201
|
Kandori H. Retinal Proteins: Photochemistry and Optogenetics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190292] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
202
|
Ito W, Fusco B, Morozov A. Disinhibition-assisted long-term potentiation in the prefrontal-amygdala pathway via suppression of somatostatin-expressing interneurons. NEUROPHOTONICS 2020; 7:015007. [PMID: 32090134 PMCID: PMC7019182 DOI: 10.1117/1.nph.7.1.015007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Significance: Natural brain adaptations often involve changes in synaptic strength. The artificial manipulations can help investigate the role of synaptic strength in a specific brain circuit not only in various physiological phenomena like correlated neuronal firing and oscillations but also in behaviors. High- and low-frequency stimulation at presynaptic sites has been used widely to induce long-term potentiation (LTP) and depression. This approach is effective in many brain areas but not in the basolateral amygdala (BLA) because the robust local GABAergic tone inside BLA restricts synaptic plasticity. Aim: We aimed at identifying the subclass of GABAergic neurons that gate LTP in the BLA afferents from the dorsomedial prefrontal cortex (dmPFC). Approach: Chemogenetic or optogenetic suppression of specific GABAergic neurons in BLA was combined with high-frequency stimulation of the BLA afferents as a method for LTP induction. Results: Chemogenetic suppression of somatostatin-positive interneurons (Sst-INs) enabled the ex vivo LTP by high-frequency stimulation of the afferent but the suppression of parvalbumin-positive interneurons (PV-INs) did not. Moreover, optogenetic suppression of Sst-INs with Arch also enabled LTP of the dmPFC-BLA synapses, both ex vivo and in vivo. Conclusions: These findings reveal that Sst-INs but not PV-INs gate LTP in the dmPFC-BLA pathway and provide a method for artificial synaptic facilitation in BLA.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States
| | - Brendon Fusco
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States
| | - Alexei Morozov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States
- Virginia Tech, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States
- Virginia Tech Carilion School of Medicine, Department of Psychiatry and Behavioral Medicine, Roanoke, Virginia, United States
| |
Collapse
|
203
|
Xu Y, Deng M, Zhang S, Yang J, Peng L, Chu J, Zou P. Imaging Neuronal Activity with Fast and Sensitive Red-Shifted Electrochromic FRET Indicators. ACS Chem Neurosci 2019; 10:4768-4775. [PMID: 31725259 DOI: 10.1021/acschemneuro.9b00501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) allow optical recording of neuronal activities with high spatial resolution. While most existing GEVIs emit in the green range, red-shifted GEVIs are highly sought after because they would enable simultaneous stimulation and recording of neuronal activities when paired with optogenetic actuators, or two-color imaging of signaling and neuronal activities when used along with GFP-based indicators. In this study, we present several improved red-shifted GEVIs based on the electrochromic Förster resonance energy transfer (eFRET) between orange/red fluorescent proteins/dyes and rhodopsin mutants. Through structure-guided mutagenesis and cell-based sensitivity screening, we identified a mutant rhodopsin with a single mutation that exhibited more than 2-fold improvement in voltage sensitivity. Notably, this mutation has been independently discovered by Pieribone et al. ( Pieribone, V. A. et al. Nat Methods 2018 , 15 ( 12 ), 1108 - 1116 ). In cultured rat hippocampal neurons, our sensors faithfully reported action potential waveforms and subthreshold activities. We also demonstrated that this mutation could enhance the sensitivity of hybrid indicators, thus providing insights for future development.
Collapse
Affiliation(s)
- Yongxian Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Mengying Deng
- Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Synthetic Biology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shu Zhang
- Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Synthetic Biology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junqi Yang
- Peking-Tsinghua-NIBS Joint Graduate Program, Peking University, Beijing 100871, China
| | - Luxin Peng
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jun Chu
- Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Synthetic Biology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
204
|
Kojima K, Shibukawa A, Sudo Y. The Unlimited Potential of Microbial Rhodopsins as Optical Tools. Biochemistry 2019; 59:218-229. [PMID: 31815443 DOI: 10.1021/acs.biochem.9b00768] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial rhodopsins, a photoactive membrane protein family, serve as fundamental tools for optogenetics, an innovative technology for controlling biological activities with light. Microbial rhodopsins are widely distributed in nature and have a wide variety of biological functions. Regardless of the many different known types of microbial rhodopsins, only a few of them have been used in optogenetics to control neural activity to understand neural networks. The efforts of our group have been aimed at identifying and characterizing novel rhodopsins from nature and also at engineering novel variant rhodopsins by rational design. On the basis of the molecular and functional characteristics of those novel rhodopsins, we have proposed new rhodopsin-based optogenetics tools to control not only neural activities but also "non-neural" activities. In this Perspective, we introduce the achievements and summarize future challenges in creating optogenetics tools using rhodopsins. The implementation of optogenetics deep inside an in vivo brain is the well-known challenge for existing rhodopsins. As a perspective to address this challenge, we introduce innovative optical illumination techniques using wavefront shaping that can reinforce the low light sensitivity of the rhodopsins and realize deep-brain optogenetics. The applications of our optogenetics tools could be extended to manipulate non-neural biological activities such as gene expression, apoptosis, energy production, and muscle contraction. We also discuss the potentially unlimited biotechnological applications of microbial rhodopsins in the future such as in photovoltaic devices and in drug delivery systems. We believe that advances in the field will greatly expand the potential uses of microbial rhodopsins as optical tools.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| |
Collapse
|
205
|
Abstract
The peripheral nervous system (PNS) is highly complicated and heterogenous. Conventional neuromodulatory approaches have revealed numerous essential biological functions of the PNS and provided excellent tools to treat a large variety of human diseases. Yet growing evidence indicated the importance of cell-type-specific neuromodulation in the PNS in not only biological research using animal models but also potential human therapies. Optogenetics is a recently developed neuromodulatory approach combining optics and genetics that can effectively stimulate or silence neuronal activity with high spatial and temporal precision. Here, I review research regarding optogenetic manipulations for cell-type-specific control of the PNS, highlighting the advantages and challenges of current optogenetic tools, and discuss their potential future applications.
Collapse
Affiliation(s)
- Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
206
|
Boyden ES. Optogenetics: Tools for Controlling Brain Cells with Light. MOLECULAR FRONTIERS JOURNAL 2019. [DOI: 10.1142/s2529732519400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The brain is made out of an incredible diversity of cells called neurons, which have different shapes, are made of different molecules, and that change in different ways in diseases. In optogenetics, microbial opsins, natural proteins that convert light into electrical signals, are genetically expressed in neurons. Then, light pulses can be used to turn neurons on, revealing how they trigger behaviors, disease states, or therapeutic effects, or to turn neurons off, revealing what functions or dysfunctions they are necessary for.
Collapse
Affiliation(s)
- Edward S. Boyden
- McGovern Institute, Media Lab, Center for Neurobiological Engineering, Department of Brain and Cognitive Sciences, Department of Biological Engineering, and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
207
|
Zhang C, Yang S, Flossmann T, Gao S, Witte OW, Nagel G, Holthoff K, Kirmse K. Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition. BMC Biol 2019; 17:95. [PMID: 31775747 PMCID: PMC6882325 DOI: 10.1186/s12915-019-0717-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background Optogenetic silencing techniques have expanded the causal understanding of the functions of diverse neuronal cell types in both the healthy and diseased brain. A widely used inhibitory optogenetic actuator is eNpHR3.0, an improved version of the light-driven chloride pump halorhodopsin derived from Natronomonas pharaonis. A major drawback of eNpHR3.0 is related to its pronounced inactivation on a time-scale of seconds, which renders it unsuited for applications that require long-lasting silencing. Results Using transgenic mice and Xenopus laevis oocytes expressing an eNpHR3.0-EYFP fusion protein, we here report optimized photo-stimulation techniques that profoundly increase the stability of eNpHR3.0-mediated currents during long-term photo-stimulation. We demonstrate that optimized photo-stimulation enables prolonged hyperpolarization and suppression of action potential discharge on a time-scale of minutes. Conclusions Collectively, our findings extend the utility of eNpHR3.0 to the long-lasting inhibition of excitable cells, thus facilitating the optogenetic dissection of neural circuits.
Collapse
Affiliation(s)
- Chuanqiang Zhang
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Present Address: Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Shang Yang
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, & Institute of Physiology - Neurophysiology, Julius-Maximilians-University of Würzburg, 97070, Würzburg, Germany
| | - Tom Flossmann
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Present Address: Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Shiqiang Gao
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, & Institute of Physiology - Neurophysiology, Julius-Maximilians-University of Würzburg, 97070, Würzburg, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Georg Nagel
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, & Institute of Physiology - Neurophysiology, Julius-Maximilians-University of Würzburg, 97070, Würzburg, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Knut Kirmse
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
208
|
Mao D, Li N, Xiong Z, Sun Y, Xu G. Single-Cell Optogenetic Control of Calcium Signaling with a High-Density Micro-LED Array. iScience 2019; 21:403-412. [PMID: 31704651 PMCID: PMC6889635 DOI: 10.1016/j.isci.2019.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
Precise optogenetic control, ideally down to single cells in dense cell populations, is essential in understanding the heterogeneity of cell networks. Devices with such capability, if built in a chip scale, will advance optogenetic studies at cellular levels in a variety of experimental settings. Here we demonstrate optogenetic control of intracellular Ca2+ dynamics at the single cell level using a 16-μm pitched micro-light emitting diode (LED) array that features high brightness, small spot size, fast response, and low voltage operation. Individual LED pixels are able to reliably trigger intracellular Ca2+ transients, confirmed by fluorescence microscopy and control experiments and cross-checked by two genetically coded Ca2+ indicators. Importantly, our array can optogenetically address individual cells that are sub-10 μm apart in densely packed cell populations. These results suggest the possible use of the micro-LED array toward a lab-on-a-chip for single-cell optogenetics, which may allow for pharmaceutical screening and fundamental studies on a variety of cell networks.
Collapse
Affiliation(s)
- Dacheng Mao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Ningwei Li
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Zheshun Xiong
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Guangyu Xu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
209
|
Li N, Chen S, Guo ZV, Chen H, Huo Y, Inagaki HK, Chen G, Davis C, Hansel D, Guo C, Svoboda K. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife 2019; 8:e48622. [PMID: 31736463 PMCID: PMC6892606 DOI: 10.7554/elife.48622] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022] Open
Abstract
Optogenetics allows manipulations of genetically and spatially defined neuronal populations with excellent temporal control. However, neurons are coupled with other neurons over multiple length scales, and the effects of localized manipulations thus spread beyond the targeted neurons. We benchmarked several optogenetic methods to inactivate small regions of neocortex. Optogenetic excitation of GABAergic neurons produced more effective inactivation than light-gated ion pumps. Transgenic mice expressing the light-dependent chloride channel GtACR1 produced the most potent inactivation. Generally, inactivation spread substantially beyond the photostimulation light, caused by strong coupling between cortical neurons. Over some range of light intensity, optogenetic excitation of inhibitory neurons reduced activity in these neurons, together with pyramidal neurons, a signature of inhibition-stabilized neural networks ('paradoxical effect'). The offset of optogenetic inactivation was followed by rebound excitation in a light dose-dependent manner, limiting temporal resolution. Our data offer guidance for the design of in vivo optogenetics experiments.
Collapse
Affiliation(s)
- Nuo Li
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
- Janelia Research CampusAshburnUnited States
| | - Susu Chen
- Janelia Research CampusAshburnUnited States
| | - Zengcai V Guo
- Janelia Research CampusAshburnUnited States
- School of MedicineTsinghua UniversityBeijingChina
| | - Han Chen
- School of MedicineTsinghua UniversityBeijingChina
| | - Yan Huo
- School of MedicineTsinghua UniversityBeijingChina
| | | | - Guang Chen
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| | - Courtney Davis
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
- Janelia Research CampusAshburnUnited States
| | - David Hansel
- Center of Neurophysics, Physiology and Pathologies, CNRS-UMR8119ParisFrance
| | | | | |
Collapse
|
210
|
A Non-canonical Feedback Circuit for Rapid Interactions between Somatosensory Cortices. Cell Rep 2019; 23:2718-2731.e6. [PMID: 29847801 PMCID: PMC6004823 DOI: 10.1016/j.celrep.2018.04.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/20/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Sensory perception depends on interactions among cortical areas. These
interactions are mediated by canonical patterns of connectivity in which higher
areas send feedback projections to lower areas via neurons in superficial and
deep layers. Here, we probed the circuit basis of interactions among two areas
critical for touch perception in mice, whisker primary (wS1) and secondary (wS2)
somatosensory cortices. Neurons in layer 4 of wS2 (S2L4) formed a
major feedback pathway to wS1. Feedback from wS2 to wS1 was organized
somatotopically. Spikes evoked by whisker deflections occurred nearly as rapidly
in wS2 as in wS1, including among putative S2L4 → S1 feedback
neurons. Axons from S2L4 → S1 neurons sent stimulus
orientation-specific activity to wS1. Optogenetic excitation of S2L4
neurons modulated activity across both wS2 and wS1, while inhibition of
S2L4 reduced orientation tuning among wS1 neurons. Thus, a
non-canonical feedback circuit, originating in layer 4 of S2, rapidly modulates
early tactile processing.
Collapse
|
211
|
Seo DO, Motard LE, Bruchas MR. Contemporary strategies for dissecting the neuronal basis of neurodevelopmental disorders. Neurobiol Learn Mem 2019; 165:106835. [PMID: 29550367 PMCID: PMC6138573 DOI: 10.1016/j.nlm.2018.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
Great efforts in clinical and basic research have shown progress in understanding the neurobiological mechanisms of neurodevelopmental disorders, such as autism, schizophrenia, and attention-deficit hyperactive disorders. Literature on this field have suggested that these disorders are affected by the complex interaction of genetic, biological, psychosocial and environmental risk factors. However, this complexity of interplaying risk factors during neurodevelopment has prevented a complete understanding of the causes of those neuropsychiatric symptoms. Recently, with advances in modern high-resolution neuroscience methods, the neural circuitry analysis approach has provided new solutions for understanding the causal relationship between dysfunction of a neural circuit and behavioral alteration in neurodevelopmental disorders. In this review we will discuss recent progress in developing novel optogenetic and chemogenetic strategies to investigate neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dong-Oh Seo
- Departmentof Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Laura E Motard
- Departmentof Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Michael R Bruchas
- Departmentof Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
212
|
Struik RF, Marchant NJ, de Haan R, Terra H, van Mourik Y, Schetters D, Carr MR, van der Roest M, Heistek TS, De Vries TJ. Dorsomedial prefrontal cortex neurons encode nicotine-cue associations. Neuropsychopharmacology 2019; 44:2011-2021. [PMID: 31242502 PMCID: PMC6898138 DOI: 10.1038/s41386-019-0449-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2022]
Abstract
The role of medial prefrontal cortex (mPFC) in regulating nicotine taking and seeking remains largely unexplored. In this study we took advantage of the high time-resolution of optogenetic intervention by decreasing (Arch3.0) or increasing (ChR2) the activity of neurons in the dorsal and ventral mPFC during 5-s nicotine cue presentations in order to evaluate their contribution to cued nicotine seeking and taking. Wistar rats were trained to self-administer intravenous nicotine in 1 h self-administration sessions twice a day for a minimum of 10 days. Subsequently, dmPFC or vmPFC neuronal activity was modulated during or following presentation of the 5-s nicotine cue, both under extinction and self-administration conditions. We also used in vivo electrophysiology to record the activity of dmPFC neurons during nicotine self-administration and extinction tests. We show that optogenetic inhibition of dmPFC neurons during, but not following, response-contingent presentations of the nicotine cue increased nicotine seeking. We found no effect on nicotine self-administration or on food seeking in an extinction test. We also show that this effect is specific to dmPFC, because optogenetic inhibition of vmPFC had no effect on nicotine seeking and taking. In vivo recordings revealed that dmPFC network neuronal activity was modulated more strongly following nicotine cue presentation in extinction, compared to following nicotine self-administration. Our results strongly suggest that a population of neurons within the dmPFC is involved in encoding the incentive value of nicotine-associated cues.
Collapse
Affiliation(s)
- Roeland F Struik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Nathan J Marchant
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Roel de Haan
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Huub Terra
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Yvar van Mourik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Dustin Schetters
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Madison R Carr
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Marcel van der Roest
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Taco J De Vries
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands.
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands.
| |
Collapse
|
213
|
Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J Neurosci 2019; 39:9435-9452. [PMID: 31628177 DOI: 10.1523/jneurosci.0311-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
Narcolepsy, characterized by excessive daytime sleepiness, is associated with dysfunction of the hypothalamic hypocretin/orexin (Hcrt) system, either due to extensive loss of Hcrt cells (Type 1, NT1) or hypothesized Hcrt signaling impairment (Type 2, NT2). Accordingly, efforts to recapitulate narcolepsy-like symptoms in mice have involved ablating these cells or interrupting Hcrt signaling. Here, we describe orexin/Arch mice, in which a modified archaerhodopsin-3 gene was inserted downstream of the prepro-orexin promoter, resulting in expression of the yellow light-sensitive Arch-3 proton pump specifically within Hcrt neurons. Histological examination along with ex vivo and in vivo electrophysiological recordings of male and female orexin/Arch mice demonstrated silencing of Hcrt neurons when these cells were photoilluminated. However, high expression of the Arch transgene affected cellular and physiological parameters independent of photoillumination. The excitability of Hcrt neurons was reduced, and both circadian and metabolic parameters were perturbed in a subset of orexin/Arch mice that exhibited high levels of Arch expression. Orexin/Arch mice also had increased REM sleep under baseline conditions but did not exhibit cataplexy, a sudden loss of muscle tone during wakefulness characteristic of NT1. These aberrations resembled some aspects of mouse models with Hcrt neuron ablation, yet the number of Hcrt neurons in orexin/Arch mice was not reduced. Thus, orexin/Arch mice may be useful to investigate Hcrt system dysfunction when these neurons are intact, as is thought to occur in narcolepsy without cataplexy (NT2). These results also demonstrate the utility of extended phenotypic screening of transgenic models when specific neural circuits have been manipulated.SIGNIFICANCE STATEMENT Optogenetics has become an invaluable tool for functional dissection of neural circuitry. While opsin expression is often achieved by viral injection, stably integrated transgenes offer some practical advantages. Here, we demonstrate successful transgenic expression of an inhibitory opsin in hypocretin/orexin neurons, which are thought to promote or maintain wakefulness. Both brief and prolonged illumination resulted in inhibition of these neurons and induced sleep. However, even in the absence of illumination, these cells exhibited altered electrical characteristics, particularly when transgene expression was high. These aberrant properties affected metabolism and sleep, resulting in a phenotype reminiscent of the narcolepsy Type 2, a sleep disorder for which no good animal model currently exists.
Collapse
|
214
|
Hu W, Li Q, Li B, Ma K, Zhang C, Fu X. Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials 2019; 227:119546. [PMID: 31655444 DOI: 10.1016/j.biomaterials.2019.119546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenzhi Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Bingmin Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| |
Collapse
|
215
|
Optogenetic Inhibition of CGRPα Sensory Neurons Reveals Their Distinct Roles in Neuropathic and Incisional Pain. J Neurosci 2019; 38:5807-5825. [PMID: 29925650 DOI: 10.1523/jneurosci.3565-17.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/29/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Cutaneous somatosensory neurons convey innocuous and noxious mechanical, thermal, and chemical stimuli from peripheral tissues to the CNS. Among these are nociceptive neurons that express calcitonin gene-related peptide-α (CGRPα). The role of peripheral CGRPα neurons (CANs) in acute and injury-induced pain has been studied using diphtheria toxin ablation, but their functional roles remain controversial. Because ablation permanently deletes a neuronal population, compensatory changes may ensue that mask the physiological or pathophysiological roles of CANs, particularly for injuries that occur after ablation. Therefore, we sought to define the role of intact CANs in vivo under baseline and injury conditions by using noninvasive transient optogenetic inhibition. We assessed pain behavior longitudinally from acute to chronic time points. We generated adult male and female mice that selectively express the outward rectifying proton pump archaerhodopsin-3 (Arch) in CANs, and inhibited their peripheral cutaneous terminals in models of neuropathic (spared nerve injury) and inflammatory (skin-muscle incision) pain using transdermal light activation of Arch. After nerve injury, brief activation of Arch reversed the chronic mechanical, cold, and heat hypersensitivity, alleviated the spontaneous pain, and reversed the sensitized mechanical currents in primary afferent somata. In contrast, Arch inhibition of CANs did not alter incision-induced hypersensitivity. Instead, incision-induced mechanical and heat hypersensitivity was alleviated by peripheral blockade of CGRPα peptide-receptor signaling. These results reveal that CANs have distinct roles in the time course of pain during neuropathic and incisional injuries and suggest that targeting peripheral CANs or CGRPα peptide-receptor signaling could selectively treat neuropathic or postoperative pain, respectively.SIGNIFICANCE STATEMENT The contribution of sensory afferent CGRPα neurons (CANs) to neuropathic and inflammatory pain is controversial. Here, we left CANs intact during neuropathic and perioperative incision injury by using transient transdermal optogenetic inhibition of CANs. We found that peripheral CANs are required for neuropathic mechanical, cold, and heat hypersensitivity, spontaneous pain, and sensitization of mechanical currents in afferent somata. However, they are dispensable for incisional pain transmission. In contrast, peripheral pharmacological inhibition of CGRPα peptide-receptor signaling alleviated the incisional mechanical and heat hypersensitivity, but had no effect on neuropathic pain. These results show that CANs have distinct roles in neuropathic and incisional pain and suggest that their targeting via novel peripheral treatments may selectively alleviate neuropathic versus incisional pain.
Collapse
|
216
|
Guo SM, Veneziano R, Gordonov S, Li L, Danielson E, Perez de Arce K, Park D, Kulesa AB, Wamhoff EC, Blainey PC, Boyden ES, Cottrell JR, Bathe M. Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes. Nat Commun 2019; 10:4377. [PMID: 31558769 PMCID: PMC6763432 DOI: 10.1038/s41467-019-12372-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/03/2019] [Indexed: 12/29/2022] Open
Abstract
Synapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides. Super-resolution PAINT imaging of the same targets is performed using low-affinity DNA imaging probes to resolve nanometer-scale synaptic protein organization across nine distinct protein targets. Our approach enables the quantitative analysis of thousands of synapses in neuronal culture to identify putative synaptic sub-types and co-localization patterns from one dozen proteins. Application to characterize synaptic reorganization following neuronal activity blockade reveals coordinated upregulation of the post-synaptic proteins PSD-95, SHANK3 and Homer-1b/c, as well as increased correlation between synaptic markers in the active and synaptic vesicle zones.
Collapse
Affiliation(s)
- Syuan-Ming Guo
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Remi Veneziano
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Simon Gordonov
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Li Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Danielson
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Karen Perez de Arce
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Anthony B Kulesa
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Paul C Blainey
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Media Lab, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Mark Bathe
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
217
|
Gruber A, Edri O, Gepstein L. Cardiac optogenetics: the next frontier. Europace 2019; 20:1910-1918. [PMID: 29315402 DOI: 10.1093/europace/eux371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
The emerging technology of optogenetics uses optical and genetic means to monitor and modulate the electrophysiological properties of excitable tissues. While transforming the field of neuroscience, the technology has recently gained popularity also in the cardiac arena. Here, we describe the basic principles of optogenetics, the available and evolving optogenetic tools, and the unique potential of this technology for basic and translational cardiac electrophysiology. Specifically, we discuss the ability to control (augment or suppress) the cardiac tissue's excitable properties using optogenetic actuators (microbial opsins), which are light-gated ion channels and pumps that can cause light-triggered membrane depolarization or hyperpolarization. We then focus on the potential clinical implications of this technology for the treatment of cardiac arrhythmias by describing recent efforts for developing optogenetic-based cardiac pacing, resynchronization, and defibrillation experimental strategies. Finally, the significant obstacles and challenges that need to be overcome before any future clinical translation can be expected are discussed.
Collapse
Affiliation(s)
- Amit Gruber
- The Sohnis Family Reaserch Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
| | - Oded Edri
- The Sohnis Family Reaserch Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- The Sohnis Family Reaserch Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel.,Cardiology Department of Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa, Israel
| |
Collapse
|
218
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
219
|
Ferenczi EA, Tan X, Huang CLH. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems. Front Physiol 2019; 10:1096. [PMID: 31572204 PMCID: PMC6749684 DOI: 10.3389/fphys.2019.01096] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Optogenetic techniques permit studies of excitable tissue through genetically expressed light-gated microbial channels or pumps permitting transmembrane ion movement. Light activation of these proteins modulates cellular excitability with millisecond precision. This review summarizes optogenetic approaches, using examples from neurobiological applications, and then explores their application in cardiac electrophysiology. We review the available opsins, including depolarizing and hyperpolarizing variants, as well as modulators of G-protein coupled intracellular signaling. We discuss the biophysical properties that determine the ability of microbial opsins to evoke reliable, precise stimulation or silencing of electrophysiological activity. We also review spectrally shifted variants offering possibilities for enhanced depth of tissue penetration, combinatorial stimulation for targeting different cell subpopulations, or all-optical read-in and read-out studies. Expression of the chosen optogenetic tool in the cardiac cell of interest then requires, at the single-cell level, introduction of opsin-encoding genes by viral transduction, or coupling "spark cells" to primary cardiomyocytes or a stem-cell derived counterpart. At the system-level, this requires construction of transgenic mice expressing ChR2 in their cardiomyocytes, or in vivo injection (myocardial or systemic) of adenoviral expression systems. Light delivery, by laser or LED, with widespread or multipoint illumination, although relatively straightforward in vitro may be technically challenged by cardiac motion and light-scattering in biological tissue. Physiological read outs from cardiac optogenetic stimulation include single cell patch clamp recordings, multi-unit microarray recordings from cell monolayers or slices, and electrical recordings from isolated Langendorff perfused hearts. Optical readouts of specific cellular events, including ion transients, voltage changes or activity in biochemical signaling cascades, using small detecting molecules or genetically encoded sensors now offer powerful opportunities for all-optical control and monitoring of cellular activity. Use of optogenetics has expanded in cardiac physiology, mainly using optically controlled depolarizing ion channels to control heart rate and for optogenetic defibrillation. ChR2-expressing cardiomyocytes show normal baseline and active excitable membrane and Ca2+ signaling properties and are sensitive even to ~1 ms light pulses. They have been employed in studies of the intrinsic cardiac adrenergic system and of cardiac arrhythmic properties.
Collapse
Affiliation(s)
- Emily A. Ferenczi
- Department of Neurology, Massachusetts General Hospital and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
220
|
Cela E, Sjöström PJ. Novel Optogenetic Approaches in Epilepsy Research. Front Neurosci 2019; 13:947. [PMID: 31551699 PMCID: PMC6743373 DOI: 10.3389/fnins.2019.00947] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a major neurological disorder characterized by repeated seizures afflicting 1% of the global population. The emergence of seizures is associated with several comorbidities and severely decreases the quality of life of patients. Unfortunately, around 30% of patients do not respond to first-line treatment using anti-seizure drugs (ASDs). Furthermore, it is still unclear how seizures arise in the healthy brain. Therefore, it is critical to have well developed models where a causal understanding of epilepsy can be investigated. While the development of seizures has been studied in several animal models, using chemical or electrical induction, deciphering the results of such studies has been difficult due to the uncertainty of the cell population being targeted as well as potential confounds such as brain damage from the procedure itself. Here we describe novel approaches using combinations of optical and genetic methods for studying epileptogenesis. These approaches can circumvent some shortcomings associated with the classical animal models and may thus increase the likelihood of developing new treatment options.
Collapse
Affiliation(s)
- Elvis Cela
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Per Jesper Sjöström
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
221
|
Mayer P, Sivakumar N, Pritz M, Varga M, Mehmann A, Lee S, Salvatore A, Magno M, Pharr M, Johannssen HC, Troester G, Zeilhofer HU, Salvatore GA. Flexible and Lightweight Devices for Wireless Multi-Color Optogenetic Experiments Controllable via Commercial Cell Phones. Front Neurosci 2019; 13:819. [PMID: 31551666 PMCID: PMC6743353 DOI: 10.3389/fnins.2019.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Optogenetics provide a potential alternative approach to the treatment of chronic pain, in which complex pathology often hampers efficacy of standard pharmacological approaches. Technological advancements in the development of thin, wireless, and mechanically flexible optoelectronic implants offer new routes to control the activity of subsets of neurons and nerve fibers in vivo. This study reports a novel and advanced design of battery-free, flexible, and lightweight devices equipped with one or two miniaturized LEDs, which can be individually controlled in real time. Two proof-of-concept experiments in mice demonstrate the feasibility of these devices. First, we show that blue-light devices implanted on top of the lumbar spinal cord can excite channelrhodopsin expressing nociceptors to induce place aversion. Second, we show that nocifensive withdrawal responses can be suppressed by green-light optogenetic (Archaerhodopsin-mediated) inhibition of action potential propagation along the sciatic nerve. One salient feature of these devices is that they can be operated via modern tablets and smartphones without bulky and complex lab instrumentation. In addition to the optical stimulation, the design enables the simultaneously wireless recording of the temperature in proximity of the stimulation area. As such, these devices are primed for translation to human patients with implications in the treatment of neurological and psychiatric conditions far beyond chronic pain syndromes.
Collapse
Affiliation(s)
- Philipp Mayer
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland.,Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Nandhini Sivakumar
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Pritz
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | - Matjia Varga
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Seunghyun Lee
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | | | - Michele Magno
- Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Matt Pharr
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
222
|
Walker MC, Kullmann DM. Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology 2019; 168:107751. [PMID: 31494141 DOI: 10.1016/j.neuropharm.2019.107751] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Drug-resistant epilepsy remains a significant health-care burden. The most effective treatment is surgery, but this is suitable for very few patients because of the unacceptable consequences of removing brain tissue. In contrast, gene therapy can regulate neuronal excitability in the epileptic focus whilst preserving function. Optogenetics and chemogenetics have the advantage that they are titratable therapies. Optogenetics uses light to control the excitability of specific neuronal populations. Optogenetics can be used in a closed-loop paradigm in which the light source is activated only when seizures are detected. However, expression of foreign proteins raises concerns about immunogenicity. Chemogenetics relies on the modification of an endogenous receptor or the production of a modified chimeric receptor that responds to an exogenous ligand. The main chemogenetic approach applied to epilepsy is to use designer receptors exclusively activated by designer drugs (DREADDs), which have been mainly modified muscarinic receptors or kappa-opioid receptors. Genetically modified human muscarinic receptor DREADDs are activated not by acetylcholine but by specific drugs such as clozapine-n-oxide or olanzepine. The dose of the drugs can be titrated in order to suppress seizures without adverse effects. Lastly, there is a chemogenetic approach that is activated by an endogenous ligand, glutamate. This takes advantage of invertebrate glutamate receptors that are chloride permeable. These bind glutamate released during seizure activity, and the resultant chloride current inhibits neuronal activity. The exogenous ligand, ivermectin, can also be given to reduce neuronal activity either chronically or as a rescue medication. The translation of this technology is hampered by the expression of a foreign protein. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
223
|
Waldron NH, Fudim M, Mathew JP, Piccini JP. Neuromodulation for the Treatment of Heart Rhythm Disorders. JACC Basic Transl Sci 2019; 4:546-562. [PMID: 31468010 PMCID: PMC6712352 DOI: 10.1016/j.jacbts.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Derangement of autonomic nervous signaling is an important contributor to cardiac arrhythmogenesis. Modulation of autonomic nervous signaling holds significant promise for the prevention and treatment of cardiac arrhythmias. Further clinical investigation is necessary to establish the efficacy and safety of autonomic modulatory therapies in reducing cardiac arrhythmias.
There is an increasing recognition of the importance of interactions between the heart and the autonomic nervous system in the pathophysiology of arrhythmias. These interactions play a role in both the initiation and maintenance of arrhythmias and are important in both atrial and ventricular arrhythmia. Given the importance of the autonomic nervous system in the pathophysiology of arrhythmias, there has been notable effort in the field to improve existing therapies and pioneer additional interventions directed at cardiac-autonomic targets. The interventions are targeted to multiple and different anatomic targets across the neurocardiac axis. The purpose of this review is to provide an overview of the rationale for neuromodulation in the treatment of arrhythmias and to review the specific treatments under evaluation and development for the treatment of both atrial fibrillation and ventricular arrhythmias.
Collapse
Key Words
- AERP, atrial effective refractory period
- AF, atrial fibrillation
- AGP, autonomic ganglionic plexus
- ANS, autonomic nervous system
- CABG, coronary artery bypass grafting
- HRV, heart rate variability
- ICD, implantable cardioverter-defibrillator
- LLVNS, low-level vagal nerve stimulation
- OSA, obstructive sleep apnea
- POAF, post-operative atrial fibrillation
- PVI, pulmonary vein isolation
- RDN, renal denervation
- SCS, spinal cord stimulation
- SGB, stellate ganglion blockade
- SNS, sympathetic nervous system
- VF, ventricular fibrillation
- VNS, vagal nerve stimulation
- VT, ventricular tachycardia
- arrhythmia
- atrial fibrillation
- autonomic nervous system
- ganglionated plexi
- neuromodulation
- ventricular arrhythmias
Collapse
Affiliation(s)
- Nathan H Waldron
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Jonathan P Piccini
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
224
|
Agetsuma M, Hamm JP, Tao K, Fujisawa S, Yuste R. Parvalbumin-Positive Interneurons Regulate Neuronal Ensembles in Visual Cortex. Cereb Cortex 2019; 28:1831-1845. [PMID: 29106504 DOI: 10.1093/cercor/bhx169] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/16/2017] [Indexed: 01/20/2023] Open
Abstract
For efficient cortical processing, neural circuit dynamics must be spatially and temporally regulated with great precision. Although parvalbumin-positive (PV) interneurons can control network synchrony, it remains unclear how they contribute to spatio-temporal patterning of activity. We investigated this by optogenetic inactivation of PV cells with simultaneous two-photon Ca2+ imaging from populations of neurons in mouse visual cortex in vivo. For both spontaneous and visually evoked activity, PV interneuron inactivation decreased network synchrony. But, interestingly, the response reliability and spatial extent of coactive neuronal ensembles during visual stimulation were also disrupted by PV-cell suppression, which reduced the functional repertoire of ensembles. Thus, PV interneurons can control the spatio-temporal dynamics of multineuronal activity by functionally sculpting neuronal ensembles and making them more different from each other. In doing so, inhibitory circuits could help to orthogonalize multicellular patterns of activity, enabling neural circuits to more efficiently occupy a higher dimensional space of potential dynamics.
Collapse
Affiliation(s)
- Masakazu Agetsuma
- Neurotechnology Center, Department of Biological Sciences, Columbia University, 550 West 120 Street, Box 4822, New York, NY 10027, USA.,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.,National Institute for Physiological Sciences, Division of Homeostatic Development, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Jordan P Hamm
- Neurotechnology Center, Department of Biological Sciences, Columbia University, 550 West 120 Street, Box 4822, New York, NY 10027, USA
| | - Kentaro Tao
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama351-0106, Japan
| | | | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, 550 West 120 Street, Box 4822, New York, NY 10027, USA
| |
Collapse
|
225
|
Oppermann J, Fischer P, Silapetere A, Liepe B, Rodriguez-Rozada S, Flores-Uribe J, Schiewer E, Keidel A, Vierock J, Kaufmann J, Broser M, Luck M, Bartl F, Hildebrandt P, Wiegert JS, Béjà O, Hegemann P, Wietek J. MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat Commun 2019; 10:3315. [PMID: 31346176 PMCID: PMC6658528 DOI: 10.1038/s41467-019-11322-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023] Open
Abstract
Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. ChRs desensitize under continuous bright-light illumination, resulting in a significant decline of photocurrents. Here we describe a metagenomically identified family of phylogenetically distinct anion-conducting ChRs (designated MerMAIDs). MerMAIDs almost completely desensitize during continuous illumination due to accumulation of a late non-conducting photointermediate that disrupts the ion permeation pathway. MerMAID desensitization can be fully explained by a single photocycle in which a long-lived desensitized state follows the short-lived conducting state. A conserved cysteine is the critical factor in desensitization, as its mutation results in recovery of large stationary photocurrents. The rapid desensitization of MerMAIDs enables their use as optogenetic silencers for transient suppression of individual action potentials without affecting subsequent spiking during continuous illumination. Our results could facilitate the development of optogenetic tools from metagenomic databases and enhance general understanding of ChR function.
Collapse
Affiliation(s)
- Johannes Oppermann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Paul Fischer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Arita Silapetere
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Bernhard Liepe
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - José Flores-Uribe
- Technion-Israel Institute of Technology, 32000, Haifa, Israel
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Enrico Schiewer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Anke Keidel
- Institute for Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Joel Kaufmann
- Institute for Biology, Biophysical Chemistry, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Meike Luck
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Franz Bartl
- Institute for Biology, Biophysical Chemistry, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Peter Hildebrandt
- Institute for Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Oded Béjà
- Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
| | - Jonas Wietek
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
- Department of Neurobiology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
226
|
Glasgow SD, McPhedrain R, Madranges JF, Kennedy TE, Ruthazer ES. Approaches and Limitations in the Investigation of Synaptic Transmission and Plasticity. Front Synaptic Neurosci 2019; 11:20. [PMID: 31396073 PMCID: PMC6667546 DOI: 10.3389/fnsyn.2019.00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
The numbers and strengths of synapses in the brain change throughout development, and even into adulthood, as synaptic inputs are added, eliminated, and refined in response to ongoing neural activity. A number of experimental techniques can assess these changes, including single-cell electrophysiological recording which offers measurements of synaptic inputs with high temporal resolution. Coupled with electrical stimulation, photoactivatable opsins, and caged compounds, to facilitate fine spatiotemporal control over release of neurotransmitters, electrophysiological recordings allow for precise dissection of presynaptic and postsynaptic mechanisms of action. Here, we discuss the strengths and pitfalls of various techniques commonly used to analyze synapses, including miniature excitatory/inhibitory (E/I) postsynaptic currents, evoked release, and optogenetic stimulation. Together, these techniques can provide multiple lines of convergent evidence to generate meaningful insight into the emergence of circuit connectivity and maturation. A full understanding of potential caveats and alternative explanations for findings is essential to avoid data misinterpretation.
Collapse
Affiliation(s)
| | | | | | | | - Edward S. Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
227
|
Bajo VM, Nodal FR, Korn C, Constantinescu AO, Mann EO, Boyden ES, King AJ. Silencing cortical activity during sound-localization training impairs auditory perceptual learning. Nat Commun 2019; 10:3075. [PMID: 31300665 PMCID: PMC6625986 DOI: 10.1038/s41467-019-10770-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
The brain has a remarkable capacity to adapt to changes in sensory inputs and to learn from experience. However, the neural circuits responsible for this flexible processing remain poorly understood. Using optogenetic silencing of ArchT-expressing neurons in adult ferrets, we show that within-trial activity in primary auditory cortex (A1) is required for training-dependent recovery in sound-localization accuracy following monaural deprivation. Because localization accuracy under normal-hearing conditions was unaffected, this highlights a specific role for cortical activity in learning. A1-dependent plasticity appears to leave a memory trace that can be retrieved, facilitating adaptation during a second period of monaural deprivation. However, in ferrets in which learning was initially disrupted by perturbing A1 activity, subsequent optogenetic suppression during training no longer affected localization accuracy when one ear was occluded. After the initial learning phase, the reweighting of spatial cues that primarily underpins this plasticity may therefore occur in A1 target neurons.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - Fernando R Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Clio Korn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,UCSF School of Medicine, San Francisco, CA, 94143-0410, USA
| | - Alexandra O Constantinescu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Edward S Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
228
|
Luo L, Callaway EM, Svoboda K. Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron 2019; 98:256-281. [PMID: 29673479 DOI: 10.1016/j.neuron.2018.03.040] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/24/2023]
Abstract
Tremendous progress has been made since Neuron published our Primer on genetic dissection of neural circuits 10 years ago. Since then, cell-type-specific anatomical, neurophysiological, and perturbation studies have been carried out in a multitude of invertebrate and vertebrate organisms, linking neurons and circuits to behavioral functions. New methods allow systematic classification of cell types and provide genetic access to diverse neuronal types for studies of connectivity and neural coding during behavior. Here we evaluate key advances over the past decade and discuss future directions.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
229
|
Chen G, Zhang Y, Li X, Zhao X, Ye Q, Lin Y, Tao HW, Rasch MJ, Zhang X. Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations. Neuron 2019; 96:1403-1418.e6. [PMID: 29268099 DOI: 10.1016/j.neuron.2017.11.033] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/25/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022]
Abstract
Distinct subtypes of inhibitory interneuron are known to shape diverse rhythmic activities in the cortex, but how they interact to orchestrate specific band activity remains largely unknown. By recording optogenetically tagged interneurons of specific subtypes in the primary visual cortex of behaving mice, we show that spiking of somatostatin (SOM)- and parvalbumin (PV)-expressing interneurons preferentially correlates with cortical beta and gamma band oscillations, respectively. Suppression of SOM cell spiking reduces the spontaneous low-frequency band (<30-Hz) oscillations and selectively reduces visually induced enhancement of beta oscillation. In comparison, suppressing PV cell activity elevates the synchronization of spontaneous activity across a broad frequency range and further precludes visually induced changes in beta and gamma oscillations. Rhythmic activation of SOM and PV cells in the local circuit entrains resonant activity in the narrow 5- to 30-Hz band and the wide 20- to 80-Hz band, respectively. Together, these findings reveal differential and cooperative roles of SOM and PV inhibitory neurons in orchestrating specific cortical oscillations.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiang Li
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaochen Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Ye
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yingxi Lin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Malte J Rasch
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
230
|
Abstract
Neuroimmune interaction is an emerging concept, wherein the nervous system modulates the immune system and vice versa. This concept is gaining attention as a novel therapeutic target in various inflammatory diseases including acute kidney injury (AKI). Vagus nerve stimulation or treatment with pulsed ultrasound activates the cholinergic anti-inflammatory pathway to prevent AKI in mice. The kidneys are innervated by sympathetic efferent and sensory afferent neurons, and these neurons also may play a role in the modulation of inflammation in AKI. In this review, we discuss several neural circuits with respect to the control of renal inflammation and AKI as well as optogenetics as a novel tool for understanding these complex neural circuits.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA.
| |
Collapse
|
231
|
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10:724. [PMID: 31312139 PMCID: PMC6613496 DOI: 10.3389/fphar.2019.00724] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Neurological disorders affecting the central nervous system (CNS) are still incompletely understood. Many of these disorders lack a cure and are seeking more specific and effective treatments. In fact, in spite of advancements in knowledge of the CNS function, the treatment of neurological disorders with modern medical and surgical approaches remains difficult for many reasons, such as the complexity of the CNS, the limited regenerative capacity of the tissue, and the difficulty in conveying conventional drugs to the organ due to the blood-brain barrier. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. Gene therapy can result in a stable or inducible expression of transgene(s), and can allow a nearly specific expression in target cells. In this review, we will discuss the most commonly used tools for the delivery of genetic material in the CNS, including viral and non-viral vectors; their main applications; their advantages and disadvantages. We will discuss mechanisms of genetic regulation through cell-specific and inducible promoters, which allow to express gene products only in specific cells and to control their transcriptional activation. In addition, we will describe the applications to CNS diseases of post-transcriptional regulation systems (RNA interference); of systems allowing spatial or temporal control of expression [optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)]; and of gene editing technologies (CRISPR/Cas9, Zinc finger proteins). Particular attention will be reserved to viral vectors derived from herpes simplex type 1, a potential tool for the delivery and expression of multiple transgene cassettes simultaneously.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Gianluca Verlengia
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukupova
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
232
|
Jiang C, Li HT, Zhou YM, Wang X, Wang L, Liu ZQ. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace 2019; 20:1741-1749. [PMID: 29253159 DOI: 10.1093/europace/eux345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Optogenetics is a cell-type specific and high spatial-temporal resolution method that combines genetic encoding of light-sensitive proteins and optical manipulation techniques. Optogenetics technology provides a novel approach for research on cardiac arrhythmia treatment, including pacing, recovering the conduction system, and achieving cardiac resynchronization with precise and low-energy optical control. Photosensitive proteins, which usually act as ion channels, pumps, or receptors, are delivered to target cells, where they respond to light pulses of specific wavelengths, evoke transient flows of transmembrane ion currents, and induce signal transmission. With the development of gene technology, the in vivo efficiency of optogenetics in cardiology has been trialed, and in vitro experiments have been performed to test its potential in cardiac electrophysiology. Challenges for applying optogenetics in large animals and humans include the effectiveness, safety, and long-term expression of photosensitive proteins, unscattered and unattenuated exogenous light stimulation, and the need for implantable miniature light stimulators. Photosensitive proteins, genetic engineering technology, and light equipment are essential for experiments in cardiac optogenetics. Optogenetics may provide an alternative method for evaluating the mechanism of cardiac arrhythmias, testing hypotheses, and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hai Tao Li
- Department of Cardiology, Hainan General Hospital, Haikou, PR China
| | - Yong Ming Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zi Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
233
|
|
234
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
235
|
Becker MI, Person AL. Cerebellar Control of Reach Kinematics for Endpoint Precision. Neuron 2019; 103:335-348.e5. [PMID: 31174960 DOI: 10.1016/j.neuron.2019.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 02/15/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The cerebellum is well appreciated to impart speed, smoothness, and precision to skilled movements such as reaching. How these functions are executed by the final output stage of the cerebellum, the cerebellar nuclei, remains unknown. Here, we identify a causal relationship between cerebellar output and mouse reach kinematics and show how that relationship is leveraged endogenously to enhance reach precision. Activity in the anterior interposed nucleus (IntA) was remarkably well aligned to reach endpoint, scaling with the magnitude of limb deceleration. Closed-loop optogenetic modulation of IntA activity, triggered on reach, supported a causal role for this activity in controlling reach velocity in real time. Relating endogenous neural variability to kinematic variability, we found that IntA endpoint activity is adaptively engaged relative to variations in initial reach velocity, supporting endpoint precision. Taken together, these results provide a framework for understanding the physiology and pathophysiology of the intermediate cerebellum during precise skilled movements.
Collapse
Affiliation(s)
- Matthew I Becker
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Abigail L Person
- Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
236
|
Grosenick L, Shi TC, Gunning FM, Dubin MJ, Downar J, Liston C. Functional and Optogenetic Approaches to Discovering Stable Subtype-Specific Circuit Mechanisms in Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:554-566. [PMID: 31176387 PMCID: PMC6788795 DOI: 10.1016/j.bpsc.2019.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previously, we identified four depression subtypes defined by distinct functional connectivity alterations in depression-related brain networks, which in turn predicted clinical symptoms and treatment response. Optogenetic functional magnetic resonance imaging offers a promising approach for testing how dysfunction in specific circuits gives rise to subtype-specific, depression-related behaviors. However, this approach assumes that there are robust, reproducible correlations between functional connectivity and depressive symptoms-an assumption that was not extensively tested in previous work. METHODS First, we comprehensively reevaluated the stability of canonical correlations between functional connectivity and symptoms (N = 220 subjects) using optimized approaches for large-scale statistical hypothesis testing, and we validated methods for improving estimation of latent variables driving brain-behavior correlations. Having confirmed this necessary condition, we reviewed recent advances in optogenetic functional magnetic resonance imaging and illustrated one approach to formulating hypotheses regarding latent subtype-specific circuit mechanisms and testing them in animal models. RESULTS Correlations between connectivity features and clinical symptoms were robustly significant, and canonical correlation analysis solutions tested repeatedly on held-out data generalized. However, they were sensitive to data quality, preprocessing, and clinical heterogeneity, which can reduce effect sizes. Generalization could be markedly improved by adding L2 regularization, which decreased estimator variance, increased canonical correlations in left-out data, and stabilized feature selection. These improvements were useful for identifying candidate circuits for optogenetic interrogation in animal models. CONCLUSIONS Multiview, latent-variable approaches such as canonical correlation analysis offer a conceptually useful framework for discovering stable patient subtypes by synthesizing multiple clinical and functional measures. Optogenetic functional magnetic resonance imaging holds promise for testing hypotheses regarding latent, subtype-specific mechanisms driving depressive symptoms and behaviors.
Collapse
Affiliation(s)
- Logan Grosenick
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York; Department of Statistics, Columbia University, New York, New York; Simons Foundation, New York, New York
| | - Tracey C Shi
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Faith M Gunning
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Marc J Dubin
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Jonathan Downar
- Department of Psychiatry, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Conor Liston
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
237
|
Shibukawa A, Kojima K, Nakajima Y, Nishimura Y, Yoshizawa S, Sudo Y. Photochemical Characterization of a New Heliorhodopsin from the Gram-Negative Eubacterium Bellilinea caldifistulae (BcHeR) and Comparison with Heliorhodopsin-48C12. Biochemistry 2019; 58:2934-2943. [DOI: 10.1021/acs.biochem.9b00257] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yu Nakajima
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8563, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
238
|
Yamanashi T, Maki M, Kojima K, Shibukawa A, Tsukamoto T, Chowdhury S, Yamanaka A, Takagi S, Sudo Y. Quantitation of the neural silencing activity of anion channelrhodopsins in Caenorhabditis elegans and their applicability for long-term illumination. Sci Rep 2019; 9:7863. [PMID: 31133660 PMCID: PMC6536681 DOI: 10.1038/s41598-019-44308-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/14/2019] [Indexed: 11/15/2022] Open
Abstract
Ion pumps and channels are responsible for a wide variety of biological functions. Ion pumps transport only one ion during each stimulus-dependent reaction cycle, whereas ion channels conduct a large number of ions during each cycle. Ion pumping rhodopsins such as archaerhodopsin-3 (Arch) are often utilized as light-dependent neural silencers in animals, but they require a high-density light illumination of around 1 mW/mm2. Recently, anion channelrhodopsins -1 and -2 (GtACR1 and GtACR2) were discovered as light-gated anion channels from the cryptophyte algae Guillardia theta. GtACRs are therefore expected to silence neural activity much more efficiently than Arch. In this study, we successfully expressed GtACRs in neurons of the nematode Caenorhabditis elegans (C. elegans) and quantitatively evaluated how potently GtACRs can silence neurons in freely moving C. elegans. The results showed that the light intensity required for GtACRs to cause locomotion paralysis was around 1 µW/mm2, which is three orders of magnitude smaller than the light intensity required for Arch. As attractive features, GtACRs are less harmfulness to worms and allow stable neural silencing effects under long-term illumination. Our findings thus demonstrate that GtACRs possess a hypersensitive neural silencing activity in C. elegans and are promising tools for long-term neural silencing.
Collapse
Affiliation(s)
- Taro Yamanashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Misayo Maki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tsukamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.,Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Shin Takagi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
239
|
Gepstein L, Gruber A. Optogenetic Neuromodulation of the Heart. J Am Coll Cardiol 2019; 70:2791-2794. [PMID: 29191328 DOI: 10.1016/j.jacc.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Lior Gepstein
- Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel; Cardiology Department, Rambam Health Care Campus, Haifa, Israel.
| | - Amit Gruber
- Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
240
|
Wang Y, Chen Z. An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol Ther 2019; 201:77-93. [PMID: 31128154 DOI: 10.1016/j.pharmthera.2019.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Epilepsy involves neuronal dysfunction at molecular, cellular, and circuit levels. The understanding of the mechanism of the epilepsies has advanced greatly in the last three decades, especially in terms of their cellular and molecular basis. However, despite the availability of ~30 anti-epileptic drugs (AEDs) with diverse molecular targets, there are still many challenges (e.g. drug resistance, side effects) in pharmacological treatment of epilepsies today. Because molecular mechanisms are integrated at the level of neuronal circuits, we suggest a shift in epilepsy treatment and research strategies from the "molecular" level to the "circuit" level. Recent technological advances have facilitated circuit mechanistic discovery at each level and have paved the way for many opportunities of novel therapeutic strategies and AED development toward precise circuit therapy.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Pharmacology and Toxicology, Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
241
|
Han HW, Ko LN, Yang CS, Hsu SH. Potential of Engineered Bacteriorhodopsins as Photoactivated Biomaterials in Modulating Neural Stem Cell Behavior. ACS Biomater Sci Eng 2019; 5:3068-3078. [PMID: 33405539 DOI: 10.1021/acsbiomaterials.9b00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacteriorhodopsin (BR), a light-sensitive bacterial proton pump, has been demonstrated the capacity for regulating the neural activity in mammalian cells. Because of the difficulty in production and purification in large quantities, the BR proteins have neither been directly employed to biomedical applications nor verified the functionality by protein administration. Previously, we have invented a highly expressible bacteriorhodopsin (HEBR) and established the massive production protocol. In the current study, we mass-produced the two types of HEBR proteins that have normal or abnormal activity on the proton pumping, and then we treated murine neural stem cells (NSCs) with these HEBR proteins. We discovered that the cell behaviors including growth, metabolism, mitochondrial inner membrane potential, and differentiation were obviously affected in NSCs after the treatment of HEBR proteins. Particularly, these effects induced by HEBR proteins were correlated to their proton pump activity and could be altered by cell culture substrate materials. Current findings suggest that the engineered light-sensitive HEBR protein can serve as a biological material to directly influence the multiple behaviors of mammalian cells, which is further modified by the cell culture substrate material, revealing the versatile potential of HEBR protein in biomaterial applications.
Collapse
Affiliation(s)
| | | | | | - Shan-Hui Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Zhunan, Miaoli County, Taiwan 35053, R.O.C
| |
Collapse
|
242
|
Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. J Phys Chem B 2019; 123:4242-4250. [PMID: 30998011 PMCID: PMC6526469 DOI: 10.1021/acs.jpcb.9b01136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Microbial rhodopsins
constitute a key protein family in optobiotechnological
applications such as optogenetics and voltage imaging. Spectral tuning
of rhodopsins into the deep-red and near-infrared spectral regions
is of great demand in such applications because more bathochromic
light into the near-infrared range penetrates deeper in living tissue.
Recently, retinal analogues have been successfully used in ion transporting
and fluorescent rhodopsins to achieve red-shifted absorption, activity,
and emission properties. Understanding their photochemical mechanism
is essential for further design of appropriate retinal analogues but
is yet only poorly understood for most retinal analogue pigments.
Here, we report the photoreaction dynamics of red-shifted analogue
pigments of the proton pump proteorhodopsin (PR) containing A2 (all-trans-3,4-dehydroretinal), MOA2 (all-trans-3-methoxy-3,4-dehydroretinal), or DMAR (all-trans-3-dimethylamino-16-nor-1,2,3,4-didehydroretinal), utilizing femto-
to submillisecond transient absorption spectroscopy. We found that
the A2 analogue photoisomerizes in 1.4, 3.0, and/or 13 ps upon 510
nm light illumination, which is comparable to the native retinal (A1)
in PR. On the other hand, the deprotonation of the A2 pigment Schiff
base was observed with a dominant time constant of 67 μs, which
is significantly slower than the A1 pigment. In the MOA2 pigment,
no isomerization or photoproduct formation was detected upon 520 nm
excitation, implying that all the excited molecules returned to the
initial ground state in 2.0 and 4.2 ps. The DMAR pigment showed very
slow excited state dynamics similar to the previously studied MMAR
pigment, but only very little photoproduct was formed. The low efficiency
of the photoproduct formation likely is the reason why DMAR analogue
pigments of PR showed very weak proton pumping activity.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Srividya Ganapathy
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands
| | - Sean Frehan
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Miroslav Kloz
- ELI-Beamlines , Institute of Physics , Na Slovance 2 , Praha 8 182 21 , Czech Republic
| | - Willem J de Grip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands.,Department of Biochemistry , Radboud University Medical Center , Nijmegen 6500 HB , The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| |
Collapse
|
243
|
Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 2019; 569:413-417. [PMID: 31043747 PMCID: PMC6613938 DOI: 10.1038/s41586-019-1166-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
A technology to record membrane potential from multiple neurons, simultaneously, in behaving animals will have a transformative impact on neuroscience research1, 2. Genetically encoded voltage indicators are a promising tool for these purposes, but were so far limited to single-cell recordings with marginal signal to noise ratio (SNR) in vivo3-5. We developed improved near infrared voltage indicators, high speed microscopes and targeted gene expression schemes which enabled recordings of supra- and subthreshold voltage dynamics from multiple neurons simultaneously in mouse hippocampus, in vivo. The reporters revealed sub-cellular details of back-propagating action potentials and correlations in sub-threshold voltage between multiple cells. In combination with optogenetic stimulation, the reporters revealed brain state-dependent changes in neuronal excitability, reflecting the interplay of excitatory and inhibitory synaptic inputs. These tools open the possibility for detailed explorations of network dynamics in the context of behavior.
Collapse
|
244
|
Muir J, Lopez J, Bagot RC. Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression. Neuropsychopharmacology 2019; 44:1013-1026. [PMID: 30555161 PMCID: PMC6461994 DOI: 10.1038/s41386-018-0291-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
The advent of optogenetics and chemogenetics has revolutionized the study of neural circuit mechanisms of behavioral dysregulation in psychiatric disease. These powerful technologies allow manipulation of specific neurons to determine causal relationships between neuronal activity and behavior. Optogenetic tools have been key to mapping the circuitry underlying depression-like behavior in animal models, clarifying the contribution of the ventral tegmental area, nucleus accumbens, medial prefrontal cortex, ventral hippocampus, and other limbic areas, to stress susceptibility. In comparison, chemogenetics have been relatively underutilized, despite offering unique advantages for probing long-term effects of manipulating neuronal activity. The ongoing development of optogenetic tools to probe in vivo function of ever-more specific circuits, combined with greater integration of chemogenetic tools and recent advances in vivo imaging techniques will continue to advance our understanding of the circuit mechanisms of depression.
Collapse
Affiliation(s)
- Jessie Muir
- 0000 0004 1936 8649grid.14709.3bIntegrated Program in Neuroscience, McGill University, Montréal, QC Canada
| | - Joëlle Lopez
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychology, McGill University, Montréal, QC Canada
| | - Rosemary C. Bagot
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychology, McGill University, Montréal, QC Canada ,Ludmer Center for Neuroinformatics and Mental Health, Montréal, QC Canada
| |
Collapse
|
245
|
Zucca S, Pasquale V, Lagomarsino de Leon Roig P, Panzeri S, Fellin T. Thalamic Drive of Cortical Parvalbumin-Positive Interneurons during Down States in Anesthetized Mice. Curr Biol 2019; 29:1481-1490.e6. [PMID: 31031117 PMCID: PMC6509281 DOI: 10.1016/j.cub.2019.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Up and down states are among the most prominent features of the thalamo-cortical system during non-rapid eye movement (NREM) sleep and many forms of anesthesia. Cortical interneurons, including parvalbumin (PV) cells, display firing activity during cortical down states, and this GABAergic signaling is associated with prolonged down-state durations. However, what drives PV interneurons to fire during down states remains unclear. We here tested the hypothesis that background thalamic activity may lead to suprathreshold activation of PV cells during down states. To this aim, we performed two-photon guided juxtasomal recordings from PV interneurons in the barrel field of the somatosensory cortex (S1bf) of anesthetized mice, while simultaneously collecting the local field potential (LFP) in S1bf and the multi-unit activity (MUA) in the ventral posteromedial (VPM) thalamic nucleus. We found that activity in the VPM was associated with longer down-state duration in S1bf and that down states displaying PV cell firing were associated with increased VPM activity. Moreover, thalamic inhibition through application of muscimol reduced the fraction of spikes discharged by PV cells during cortical down states. Finally, we inhibited PV interneurons using optogenetics during down states while monitoring cortical LFP under control conditions and after thalamic muscimol injection. We found increased latency of the optogenetically triggered down-to-up transitions upon thalamic pharmacological blockade compared to controls. These findings demonstrate that spontaneous thalamic activity inhibits cortex during down states through the activation of PV interneurons.
Collapse
Affiliation(s)
- Stefano Zucca
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Valentina Pasquale
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pedro Lagomarsino de Leon Roig
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems at UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
246
|
Funken M, Malan D, Sasse P, Bruegmann T. Optogenetic Hyperpolarization of Cardiomyocytes Terminates Ventricular Arrhythmia. Front Physiol 2019; 10:498. [PMID: 31105593 PMCID: PMC6491897 DOI: 10.3389/fphys.2019.00498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 01/04/2023] Open
Abstract
Cardiac defibrillation to terminate lethal ventricular arrhythmia (VA) is currently performed by applying high energy electrical shocks. In cardiac tissue, electrical shocks induce simultaneously de- and hyperpolarized areas and only depolarized areas are considered to be responsible for VA termination. Because electrical shocks do not allow proper control over spatial extent and level of membrane potential changes, the effects of hyperpolarization have not been explored in the intact heart. In contrast, optogenetic methods allow cell type-selective induction of de- and hyperpolarization with unprecedented temporal and spatial control. To investigate effects of cardiomyocyte hyperpolarization on VA termination, we generated a mouse line with cardiomyocyte-specific expression of the light-driven proton pump ArchT. Isolated cardiomyocytes showed light-induced outward currents and hyperpolarization. Free-running VA were evoked by electrical stimulation of explanted hearts perfused with low K+ and the KATP channel opener Pinacidil. Optogenetic hyperpolarization was induced by epicardial illumination, which terminated VA with an average efficacy of ∼55%. This value was significantly higher compared to control hearts without illumination or ArchT expression (p = 0.0007). Intracellular recordings with sharp electrodes within the intact heart revealed hyperpolarization and faster action potential upstroke upon illumination, which should fasten conduction. However, conduction speed was lower during illumination suggesting enhanced electrical sink by hyperpolarization underlying VA termination. Thus, selective hyperpolarization in cardiomyocytes is able to terminate VA with a completely new mechanism of increased electrical sink. These novel insights could improve our mechanistic understanding and treatment strategies of VA termination.
Collapse
Affiliation(s)
- Maximilian Funken
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany.,Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Daniela Malan
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany.,Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
247
|
Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F. A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep. Neuron 2019; 102:1053-1065.e4. [PMID: 31006556 DOI: 10.1016/j.neuron.2019.03.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
How general anesthesia (GA) induces loss of consciousness remains unclear, and whether diverse anesthetic drugs and sleep share a common neural pathway is unknown. Previous studies have revealed that many GA drugs inhibit neural activity through targeting GABA receptors. Here, using Fos staining, ex vivo brain slice recording, and in vivo multi-channel electrophysiology, we discovered a core ensemble of hypothalamic neurons in and near the supraoptic nucleus, consisting primarily of neuroendocrine cells, which are persistently and commonly activated by multiple classes of GA drugs. Remarkably, chemogenetic or brief optogenetic activations of these anesthesia-activated neurons (AANs) strongly promote slow-wave sleep and potentiates GA, whereas conditional ablation or inhibition of AANs led to diminished slow-wave oscillation, significant loss of sleep, and shortened durations of GA. These findings identify a common neural substrate underlying diverse GA drugs and natural sleep and reveal a crucial role of the neuroendocrine system in regulating global brain states. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luping Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vincent Prevosto
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
248
|
Wang MH, Gu XW, Ji BW, Wang LC, Guo ZJ, Yang B, Wang XL, Li CY, Liu JQ. Three-dimensional drivable optrode array for high-resolution neural stimulations and recordings in multiple brain regions. Biosens Bioelectron 2019; 131:9-16. [PMID: 30797109 DOI: 10.1016/j.bios.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/28/2018] [Accepted: 01/14/2019] [Indexed: 11/18/2022]
Abstract
The brain-computer interface (BCI) devices are of prime important for study of nervous system as well as diagnosis and treatment of neurological disorders. To meet the needs of the BCI devices in high-density integration and multi-functionalization, 3-dimensional (3D) drivable optrode array with laser diodes (LDs) coupled waveguides was developed. The unique device realizes the 3D integration of the optrodes and avoids fiber tangle and tissue heating by adopting LD coupled waveguide structure. Besides, the postoperative position adjustment of the optrode array was achieved by integrating with a 3D printed micro-drive. Most importantly, high-resolution neural stimulations and recordings were achieved for study of working memory related neural circuits in four brain regions of mice including prelimbic cortex (PrL), mediodorsal thalamic nucleus (MD), dorsal medial caudate nucleus (dmCP) and posterior motor cortex 2 (pM2). The results indicate that this novel device is promising for the research of complex neural networks.
Collapse
Affiliation(s)
- Ming-Hao Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiao-Wei Gu
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; University of Chinese Academy of Sciences, Peking, PR China
| | - Bo-Wen Ji
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Long-Chun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhe-Jun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiao-Lin Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Cheng-Yu Li
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; University of Chinese Academy of Sciences, Peking, PR China
| | - Jing-Quan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Collaborative Innovation Center of IFSA, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
249
|
Wang X, Chou X, Peng B, Shen L, Huang JJ, Zhang LI, Tao HW. A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta. eLife 2019; 8:42728. [PMID: 30985276 PMCID: PMC6486150 DOI: 10.7554/elife.42728] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/14/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to adjust defensive behavior is critical for animal survival in dynamic environments. However, neural circuits underlying the modulation of innate defensive behavior remain not well-understood. In particular, environmental threats are commonly associated with cues of multiple sensory modalities. It remains to be investigated how these modalities interact to shape defensive behavior. In this study, we report that auditory-induced defensive flight behavior can be facilitated by somatosensory input in mice. This cross-modality modulation of defensive behavior is mediated by the projection from the primary somatosensory cortex (SSp) to the ventral sector of zona incerta (ZIv). Parvalbumin (PV)-positive neurons in ZIv, receiving direct input from SSp, mediate the enhancement of the flight behavior via their projections to the medial posterior complex of thalamus (POm). Thus, defensive flight can be enhanced in a somatosensory context-dependent manner via recruiting PV neurons in ZIv, which may be important for increasing survival of prey animals.
Collapse
Affiliation(s)
- Xiyue Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Neuroscience, University of Southern California, Los Angeles, United States
| | - Xiaolin Chou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Neuroscience, University of Southern California, Los Angeles, United States
| | - Bo Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Neuroscience, University of Southern California, Los Angeles, United States
| | - Li Shen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, United States
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, United States
| |
Collapse
|
250
|
Panzer S, Brych A, Batschauer A, Terpitz U. Opsin 1 and Opsin 2 of the Corn Smut Fungus Ustilago maydis Are Green Light-Driven Proton Pumps. Front Microbiol 2019; 10:735. [PMID: 31024506 PMCID: PMC6467936 DOI: 10.3389/fmicb.2019.00735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/25/2019] [Indexed: 01/19/2023] Open
Abstract
In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis.
Collapse
Affiliation(s)
- Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Annika Brych
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| |
Collapse
|