201
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
202
|
Next-Generation Lineage Tracing and Fate Mapping to Interrogate Development. Dev Cell 2020; 56:7-21. [PMID: 33217333 DOI: 10.1016/j.devcel.2020.10.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Lineage tracing and fate mapping, overlapping yet distinct disciplines to follow cells and their progeny, have evolved rapidly over the last century. Lineage tracing aims to identify all progeny arising from an individual cell, placing them within a lineage hierarchy. The recent emergence of genomic technologies, such as single-cell and spatial transcriptomics, has fostered sophisticated new methods to reconstruct lineage relationships at high resolution. In contrast, fate maps, schematics showing which parts of the embryo will develop into which tissue, have remained relatively static since the 1970s. However, fate maps provide spatial information, often lost in lineage reconstruction, that can offer fundamental mechanistic insight into development. Here, we broadly review the origins of fate mapping and lineage tracing approaches. We focus on the most recent developments in lineage tracing, permitted by advances in single-cell genomics. Finally, we explore the current potential to leverage these new technologies to synthesize high-resolution fate maps and discuss their potential for interrogating development at new depths.
Collapse
|
203
|
Zhao X, Gao S, Kajigaya S, Liu Q, Wu Z, Feng X, Zhang F, Young NS. Comprehensive analysis of single-cell RNA sequencing data from healthy human marrow hematopoietic cells. BMC Res Notes 2020; 13:514. [PMID: 33168060 PMCID: PMC7653854 DOI: 10.1186/s13104-020-05357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/25/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Single cell methodology enables detection and quantification of transcriptional changes and unravelling dynamic aspects of the transcriptional heterogeneity not accessible using bulk sequencing approaches. We have applied single-cell RNA-sequencing (scRNA-seq) to fresh human bone marrow CD34+ cells and profiled 391 single hematopoietic stem/progenitor cells (HSPCs) from healthy donors to characterize lineage- and stage-specific transcription during hematopoiesis. Results Cells clustered into six distinct groups, which could be assigned to known HSPC subpopulations based on lineage specific genes. Reconstruction of differentiation trajectories in single cells revealed four committed lineages derived from HSCs, as well as dynamic expression changes underlying cell fate during early erythroid-megakaryocytic, lymphoid, and granulocyte-monocyte differentiation. A similar non-hierarchical pattern of hematopoiesis could be derived from analysis of published single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), consistent with a sequential relationship between chromatin dynamics and regulation of gene expression during lineage commitment (first, altered chromatin conformation, then mRNA transcription). Computationally, we have reconstructed molecular trajectories connecting HSCs directly to four hematopoietic lineages. Integration of long noncoding RNA (lncRNA) expression from the same cells demonstrated mRNA transcriptome, lncRNA, and the epigenome were highly homologous in their pattern of gene activation and suppression during hematopoietic cell differentiation.
Collapse
Affiliation(s)
- Xin Zhao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Shouguo Gao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qingguo Liu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Zhijie Wu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fengkui Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
204
|
Matsushita Y, Ono W, Ono N. Bone regeneration via skeletal cell lineage plasticity: All hands mobilized for emergencies: Quiescent mature skeletal cells can be activated in response to injury and robustly participate in bone regeneration through cellular plasticity. Bioessays 2020; 43:e2000202. [PMID: 33155283 DOI: 10.1002/bies.202000202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
An emerging concept is that quiescent mature skeletal cells provide an important cellular source for bone regeneration. It has long been considered that a small number of resident skeletal stem cells are solely responsible for the remarkable regenerative capacity of adult bones. However, recent in vivo lineage-tracing studies suggest that all stages of skeletal lineage cells, including dormant pre-adipocyte-like stromal cells in the marrow, osteoblast precursor cells on the bone surface and other stem and progenitor cells, are concomitantly recruited to the injury site and collectively participate in regeneration of the damaged skeletal structure. Lineage plasticity appears to play an important role in this process, by which mature skeletal cells can transform their identities into skeletal stem cell-like cells in response to injury. These highly malleable, long-living mature skeletal cells, readily available throughout postnatal life, might represent an ideal cellular resource that can be exploited for regenerative medicine.
Collapse
Affiliation(s)
- Yuki Matsushita
- University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| | - Wanida Ono
- University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| | - Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
205
|
Tanaka A, Ishida S, Fuchigami T, Hayashi Y, Kuroda A, Ikenaka K, Fukazawa Y, Hitoshi S. Life-Long Neural Stem Cells Are Fate-Specified at an Early Developmental Stage. Cereb Cortex 2020; 30:6415-6425. [PMID: 32766673 DOI: 10.1093/cercor/bhaa200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/12/2022] Open
Abstract
The origin and life-long fate of quiescent neural stem cells (NSCs) in the adult mammalian brain remain largely unknown. A few neural precursor cells in the embryonic brain elongate their cell cycle time and subsequently become quiescent postnatally, suggesting the possibility that life-long NSCs are selected at an early embryonic stage. Here, we utilized a GFP-expressing lentivirus to investigate the fate of progeny from individual lentivirus-infected NSCs by identifying the lentiviral integration site. Our data suggest that NSCs become specified to two or more lineages prior to embryonic day 13.5 in mice: one NSC lineage produces cells only for the cortex and another provides neurons to the olfactory bulb. The majority of neurosphere-forming NSCs in the adult brain are relatively dormant and generate very few cells, if any, in the olfactory bulb or cortex, and this NSC population could serve as a reservoir that is occasionally reactivated later in life.
Collapse
Affiliation(s)
- Aoi Tanaka
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Shohei Ishida
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Takahiro Fuchigami
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Yoshitaka Hayashi
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Anri Kuroda
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Yugo Fukazawa
- Department of Histological and Physiological Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Seiji Hitoshi
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan.,Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
206
|
Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs. Blood 2020; 135:1219-1231. [PMID: 32040546 DOI: 10.1182/blood.2019002350] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or β hemoglobinopathies. We found that the estimated minimum number of active, repopulating HSPCs (which ranged from 2000 to 50 000) was correlated with the number of HSPCs per kilogram infused. We sought to quantify the lineage output and dynamics of gene-modified clones; this is usually challenging because of sparse sampling of the various cell types during the analytical procedure, contamination during cell isolation, and different levels of vector marking in the various lineages. We therefore measured the residual contamination and corrected our statistical models accordingly to provide a rigorous analysis of the HSPC lineage output. A cluster analysis of the HSPC lineage output highlighted the existence of several stable, distinct differentiation programs, including myeloid-dominant, lymphoid-dominant, and balanced cell subsets. Our study evidenced the heterogeneous nature of the cell lineage output from HSPCs and provided methods for analyzing these complex data.
Collapse
|
207
|
Min KD, Kour A, Sano S, Walsh K. The role of clonal haematopoiesis in cardiovascular diseases: epidemiology and experimental studies. J Intern Med 2020; 288:507-517. [PMID: 32715520 PMCID: PMC8375669 DOI: 10.1111/joim.13130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Clonal haematopoiesis results from acquired mutations in haematopoietic stem and progenitor cells (HSPCs). These mutations can confer the HSPC with a competitive advantage, leading to their clonal expansion within the limiting bone marrow niche. This process is often insufficient to produce a haematologic malignancy; however, the expanding HSPC clones increasingly give rise to progeny leucocytes whose phenotypes can be altered by the somatic mutations that they harbour. Key findings from multiple human studies have shown that clonal haematopoiesis in the absence of overt haematologic alterations is common amongst the ageing population and associated with mortality and cardiovascular disease. Key findings from experimental studies have provided evidence for a causative role for clonal haematopoiesis in cardiovascular diseases, and aspects of these mechanisms have been elucidated. Whilst our understanding of the impact and biology of clonal haematopoiesis is in its infancy, analyses of some of the most commonly mutated driver genes suggest promising clinical scenarios involving the development of personalized therapies with immunomodulatory drugs that exploit the perturbation caused by the particular mutation. Herein, we review the accumulating epidemiological and experimental evidence, and summarize our current understanding of the importance of clonal haematopoiesis as a new causal risk factor for atherosclerotic cardiovascular disease and heart failure.
Collapse
Affiliation(s)
- K D Min
- From the, Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - A Kour
- From the, Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - S Sano
- From the, Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - K Walsh
- From the, Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
208
|
Nakamura-Ishizu A, Ahmad SAI, Suda T. Bone Marrow Transplantation Dynamics: When Progenitor Expansion Prevails. Trends Cell Biol 2020; 30:835-836. [DOI: 10.1016/j.tcb.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022]
|
209
|
Rodrigues CP, Shvedunova M, Akhtar A. Epigenetic Regulators as the Gatekeepers of Hematopoiesis. Trends Genet 2020; 37:S0168-9525(20)30251-1. [PMID: 34756331 DOI: 10.1016/j.tig.2020.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis is the process by which both fetal and adult organisms derive the full repertoire of blood cells from a single multipotent progenitor cell type, the hematopoietic stem cells (HSCs). Correct enactment of this process relies on a synergistic interplay between genetically encoded differentiation programs and a host of cell-intrinsic and cell-extrinsic factors. These include the influence of the HSC niche microenvironment, action of specific transcription factors, and alterations in intracellular metabolic state. The consolidation of these inputs with the genetically encoded program into a coherent differentiation program for each lineage is thought to rely on epigenetic modifiers. Recent work has delineated the precise contributions of different classes of epigenetic modifiers to HSC self-renewal as well as lineage specification and differentiation into various cell types. Here, we bring together what is currently known about chromatin status and the development of cells in the hematopoietic system under normal and abnormal conditions.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
210
|
Hausmann A, Hardt WD. Elucidating host-microbe interactions in vivo by studying population dynamics using neutral genetic tags. Immunology 2020; 162:341-356. [PMID: 32931019 PMCID: PMC7968395 DOI: 10.1111/imm.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022] Open
Abstract
Host–microbe interactions are highly dynamic in space and time, in particular in the case of infections. Pathogen population sizes, microbial phenotypes and the nature of the host responses often change dramatically over time. These features pose particular challenges when deciphering the underlying mechanisms of these interactions experimentally, as traditional microbiological and immunological methods mostly provide snapshots of population sizes or sparse time series. Recent approaches – combining experiments using neutral genetic tags with stochastic population dynamic models – allow more precise quantification of biologically relevant parameters that govern the interaction between microbe and host cell populations. This is accomplished by exploiting the patterns of change of tag composition in the microbe or host cell population under study. These models can be used to predict the effects of immunodeficiencies or therapies (e.g. antibiotic treatment) on populations and thereby generate hypotheses and refine experimental designs. In this review, we present tools to study population dynamics in vivo using genetic tags, explain examples for their implementation and briefly discuss future applications.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
211
|
Fraint E, Ulloa BA, Feliz Norberto M, Potts KS, Bowman TV. Advances in preclinical hematopoietic stem cell models and possible implications for improving therapeutic transplantation. Stem Cells Transl Med 2020; 10:337-345. [PMID: 33058566 PMCID: PMC7900582 DOI: 10.1002/sctm.20-0294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a treatment for many malignant, congenital, and acquired hematologic diseases. Some outstanding challenges in the HSCT field include the paucity of immunologically‐matched donors, our inability to effectively expand hematopoeitic stem cells (HSCs) ex vivo, and the high infection risk during engraftment. Scientists are striving to develop protocols to generate, expand, and maintain HSCs ex vivo, however these are not yet ready for clinical application. Given these problems, advancing our understanding of HSC specification, regulation, and differentiation in preclinical models is essential to improve the therapeutic utility of HSCT. In this review, we link biomedical researchers and transplantation clinicians by discussing the potential therapeutic implications of recent fundamental HSC research in model organisms. We consider deficiencies in current HSCT practice, such as problems achieving adequate cell dose for successful and rapid engraftment, immense inflammatory cascade activation after myeloablation, and graft‐vs‐host disease. Furthermore, we discuss recent advances in the field of HSC biology and transplantation made in preclinical models of zebrafish, mouse, and nonhuman primates that could inform emerging practice for clinical application.
Collapse
Affiliation(s)
- Ellen Fraint
- Department of Pediatrics, Children's Hospital at Montefiore, Bronx, New York, USA
| | - Bianca A Ulloa
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - María Feliz Norberto
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine (Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
212
|
Yamamoto R, Nakauchi H. In vivo clonal analysis of aging hematopoietic stem cells. Mech Ageing Dev 2020; 192:111378. [PMID: 33022333 DOI: 10.1016/j.mad.2020.111378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cells (HSCs) are characterized by two key features: Self-renewal ability and multilineage differentiation potential (multipotentiality). With aging, these key features gradually change. This is thought to be related to hematological diseases. However, clonal in vivo analysis assessing the potential of HSCs to differentiate along erythroid and platelet lineages ("five-lineage tracing") has not been performed in the aged bone marrow. By contrast, in young HSCs clonal in vivo analysis combined with five-lineage tracing has provided us with novel insights into HSC biology. Understanding HSC aging at the clonal level will help us to elucidate aging mechanisms and disease progression. We review recent progress towards understanding HSC aging at the clonal cell level in the transplantation setting.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
213
|
Increased baseline RASGRP1 signals enhance stem cell fitness during native hematopoiesis. Oncogene 2020; 39:6920-6934. [PMID: 32989257 PMCID: PMC7655557 DOI: 10.1038/s41388-020-01469-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in RAS genes, like KRASG12D or NRASG12D, trap Ras in the active state and cause myeloproliferative disorder and T cell leukemia (T-ALL) when induced in the bone marrow via Mx1CRE. The RAS exchange factor RASGRP1 is frequently overexpressed in T-ALL patients. In T-ALL cell lines overexpression of RASGRP1 increases flux through the RASGTP/RasGDP cycle. Here we expanded RASGRP1 expression surveys in pediatric T-ALL and generated a RoLoRiG mouse model crossed to Mx1CRE to determine the consequences of induced RASGRP1 overexpression in primary hematopoietic cells. RASGRP1-overexpressing, GFP-positive cells outcompeted wild type cells and dominated the peripheral blood compartment over time. RASGRP1 overexpression bestows gain-of-function colony formation properties to bone marrow progenitors in medium containing limited growth factors. RASGRP1 overexpression enhances baseline mTOR-S6 signaling in the bone marrow, but not in vitro cytokine-induced signals. In agreement with these mechanistic findings, hRASGRP1-ires-EGFP enhances fitness of stem- and progenitor- cells, but only in the context of native hematopoiesis. RASGRP1 overexpression is distinct from KRASG12D or NRASG12D, does not cause acute leukemia on its own, and leukemia virus insertion frequencies predict that RASGRP1 overexpression can effectively cooperate with lesions in many other genes to cause acute T cell leukemia.
Collapse
|
214
|
Liggett LA, Sankaran VG. Unraveling Hematopoiesis through the Lens of Genomics. Cell 2020; 182:1384-1400. [PMID: 32946781 PMCID: PMC7508400 DOI: 10.1016/j.cell.2020.08.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
Hematopoiesis has long served as a paradigm of stem cell biology and tissue homeostasis. In the past decade, the genomics revolution has ushered in powerful new methods for investigating the hematopoietic system that have provided transformative insights into its biology. As part of the advances in genomics, increasingly accurate deep sequencing and novel methods of cell tracking have revealed hematopoiesis to be more of a continuous and less of a discrete and punctuated process than originally envisioned. In part, this continuous nature of hematopoiesis is made possible by the emergent outcomes of vast, interconnected regulatory networks that influence cell fates and lineage commitment. It is also becoming clear how these mechanisms are modulated by genetic variation present throughout the population. This review describes how these recently uncovered complexities are reshaping our concept of tissue development and homeostasis while opening up a more comprehensive future understanding of hematopoiesis.
Collapse
Affiliation(s)
- L Alexander Liggett
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
215
|
Carrelha J, Lin DS, Rodriguez-Fraticelli AE, Luis TC, Wilkinson AC, Cabezas-Wallscheid N, Tremblay CS, Haas S. Single-cell lineage tracing approaches in hematology research: technical considerations. Exp Hematol 2020; 89:26-36. [PMID: 32735908 PMCID: PMC7894992 DOI: 10.1016/j.exphem.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023]
Abstract
The coordinated differentiation of hematopoietic stem and progenitor cells (HSPCs) into the various mature blood cell types is responsible for sustaining blood and immune system homeostasis. The cell fate decisions underlying this important biological process are made at the level of single cells. Methods to trace the fate of single cells are therefore essential for understanding hematopoietic system activity in health and disease and have had a major impact on how we understand and represent hematopoiesis. Here, we discuss the basic methodologies and technical considerations for three important clonal assays: single-cell transplantation, lentiviral barcoding, and Sleeping Beauty barcoding. This perspective is a synthesis of presentations and discussions from the 2019 International Society for Experimental Hematology (ISEH) Annual Meeting New Investigator Technology Session and the 2019 ISEH Winter Webinar.
Collapse
Affiliation(s)
- Joana Carrelha
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Dawn S Lin
- Immunology, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alejo E Rodriguez-Fraticelli
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Tiago C Luis
- Department of Life Sciences, Imperial College London, London, UK
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Cedric S Tremblay
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
216
|
Kobayashi H, Morikawa T, Okinaga A, Hamano F, Hashidate-Yoshida T, Watanuki S, Hishikawa D, Shindou H, Arai F, Kabe Y, Suematsu M, Shimizu T, Takubo K. Environmental Optimization Enables Maintenance of Quiescent Hematopoietic Stem Cells Ex Vivo. Cell Rep 2020; 28:145-158.e9. [PMID: 31269436 DOI: 10.1016/j.celrep.2019.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/26/2018] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Hematopoietic stem cells (HSCs) maintain lifelong hematopoiesis by remaining quiescent in the bone marrow niche. Recapitulation of a quiescent state in culture has not been achieved, as cells rapidly proliferate and differentiate in vitro. After exhaustive analysis of different environmental factor combinations and concentrations as a way to mimic physiological conditions, we were able to maintain engraftable quiescent HSCs for 1 month in culture under very low cytokine concentrations, hypoxia, and very high fatty acid levels. Exogenous fatty acids were required likely due to suppression of intrinsic fatty acid synthesis by hypoxia and low cytokine conditions. By contrast, high cytokine concentrations or normoxia induced HSC proliferation and differentiation. Our culture system provides a means to evaluate properties of steady-state HSCs and test effects of defined factors in vitro under near-physiological conditions.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Ayumi Okinaga
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Fumie Hamano
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Tomomi Hashidate-Yoshida
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Hishikawa
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| |
Collapse
|
217
|
Wei C, Yu P, Cheng L. Hematopoietic Reprogramming Entangles with Hematopoiesis. Trends Cell Biol 2020; 30:752-763. [PMID: 32861580 DOI: 10.1016/j.tcb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis generally refers to hematopoietic development in fetuses and adults, as well as to hematopoietic stem cell differentiation into progeny lineages. The multiple processes that generate diverse hematopoietic cells have been considered to be unidirectional. However, many reports have recently demonstrated that these processes are not only reversible but also interconvertible via cell reprogramming. The cell reprogramming that occurs in hematopoietic cells is termed hematopoietic reprogramming. We focus on both autogenous and artificial hematopoietic reprogramming under physiological and pathological conditions that is mainly directed by the actions of transcription factors (TFs), chemical compounds, or extracellular cytokines. A comprehensive understanding of hematopoietic reprogramming will help us not only to generate desirable cells for cell therapy but also to further analyze normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Chuijin Wei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pei Yu
- Department of Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
218
|
Dong F, Cheng H, Ema H, Cheng T. Probing the fate of transplanted hematopoietic stem cells: is the combinational approach "FIT" for purpose? SCIENCE CHINA-LIFE SCIENCES 2020; 63:1755-1758. [PMID: 32857290 DOI: 10.1007/s11427-020-1786-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020, China. .,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China.
| | - Hideo Ema
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020, China. .,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
219
|
Moudgil A, Wilkinson MN, Chen X, He J, Cammack AJ, Vasek MJ, Lagunas T, Qi Z, Lalli MA, Guo C, Morris SA, Dougherty JD, Mitra RD. Self-Reporting Transposons Enable Simultaneous Readout of Gene Expression and Transcription Factor Binding in Single Cells. Cell 2020; 182:992-1008.e21. [PMID: 32710817 PMCID: PMC7510185 DOI: 10.1016/j.cell.2020.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Cellular heterogeneity confounds in situ assays of transcription factor (TF) binding. Single-cell RNA sequencing (scRNA-seq) deconvolves cell types from gene expression, but no technology links cell identity to TF binding sites (TFBS) in those cell types. We present self-reporting transposons (SRTs) and use them in single-cell calling cards (scCC), a novel assay for simultaneously measuring gene expression and mapping TFBS in single cells. The genomic locations of SRTs are recovered from mRNA, and SRTs deposited by exogenous, TF-transposase fusions can be used to map TFBS. We then present scCC, which map SRTs from scRNA-seq libraries, simultaneously identifying cell types and TFBS in those same cells. We benchmark multiple TFs with this technique. Next, we use scCC to discover BRD4-mediated cell-state transitions in K562 cells. Finally, we map BRD4 binding sites in the mouse cortex at single-cell resolution, establishing a new method for studying TF biology in situ.
Collapse
Affiliation(s)
- Arnav Moudgil
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael N Wilkinson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - June He
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Alexander J Cammack
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael J Vasek
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tomás Lagunas
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Zongtai Qi
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Matthew A Lalli
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Chuner Guo
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
220
|
Pei W, Shang F, Wang X, Fanti AK, Greco A, Busch K, Klapproth K, Zhang Q, Quedenau C, Sauer S, Feyerabend TB, Höfer T, Rodewald HR. Resolving Fates and Single-Cell Transcriptomes of Hematopoietic Stem Cell Clones by PolyloxExpress Barcoding. Cell Stem Cell 2020; 27:383-395.e8. [PMID: 32783885 DOI: 10.1016/j.stem.2020.07.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
Lineage tracing reveals hematopoietic stem cell (HSC) fates, while single-cell RNA sequencing identifies snapshots of HSC transcriptomes. To obtain information on fate plus transcriptome in the same cell, we developed the PolyloxExpress allele, enabling Cre-recombinase-dependent RNA barcoding in situ. Linking fates to single HSC transcriptomes provided the information required to identify transcriptional signatures of HSC fates, which were not apparent in single-HSC transcriptomes alone. We find that differentiation-inactive, multilineage, and lineage-restricted HSC clones reside in distinct regions of the transcriptional landscape of hematopoiesis. Differentiation-inactive HSC clones are closer to the origin of the transcriptional trajectory, yet they are not characterized by a quiescent gene signature. Fate-specific gene signatures imply coherence of clonal HSC fates, and HSC output toward short-lived lineage progenitors indicates stability of HSC fates over time. These combined analyses of fate and transcriptome under physiological conditions may pave the way toward identifying molecular determinants of HSC fates.
Collapse
Affiliation(s)
- Weike Pei
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Fuwei Shang
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Medicine, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Xi Wang
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Theoretical Systems Biology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Ann-Kathrin Fanti
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alessandro Greco
- Division of Theoretical Systems Biology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kay Klapproth
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Qin Zhang
- Division of Theoretical Systems Biology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Claudia Quedenau
- Max Delbrück Centrum, Scientific Genomics Platforms (BIMSB/BIH), Hannoversche Straße 28, 10115 Berlin, Germany
| | - Sascha Sauer
- Max Delbrück Centrum, Scientific Genomics Platforms (BIMSB/BIH), Hannoversche Straße 28, 10115 Berlin, Germany
| | - Thorsten B Feyerabend
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
221
|
Paulson RF, Hariharan S, Little JA. Stress erythropoiesis: definitions and models for its study. Exp Hematol 2020; 89:43-54.e2. [PMID: 32750404 DOI: 10.1016/j.exphem.2020.07.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Steady-state erythropoiesis generates new erythrocytes at a constant rate, and it has enormous productive capacity. This production is balanced by the removal of senescent erythrocytes by macrophages in the spleen and liver. Erythroid homeostasis is highly regulated to maintain sufficient erythrocytes for efficient oxygen delivery to the tissues, while avoiding viscosity problems associated with overproduction. However, there are times when this constant production of erythrocytes is inhibited or is inadequate; at these times, erythroid output is increased to compensate for the loss of production. In some cases, increased steady-state erythropoiesis can offset the loss of erythrocytes but, in response to inflammation caused by infection or tissue damage, steady-state erythropoiesis is inhibited. To maintain homeostasis under these conditions, an alternative stress erythropoiesis pathway is activated. Emerging data suggest that the bone morphogenetic protein 4 (BMP4)-dependent stress erythropoiesis pathway is integrated into the inflammatory response and generates a bolus of new erythrocytes that maintain homeostasis until steady-state erythropoiesis can resume. In this perspective, we define the mechanisms that generate new erythrocytes when steady-state erythropoiesis is impaired and discuss experimental models to study human stress erythropoiesis.
Collapse
Affiliation(s)
- Robert F Paulson
- Center for Molecular Immunology and Infectious Disease and the Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA; Intercollege Graduate Program in Genetics, Penn State University, University Park, PA.
| | - Sneha Hariharan
- Intercollege Graduate Program in Genetics, Penn State University, University Park, PA
| | - Jane A Little
- Department of Medicine, University of North Carolina Comprehensive Sickle Cell Disease Program, Chapel Hill, NC
| |
Collapse
|
222
|
Blecua P, Martinez‐Verbo L, Esteller M. The DNA methylation landscape of hematological malignancies: an update. Mol Oncol 2020; 14:1616-1639. [PMID: 32526054 PMCID: PMC7400809 DOI: 10.1002/1878-0261.12744] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The rapid advances in high-throughput sequencing technologies have made it more evident that epigenetic modifications orchestrate a plethora of complex biological processes. During the last decade, we have gained significant knowledge about a wide range of epigenetic changes that crucially contribute to some of the most aggressive forms of leukemia, lymphoma, and myelodysplastic syndromes. DNA methylation is a key epigenetic player in the abnormal initiation, development, and progression of these malignancies, often acting in synergy with other epigenetic alterations. It also contributes to the acquisition of drug resistance. In this review, we summarize the role of DNA methylation in hematological malignancies described in the current literature. We discuss in detail the dual role of DNA methylation in normal and aberrant hematopoiesis, as well as the involvement of this type of epigenetic change in other aspects of the disease. Finally, we present a comprehensive overview of the main clinical implications, including a discussion of the therapeutic strategies that regulate or reverse aberrant DNA methylation patterns in hematological malignancies, including their combination with (chemo)immunotherapy.
Collapse
Affiliation(s)
- Pedro Blecua
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Laura Martinez‐Verbo
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Manel Esteller
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Physiological Sciences DepartmentSchool of Medicine and Health SciencesUniversity of BarcelonaSpain
| |
Collapse
|
223
|
Ikonomi N, Kühlwein SD, Schwab JD, Kestler HA. Awakening the HSC: Dynamic Modeling of HSC Maintenance Unravels Regulation of the TP53 Pathway and Quiescence. Front Physiol 2020; 11:848. [PMID: 32848827 PMCID: PMC7411231 DOI: 10.3389/fphys.2020.00848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) provide all types of blood cells during the entire life of the organism. HSCs are mainly quiescent and can eventually enter the cell cycle to differentiate. HSCs are maintained and tightly regulated in a particular environment. The stem cell niche regulates dormancy and awakening. Deregulations of this interplay can lead to hematopoietic failure and diseases. In this paper, we present a Boolean network model that recapitulates HSC regulation in virtue of external signals coming from the niche. This Boolean network integrates and summarizes the current knowledge of HSC regulation and is based on extensive literature research. Furthermore, dynamic simulations suggest a novel systemic regulation of TP53 in homeostasis. Thereby, our model indicates that TP53 activity is balanced depending on external stimulations, engaging a regulatory mechanism involving ROS regulators and RAS activated transcription factors. Finally, we investigated different mouse models and compared them to in silico knockout simulations. Here, the model could recapitulate in vivo observed behaviors and thus sustains our results.
Collapse
Affiliation(s)
- Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Silke D Kühlwein
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| |
Collapse
|
224
|
Dong Y, Wang K, Weng Q, Wang T, Zhou P, Liu X, Geng Y, Liu L, Wu H, Wang J, Du J. NUP98-HOXA10hd fusion protein sustains multi-lineage haematopoiesis of lineage-committed progenitors in transplant setting. Cell Prolif 2020; 53:e12885. [PMID: 32725842 PMCID: PMC7507399 DOI: 10.1111/cpr.12885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives Exploring approaches of extending the haematopoiesis time window of MPPs and lineage‐committed progenitors might produce promising therapeutic effects. NUP98‐HOXA10hd (NA) fusion protein can expand long‐term haematopoietic stem cells (HSCs) and promote engraftment competitiveness without causing obvious oncogenesis. Our objectives were to investigate the roles of NA fusion protein in MPP and downstream lineage‐committed progenitor context. Material and Methods 300 sorted MPPs (Lin−CD48−c‐kit+Sca1+CD135+CD150−) were mixed with 5 × 105 total BM helper/competitor cells and injected into irradiated recipients. For secondary transplantation, 5 × 106 total BM cells from primary recipient mice were injected into lethally irradiated recipients. NA‐MPP recipient mice were sacrified for flow cytometric analysis of bone marrow progenitors at indicated time points. Sorted MPPs and myeloid progenitors were used for RNA‐seq library preparation. Results We showed that NA‐expressing MPPs achieved significantly longer multi‐lineage haematopoiesis (>44‐week) than natural MPPs (20‐week). NA upregulated essential genes regulating long‐term haematopoiesis, cell cycle, epigenetic regulation and responses to stress in MPPs. These molecular traits are associated with the earlier appearance of a Sca1‐c‐kit+ myeloid progenitor population, and more abundant cellularity of lineage‐committed progenitor as well as bone marrow nucleated cells. Further, the NA‐derived primary bone marrow cells, which lack NA‐LSK cells, successfully repopulated secondary multi‐lineage haematopoiesis over 20 weeks. Conclusions This study unveiled that NA fusion protein promotes MPP and lineage‐committed progenitor engraftment via extending long‐term multi‐lineage haematopoiesis.
Collapse
Affiliation(s)
- Yong Dong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Kaitao Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qitong Weng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tongjie Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Peiqing Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yang Geng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Lijuan Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Hongling Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Juan Du
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
225
|
Seyfried AN, Maloney JM, MacNamara KC. Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Front Immunol 2020; 11:1499. [PMID: 32849512 PMCID: PMC7396643 DOI: 10.3389/fimmu.2020.01499] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.
Collapse
Affiliation(s)
- Allison N Seyfried
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jackson M Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
226
|
Rozhok AI, Silberman RE, Higa KC, Liggett LA, Amon A, DeGregori J. A somatic evolutionary model of the dynamics of aneuploid cells during hematopoietic reconstitution. Sci Rep 2020; 10:12198. [PMID: 32699207 PMCID: PMC7376010 DOI: 10.1038/s41598-020-68729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/28/2020] [Indexed: 11/28/2022] Open
Abstract
Aneuploidy is a feature of many cancers. Recent studies demonstrate that in the hematopoietic stem and progenitor cell (HSPC) compartment aneuploid cells have reduced fitness and are efficiently purged from the bone marrow. However, early phases of hematopoietic reconstitution following bone marrow transplantation provide a window of opportunity whereby aneuploid cells rise in frequency, only to decline to basal levels thereafter. Here we demonstrate by Monte Carlo modeling that two mechanisms could underlie this aneuploidy peak: rapid expansion of the engrafted HSPC population and bone marrow microenvironment degradation caused by pre-transplantation radiation treatment. Both mechanisms reduce the strength of purifying selection acting in early post-transplantation bone marrow. We explore the contribution of other factors such as alterations in cell division rates that affect the strength of purifying selection, the balance of drift and selection imposed by the HSPC population size, and the mutation-selection balance dependent on the rate of aneuploidy generation per cell division. We propose a somatic evolutionary model for the dynamics of cells with aneuploidy or other fitness-reducing mutations during hematopoietic reconstitution following bone marrow transplantation. Similar alterations in the strength of purifying selection during cancer development could help explain the paradox of aneuploidy abundance in tumors despite somatic fitness costs.
Collapse
Affiliation(s)
- Andrii I Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Rebecca E Silberman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kelly C Higa
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - L Alex Liggett
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Pediatrics, Section of Pediatric Hematology/Oncology/BMT, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
227
|
Soares-da-Silva F, Peixoto M, Cumano A, Pinto-do-Ó P. Crosstalk Between the Hepatic and Hematopoietic Systems During Embryonic Development. Front Cell Dev Biol 2020; 8:612. [PMID: 32793589 PMCID: PMC7387668 DOI: 10.3389/fcell.2020.00612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) generated during embryonic development are able to maintain hematopoiesis for the lifetime, producing all mature blood lineages. HSC transplantation is a widely used cell therapy intervention in the treatment of hematologic, autoimmune and genetic disorders. Its use, however, is hampered by the inability to expand HSCs ex vivo, urging for a better understanding of the mechanisms regulating their physiological expansion. In the adult, HSCs reside in the bone marrow, in specific microenvironments that support stem cell maintenance and differentiation. Conversely, while developing, HSCs are transiently present in the fetal liver, the major hematopoietic site in the embryo, where they expand. Deeper insights on the dynamics of fetal liver composition along development, and on how these different cell types impact hematopoiesis, are needed. Both, the hematopoietic and hepatic fetal systems have been extensively studied, albeit independently. This review aims to explore their concurrent establishment and evaluate to what degree they may cross modulate their respective development. As insights on the molecular networks that govern physiological HSC expansion accumulate, it is foreseeable that strategies to enhance HSC proliferation will be improved.
Collapse
Affiliation(s)
- Francisca Soares-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Márcia Peixoto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ana Cumano
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Perpetua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
228
|
Isolation of a Highly Purified HSC-enriched CD34 +CD90 +CD45RA - Cell Subset for Allogeneic Transplantation in the Nonhuman Primate Large-animal Model. Transplant Direct 2020; 6:e579. [PMID: 33134503 PMCID: PMC7581184 DOI: 10.1097/txd.0000000000001029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a common treatment for patients suffering from different hematological disorders. Allo-HCT in combination with hematopoietic stem cell (HSC) gene therapy is considered a promising treatment option for millions of patients with HIV+ and acute myeloid leukemia. Most currently available HSC gene therapy approaches target CD34-enriched cell fractions, a heterogeneous mix of mostly progenitor cells and only very few HSCs with long-term multilineage engraftment potential. As a consequence, gene therapy approaches are currently limited in their HSC targeting efficiency, very expensive consuming huge quantities of modifying reagents, and can lead to unwanted side effects in nontarget cells. We have previously shown that purified CD34+CD90+CD45RA− cells are enriched for multipotent HSCs with long-term multilineage engraftment potential, which can reconstitute the entire hematopoietic system in an autologous nonhuman primate transplant model. Here, we tested the feasibility of transplantation with purified CD34+CD90+CD45RA− cells in the allogeneic setting in a nonhuman primate model.
Collapse
|
229
|
Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 2020; 583:585-589. [PMID: 32669716 PMCID: PMC7579674 DOI: 10.1038/s41586-020-2503-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Bone marrow transplantation therapy relies on the life-long regenerative capacity of haematopoietic stem cells (HSCs)1,2. HSCs present a complex variety of regenerative behaviours at the clonal level, but the mechanisms underlying this diversity are still undetermined3–11. Recent advances in single cell RNA sequencing (scRNAseq) have revealed transcriptional differences amongst HSCs, providing a possible explanation for their functional heterogeneity12–17. However, the destructive nature of sequencing assays prevents simultaneous observation of stem cell state and function. To solve this challenge, we implemented expressible lentiviral barcoding, which enabled simultaneous analysis of lineages and transcriptomes from single adult HSCs and their clonal trajectories during long-term bone marrow reconstitution. Differential gene expression analysis between clones with distinct behaviour unveiled an intrinsic molecular signature that characterizes functional long-term repopulating HSCs. Probing this signature through in vivo CRISPR screening, we found the transcription factor Tcf15 to be required, and sufficient, to drive HSC quiescence and long-term self-renewal. In situ, Tcf15 expression labels the most primitive subset of true multipotent HSCs. In conclusion, our work elucidates clone-intrinsic molecular programs associated with functional stem cell heterogeneity, and identifies a mechanism for the maintenance of the self-renewing haematopoietic stem cell state.
Collapse
|
230
|
Loughran SJ, Haas S, Wilkinson AC, Klein AM, Brand M. Lineage commitment of hematopoietic stem cells and progenitors: insights from recent single cell and lineage tracing technologies. Exp Hematol 2020; 88:1-6. [PMID: 32653531 DOI: 10.1016/j.exphem.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Blood production is essential to maintain human health, and even small perturbations in hematopoiesis can cause disease. Hematopoiesis has therefore been the focus of much research for many years. Experiments determining the lineage potentials of hematopoietic stem and progenitor cells (HSPCs) in vitro and after transplantation revealed a hierarchy of progenitor cell states, where differentiating cells undergo lineage commitment-a series of irreversible changes that progressively restrict their potential. New technologies have recently been developed that allow for a more detailed analysis of the molecular states and fates of differentiating HSPCs. Proteomic and lineage-tracing approaches, alongside single-cell transcriptomic analyses, have recently helped to reveal the biological complexity underlying lineage commitment during hematopoiesis. Recent insights from these new technologies were presented by Dr. Marjorie Brand and Dr. Allon Klein in the Summer 2019 ISEH Webinar, and are discussed in this Perspective.
Collapse
Affiliation(s)
- Stephen J Loughran
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom.
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine and Division of Stem Cells and Cancer, DKFZ German Cancer Research Centre, Heidelberg, Germany
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA; Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
231
|
Abstract
Animals begin life as a single cell that divides and differentiates to form a complex body. In doing so, cells make a sequence of fate decisions, often depicted as a tree. A goal in developmental biology is to chart the structure of this tree across tissues, typically by tagging cells and tracking their offspring. Recent advances in DNA sequencing enable tracking thousands of cells simultaneously using unique DNA barcodes, but one can construct false differentiation hierarchies from barcode data. Here, we apply the theory of branching processes to derive conditions under which barcode statistics correctly encode developmental hierarchy. We use this formal basis to develop a practical pipeline for analyzing lineage barcoding experiments. The pipeline is demonstrated in studying hematopoiesis. A central task in developmental biology is to learn the sequence of fate decisions that leads to each mature cell type in a tissue or organism. Recently, clonal labeling of cells using DNA barcodes has emerged as a powerful approach for identifying cells that share a common ancestry of fate decisions. Here we explore the idea that stochasticity of cell fate choice during tissue development could be harnessed to read out lineage relationships after a single step of clonal barcoding. By considering a generalized multitype branching process, we determine the conditions under which the final distribution of barcodes over observed cell types encodes their bona fide lineage relationships. We then propose a method for inferring the order of fate decisions. Our theory predicts a set of symmetries of barcode covariance that serves as a consistency check for the validity of the method. We show that broken symmetries may be used to detect multiple paths of differentiation to the same cell types. We provide computational tools for general use. When applied to barcoding data in hematopoiesis, these tools reconstruct the classical hematopoietic hierarchy and detect couplings between monocytes and dendritic cells and between erythrocytes and basophils that suggest multiple pathways of differentiation for these lineages.
Collapse
|
232
|
Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Stem Cell Reports 2020; 13:992-1005. [PMID: 31813828 PMCID: PMC6915804 DOI: 10.1016/j.stemcr.2019.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-selective adhesion molecule (ESAM) is a lifelong marker of hematopoietic stem cells (HSCs). Although we previously elucidated the functional importance of ESAM in HSCs in stress-induced hematopoiesis in adults, it is unclear how ESAM affects hematopoietic development during fetal life. To address this issue, we analyzed fetuses from conventional or conditional ESAM-knockout mice. Approximately half of ESAM-null fetuses died after mid-gestation due to anemia. RNA sequencing analyses revealed downregulation of adult-type globins and Alas2, a heme biosynthesis enzyme, in ESAM-null fetal livers. These abnormalities were attributed to malfunction of ESAM-null HSCs, which was demonstrated in culture and transplantation experiments. Although crosslinking ESAM directly influenced gene transcription in HSCs, observations in conditional ESAM-knockout fetuses revealed the critical involvement of ESAM expressed in endothelial cells in fetal lethality. Thus, we showed that ESAM had important roles in developing definitive hematopoiesis. Furthermore, we unveiled the importance of endothelial ESAM in this process.
Collapse
|
233
|
Yvan-Charvet L, Ng LG. Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends Immunol 2020; 40:598-612. [PMID: 31256783 DOI: 10.1016/j.it.2019.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Granulopoiesis is part of the hematopoietic hierarchic architecture, where hematopoietic stem cells give rise to highly proliferative multipotent and lineage-committed granulocytic progenitor cells that differentiate into unipotent neutrophil progenitors. Given their short lifespan, neutrophils are rapidly cleared from circulation through specialized efferocytic macrophages. Together with an intrinsic clock, these processes contribute to circadian fluctuations, preserving self-tolerance and protection against invading pathogens. However, metabolic perturbation of granulopoiesis and neutrophil homeostasis can result in low-grade chronic inflammation, as observed with aging. During acute pathogenic infections, hematopoiesis can also be switched into emergency mode, which has been recently associated with significant neutrophil functional heterogeneity. This review focuses on a new reassessment of regulatory mechanisms governing neutrophil production, life-cycle, and diversity in health and disease.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore 138648, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, 288 Nanjing Road, Tianjin 300020, China; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
234
|
Pucella JN, Upadhaya S, Reizis B. The Source and Dynamics of Adult Hematopoiesis: Insights from Lineage Tracing. Annu Rev Cell Dev Biol 2020; 36:529-550. [PMID: 32580566 DOI: 10.1146/annurev-cellbio-020520-114601] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation of all blood cell lineages (hematopoiesis) is sustained throughout the entire life span of adult mammals. Studies using cell transplantation identified the self-renewing, multipotent hematopoietic stem cells (HSCs) as the source of hematopoiesis in adoptive hosts and delineated a hierarchy of HSC-derived progenitors that ultimately yield mature blood cells. However, much less is known about adult hematopoiesis as it occurs in native hosts, i.e., without transplantation. Here we review recent advances in our understanding of native hematopoiesis, focusing in particular on the application of genetic lineage tracing in mice. The emerging evidence has established HSCs as the major source of native hematopoiesis, helped to define the kinetics of HSC differentiation, and begun exploring native hematopoiesis in stress conditions such as aging and inflammation. Major outstanding questions about native hematopoiesis still remain, such as its clonal composition, the nature of lineage commitment, and the dynamics of the process in humans.
Collapse
Affiliation(s)
- Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| |
Collapse
|
235
|
Kwok I, Becht E, Xia Y, Ng M, Teh YC, Tan L, Evrard M, Li JLY, Tran HTN, Tan Y, Liu D, Mishra A, Liong KH, Leong K, Zhang Y, Olsson A, Mantri CK, Shyamsunder P, Liu Z, Piot C, Dutertre CA, Cheng H, Bari S, Ang N, Biswas SK, Koeffler HP, Tey HL, Larbi A, Su IH, Lee B, St John A, Chan JKY, Hwang WYK, Chen J, Salomonis N, Chong SZ, Grimes HL, Liu B, Hidalgo A, Newell EW, Cheng T, Ginhoux F, Ng LG. Combinatorial Single-Cell Analyses of Granulocyte-Monocyte Progenitor Heterogeneity Reveals an Early Uni-potent Neutrophil Progenitor. Immunity 2020; 53:303-318.e5. [PMID: 32579887 DOI: 10.1016/j.immuni.2020.06.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.
Collapse
Affiliation(s)
- Immanuel Kwok
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Etienne Becht
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yu Xia
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Melissa Ng
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Jackson L Y Li
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Hoa T N Tran
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
| | - Dehua Liu
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Archita Mishra
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ka Hang Liong
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Keith Leong
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yuning Zhang
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Andre Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Cecile Piot
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Sudipto Bari
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - H Philip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA 90048, USA; Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Hospital, Singapore 119074, Singapore
| | - Hong Liang Tey
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - I-Hsin Su
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ashley St John
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; SingHealth Duke-National University of Singapore Global Health Institute, Singapore 168753, Singapore
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - William Y K Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; National Cancer Centre Singapore, Singapore 169610, Singapore; Department of Hematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Evan W Newell
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; National Cancer Centre Singapore, Singapore 169610, Singapore.
| |
Collapse
|
236
|
Goldstein JM, Tabebordbar M, Zhu K, Wang LD, Messemer KA, Peacker B, Ashrafi Kakhki S, Gonzalez-Celeiro M, Shwartz Y, Cheng JKW, Xiao R, Barungi T, Albright C, Hsu YC, Vandenberghe LH, Wagers AJ. In Situ Modification of Tissue Stem and Progenitor Cell Genomes. Cell Rep 2020; 27:1254-1264.e7. [PMID: 31018138 PMCID: PMC6858480 DOI: 10.1016/j.celrep.2019.03.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/22/2019] [Accepted: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Goldstein et al. demonstrate in vivo transduction of
endogenous tissue stem cells in the muscle, blood, and skin by systemic or local
administration of adeno-associated viruses (AAVs) encoding genome-modifying
enzymes. They report that AAV-transduced and genome-modified stem and progenitor
cells maintain their capacity to differentiate and engraft following
transplantation. In vivo delivery of genome-modifying enzymes holds
significant promise for therapeutic applications and functional genetic
screening. Delivery to endogenous tissue stem cells, which provide an enduring
source of cell replacement during homeostasis and regeneration, is of particular
interest. Here, we use a sensitive Cre/lox fluorescent reporter system to test
the efficiency of genome modification following in vivo
transduction by adeno-associated viruses (AAVs) in tissue stem and progenitor
cells. We combine immunophenotypic analyses with in vitro and
in vivo assays of stem cell function to reveal effective
targeting of skeletal muscle satellite cells, mesenchymal progenitors,
hematopoietic stem cells, and dermal cell subsets using multiple AAV serotypes.
Genome modification rates achieved through this system reached >60%, and
modified cells retained key functional properties. This study establishes a
powerful platform to genetically alter tissue progenitors within their
physiological niche while preserving their native stem cell properties and
regulatory interactions.
Collapse
Affiliation(s)
- Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | | | - Kexian Zhu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Leo D Wang
- Joslin Diabetes Center, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Bryan Peacker
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Sara Ashrafi Kakhki
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Meryem Gonzalez-Celeiro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jason K W Cheng
- Editas Medicine, Inc., 11 Hurley Street, Cambridge, MA 02142, USA
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Trisha Barungi
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Charles Albright
- Editas Medicine, Inc., 11 Hurley Street, Cambridge, MA 02142, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Luk H Vandenberghe
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA.
| |
Collapse
|
237
|
Zafar H, Lin C, Bar-Joseph Z. Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data. Nat Commun 2020; 11:3055. [PMID: 32546686 PMCID: PMC7298005 DOI: 10.1038/s41467-020-16821-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies combine two novel technologies, single-cell RNA-sequencing and CRISPR-Cas9 barcode editing for elucidating developmental lineages at the whole organism level. While these studies provided several insights, they face several computational challenges. First, lineages are reconstructed based on noisy and often saturated random mutation data. Additionally, due to the randomness of the mutations, lineages from multiple experiments cannot be combined to reconstruct a species-invariant lineage tree. To address these issues we developed a statistical method, LinTIMaT, which reconstructs cell lineages using a maximum-likelihood framework by integrating mutation and expression data. Our analysis shows that expression data helps resolve the ambiguities arising in when lineages are inferred based on mutations alone, while also enabling the integration of different individual lineages for the reconstruction of an invariant lineage tree. LinTIMaT lineages have better cell type coherence, improve the functional significance of gene sets and provide new insights on progenitors and differentiation pathways.
Collapse
Affiliation(s)
- Hamim Zafar
- Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chieh Lin
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
238
|
Bowling S, Sritharan D, Osorio FG, Nguyen M, Cheung P, Rodriguez-Fraticelli A, Patel S, Yuan WC, Fujiwara Y, Li BE, Orkin SH, Hormoz S, Camargo FD. An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells. Cell 2020; 181:1410-1422.e27. [PMID: 32413320 PMCID: PMC7529102 DOI: 10.1016/j.cell.2020.04.048] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/20/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
Tracing the lineage history of cells is key to answering diverse and fundamental questions in biology. Coupling of cell ancestry information with other molecular readouts represents an important goal in the field. Here, we describe the CRISPR array repair lineage tracing (CARLIN) mouse line and corresponding analysis tools that can be used to simultaneously interrogate the lineage and transcriptomic information of single cells in vivo. This model exploits CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible fashion at any point during development or adulthood, is compatible with sequential barcoding, and is fully genetically defined. We have used CARLIN to identify intrinsic biases in the activity of fetal liver hematopoietic stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck in the response of HSCs to injury. CARLIN also allows the unbiased identification of transcriptional signatures associated with HSC activity without cell sorting.
Collapse
Affiliation(s)
- Sarah Bowling
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Duluxan Sritharan
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fernando G Osorio
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Maximilian Nguyen
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Alejo Rodriguez-Fraticelli
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sachin Patel
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Wei-Chien Yuan
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bin E Li
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Sahand Hormoz
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
239
|
|
240
|
Abstract
The mechanisms that regulate the balance between stem cell duplication and differentiation in adult tissues remain in debate. Using a combination of genetic lineage tracing and marker-based assays, the quantitative statistical analysis of clone size and cell composition has provided insights into the patterns of stem cell fate across a variety of tissue types and organisms. These studies have emphasized the role of niche factors and environmental cues in promoting stem cell competence, fate priming, and stochastic renewal programs. At the same time, evidence for injury-induced "cellular reprogramming" has revealed the remarkable flexibility of cell states, allowing progenitors to reacquire self-renewal potential during regeneration. Together, these findings have questioned the nature of stem cell identity and function. Here, focusing on a range of canonical tissue types, we review how quantitative modeling-based approaches have uncovered conserved patterns of stem cell fate and provided new insights into the mechanisms that regulate self-renewal.
Collapse
Affiliation(s)
- Lemonia Chatzeli
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Benjamin D Simons
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
241
|
Abstract
The self-renewal capacity of multipotent haematopoietic stem cells (HSCs) supports blood system homeostasis throughout life and underlies the curative capacity of clinical HSC transplantation therapies. However, despite extensive characterization of the HSC state in the adult bone marrow and embryonic fetal liver, the mechanism of HSC self-renewal has remained elusive. This Review presents our current understanding of HSC self-renewal in vivo and ex vivo, and discusses important advances in ex vivo HSC expansion that are providing new biological insights and offering new therapeutic opportunities.
Collapse
|
242
|
Nazaraliyev A, Richard E, Sawai CM. In-vivo differentiation of adult hematopoietic stem cells from a single-cell point of view. Curr Opin Hematol 2020; 27:241-247. [PMID: 32398457 DOI: 10.1097/moh.0000000000000587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Although hematopoietic stem cell (HSC) function has long been studied by transplantation assays, this does not reflect what HSCs actually do in their native context. Here, we review recent technologic advances that facilitate the study of HSCs in their native context focusing on inducible HSC-specific lineage tracing and inference of hematopoietic trajectories through single-cell RNA sequencing (scRNA-Seq). RECENT FINDINGS Lineage tracing of HSCs at the population level using multiple systems has suggested that HSCs make a major contribution to steady-state hematopoiesis. Although several genetic systems and novel methods for lineage tracing individual hematopoietic clones have been described, the technology for tracking these cellular barcodes (in particular mutations or insertion sites) is still in its infancy. Thus, lineage tracing of HSC clones in the adult bone marrow remains elusive. Static snapshots of scRNA-Seq of hematopoietic populations have captured the heterogeneity of transcriptional profiles of HSCs and progenitors, with some cells displaying a unilineage signature as well as others with bi or multipotent lineage profiles. Kinetic analysis using HSC-specific lineage tracing combined with scRNA-Seq confirmed this heterogeneity of progenitor populations and revealed a rapid and early emergence of megakaryocytic progeny, followed by erythroid and myeloid lineages, whereas lymphoid differentiation emerged last. SUMMARY New approaches to study HSCs both in vivo through lineage tracing and at a high-resolution molecular level through scRNA-Seq are providing key insight into HSC differentiation in the absence of transplantation. Recent studies using these approaches are discussed here. These studies pave the way for integration of in-vivo clonal analysis of HSC behavior over time with single-cell sequencing data, including but not limited to transcriptomic, proteomic, and epigenomic, to establish a comprehensive molecular and cellular map of hematopoiesis.
Collapse
Affiliation(s)
- Amal Nazaraliyev
- INSERM Unit 1218 ACTION, University of Bordeaux, Bergonié Cancer Institute, Bordeaux, France
| | | | | |
Collapse
|
243
|
Vink CS, Calero-Nieto FJ, Wang X, Maglitto A, Mariani SA, Jawaid W, Göttgens B, Dzierzak E. Iterative Single-Cell Analyses Define the Transcriptome of the First Functional Hematopoietic Stem Cells. Cell Rep 2020; 31:107627. [PMID: 32402290 PMCID: PMC7225750 DOI: 10.1016/j.celrep.2020.107627] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/18/2020] [Accepted: 04/18/2020] [Indexed: 01/06/2023] Open
Abstract
Whereas hundreds of cells in the mouse embryonic aorta transdifferentiate to hematopoietic cells, only very few establish hematopoietic stem cell (HSC) identity at a single time point. The Gata2 transcription factor is essential for HSC generation and function. In contrast to surface-marker-based cell isolation, Gata2-based enrichment provides a direct link to the internal HSC regulatory network. Here, we use iterations of index-sorting of Gata2-expressing intra-aortic hematopoietic cluster (IAHC) cells, single-cell transcriptomics, and functional analyses to connect HSC identity to specific gene expression. Gata2-expressing IAHC cells separate into 5 major transcriptomic clusters. Iterative analyses reveal refined CD31, cKit, and CD27 phenotypic parameters that associate specific molecular profiles in one cluster with distinct HSC and multipotent progenitor function. Thus, by iterations of single-cell approaches, we identify the transcriptome of the first functional HSCs as they emerge in the mouse embryo and localize them to aortic clusters containing 1-2 cells.
Collapse
Affiliation(s)
- Chris Sebastiaan Vink
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland EH16 4TJ, UK
| | - Fernando Jose Calero-Nieto
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire, England CB2 0AW, UK
| | - Xiaonan Wang
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire, England CB2 0AW, UK
| | - Antonio Maglitto
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland EH16 4TJ, UK
| | - Samanta Antonella Mariani
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland EH16 4TJ, UK
| | - Wajid Jawaid
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire, England CB2 0AW, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire, England CB2 0AW, UK
| | - Elaine Dzierzak
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland EH16 4TJ, UK.
| |
Collapse
|
244
|
Kranz A, Anastassiadis K. The role of SETD1A and SETD1B in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194578. [PMID: 32389824 DOI: 10.1016/j.bbagrm.2020.194578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022]
Abstract
The Trithorax-related Set1 H3K4 methyltransferases are conserved from yeast to human. In yeast loss of Set1 causes pleiotropic effects but is compatible with life. In contrast, both mammalian Set1 orthologs: SETD1A and SETD1B are essential for embryonic development, however they have distinct functions. SETD1A is required shortly after epiblast formation whereas SETD1B becomes indispensible during early organogenesis. In adult mice both SETD1A and SETD1B regulate hematopoiesis differently: SETD1A is required for the establishment of definitive hematopoiesis whereas SETD1B is important for the maintenance of long-term hematopoietic stem cells. Both are implicated in different diseases with accumulating evidence for the association of SETD1A variants in neurological disorders and SETD1B variants with cancer. Why the two paralogs cannot or only partially compensate for the loss of each other is part of the puzzle that we try to sort out in this review.
Collapse
Affiliation(s)
- Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany.
| |
Collapse
|
245
|
McKinley KL, Castillo-Azofeifa D, Klein OD. Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell 2020; 26:632-656. [PMID: 32386555 PMCID: PMC7250495 DOI: 10.1016/j.stem.2020.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defining the mechanisms that generate specialized cell types and coordinate their functions is critical for understanding organ development and renewal. New tools and discoveries are challenging and refining our definitions of a cell type. A rapidly growing toolkit for single-cell analyses has expanded the number of markers that can be assigned to a cell simultaneously, revealing heterogeneity within cell types that were previously regarded as homogeneous populations. Additionally, cell types defined by specific molecular markers can exhibit distinct, context-dependent functions; for example, between tissues in homeostasis and those responding to damage. Here we review the current technologies used to identify and characterize cells, and we discuss how experimental and pathological perturbations are adding increasing complexity to our definitions of cell identity.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
246
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
247
|
Bamezai S, Buske C. Cutting Off Leukemogenesis: Hydra-like Plasticity of Mature Leukemic Cells. Cell Stem Cell 2020; 25:167-168. [PMID: 31374194 DOI: 10.1016/j.stem.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Leukemic stem cells (LSCs) in acute myeloid leukemia (AML) can drive tumor growth and relapse. In this issue of Cell Stem Cell, McKenzie et al. (2019) report that some mature leukemic cells can de-differentiate and contribute to AML tumorigenesis, a finding with important implications for therapies focused on eradicating LSCs.
Collapse
Affiliation(s)
- Shiva Bamezai
- Institute of Experimental Cancer Research, CCC Ulm, University Hospital Ulm, Ulm, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, CCC Ulm, University Hospital Ulm, Ulm, Germany.
| |
Collapse
|
248
|
The evolution of viral integration site analysis. Blood 2020; 135:1192-1193. [PMID: 32271907 DOI: 10.1182/blood.2020005115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
249
|
Abstract
A central feature of atherosclerosis, the most prevalent chronic vascular disease and root cause of myocardial infarction and stroke, is leukocyte accumulation in the arterial wall. These crucial immune cells are produced in specialized niches in the bone marrow, where a complex cell network orchestrates their production and release. A growing body of clinical studies has documented a correlation between leukocyte numbers and cardiovascular disease risk. Understanding how leukocytes are produced and how they contribute to atherosclerosis and its complications is, therefore, critical to understanding and treating the disease. In this review, we focus on the key cells and products that regulate hematopoiesis under homeostatic conditions, during atherosclerosis and after myocardial infarction.
Collapse
Affiliation(s)
- Wolfram C Poller
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
250
|
Bramlett C, Jiang D, Nogalska A, Eerdeng J, Contreras J, Lu R. Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat Protoc 2020; 15:1436-1458. [PMID: 32132718 PMCID: PMC7427513 DOI: 10.1038/s41596-019-0290-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/21/2019] [Indexed: 11/09/2022]
Abstract
Embedded viral barcoding in combination with high-throughput sequencing is a powerful technology with which to track single-cell clones. It can provide clonal-level insights into cellular proliferation, development, differentiation, migration, and treatment efficacy. Here, we present a detailed protocol for a viral barcoding procedure that includes the creation of barcode libraries, the viral delivery of barcodes, the recovery of barcodes, and the computational analysis of barcode sequencing data. The entire procedure can be completed within a few weeks. This barcoding method requires cells to be susceptible to viral transduction. It provides high sensitivity and throughput, and enables precise quantification of cellular progeny. It is cost efficient and does not require any advanced skills. It can also be easily adapted to many types of applications, including both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Charles Bramlett
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Du Jiang
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Anna Nogalska
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Jiya Eerdeng
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Contreras
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Rong Lu
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|