelle Charles
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fiona Oakley
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Paul A. Jowsey
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Peter G. Blain
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Matthew C. Wright
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
242
|
Ghaedi M, Niklason LE, Williams J. Development of Lung Epithelium from Induced Pluripotent Stem Cells. CURRENT TRANSPLANTATION REPORTS 2015; 2:81-89. [PMID: 26052480 PMCID: PMC4452199 DOI: 10.1007/s40472-014-0039-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Considerable progress has been made in the field of in vitro development of alveolar epithelium from induced pluripotent stem cells. Patient specific derived alveolar cells could potentially populate tissue engineered lungs, provide a cell source for drug testing or function as a model for research into lung diseases. Induced to pluripotency through a variety of techniques, stem cells can be differentiated to alveolar epithelium through exposure to a variety of different culture conditions and growth media. The ultimate success of differentiated cells for translational medicine applications will depend on further advances in the understanding of the human lung developmental pathway, and successful application to in vitro culture. In this review will focus the major signaling pathways and molecules in lung development and the existing protocol for directed different ion of iPSC and hESC to cells resembling respiratory epithelium in vitro.
Collapse
Affiliation(s)
- Mahboobe Ghaedi
- Departments of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut, 06520, USA
| | - Laura E. Niklason
- Departments of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut, 06520, USA
| | - Jordana Williams
- Departments of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
243
|
Zhou Q, Li L, Li J. Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications. Liver Int 2015; 35:687-94. [PMID: 24797694 DOI: 10.1111/liv.12581] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/27/2014] [Indexed: 02/13/2023]
Abstract
End-stage hepatic failure is a potentially life-threatening condition for which orthotopic liver transplantation (OLT) is the only effective treatment. However, a shortage of available donor organs for transplantation each year results in the death of many patients waiting for liver transplantation. Cell-based therapies and hepatic tissue engineering have been considered as alternatives to liver transplantation. However, primary hepatocyte transplantation has rarely produced therapeutic effects because mature hepatocytes cannot be effectively expanded in vitro, and the availability of hepatocytes is often limited by shortages of donor organs. Decellularization is an attractive technique for scaffold preparation in stem cell-based liver engineering, as the resulting material can potentially retain the liver architecture, native vessel network and specific extracellular matrix (ECM). Thus, the reconstruction of functional and practical liver tissue using decellularized scaffolds becomes possible. This review focuses on the current understanding of liver tissue engineering, whole-organ liver decellularization techniques, cell sources for recellularization and potential clinical applications and challenges.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou, 310003, China
| | | | | |
Collapse
|
244
|
Abstract
Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.
Collapse
|
245
|
Hong J, Lee EA, Lee ES, Jung G, Jeong H, Lee H, Lee H, Hwang NS. Induced myogenic commitment of human chondrocytes via non-viral delivery of minicircle DNA. J Control Release 2015; 200:212-21. [DOI: 10.1016/j.jconrel.2014.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/03/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023]
|
246
|
Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Sci Rep 2015; 5:8081. [PMID: 25628230 PMCID: PMC4308704 DOI: 10.1038/srep08081] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/05/2015] [Indexed: 11/08/2022] Open
Abstract
The development of human induced pluripotent stem cell (iPSC) technology has revolutionized the regenerative medicine field. This technology provides a powerful tool for disease modeling and drug screening approaches. To circumvent the risk of random integration into the host genome caused by retroviruses, non-integrating reprogramming methods have been developed. However, these techniques are relatively inefficient or expensive. The mini-intronic plasmid (MIP) is an alternative, robust transgene expression vector for reprogramming. Here we developed a single plasmid reprogramming system which carries codon-optimized (Co) sequences of the canonical reprogramming factors (Oct4, Klf4, Sox2, and c-Myc) and short hairpin RNA against p53 ("4-in-1 CoMiP"). We have derived human and mouse iPSC lines from fibroblasts by performing a single transfection. Either independently or together with an additional vector encoding for LIN28, NANOG, and GFP, we were also able to reprogram blood-derived peripheral blood mononuclear cells (PBMCs) into iPSCs. Taken together, the CoMiP system offers a new highly efficient, integration-free, easy to use, and inexpensive methodology for reprogramming. Furthermore, the CoMIP construct is color-labeled, free of any antibiotic selection cassettes, and independent of the requirement for expression of the Epstein-Barr Virus nuclear antigen (EBNA), making it particularly beneficial for future applications in regenerative medicine.
Collapse
|
247
|
Seki T, Fukuda K. Methods of induced pluripotent stem cells for clinical application. World J Stem Cells 2015; 7:116-125. [PMID: 25621111 PMCID: PMC4300922 DOI: 10.4252/wjsc.v7.i1.116] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells (iPSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying iPSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as iPSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of iPSCs can become established. In this review, we discuss the current technologies and future problems of human iPSC generation methods for clinical use.
Collapse
|
248
|
Saha S, Woodard LE, Charron EM, Welch RC, Rooney CM, Wilson MH. Evaluating the potential for undesired genomic effects of the piggyBac transposon system in human cells. Nucleic Acids Res 2015; 43:1770-82. [PMID: 25605795 PMCID: PMC4330379 DOI: 10.1093/nar/gkv017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Non-viral transposons have been used successfully for genetic modification of clinically relevant cells including embryonic stem, induced pluripotent stem, hematopoietic stem and primary human T cell types. However, there has been limited evaluation of undesired genomic effects when using transposons for human genome modification. The prevalence of piggyBac(PB)-like terminal repeat (TR) elements in the human genome raises concerns. We evaluated if there were undesired genomic effects of the PB transposon system to modify human cells. Expression of the transposase alone revealed no mobilization of endogenous PB-like sequences in the human genome and no increase in DNA double-strand breaks. The use of PB in a plasmid containing both transposase and transposon greatly increased the probability of transposase integration; however, using transposon and transposase from separate vectors circumvented this. Placing a eGFP transgene within transposon vector backbone allowed isolation of cells free from vector backbone DNA. We confirmed observable directional promoter activity within the 5'TR element of PB but found no significant enhancer effects from the transposon DNA sequence. Long-term culture of primary human cells modified with eGFP-transposons revealed no selective growth advantage of transposon-harboring cells. PB represents a promising vector system for genetic modification of human cells with limited undesired genomic effects.
Collapse
Affiliation(s)
- Sunandan Saha
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E Woodard
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth M Charron
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard C Welch
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cliona M Rooney
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew H Wilson
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
249
|
Novosadova EV, Grivennikov IA. Induced pluripotent stem cells: From derivation to application in biochemical and biomedical research. BIOCHEMISTRY (MOSCOW) 2015; 79:1425-41. [DOI: 10.1134/s000629791413001x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
250
|
Generation of pluripotent stem cells without the use of genetic material. J Transl Med 2015; 95:26-42. [PMID: 25365202 DOI: 10.1038/labinvest.2014.132] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 01/18/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) provide a platform to obtain patient-specific cells for use as a cell source in regenerative medicine. Although iPSCs do not have the ethical concerns of embryonic stem cells, iPSCs have not been widely used in clinical applications, as they are generated by gene transduction. Recently, iPSCs have been generated without the use of genetic material. For example, protein-induced PSCs and chemically induced PSCs have been generated by the use of small and large (protein) molecules. Several epigenetic characteristics are important for cell differentiation; therefore, several small-molecule inhibitors of epigenetic-modifying enzymes, such as DNA methyltransferases, histone deacetylases, histone methyltransferases, and histone demethylases, are potential candidates for the reprogramming of somatic cells into iPSCs. In this review, we discuss what types of small chemical or large (protein) molecules could be used to replace the viral transduction of genes and/or genetic reprogramming to obtain human iPSCs.
Collapse
|