201
|
Baker M, Hong SI, Kang S, Choi DS. Rodent models for psychiatric disorders: problems and promises. Lab Anim Res 2020; 36:9. [PMID: 32322555 PMCID: PMC7161141 DOI: 10.1186/s42826-020-00039-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/03/2020] [Indexed: 01/19/2023] Open
Abstract
Psychiatric disorders are a prevalent global health problem, over 900 million individuals affected by a continuum of mental and substance use disorders. Due to this high prevalence, and the substantial direct and indirect societal costs, it is essential to understand the underlying mechanisms of these disorders to facilitate development of new and more effective treatments. Since the advent of recombinant DNA technologies in the early 1980s, genetically modified rodent models have significantly contributed to the genetic and molecular basis of psychiatric disorders. Despite significant advancements, many challenges remain after unsuccessful drug development based on rodent models. Recent human genetics show the polygenetic nature of mental disorders, identifying hundreds of allelic variants that confer increased risk. However, given the complexity of the brain, with many unique cell types, gene expression profiles, and developmental trajectories, proper animal models are needed more than ever to dissect genes and circuits in a cell type-specific manner to advance our understanding and treatment of psychiatric disorders. In this mini-review, we highlight current challenges and promises of using rodent models in advancing science and drug development, focusing on advanced techniques, and their applications to rodent models of psychiatric disorders.
Collapse
Affiliation(s)
- Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
- Neuroscience Program, Rochester, MN USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN USA
| |
Collapse
|
202
|
Berry BJ, Trewin AJ, Milliken AS, Baldzizhar A, Amitrano AM, Lim Y, Kim M, Wojtovich AP. Optogenetic control of mitochondrial protonmotive force to impact cellular stress resistance. EMBO Rep 2020; 21:e49113. [PMID: 32043300 PMCID: PMC7132214 DOI: 10.15252/embr.201949113] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/26/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial respiration generates an electrochemical proton gradient across the mitochondrial inner membrane called protonmotive force (PMF) to drive diverse functions and synthesize ATP. Current techniques to manipulate the PMF are limited to its dissipation; yet, there is no precise and reversible method to increase the PMF. To address this issue, we aimed to use an optogenetic approach and engineered a mitochondria-targeted light-activated proton pump that we name mitochondria-ON (mtON) to selectively increase the PMF in Caenorhabditis elegans. Here we show that mtON photoactivation increases the PMF in a dose-dependent manner, supports ATP synthesis, increases resistance to mitochondrial toxins, and modulates energy-sensing behavior. Moreover, transient mtON activation during hypoxic preconditioning prevents the well-characterized adaptive response of hypoxia resistance. Our results show that optogenetic manipulation of the PMF is a powerful tool to modulate metabolism and cell signaling.
Collapse
Affiliation(s)
- Brandon J Berry
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Adam J Trewin
- Department of Anesthesiology and Perioperative MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | - Alexander S Milliken
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Aksana Baldzizhar
- Department of Anesthesiology and Perioperative MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | - Andrea M Amitrano
- Department of PathologyUniversity of Rochester Medical CenterRochesterNYUSA
- Department of Microbiology and ImmunologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Yunki Lim
- Nephrology DivisionDepartment of MedicineSchool of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNYUSA
| | - Minsoo Kim
- Department of PathologyUniversity of Rochester Medical CenterRochesterNYUSA
- Department of Microbiology and ImmunologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Andrew P Wojtovich
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNYUSA
- Department of Anesthesiology and Perioperative MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| |
Collapse
|
203
|
Cooke JE, Kahn MC, Mann EO, King AJ, Schnupp JWH, Willmore BDB. Contrast gain control occurs independently of both parvalbumin-positive interneuron activity and shunting inhibition in auditory cortex. J Neurophysiol 2020; 123:1536-1551. [PMID: 32186432 PMCID: PMC7191518 DOI: 10.1152/jn.00587.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Contrast gain control is the systematic adjustment of neuronal gain in response to the contrast of sensory input. It is widely observed in sensory cortical areas and has been proposed to be a canonical neuronal computation. Here, we investigated whether shunting inhibition from parvalbumin-positive interneurons-a mechanism involved in gain control in visual cortex-also underlies contrast gain control in auditory cortex. First, we performed extracellular recordings in the auditory cortex of anesthetized male mice and optogenetically manipulated the activity of parvalbumin-positive interneurons while varying the contrast of the sensory input. We found that both activation and suppression of parvalbumin interneuron activity altered the overall gain of cortical neurons. However, despite these changes in overall gain, we found that manipulating parvalbumin interneuron activity did not alter the strength of contrast gain control in auditory cortex. Furthermore, parvalbumin-positive interneurons did not show increases in activity in response to high-contrast stimulation, which would be expected if they drive contrast gain control. Finally, we performed in vivo whole-cell recordings in auditory cortical neurons during high- and low-contrast stimulation and found that no increase in membrane conductance was observed during high-contrast stimulation. Taken together, these findings indicate that while parvalbumin-positive interneuron activity modulates the overall gain of auditory cortical responses, other mechanisms are primarily responsible for contrast gain control in this cortical area.NEW & NOTEWORTHY We investigated whether contrast gain control is mediated by shunting inhibition from parvalbumin-positive interneurons in auditory cortex. We performed extracellular and intracellular recordings in mouse auditory cortex while presenting sensory stimuli with varying contrasts and manipulated parvalbumin-positive interneuron activity using optogenetics. We show that while parvalbumin-positive interneuron activity modulates the gain of cortical responses, this activity is not the primary mechanism for contrast gain control in auditory cortex.
Collapse
Affiliation(s)
- James E Cooke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- University College London, London, United Kingdom
| | - Martin C Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jan W H Schnupp
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Ben D B Willmore
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
204
|
Assembly-Specific Disruption of Hippocampal Replay Leads to Selective Memory Deficit. Neuron 2020; 106:291-300.e6. [DOI: 10.1016/j.neuron.2020.01.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 01/16/2020] [Indexed: 01/14/2023]
|
205
|
Antinucci P, Dumitrescu A, Deleuze C, Morley HJ, Leung K, Hagley T, Kubo F, Baier H, Bianco IH, Wyart C. A calibrated optogenetic toolbox of stable zebrafish opsin lines. eLife 2020; 9:e54937. [PMID: 32216873 PMCID: PMC7170653 DOI: 10.7554/elife.54937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Optogenetic actuators with diverse spectral tuning, ion selectivity and kinetics are constantly being engineered providing powerful tools for controlling neural activity with subcellular resolution and millisecond precision. Achieving reliable and interpretable in vivo optogenetic manipulations requires reproducible actuator expression and calibration of photocurrents in target neurons. Here, we developed nine transgenic zebrafish lines for stable opsin expression and calibrated their efficacy in vivo. We first used high-throughput behavioural assays to compare opsin ability to elicit or silence neural activity. Next, we performed in vivo whole-cell electrophysiological recordings to quantify the amplitude and kinetics of photocurrents and test opsin ability to precisely control spiking. We observed substantial variation in efficacy, associated with differences in both opsin expression level and photocurrent characteristics, and identified conditions for optimal use of the most efficient opsins. Overall, our calibrated optogenetic toolkit will facilitate the design of controlled optogenetic circuit manipulations.
Collapse
Affiliation(s)
- Paride Antinucci
- Department of Neuroscience, Physiology & Pharmacology, UCLLondonUnited Kingdom
| | - Adna Dumitrescu
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Hôpital Pitié-SalpêtrièreParisFrance
| | - Charlotte Deleuze
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Hôpital Pitié-SalpêtrièreParisFrance
| | - Holly J Morley
- Department of Neuroscience, Physiology & Pharmacology, UCLLondonUnited Kingdom
| | - Kristie Leung
- Department of Neuroscience, Physiology & Pharmacology, UCLLondonUnited Kingdom
| | - Tom Hagley
- Department of Neuroscience, Physiology & Pharmacology, UCLLondonUnited Kingdom
| | - Fumi Kubo
- Center for Frontier Research, National Insitute of GeneticsMishimaJapan
- Department Genes – Circuits – Behavior, Max Planck Institute of NeurobiologyMartinsriedGermany
| | - Herwig Baier
- Department Genes – Circuits – Behavior, Max Planck Institute of NeurobiologyMartinsriedGermany
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, UCLLondonUnited Kingdom
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Hôpital Pitié-SalpêtrièreParisFrance
| |
Collapse
|
206
|
Bed nuclei of the stria terminalis modulate memory consolidation via glucocorticoid-dependent and -independent circuits. Proc Natl Acad Sci U S A 2020; 117:8104-8114. [PMID: 32193346 DOI: 10.1073/pnas.1915501117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There is extensive evidence that glucocorticoid hormones enhance memory consolidation, helping to ensure that emotionally significant events are well remembered. Prior findings suggest that the anteroventral region of bed nuclei of the stria terminalis (avBST) regulates glucocorticoid release, suggesting the potential for avBST activity to influence memory consolidation following an emotionally arousing learning event. To investigate this issue, male Sprague-Dawley rats underwent inhibitory avoidance training and repeated measurement of stress hormones, immediately followed by optogenetic manipulations of either the avBST or its projections to downstream regions, and 48 h later were tested for retention. The results indicate that avBST inhibition augmented posttraining pituitary-adrenal output and enhanced the memory for inhibitory avoidance training. Pretreatment with a glucocorticoid synthesis inhibitor blocked the memory enhancement as well as the potentiated corticosterone response, indicating the dependence of the memory enhancement on glucocorticoid release during the immediate posttraining period. In contrast, posttraining avBST stimulation decreased retention yet had no effect on stress hormonal output. Subsequent experiments revealed that inhibition of avBST input to the paraventricular hypothalamus enhanced stress hormonal output and subsequent retention, whereas stimulation did not affect either. Conversely, stimulation-but not inhibition-of avBST input to the ventrolateral periaqueductal gray impaired consolidation, whereas neither manipulation affected glucocorticoid secretion. These findings indicate that divergent pathways from the avBST are responsible for the mnemonic effects of avBST inhibition versus stimulation and do so via glucocorticoid-dependent and -independent mechanisms, respectively.
Collapse
|
207
|
Liang H, Guo Y, Shi Y, Peng X, Liang B, Chen B. A Light‐Responsive Metal–Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hong‐Qing Liang
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| | - Yi Guo
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Yanshu Shi
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Bin Liang
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| |
Collapse
|
208
|
Liang H, Guo Y, Shi Y, Peng X, Liang B, Chen B. A Light‐Responsive Metal–Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity. Angew Chem Int Ed Engl 2020; 59:7732-7737. [DOI: 10.1002/anie.202002389] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Hong‐Qing Liang
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| | - Yi Guo
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Yanshu Shi
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Bin Liang
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio San Antonio TX 78249 USA
| |
Collapse
|
209
|
Hososhima S, Shigemura S, Kandori H, Tsunoda SP. Novel optogenetics tool: Gt_CCR4, a light-gated cation channel with high reactivity to weak light. Biophys Rev 2020; 12:453-459. [PMID: 32166612 DOI: 10.1007/s12551-020-00676-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Optogenetics is a growing technique which allows manipulation of biological events simply by illumination. The technique is appreciated especially in the neuroscience field because of its availability in controlling neuronal functions. A light-gated cation channel, Cr_ChR2 from Chlamydomonas reinhardtii, is the first and mostly applied to optogenetics for activating neuronal excitability. In addition, the molecular mechanism of Cr_ChR2 has been intensively studied by electrophysiology, spectroscopy, X-ray structural studies, etc. Novel cation channelrhodopsins from Guillardia theta, namely, Gt_CCR1-4, were discovered in 2016 and 2017. These channelrhodopsins are more homologous to haloarchaeal rhodopsins, particularly the proton pumps. Thus these cryptophyte-type light-gated cation channels are structurally and mechanistically distinct from chlorophyte channelrhodopsin such as Cr_ChR2. We here compared the photocurrent properties, cation selectivity, and kinetics between well-known Cr_ChR2 and Gt_CCR4. The light sensitivity of Gt_CCR4 is significantly higher than that of Cr_ChR2, while the channel open lifetime is in the same range as that of Cr_ChR2. Gt_CCR4 shows high Na+ selectivity in which the selectivity ratio for Na+ was 37-fold larger than that for Cr_ChR2, which primarily conducts H+. On the other hand, Gt_CCR4 conducted almost no H+ and no Ca2+ under physiological conditions. Other unique features and the applicability of Gt_CCR4 for optogenetics were discussed.
Collapse
Affiliation(s)
- Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Shunta Shigemura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.,OptoBio Technology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan. .,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
210
|
Nucleus Accumbens Cell Type- and Input-Specific Suppression of Unproductive Reward Seeking. Cell Rep 2020; 30:3729-3742.e3. [DOI: 10.1016/j.celrep.2020.02.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/11/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
|
211
|
Abstract
Developments of new strategies to restore vision and improving on current strategies by harnessing new advancements in material and electrical sciences, and biological and genetic-based technologies are of upmost health priorities around the world. Federal and private entities are spending billions of dollars on visual prosthetics technologies. This review describes the most current and state-of-the-art bioengineering technologies to restore vision. This includes a thorough description of traditional electrode-based visual prosthetics that have improved substantially since early prototypes. Recent advances in molecular and synthetic biology have transformed vision-assisted technologies; For example, optogenetic technologies that introduce light-responsive proteins offer excellent resolution but cortical applications are restricted by fiber implantation and tissue damage. Other stimulation modalities, such as magnetic fields, have been explored to achieve non-invasive neuromodulation. Miniature magnetic coils are currently being developed to activate select groups of neurons. Magnetically-responsive nanoparticles or exogenous proteins can significantly enhance the coupling between external electromagnetic devices and any neurons affiliated with these modifications. The need to minimize cytotoxic effects for nanoparticle-based therapies will likely restrict the number of usable materials. Nevertheless, advances in identifying and utilizing proteins that respond to magnetic fields may lead to non-invasive, cell-specific stimulation and may overcome many of the limitations that currently exist with other methods. Finally, sensory substitution systems also serve as viable visual prostheses by converting visual input to auditory and somatosensory stimuli. This review also discusses major challenges in the field and offers bioengineering strategies to overcome those.
Collapse
Affiliation(s)
- Alexander Farnum
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
212
|
Kandori H. Biophysics of rhodopsins and optogenetics. Biophys Rev 2020; 12:355-361. [PMID: 32065378 DOI: 10.1007/s12551-020-00645-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 01/19/2023] Open
Abstract
Rhodopsins are photoreceptive proteins and key tools in optogenetics. Although rhodopsin was originally named as a red-colored pigment for vision, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins respectively possess 11-cis and all-trans retinal, respectively. As cofactors bound with their animal and microbial rhodopsin (seven transmembrane α-helices) environments, 11-cis and all-trans retinal undergo photoisomerization into all-trans and 13-cis retinal forms as part of their functional cycle. While animal rhodopsins are G protein coupled receptors, the function of microbial rhodopsins is highly divergent. Many of the microbial rhodopsins are able to transport ions in a passive or an active manner. These light-gated channels or light-driven pumps represent the main tools for respectively effecting neural excitation and silencing in the emerging field of optogenetics. In this article, the biophysics of rhodopsins and their relationship to optogenetics are reviewed. As history has proven, understanding the molecular mechanism of microbial rhodopsins is a prerequisite for their rational exploitation as the optogenetics tools of the future.
Collapse
|
213
|
Daviu N, Füzesi T, Rosenegger DG, Rasiah NP, Sterley TL, Peringod G, Bains JS. Paraventricular nucleus CRH neurons encode stress controllability and regulate defensive behavior selection. Nat Neurosci 2020; 23:398-410. [PMID: 32066984 DOI: 10.1038/s41593-020-0591-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 01/14/2020] [Indexed: 01/26/2023]
Abstract
In humans and rodents, the perception of control during stressful events has lasting behavioral consequences. These consequences are apparent even in situations that are distinct from the stress context, but how the brain links prior stressful experience to subsequent behaviors remains poorly understood. By assessing innate defensive behavior in a looming-shadow task, we show that the initiation of an escape response is preceded by an increase in the activity of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the hypothalamus (CRHPVN neurons). This anticipatory increase is sensitive to stressful stimuli that have high or low levels of outcome control. Specifically, experimental stress with high outcome control increases CRHPVN neuron anticipatory activity, which increases escape behavior in an unrelated context. By contrast, stress with no outcome control prevents the emergence of this anticipatory activity and decreases subsequent escape behavior. These observations indicate that CRHPVN neurons encode stress controllability and contribute to shifts between active and passive innate defensive strategies.
Collapse
Affiliation(s)
- Núria Daviu
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,CSM Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David G Rosenegger
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Neilen P Rasiah
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Toni-Lee Sterley
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Govind Peringod
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
214
|
Delaney SL, Gendreau JL, D'Souza M, Feng AY, Ho AL. Optogenetic Modulation for the Treatment of Traumatic Brain Injury. Stem Cells Dev 2020; 29:187-197. [DOI: 10.1089/scd.2019.0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
| | | | | | - Austin Y. Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| | - Allen L. Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| |
Collapse
|
215
|
Tang L, Higley MJ. Layer 5 Circuits in V1 Differentially Control Visuomotor Behavior. Neuron 2020; 105:346-354.e5. [PMID: 31757603 PMCID: PMC6981039 DOI: 10.1016/j.neuron.2019.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Neocortical sensory areas are thought to act as distribution hubs, transmitting information about the external environment to downstream areas. Within primary visual cortex, various populations of pyramidal neurons (PNs) send axonal projections to distinct targets, suggesting multiple cellular networks may be independently engaged during behavior. We investigated whether PN subpopulations differentially support visual detection by training mice on a novel eyeblink conditioning task. Applying 2-photon calcium imaging and optogenetic manipulation of anatomically defined PNs, we show that layer 5 corticopontine neurons strongly encode sensory and motor task information and are selectively necessary for performance. Our findings support a model in which target-specific cortical subnetworks form the basis for adaptive behavior by directing relevant information to distinct brain areas. Overall, this work highlights the potential for neurons to form physically interspersed but functionally segregated networks capable of parallel, independent control of perception and behavior.
Collapse
Affiliation(s)
- Lan Tang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
216
|
Kandori H. Retinal Proteins: Photochemistry and Optogenetics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
217
|
Ito W, Fusco B, Morozov A. Disinhibition-assisted long-term potentiation in the prefrontal-amygdala pathway via suppression of somatostatin-expressing interneurons. NEUROPHOTONICS 2020; 7:015007. [PMID: 32090134 PMCID: PMC7019182 DOI: 10.1117/1.nph.7.1.015007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Significance: Natural brain adaptations often involve changes in synaptic strength. The artificial manipulations can help investigate the role of synaptic strength in a specific brain circuit not only in various physiological phenomena like correlated neuronal firing and oscillations but also in behaviors. High- and low-frequency stimulation at presynaptic sites has been used widely to induce long-term potentiation (LTP) and depression. This approach is effective in many brain areas but not in the basolateral amygdala (BLA) because the robust local GABAergic tone inside BLA restricts synaptic plasticity. Aim: We aimed at identifying the subclass of GABAergic neurons that gate LTP in the BLA afferents from the dorsomedial prefrontal cortex (dmPFC). Approach: Chemogenetic or optogenetic suppression of specific GABAergic neurons in BLA was combined with high-frequency stimulation of the BLA afferents as a method for LTP induction. Results: Chemogenetic suppression of somatostatin-positive interneurons (Sst-INs) enabled the ex vivo LTP by high-frequency stimulation of the afferent but the suppression of parvalbumin-positive interneurons (PV-INs) did not. Moreover, optogenetic suppression of Sst-INs with Arch also enabled LTP of the dmPFC-BLA synapses, both ex vivo and in vivo. Conclusions: These findings reveal that Sst-INs but not PV-INs gate LTP in the dmPFC-BLA pathway and provide a method for artificial synaptic facilitation in BLA.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States
| | - Brendon Fusco
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States
| | - Alexei Morozov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States
- Virginia Tech, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States
- Virginia Tech Carilion School of Medicine, Department of Psychiatry and Behavioral Medicine, Roanoke, Virginia, United States
| |
Collapse
|
218
|
Xu Y, Deng M, Zhang S, Yang J, Peng L, Chu J, Zou P. Imaging Neuronal Activity with Fast and Sensitive Red-Shifted Electrochromic FRET Indicators. ACS Chem Neurosci 2019; 10:4768-4775. [PMID: 31725259 DOI: 10.1021/acschemneuro.9b00501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) allow optical recording of neuronal activities with high spatial resolution. While most existing GEVIs emit in the green range, red-shifted GEVIs are highly sought after because they would enable simultaneous stimulation and recording of neuronal activities when paired with optogenetic actuators, or two-color imaging of signaling and neuronal activities when used along with GFP-based indicators. In this study, we present several improved red-shifted GEVIs based on the electrochromic Förster resonance energy transfer (eFRET) between orange/red fluorescent proteins/dyes and rhodopsin mutants. Through structure-guided mutagenesis and cell-based sensitivity screening, we identified a mutant rhodopsin with a single mutation that exhibited more than 2-fold improvement in voltage sensitivity. Notably, this mutation has been independently discovered by Pieribone et al. ( Pieribone, V. A. et al. Nat Methods 2018 , 15 ( 12 ), 1108 - 1116 ). In cultured rat hippocampal neurons, our sensors faithfully reported action potential waveforms and subthreshold activities. We also demonstrated that this mutation could enhance the sensitivity of hybrid indicators, thus providing insights for future development.
Collapse
Affiliation(s)
- Yongxian Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Mengying Deng
- Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Synthetic Biology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shu Zhang
- Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Synthetic Biology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junqi Yang
- Peking-Tsinghua-NIBS Joint Graduate Program, Peking University, Beijing 100871, China
| | - Luxin Peng
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jun Chu
- Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Synthetic Biology, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
219
|
Kojima K, Shibukawa A, Sudo Y. The Unlimited Potential of Microbial Rhodopsins as Optical Tools. Biochemistry 2019; 59:218-229. [PMID: 31815443 DOI: 10.1021/acs.biochem.9b00768] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial rhodopsins, a photoactive membrane protein family, serve as fundamental tools for optogenetics, an innovative technology for controlling biological activities with light. Microbial rhodopsins are widely distributed in nature and have a wide variety of biological functions. Regardless of the many different known types of microbial rhodopsins, only a few of them have been used in optogenetics to control neural activity to understand neural networks. The efforts of our group have been aimed at identifying and characterizing novel rhodopsins from nature and also at engineering novel variant rhodopsins by rational design. On the basis of the molecular and functional characteristics of those novel rhodopsins, we have proposed new rhodopsin-based optogenetics tools to control not only neural activities but also "non-neural" activities. In this Perspective, we introduce the achievements and summarize future challenges in creating optogenetics tools using rhodopsins. The implementation of optogenetics deep inside an in vivo brain is the well-known challenge for existing rhodopsins. As a perspective to address this challenge, we introduce innovative optical illumination techniques using wavefront shaping that can reinforce the low light sensitivity of the rhodopsins and realize deep-brain optogenetics. The applications of our optogenetics tools could be extended to manipulate non-neural biological activities such as gene expression, apoptosis, energy production, and muscle contraction. We also discuss the potentially unlimited biotechnological applications of microbial rhodopsins in the future such as in photovoltaic devices and in drug delivery systems. We believe that advances in the field will greatly expand the potential uses of microbial rhodopsins as optical tools.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| |
Collapse
|
220
|
Abstract
The peripheral nervous system (PNS) is highly complicated and heterogenous. Conventional neuromodulatory approaches have revealed numerous essential biological functions of the PNS and provided excellent tools to treat a large variety of human diseases. Yet growing evidence indicated the importance of cell-type-specific neuromodulation in the PNS in not only biological research using animal models but also potential human therapies. Optogenetics is a recently developed neuromodulatory approach combining optics and genetics that can effectively stimulate or silence neuronal activity with high spatial and temporal precision. Here, I review research regarding optogenetic manipulations for cell-type-specific control of the PNS, highlighting the advantages and challenges of current optogenetic tools, and discuss their potential future applications.
Collapse
Affiliation(s)
- Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
221
|
Boyden ES. Optogenetics: Tools for Controlling Brain Cells with Light. MOLECULAR FRONTIERS JOURNAL 2019. [DOI: 10.1142/s2529732519400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The brain is made out of an incredible diversity of cells called neurons, which have different shapes, are made of different molecules, and that change in different ways in diseases. In optogenetics, microbial opsins, natural proteins that convert light into electrical signals, are genetically expressed in neurons. Then, light pulses can be used to turn neurons on, revealing how they trigger behaviors, disease states, or therapeutic effects, or to turn neurons off, revealing what functions or dysfunctions they are necessary for.
Collapse
Affiliation(s)
- Edward S. Boyden
- McGovern Institute, Media Lab, Center for Neurobiological Engineering, Department of Brain and Cognitive Sciences, Department of Biological Engineering, and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
222
|
Zhang C, Yang S, Flossmann T, Gao S, Witte OW, Nagel G, Holthoff K, Kirmse K. Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition. BMC Biol 2019; 17:95. [PMID: 31775747 PMCID: PMC6882325 DOI: 10.1186/s12915-019-0717-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background Optogenetic silencing techniques have expanded the causal understanding of the functions of diverse neuronal cell types in both the healthy and diseased brain. A widely used inhibitory optogenetic actuator is eNpHR3.0, an improved version of the light-driven chloride pump halorhodopsin derived from Natronomonas pharaonis. A major drawback of eNpHR3.0 is related to its pronounced inactivation on a time-scale of seconds, which renders it unsuited for applications that require long-lasting silencing. Results Using transgenic mice and Xenopus laevis oocytes expressing an eNpHR3.0-EYFP fusion protein, we here report optimized photo-stimulation techniques that profoundly increase the stability of eNpHR3.0-mediated currents during long-term photo-stimulation. We demonstrate that optimized photo-stimulation enables prolonged hyperpolarization and suppression of action potential discharge on a time-scale of minutes. Conclusions Collectively, our findings extend the utility of eNpHR3.0 to the long-lasting inhibition of excitable cells, thus facilitating the optogenetic dissection of neural circuits.
Collapse
Affiliation(s)
- Chuanqiang Zhang
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Present Address: Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Shang Yang
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, & Institute of Physiology - Neurophysiology, Julius-Maximilians-University of Würzburg, 97070, Würzburg, Germany
| | - Tom Flossmann
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Present Address: Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Shiqiang Gao
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, & Institute of Physiology - Neurophysiology, Julius-Maximilians-University of Würzburg, 97070, Würzburg, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Georg Nagel
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, & Institute of Physiology - Neurophysiology, Julius-Maximilians-University of Würzburg, 97070, Würzburg, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Knut Kirmse
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
223
|
Mao D, Li N, Xiong Z, Sun Y, Xu G. Single-Cell Optogenetic Control of Calcium Signaling with a High-Density Micro-LED Array. iScience 2019; 21:403-412. [PMID: 31704651 PMCID: PMC6889635 DOI: 10.1016/j.isci.2019.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
Precise optogenetic control, ideally down to single cells in dense cell populations, is essential in understanding the heterogeneity of cell networks. Devices with such capability, if built in a chip scale, will advance optogenetic studies at cellular levels in a variety of experimental settings. Here we demonstrate optogenetic control of intracellular Ca2+ dynamics at the single cell level using a 16-μm pitched micro-light emitting diode (LED) array that features high brightness, small spot size, fast response, and low voltage operation. Individual LED pixels are able to reliably trigger intracellular Ca2+ transients, confirmed by fluorescence microscopy and control experiments and cross-checked by two genetically coded Ca2+ indicators. Importantly, our array can optogenetically address individual cells that are sub-10 μm apart in densely packed cell populations. These results suggest the possible use of the micro-LED array toward a lab-on-a-chip for single-cell optogenetics, which may allow for pharmaceutical screening and fundamental studies on a variety of cell networks.
Collapse
Affiliation(s)
- Dacheng Mao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Ningwei Li
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Zheshun Xiong
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Guangyu Xu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
224
|
Li N, Chen S, Guo ZV, Chen H, Huo Y, Inagaki HK, Chen G, Davis C, Hansel D, Guo C, Svoboda K. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife 2019; 8:e48622. [PMID: 31736463 PMCID: PMC6892606 DOI: 10.7554/elife.48622] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022] Open
Abstract
Optogenetics allows manipulations of genetically and spatially defined neuronal populations with excellent temporal control. However, neurons are coupled with other neurons over multiple length scales, and the effects of localized manipulations thus spread beyond the targeted neurons. We benchmarked several optogenetic methods to inactivate small regions of neocortex. Optogenetic excitation of GABAergic neurons produced more effective inactivation than light-gated ion pumps. Transgenic mice expressing the light-dependent chloride channel GtACR1 produced the most potent inactivation. Generally, inactivation spread substantially beyond the photostimulation light, caused by strong coupling between cortical neurons. Over some range of light intensity, optogenetic excitation of inhibitory neurons reduced activity in these neurons, together with pyramidal neurons, a signature of inhibition-stabilized neural networks ('paradoxical effect'). The offset of optogenetic inactivation was followed by rebound excitation in a light dose-dependent manner, limiting temporal resolution. Our data offer guidance for the design of in vivo optogenetics experiments.
Collapse
Affiliation(s)
- Nuo Li
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
- Janelia Research CampusAshburnUnited States
| | - Susu Chen
- Janelia Research CampusAshburnUnited States
| | - Zengcai V Guo
- Janelia Research CampusAshburnUnited States
- School of MedicineTsinghua UniversityBeijingChina
| | - Han Chen
- School of MedicineTsinghua UniversityBeijingChina
| | - Yan Huo
- School of MedicineTsinghua UniversityBeijingChina
| | | | - Guang Chen
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| | - Courtney Davis
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
- Janelia Research CampusAshburnUnited States
| | - David Hansel
- Center of Neurophysics, Physiology and Pathologies, CNRS-UMR8119ParisFrance
| | | | | |
Collapse
|
225
|
A Non-canonical Feedback Circuit for Rapid Interactions between Somatosensory Cortices. Cell Rep 2019; 23:2718-2731.e6. [PMID: 29847801 PMCID: PMC6004823 DOI: 10.1016/j.celrep.2018.04.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/20/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Sensory perception depends on interactions among cortical areas. These
interactions are mediated by canonical patterns of connectivity in which higher
areas send feedback projections to lower areas via neurons in superficial and
deep layers. Here, we probed the circuit basis of interactions among two areas
critical for touch perception in mice, whisker primary (wS1) and secondary (wS2)
somatosensory cortices. Neurons in layer 4 of wS2 (S2L4) formed a
major feedback pathway to wS1. Feedback from wS2 to wS1 was organized
somatotopically. Spikes evoked by whisker deflections occurred nearly as rapidly
in wS2 as in wS1, including among putative S2L4 → S1 feedback
neurons. Axons from S2L4 → S1 neurons sent stimulus
orientation-specific activity to wS1. Optogenetic excitation of S2L4
neurons modulated activity across both wS2 and wS1, while inhibition of
S2L4 reduced orientation tuning among wS1 neurons. Thus, a
non-canonical feedback circuit, originating in layer 4 of S2, rapidly modulates
early tactile processing.
Collapse
|
226
|
Seo DO, Motard LE, Bruchas MR. Contemporary strategies for dissecting the neuronal basis of neurodevelopmental disorders. Neurobiol Learn Mem 2019; 165:106835. [PMID: 29550367 PMCID: PMC6138573 DOI: 10.1016/j.nlm.2018.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
Great efforts in clinical and basic research have shown progress in understanding the neurobiological mechanisms of neurodevelopmental disorders, such as autism, schizophrenia, and attention-deficit hyperactive disorders. Literature on this field have suggested that these disorders are affected by the complex interaction of genetic, biological, psychosocial and environmental risk factors. However, this complexity of interplaying risk factors during neurodevelopment has prevented a complete understanding of the causes of those neuropsychiatric symptoms. Recently, with advances in modern high-resolution neuroscience methods, the neural circuitry analysis approach has provided new solutions for understanding the causal relationship between dysfunction of a neural circuit and behavioral alteration in neurodevelopmental disorders. In this review we will discuss recent progress in developing novel optogenetic and chemogenetic strategies to investigate neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dong-Oh Seo
- Departmentof Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Laura E Motard
- Departmentof Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Michael R Bruchas
- Departmentof Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
227
|
Struik RF, Marchant NJ, de Haan R, Terra H, van Mourik Y, Schetters D, Carr MR, van der Roest M, Heistek TS, De Vries TJ. Dorsomedial prefrontal cortex neurons encode nicotine-cue associations. Neuropsychopharmacology 2019; 44:2011-2021. [PMID: 31242502 PMCID: PMC6898138 DOI: 10.1038/s41386-019-0449-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2022]
Abstract
The role of medial prefrontal cortex (mPFC) in regulating nicotine taking and seeking remains largely unexplored. In this study we took advantage of the high time-resolution of optogenetic intervention by decreasing (Arch3.0) or increasing (ChR2) the activity of neurons in the dorsal and ventral mPFC during 5-s nicotine cue presentations in order to evaluate their contribution to cued nicotine seeking and taking. Wistar rats were trained to self-administer intravenous nicotine in 1 h self-administration sessions twice a day for a minimum of 10 days. Subsequently, dmPFC or vmPFC neuronal activity was modulated during or following presentation of the 5-s nicotine cue, both under extinction and self-administration conditions. We also used in vivo electrophysiology to record the activity of dmPFC neurons during nicotine self-administration and extinction tests. We show that optogenetic inhibition of dmPFC neurons during, but not following, response-contingent presentations of the nicotine cue increased nicotine seeking. We found no effect on nicotine self-administration or on food seeking in an extinction test. We also show that this effect is specific to dmPFC, because optogenetic inhibition of vmPFC had no effect on nicotine seeking and taking. In vivo recordings revealed that dmPFC network neuronal activity was modulated more strongly following nicotine cue presentation in extinction, compared to following nicotine self-administration. Our results strongly suggest that a population of neurons within the dmPFC is involved in encoding the incentive value of nicotine-associated cues.
Collapse
Affiliation(s)
- Roeland F Struik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Nathan J Marchant
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Roel de Haan
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Huub Terra
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Yvar van Mourik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Dustin Schetters
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Madison R Carr
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Marcel van der Roest
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Taco J De Vries
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands.
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands.
| |
Collapse
|
228
|
Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J Neurosci 2019; 39:9435-9452. [PMID: 31628177 DOI: 10.1523/jneurosci.0311-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
Narcolepsy, characterized by excessive daytime sleepiness, is associated with dysfunction of the hypothalamic hypocretin/orexin (Hcrt) system, either due to extensive loss of Hcrt cells (Type 1, NT1) or hypothesized Hcrt signaling impairment (Type 2, NT2). Accordingly, efforts to recapitulate narcolepsy-like symptoms in mice have involved ablating these cells or interrupting Hcrt signaling. Here, we describe orexin/Arch mice, in which a modified archaerhodopsin-3 gene was inserted downstream of the prepro-orexin promoter, resulting in expression of the yellow light-sensitive Arch-3 proton pump specifically within Hcrt neurons. Histological examination along with ex vivo and in vivo electrophysiological recordings of male and female orexin/Arch mice demonstrated silencing of Hcrt neurons when these cells were photoilluminated. However, high expression of the Arch transgene affected cellular and physiological parameters independent of photoillumination. The excitability of Hcrt neurons was reduced, and both circadian and metabolic parameters were perturbed in a subset of orexin/Arch mice that exhibited high levels of Arch expression. Orexin/Arch mice also had increased REM sleep under baseline conditions but did not exhibit cataplexy, a sudden loss of muscle tone during wakefulness characteristic of NT1. These aberrations resembled some aspects of mouse models with Hcrt neuron ablation, yet the number of Hcrt neurons in orexin/Arch mice was not reduced. Thus, orexin/Arch mice may be useful to investigate Hcrt system dysfunction when these neurons are intact, as is thought to occur in narcolepsy without cataplexy (NT2). These results also demonstrate the utility of extended phenotypic screening of transgenic models when specific neural circuits have been manipulated.SIGNIFICANCE STATEMENT Optogenetics has become an invaluable tool for functional dissection of neural circuitry. While opsin expression is often achieved by viral injection, stably integrated transgenes offer some practical advantages. Here, we demonstrate successful transgenic expression of an inhibitory opsin in hypocretin/orexin neurons, which are thought to promote or maintain wakefulness. Both brief and prolonged illumination resulted in inhibition of these neurons and induced sleep. However, even in the absence of illumination, these cells exhibited altered electrical characteristics, particularly when transgene expression was high. These aberrant properties affected metabolism and sleep, resulting in a phenotype reminiscent of the narcolepsy Type 2, a sleep disorder for which no good animal model currently exists.
Collapse
|
229
|
Hu W, Li Q, Li B, Ma K, Zhang C, Fu X. Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials 2019; 227:119546. [PMID: 31655444 DOI: 10.1016/j.biomaterials.2019.119546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenzhi Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Bingmin Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| |
Collapse
|
230
|
Optogenetic Inhibition of CGRPα Sensory Neurons Reveals Their Distinct Roles in Neuropathic and Incisional Pain. J Neurosci 2019; 38:5807-5825. [PMID: 29925650 DOI: 10.1523/jneurosci.3565-17.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/29/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Cutaneous somatosensory neurons convey innocuous and noxious mechanical, thermal, and chemical stimuli from peripheral tissues to the CNS. Among these are nociceptive neurons that express calcitonin gene-related peptide-α (CGRPα). The role of peripheral CGRPα neurons (CANs) in acute and injury-induced pain has been studied using diphtheria toxin ablation, but their functional roles remain controversial. Because ablation permanently deletes a neuronal population, compensatory changes may ensue that mask the physiological or pathophysiological roles of CANs, particularly for injuries that occur after ablation. Therefore, we sought to define the role of intact CANs in vivo under baseline and injury conditions by using noninvasive transient optogenetic inhibition. We assessed pain behavior longitudinally from acute to chronic time points. We generated adult male and female mice that selectively express the outward rectifying proton pump archaerhodopsin-3 (Arch) in CANs, and inhibited their peripheral cutaneous terminals in models of neuropathic (spared nerve injury) and inflammatory (skin-muscle incision) pain using transdermal light activation of Arch. After nerve injury, brief activation of Arch reversed the chronic mechanical, cold, and heat hypersensitivity, alleviated the spontaneous pain, and reversed the sensitized mechanical currents in primary afferent somata. In contrast, Arch inhibition of CANs did not alter incision-induced hypersensitivity. Instead, incision-induced mechanical and heat hypersensitivity was alleviated by peripheral blockade of CGRPα peptide-receptor signaling. These results reveal that CANs have distinct roles in the time course of pain during neuropathic and incisional injuries and suggest that targeting peripheral CANs or CGRPα peptide-receptor signaling could selectively treat neuropathic or postoperative pain, respectively.SIGNIFICANCE STATEMENT The contribution of sensory afferent CGRPα neurons (CANs) to neuropathic and inflammatory pain is controversial. Here, we left CANs intact during neuropathic and perioperative incision injury by using transient transdermal optogenetic inhibition of CANs. We found that peripheral CANs are required for neuropathic mechanical, cold, and heat hypersensitivity, spontaneous pain, and sensitization of mechanical currents in afferent somata. However, they are dispensable for incisional pain transmission. In contrast, peripheral pharmacological inhibition of CGRPα peptide-receptor signaling alleviated the incisional mechanical and heat hypersensitivity, but had no effect on neuropathic pain. These results show that CANs have distinct roles in neuropathic and incisional pain and suggest that their targeting via novel peripheral treatments may selectively alleviate neuropathic versus incisional pain.
Collapse
|
231
|
Guo SM, Veneziano R, Gordonov S, Li L, Danielson E, Perez de Arce K, Park D, Kulesa AB, Wamhoff EC, Blainey PC, Boyden ES, Cottrell JR, Bathe M. Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes. Nat Commun 2019; 10:4377. [PMID: 31558769 PMCID: PMC6763432 DOI: 10.1038/s41467-019-12372-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/03/2019] [Indexed: 12/29/2022] Open
Abstract
Synapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides. Super-resolution PAINT imaging of the same targets is performed using low-affinity DNA imaging probes to resolve nanometer-scale synaptic protein organization across nine distinct protein targets. Our approach enables the quantitative analysis of thousands of synapses in neuronal culture to identify putative synaptic sub-types and co-localization patterns from one dozen proteins. Application to characterize synaptic reorganization following neuronal activity blockade reveals coordinated upregulation of the post-synaptic proteins PSD-95, SHANK3 and Homer-1b/c, as well as increased correlation between synaptic markers in the active and synaptic vesicle zones.
Collapse
Affiliation(s)
- Syuan-Ming Guo
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Remi Veneziano
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Simon Gordonov
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Li Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Danielson
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Karen Perez de Arce
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Anthony B Kulesa
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Paul C Blainey
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Media Lab, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Mark Bathe
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
232
|
Gruber A, Edri O, Gepstein L. Cardiac optogenetics: the next frontier. Europace 2019; 20:1910-1918. [PMID: 29315402 DOI: 10.1093/europace/eux371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
The emerging technology of optogenetics uses optical and genetic means to monitor and modulate the electrophysiological properties of excitable tissues. While transforming the field of neuroscience, the technology has recently gained popularity also in the cardiac arena. Here, we describe the basic principles of optogenetics, the available and evolving optogenetic tools, and the unique potential of this technology for basic and translational cardiac electrophysiology. Specifically, we discuss the ability to control (augment or suppress) the cardiac tissue's excitable properties using optogenetic actuators (microbial opsins), which are light-gated ion channels and pumps that can cause light-triggered membrane depolarization or hyperpolarization. We then focus on the potential clinical implications of this technology for the treatment of cardiac arrhythmias by describing recent efforts for developing optogenetic-based cardiac pacing, resynchronization, and defibrillation experimental strategies. Finally, the significant obstacles and challenges that need to be overcome before any future clinical translation can be expected are discussed.
Collapse
Affiliation(s)
- Amit Gruber
- The Sohnis Family Reaserch Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
| | - Oded Edri
- The Sohnis Family Reaserch Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- The Sohnis Family Reaserch Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel.,Cardiology Department of Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa, Israel
| |
Collapse
|
233
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
234
|
Ferenczi EA, Tan X, Huang CLH. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems. Front Physiol 2019; 10:1096. [PMID: 31572204 PMCID: PMC6749684 DOI: 10.3389/fphys.2019.01096] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Optogenetic techniques permit studies of excitable tissue through genetically expressed light-gated microbial channels or pumps permitting transmembrane ion movement. Light activation of these proteins modulates cellular excitability with millisecond precision. This review summarizes optogenetic approaches, using examples from neurobiological applications, and then explores their application in cardiac electrophysiology. We review the available opsins, including depolarizing and hyperpolarizing variants, as well as modulators of G-protein coupled intracellular signaling. We discuss the biophysical properties that determine the ability of microbial opsins to evoke reliable, precise stimulation or silencing of electrophysiological activity. We also review spectrally shifted variants offering possibilities for enhanced depth of tissue penetration, combinatorial stimulation for targeting different cell subpopulations, or all-optical read-in and read-out studies. Expression of the chosen optogenetic tool in the cardiac cell of interest then requires, at the single-cell level, introduction of opsin-encoding genes by viral transduction, or coupling "spark cells" to primary cardiomyocytes or a stem-cell derived counterpart. At the system-level, this requires construction of transgenic mice expressing ChR2 in their cardiomyocytes, or in vivo injection (myocardial or systemic) of adenoviral expression systems. Light delivery, by laser or LED, with widespread or multipoint illumination, although relatively straightforward in vitro may be technically challenged by cardiac motion and light-scattering in biological tissue. Physiological read outs from cardiac optogenetic stimulation include single cell patch clamp recordings, multi-unit microarray recordings from cell monolayers or slices, and electrical recordings from isolated Langendorff perfused hearts. Optical readouts of specific cellular events, including ion transients, voltage changes or activity in biochemical signaling cascades, using small detecting molecules or genetically encoded sensors now offer powerful opportunities for all-optical control and monitoring of cellular activity. Use of optogenetics has expanded in cardiac physiology, mainly using optically controlled depolarizing ion channels to control heart rate and for optogenetic defibrillation. ChR2-expressing cardiomyocytes show normal baseline and active excitable membrane and Ca2+ signaling properties and are sensitive even to ~1 ms light pulses. They have been employed in studies of the intrinsic cardiac adrenergic system and of cardiac arrhythmic properties.
Collapse
Affiliation(s)
- Emily A. Ferenczi
- Department of Neurology, Massachusetts General Hospital and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
235
|
Cela E, Sjöström PJ. Novel Optogenetic Approaches in Epilepsy Research. Front Neurosci 2019; 13:947. [PMID: 31551699 PMCID: PMC6743373 DOI: 10.3389/fnins.2019.00947] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a major neurological disorder characterized by repeated seizures afflicting 1% of the global population. The emergence of seizures is associated with several comorbidities and severely decreases the quality of life of patients. Unfortunately, around 30% of patients do not respond to first-line treatment using anti-seizure drugs (ASDs). Furthermore, it is still unclear how seizures arise in the healthy brain. Therefore, it is critical to have well developed models where a causal understanding of epilepsy can be investigated. While the development of seizures has been studied in several animal models, using chemical or electrical induction, deciphering the results of such studies has been difficult due to the uncertainty of the cell population being targeted as well as potential confounds such as brain damage from the procedure itself. Here we describe novel approaches using combinations of optical and genetic methods for studying epileptogenesis. These approaches can circumvent some shortcomings associated with the classical animal models and may thus increase the likelihood of developing new treatment options.
Collapse
Affiliation(s)
- Elvis Cela
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Per Jesper Sjöström
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
236
|
Mayer P, Sivakumar N, Pritz M, Varga M, Mehmann A, Lee S, Salvatore A, Magno M, Pharr M, Johannssen HC, Troester G, Zeilhofer HU, Salvatore GA. Flexible and Lightweight Devices for Wireless Multi-Color Optogenetic Experiments Controllable via Commercial Cell Phones. Front Neurosci 2019; 13:819. [PMID: 31551666 PMCID: PMC6743353 DOI: 10.3389/fnins.2019.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Optogenetics provide a potential alternative approach to the treatment of chronic pain, in which complex pathology often hampers efficacy of standard pharmacological approaches. Technological advancements in the development of thin, wireless, and mechanically flexible optoelectronic implants offer new routes to control the activity of subsets of neurons and nerve fibers in vivo. This study reports a novel and advanced design of battery-free, flexible, and lightweight devices equipped with one or two miniaturized LEDs, which can be individually controlled in real time. Two proof-of-concept experiments in mice demonstrate the feasibility of these devices. First, we show that blue-light devices implanted on top of the lumbar spinal cord can excite channelrhodopsin expressing nociceptors to induce place aversion. Second, we show that nocifensive withdrawal responses can be suppressed by green-light optogenetic (Archaerhodopsin-mediated) inhibition of action potential propagation along the sciatic nerve. One salient feature of these devices is that they can be operated via modern tablets and smartphones without bulky and complex lab instrumentation. In addition to the optical stimulation, the design enables the simultaneously wireless recording of the temperature in proximity of the stimulation area. As such, these devices are primed for translation to human patients with implications in the treatment of neurological and psychiatric conditions far beyond chronic pain syndromes.
Collapse
Affiliation(s)
- Philipp Mayer
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland.,Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Nandhini Sivakumar
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Pritz
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | - Matjia Varga
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Seunghyun Lee
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | | | - Michele Magno
- Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Matt Pharr
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
237
|
Walker MC, Kullmann DM. Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology 2019; 168:107751. [PMID: 31494141 DOI: 10.1016/j.neuropharm.2019.107751] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Drug-resistant epilepsy remains a significant health-care burden. The most effective treatment is surgery, but this is suitable for very few patients because of the unacceptable consequences of removing brain tissue. In contrast, gene therapy can regulate neuronal excitability in the epileptic focus whilst preserving function. Optogenetics and chemogenetics have the advantage that they are titratable therapies. Optogenetics uses light to control the excitability of specific neuronal populations. Optogenetics can be used in a closed-loop paradigm in which the light source is activated only when seizures are detected. However, expression of foreign proteins raises concerns about immunogenicity. Chemogenetics relies on the modification of an endogenous receptor or the production of a modified chimeric receptor that responds to an exogenous ligand. The main chemogenetic approach applied to epilepsy is to use designer receptors exclusively activated by designer drugs (DREADDs), which have been mainly modified muscarinic receptors or kappa-opioid receptors. Genetically modified human muscarinic receptor DREADDs are activated not by acetylcholine but by specific drugs such as clozapine-n-oxide or olanzepine. The dose of the drugs can be titrated in order to suppress seizures without adverse effects. Lastly, there is a chemogenetic approach that is activated by an endogenous ligand, glutamate. This takes advantage of invertebrate glutamate receptors that are chloride permeable. These bind glutamate released during seizure activity, and the resultant chloride current inhibits neuronal activity. The exogenous ligand, ivermectin, can also be given to reduce neuronal activity either chronically or as a rescue medication. The translation of this technology is hampered by the expression of a foreign protein. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
238
|
Waldron NH, Fudim M, Mathew JP, Piccini JP. Neuromodulation for the Treatment of Heart Rhythm Disorders. JACC Basic Transl Sci 2019; 4:546-562. [PMID: 31468010 PMCID: PMC6712352 DOI: 10.1016/j.jacbts.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Derangement of autonomic nervous signaling is an important contributor to cardiac arrhythmogenesis. Modulation of autonomic nervous signaling holds significant promise for the prevention and treatment of cardiac arrhythmias. Further clinical investigation is necessary to establish the efficacy and safety of autonomic modulatory therapies in reducing cardiac arrhythmias.
There is an increasing recognition of the importance of interactions between the heart and the autonomic nervous system in the pathophysiology of arrhythmias. These interactions play a role in both the initiation and maintenance of arrhythmias and are important in both atrial and ventricular arrhythmia. Given the importance of the autonomic nervous system in the pathophysiology of arrhythmias, there has been notable effort in the field to improve existing therapies and pioneer additional interventions directed at cardiac-autonomic targets. The interventions are targeted to multiple and different anatomic targets across the neurocardiac axis. The purpose of this review is to provide an overview of the rationale for neuromodulation in the treatment of arrhythmias and to review the specific treatments under evaluation and development for the treatment of both atrial fibrillation and ventricular arrhythmias.
Collapse
Key Words
- AERP, atrial effective refractory period
- AF, atrial fibrillation
- AGP, autonomic ganglionic plexus
- ANS, autonomic nervous system
- CABG, coronary artery bypass grafting
- HRV, heart rate variability
- ICD, implantable cardioverter-defibrillator
- LLVNS, low-level vagal nerve stimulation
- OSA, obstructive sleep apnea
- POAF, post-operative atrial fibrillation
- PVI, pulmonary vein isolation
- RDN, renal denervation
- SCS, spinal cord stimulation
- SGB, stellate ganglion blockade
- SNS, sympathetic nervous system
- VF, ventricular fibrillation
- VNS, vagal nerve stimulation
- VT, ventricular tachycardia
- arrhythmia
- atrial fibrillation
- autonomic nervous system
- ganglionated plexi
- neuromodulation
- ventricular arrhythmias
Collapse
Affiliation(s)
- Nathan H Waldron
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Jonathan P Piccini
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
239
|
Agetsuma M, Hamm JP, Tao K, Fujisawa S, Yuste R. Parvalbumin-Positive Interneurons Regulate Neuronal Ensembles in Visual Cortex. Cereb Cortex 2019; 28:1831-1845. [PMID: 29106504 DOI: 10.1093/cercor/bhx169] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/16/2017] [Indexed: 01/20/2023] Open
Abstract
For efficient cortical processing, neural circuit dynamics must be spatially and temporally regulated with great precision. Although parvalbumin-positive (PV) interneurons can control network synchrony, it remains unclear how they contribute to spatio-temporal patterning of activity. We investigated this by optogenetic inactivation of PV cells with simultaneous two-photon Ca2+ imaging from populations of neurons in mouse visual cortex in vivo. For both spontaneous and visually evoked activity, PV interneuron inactivation decreased network synchrony. But, interestingly, the response reliability and spatial extent of coactive neuronal ensembles during visual stimulation were also disrupted by PV-cell suppression, which reduced the functional repertoire of ensembles. Thus, PV interneurons can control the spatio-temporal dynamics of multineuronal activity by functionally sculpting neuronal ensembles and making them more different from each other. In doing so, inhibitory circuits could help to orthogonalize multicellular patterns of activity, enabling neural circuits to more efficiently occupy a higher dimensional space of potential dynamics.
Collapse
Affiliation(s)
- Masakazu Agetsuma
- Neurotechnology Center, Department of Biological Sciences, Columbia University, 550 West 120 Street, Box 4822, New York, NY 10027, USA.,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.,National Institute for Physiological Sciences, Division of Homeostatic Development, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Jordan P Hamm
- Neurotechnology Center, Department of Biological Sciences, Columbia University, 550 West 120 Street, Box 4822, New York, NY 10027, USA
| | - Kentaro Tao
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama351-0106, Japan
| | | | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, 550 West 120 Street, Box 4822, New York, NY 10027, USA
| |
Collapse
|
240
|
Oppermann J, Fischer P, Silapetere A, Liepe B, Rodriguez-Rozada S, Flores-Uribe J, Schiewer E, Keidel A, Vierock J, Kaufmann J, Broser M, Luck M, Bartl F, Hildebrandt P, Wiegert JS, Béjà O, Hegemann P, Wietek J. MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat Commun 2019; 10:3315. [PMID: 31346176 PMCID: PMC6658528 DOI: 10.1038/s41467-019-11322-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023] Open
Abstract
Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. ChRs desensitize under continuous bright-light illumination, resulting in a significant decline of photocurrents. Here we describe a metagenomically identified family of phylogenetically distinct anion-conducting ChRs (designated MerMAIDs). MerMAIDs almost completely desensitize during continuous illumination due to accumulation of a late non-conducting photointermediate that disrupts the ion permeation pathway. MerMAID desensitization can be fully explained by a single photocycle in which a long-lived desensitized state follows the short-lived conducting state. A conserved cysteine is the critical factor in desensitization, as its mutation results in recovery of large stationary photocurrents. The rapid desensitization of MerMAIDs enables their use as optogenetic silencers for transient suppression of individual action potentials without affecting subsequent spiking during continuous illumination. Our results could facilitate the development of optogenetic tools from metagenomic databases and enhance general understanding of ChR function.
Collapse
Affiliation(s)
- Johannes Oppermann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Paul Fischer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Arita Silapetere
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Bernhard Liepe
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - José Flores-Uribe
- Technion-Israel Institute of Technology, 32000, Haifa, Israel
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Enrico Schiewer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Anke Keidel
- Institute for Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Joel Kaufmann
- Institute for Biology, Biophysical Chemistry, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Meike Luck
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Franz Bartl
- Institute for Biology, Biophysical Chemistry, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Peter Hildebrandt
- Institute for Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Oded Béjà
- Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
| | - Jonas Wietek
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
- Department of Neurobiology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
241
|
Glasgow SD, McPhedrain R, Madranges JF, Kennedy TE, Ruthazer ES. Approaches and Limitations in the Investigation of Synaptic Transmission and Plasticity. Front Synaptic Neurosci 2019; 11:20. [PMID: 31396073 PMCID: PMC6667546 DOI: 10.3389/fnsyn.2019.00020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
The numbers and strengths of synapses in the brain change throughout development, and even into adulthood, as synaptic inputs are added, eliminated, and refined in response to ongoing neural activity. A number of experimental techniques can assess these changes, including single-cell electrophysiological recording which offers measurements of synaptic inputs with high temporal resolution. Coupled with electrical stimulation, photoactivatable opsins, and caged compounds, to facilitate fine spatiotemporal control over release of neurotransmitters, electrophysiological recordings allow for precise dissection of presynaptic and postsynaptic mechanisms of action. Here, we discuss the strengths and pitfalls of various techniques commonly used to analyze synapses, including miniature excitatory/inhibitory (E/I) postsynaptic currents, evoked release, and optogenetic stimulation. Together, these techniques can provide multiple lines of convergent evidence to generate meaningful insight into the emergence of circuit connectivity and maturation. A full understanding of potential caveats and alternative explanations for findings is essential to avoid data misinterpretation.
Collapse
Affiliation(s)
| | | | | | | | - Edward S. Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
242
|
Bajo VM, Nodal FR, Korn C, Constantinescu AO, Mann EO, Boyden ES, King AJ. Silencing cortical activity during sound-localization training impairs auditory perceptual learning. Nat Commun 2019; 10:3075. [PMID: 31300665 PMCID: PMC6625986 DOI: 10.1038/s41467-019-10770-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
The brain has a remarkable capacity to adapt to changes in sensory inputs and to learn from experience. However, the neural circuits responsible for this flexible processing remain poorly understood. Using optogenetic silencing of ArchT-expressing neurons in adult ferrets, we show that within-trial activity in primary auditory cortex (A1) is required for training-dependent recovery in sound-localization accuracy following monaural deprivation. Because localization accuracy under normal-hearing conditions was unaffected, this highlights a specific role for cortical activity in learning. A1-dependent plasticity appears to leave a memory trace that can be retrieved, facilitating adaptation during a second period of monaural deprivation. However, in ferrets in which learning was initially disrupted by perturbing A1 activity, subsequent optogenetic suppression during training no longer affected localization accuracy when one ear was occluded. After the initial learning phase, the reweighting of spatial cues that primarily underpins this plasticity may therefore occur in A1 target neurons.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - Fernando R Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Clio Korn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,UCSF School of Medicine, San Francisco, CA, 94143-0410, USA
| | - Alexandra O Constantinescu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.,Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Edward S Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
243
|
Luo L, Callaway EM, Svoboda K. Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron 2019; 98:256-281. [PMID: 29673479 DOI: 10.1016/j.neuron.2018.03.040] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/24/2023]
Abstract
Tremendous progress has been made since Neuron published our Primer on genetic dissection of neural circuits 10 years ago. Since then, cell-type-specific anatomical, neurophysiological, and perturbation studies have been carried out in a multitude of invertebrate and vertebrate organisms, linking neurons and circuits to behavioral functions. New methods allow systematic classification of cell types and provide genetic access to diverse neuronal types for studies of connectivity and neural coding during behavior. Here we evaluate key advances over the past decade and discuss future directions.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
244
|
Chen G, Zhang Y, Li X, Zhao X, Ye Q, Lin Y, Tao HW, Rasch MJ, Zhang X. Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations. Neuron 2019; 96:1403-1418.e6. [PMID: 29268099 DOI: 10.1016/j.neuron.2017.11.033] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/25/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022]
Abstract
Distinct subtypes of inhibitory interneuron are known to shape diverse rhythmic activities in the cortex, but how they interact to orchestrate specific band activity remains largely unknown. By recording optogenetically tagged interneurons of specific subtypes in the primary visual cortex of behaving mice, we show that spiking of somatostatin (SOM)- and parvalbumin (PV)-expressing interneurons preferentially correlates with cortical beta and gamma band oscillations, respectively. Suppression of SOM cell spiking reduces the spontaneous low-frequency band (<30-Hz) oscillations and selectively reduces visually induced enhancement of beta oscillation. In comparison, suppressing PV cell activity elevates the synchronization of spontaneous activity across a broad frequency range and further precludes visually induced changes in beta and gamma oscillations. Rhythmic activation of SOM and PV cells in the local circuit entrains resonant activity in the narrow 5- to 30-Hz band and the wide 20- to 80-Hz band, respectively. Together, these findings reveal differential and cooperative roles of SOM and PV inhibitory neurons in orchestrating specific cortical oscillations.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiang Li
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaochen Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Ye
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yingxi Lin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Malte J Rasch
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
245
|
Abstract
Neuroimmune interaction is an emerging concept, wherein the nervous system modulates the immune system and vice versa. This concept is gaining attention as a novel therapeutic target in various inflammatory diseases including acute kidney injury (AKI). Vagus nerve stimulation or treatment with pulsed ultrasound activates the cholinergic anti-inflammatory pathway to prevent AKI in mice. The kidneys are innervated by sympathetic efferent and sensory afferent neurons, and these neurons also may play a role in the modulation of inflammation in AKI. In this review, we discuss several neural circuits with respect to the control of renal inflammation and AKI as well as optogenetics as a novel tool for understanding these complex neural circuits.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA.
| |
Collapse
|
246
|
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10:724. [PMID: 31312139 PMCID: PMC6613496 DOI: 10.3389/fphar.2019.00724] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Neurological disorders affecting the central nervous system (CNS) are still incompletely understood. Many of these disorders lack a cure and are seeking more specific and effective treatments. In fact, in spite of advancements in knowledge of the CNS function, the treatment of neurological disorders with modern medical and surgical approaches remains difficult for many reasons, such as the complexity of the CNS, the limited regenerative capacity of the tissue, and the difficulty in conveying conventional drugs to the organ due to the blood-brain barrier. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. Gene therapy can result in a stable or inducible expression of transgene(s), and can allow a nearly specific expression in target cells. In this review, we will discuss the most commonly used tools for the delivery of genetic material in the CNS, including viral and non-viral vectors; their main applications; their advantages and disadvantages. We will discuss mechanisms of genetic regulation through cell-specific and inducible promoters, which allow to express gene products only in specific cells and to control their transcriptional activation. In addition, we will describe the applications to CNS diseases of post-transcriptional regulation systems (RNA interference); of systems allowing spatial or temporal control of expression [optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)]; and of gene editing technologies (CRISPR/Cas9, Zinc finger proteins). Particular attention will be reserved to viral vectors derived from herpes simplex type 1, a potential tool for the delivery and expression of multiple transgene cassettes simultaneously.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Gianluca Verlengia
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukupova
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
247
|
Jiang C, Li HT, Zhou YM, Wang X, Wang L, Liu ZQ. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace 2019; 20:1741-1749. [PMID: 29253159 DOI: 10.1093/europace/eux345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Optogenetics is a cell-type specific and high spatial-temporal resolution method that combines genetic encoding of light-sensitive proteins and optical manipulation techniques. Optogenetics technology provides a novel approach for research on cardiac arrhythmia treatment, including pacing, recovering the conduction system, and achieving cardiac resynchronization with precise and low-energy optical control. Photosensitive proteins, which usually act as ion channels, pumps, or receptors, are delivered to target cells, where they respond to light pulses of specific wavelengths, evoke transient flows of transmembrane ion currents, and induce signal transmission. With the development of gene technology, the in vivo efficiency of optogenetics in cardiology has been trialed, and in vitro experiments have been performed to test its potential in cardiac electrophysiology. Challenges for applying optogenetics in large animals and humans include the effectiveness, safety, and long-term expression of photosensitive proteins, unscattered and unattenuated exogenous light stimulation, and the need for implantable miniature light stimulators. Photosensitive proteins, genetic engineering technology, and light equipment are essential for experiments in cardiac optogenetics. Optogenetics may provide an alternative method for evaluating the mechanism of cardiac arrhythmias, testing hypotheses, and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hai Tao Li
- Department of Cardiology, Hainan General Hospital, Haikou, PR China
| | - Yong Ming Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zi Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
248
|
|
249
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
250
|
Becker MI, Person AL. Cerebellar Control of Reach Kinematics for Endpoint Precision. Neuron 2019; 103:335-348.e5. [PMID: 31174960 DOI: 10.1016/j.neuron.2019.05.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 02/15/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The cerebellum is well appreciated to impart speed, smoothness, and precision to skilled movements such as reaching. How these functions are executed by the final output stage of the cerebellum, the cerebellar nuclei, remains unknown. Here, we identify a causal relationship between cerebellar output and mouse reach kinematics and show how that relationship is leveraged endogenously to enhance reach precision. Activity in the anterior interposed nucleus (IntA) was remarkably well aligned to reach endpoint, scaling with the magnitude of limb deceleration. Closed-loop optogenetic modulation of IntA activity, triggered on reach, supported a causal role for this activity in controlling reach velocity in real time. Relating endogenous neural variability to kinematic variability, we found that IntA endpoint activity is adaptively engaged relative to variations in initial reach velocity, supporting endpoint precision. Taken together, these results provide a framework for understanding the physiology and pathophysiology of the intermediate cerebellum during precise skilled movements.
Collapse
Affiliation(s)
- Matthew I Becker
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Abigail L Person
- Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|