201
|
Fernandez E, Diamond MS. Vaccination strategies against Zika virus. Curr Opin Virol 2017; 23:59-67. [PMID: 28432975 PMCID: PMC5576498 DOI: 10.1016/j.coviro.2017.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/09/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
Abstract
The epidemic emergence of Zika virus (ZIKV) in 2015-2016 has been associated with congenital malformations and neurological sequela. Current efforts to develop a ZIKV vaccine build on technologies that successfully reduced infection or disease burden against closely related flaviviruses or other RNA viruses. Subunit-based (DNA plasmid and modified mRNA), viral vectored (adeno- and measles viruses) and inactivated viral vaccines are already advancing to clinical trials in humans after successful mouse and non-human primate studies. Among the greatest challenges for the rapid implementation of immunogenic and protective ZIKV vaccines will be addressing the potential for exacerbating Dengue virus infection or causing Guillain-Barré syndrome through production of cross-reactive immunity targeting related viral or host proteins. Here, we review vaccine strategies under development for ZIKV and the issues surrounding their usage.
Collapse
MESH Headings
- Animals
- Clinical Trials as Topic
- Dengue/epidemiology
- Drug Evaluation, Preclinical
- Drug-Related Side Effects and Adverse Reactions/epidemiology
- Guillain-Barre Syndrome/epidemiology
- Humans
- Mice
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Vaccines, DNA/isolation & purification
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/isolation & purification
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Viral Vaccines/adverse effects
- Viral Vaccines/immunology
- Viral Vaccines/isolation & purification
- Zika Virus/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Estefania Fernandez
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
202
|
Scherwitzl I, Mongkolsapaja J, Screaton G. Recent advances in human flavivirus vaccines. Curr Opin Virol 2017; 23:95-101. [DOI: 10.1016/j.coviro.2017.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/07/2017] [Indexed: 11/25/2022]
|
203
|
Kveton F, Blšáková A, Hushegyi A, Damborsky P, Blixt O, Jansson B, Tkac J. Optimization of the Small Glycan Presentation for Binding a Tumor-Associated Antibody: Application to the Construction of an Ultrasensitive Glycan Biosensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2709-2716. [PMID: 28248511 PMCID: PMC5659382 DOI: 10.1021/acs.langmuir.6b04021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The main aim of the study was to optimize the interfacial presentation of a small antigen-a Tn antigen (N-acetylgalactosamine)-for binding to its analyte anti-Tn antibody. Three different methods for the interfacial display of a small glycan are compared here, including two methods based on the immobilization of the Tn antigen on a mixed self-assembled monolayer (SAM) (2D biosensor) and the third one utilizing a layer of a human serum albumin (HSA) for the immobilization of a glycan forming a 3D interface. Results showed that the 3D interface with the immobilized Tn antigen is the most effective bioreceptive surface for binding its analyte. The 3D impedimetric glycan biosensor exhibited a limit of detection of 1.4 aM, a wide linear range (6 orders of magnitude), and high assay reproducibility with an average relative standard deviation of 4%. The buildup of an interface was optimized using various techniques with the visualization of the glycans on the biosensor surface by atomic force microscopy. The study showed that the 3D biosensor is not only the most sensitive compared to other two biosensor platforms but that the Tn antigen on the 3D biosensor surface is more accessible for antibody binding with better kinetics of binding (t50% = 137 s, t50% = the time needed to attain 50% of a steady-state signal) compared to the 2D biosensor configuration with t50% = 354 s. The 3D glycan biosensor was finally applied for the analysis of a human serum sample spiked with an analyte.
Collapse
Affiliation(s)
- Filip Kveton
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Anna Blšáková
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Andras Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Pavel Damborsky
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, 1871
Frederiksberg, Copenhagen, Denmark
| | - Bo Jansson
- Division of Oncology and Pathology, Department of Clinical
Sciences, Lund, Lund University, Lund, SE 221 85 Sweden
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
204
|
A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat Commun 2017; 8:14722. [PMID: 28300075 PMCID: PMC5356071 DOI: 10.1038/ncomms14722] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
The recent Zika virus (ZIKV) epidemic has been linked to unusual and severe clinical manifestations including microcephaly in fetuses of infected pregnant women and Guillian-Barré syndrome in adults. Neutralizing antibodies present a possible therapeutic approach to prevent and control ZIKV infection. Here we present a 6.2 Å resolution three-dimensional cryo-electron microscopy (cryoEM) structure of an infectious ZIKV (strain H/PF/2013, French Polynesia) in complex with the Fab fragment of a highly therapeutic and neutralizing human monoclonal antibody, ZIKV-117. The antibody had been shown to prevent fetal infection and demise in mice. The structure shows that ZIKV-117 Fabs cross-link the monomers within the surface E glycoprotein dimers as well as between neighbouring dimers, thus preventing the reorganization of E protein monomers into fusogenic trimers in the acidic environment of endosomes.
Collapse
|
205
|
Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination. J Virol 2017; 91:JVI.02041-16. [PMID: 28031369 DOI: 10.1128/jvi.02041-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023] Open
Abstract
The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination.IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses, but these principally recognize only the infecting serotype. An effective vaccine against dengue should elicit long-lasting protective antibody responses to all four serotypes simultaneously. We and others have defined antigenic sites on the envelope (E) protein of viruses of dengue virus serotypes 1, 2, and 3 targeted by human neutralizing antibodies. The epitopes on DENV4 E protein targeted by the human neutralizing antibodies and the mechanisms of serotype 4 neutralization are poorly understood. Here, we report the properties of human antibodies that neutralize dengue virus serotype 4. People exposed to serotype 4 infections or a live attenuated serotype 4 vaccine developed neutralizing antibodies that bound to similar sites on the viral E protein. These studies have provided a foundation for developing and evaluating DENV4 vaccines.
Collapse
|
206
|
Conformational changes in intact dengue virus reveal serotype-specific expansion. Nat Commun 2017; 8:14339. [PMID: 28186093 PMCID: PMC5309819 DOI: 10.1038/ncomms14339] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Dengue virus serotype 2 (DENV2) alone undergoes structural expansion at 37 °C (associated with host entry), despite high sequence and structural homology among the four known serotypes. The basis for this differential expansion across strains and serotypes is unknown and necessitates mapping of the dynamics of dengue whole viral particles to describe their coordinated motions and conformational changes when exposed to host-like environments. Here we capture the dynamics of intact viral particles of two serotypes, DENV1 and DENV2, by amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and time resolved Förster Resonance Energy Transfer. Our results show temperature-dependent dynamics hotspots on DENV2 and DENV1 particles with DENV1 showing expansion at 40 °C but not at 37 °C. HDXMS measurement of virion dynamics in solution offers a powerful approach to identify potential epitopes, map virus-antibody complex structure and dynamics, and test effects of multiple host-specific perturbations on viruses and virus-antibody complexes. Temperature differences between mosquitoes and humans trigger structural changes in dengue virus 2 (DENV2) particles, but not in other DENV serotypes. Here, using HDXMS, the authors describe serotype-specific expansion of intact viral particles of DENV1 and DENV2 at 28 °C (mosquitoes), 37 °C (humans) and 40 °C (fever).
Collapse
|
207
|
The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis. Microbiol Mol Biol Rev 2017; 81:81/1/e00055-16. [PMID: 28179396 DOI: 10.1128/mmbr.00055-16] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization.
Collapse
|
208
|
Abstract
Although Zika virus (ZIKV) was isolated approximately 70 years ago, few experimental studies had been published prior to 2016. The recent spread of ZIKV to countries in the Western Hemisphere is associated with reports of microcephaly, congenital malformations, and Guillain-Barré syndrome. This has resulted in ZIKV being declared a public health emergency and has greatly accelerated the pace of ZIKV research and discovery. Within a short time period, useful mouse and non-human primate disease models have been established, and pre-clinical evaluation of therapeutics and vaccines has begun. Unexpectedly, ZIKV exhibits a broad tropism and persistence in body tissues and fluids, which contributes to the clinical manifestations and epidemiology that have been observed during the current epidemic. In this Review, we highlight recent advances in our understanding of ZIKV pathogenesis, tissue tropism, and the resulting pathology and discuss areas for future investigation.
Collapse
Affiliation(s)
- Jonathan J Miner
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
209
|
Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and research priorities. THE LANCET. INFECTIOUS DISEASES 2017; 17:e88-e100. [PMID: 28185868 DOI: 10.1016/s1473-3099(16)30473-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/29/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
Dengue virus is a mosquito-borne pathogen that causes up to about 100 million cases of disease each year, placing a major public health, social, and economic burden on numerous low-income and middle-income countries. Major advances by investigators, vaccine developers, and affected communities are revealing new insights and enabling novel interventions and approaches to dengue prevention and control. Such research has highlighted further questions about both the basic understanding of dengue and efforts to develop new tools. In this report, the third in a Series on dengue, we discuss existing approaches to dengue diagnostics, disease prognosis, surveillance, and vector control in low-income and middle-income countries, as well as potential consequences of vaccine introduction. We also summarise current knowledge and recent insights into dengue epidemiology, immunology, and pathogenesis, and their implications for understanding natural infection and current and future vaccines.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
210
|
Henein S, Swanstrom J, Byers AM, Moser JM, Shaik SF, Bonaparte M, Jackson N, Guy B, Baric R, de Silva AM. Dissecting Antibodies Induced by a Chimeric Yellow Fever-Dengue, Live-Attenuated, Tetravalent Dengue Vaccine (CYD-TDV) in Naive and Dengue-Exposed Individuals. J Infect Dis 2017; 215:351-358. [PMID: 27932620 PMCID: PMC6392503 DOI: 10.1093/infdis/jiw576] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
Sanofi Pasteur has developed a chimeric yellow fever-dengue, live-attenuated, tetravalent dengue vaccine (CYD-TDV) that is currently approved for use in several countries. In clinical trials, CYD-TDV was efficacious at reducing laboratory-confirmed cases of dengue disease. Efficacy varied by dengue virus (DENV) serotype and prevaccination dengue immune status. We compared the properties of antibodies in naive and DENV-exposed individuals who received CYD-TDV. We depleted specific populations of DENV-reactive antibodies from immune serum samples to estimate the contribution of serotype-cross-reactive and type-specific antibodies to neutralization. Subjects with no preexisting immunity to DENV developed neutralizing antibodies to all 4 serotypes of DENV. Further analysis demonstrated that DENV4 was mainly neutralized by type-specific antibodies whereas DENV1, DENV2, and DENV3 were mainly neutralized by serotype cross-reactive antibodies. When subjects with preexisting immunity to DENV were vaccinated, they developed higher levels of neutralizing antibodies than naive subjects who were vaccinated. In preimmune subjects, CYD-TDV boosted cross-reactive neutralizing antibodies while maintaining type-specific neutralizing antibodies acquired before vaccination. Our results demonstrate that the quality of neutralizing antibodies induced by CYD-TDV varies depending on DENV serotype and previous immune status. We discuss the implications of these results for understanding vaccine efficacy.
Collapse
Affiliation(s)
| | - Jesica Swanstrom
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill
| | | | | | | | | | | | | | - Ralph Baric
- Department of Microbiology and Immunology and
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill
| | | |
Collapse
|
211
|
Goo L, VanBlargan LA, Dowd KA, Diamond MS, Pierson TC. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathog 2017; 13:e1006178. [PMID: 28207910 PMCID: PMC5312798 DOI: 10.1371/journal.ppat.1006178] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/11/2017] [Indexed: 01/23/2023] Open
Abstract
The structural flexibility or 'breathing' of the envelope (E) protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F) of the West Nile virus (WNV) E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV), but not Zika virus (ZIKV), E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing.
Collapse
Affiliation(s)
- Leslie Goo
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD, United States of America
| | - Laura A. VanBlargan
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
212
|
Xu M, Zuest R, Velumani S, Tukijan F, Toh YX, Appanna R, Tan EY, Cerny D, MacAry P, Wang CI, Fink K. A potent neutralizing antibody with therapeutic potential against all four serotypes of dengue virus. NPJ Vaccines 2017; 2:2. [PMID: 29263863 PMCID: PMC5627287 DOI: 10.1038/s41541-016-0003-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 02/04/2023] Open
Abstract
A therapy for dengue is still elusive. We describe the neutralizing and protective capacity of a dengue serotype-cross-reactive antibody isolated from the plasmablasts of a patient. Antibody SIgN-3C neutralized all four dengue virus serotypes at nano to picomolar concentrations and significantly decreased viremia of all serotypes in adult mice when given 2 days after infection. Moreover, mice were protected from pathology and death from a lethal dengue virus-2 infection. To avoid potential Fc-mediated uptake of immune complexes and ensuing enhanced infection, we introduced a LALA mutation in the Fc part. SIgN-3C-LALA was as efficient as the non-modified antibody in neutralizing dengue virus and in protecting mice while antibody-dependent enhancement was completely abrogated. The epitope of the antibody includes conserved amino acids in all three domains of the glycoprotein, which can explain its cross-reactivity. SIgN-3C-LALA neutralizes dengue virus both pre and post-attachment to host cells. These attributes likely contribute to the remarkable protective capacity of SIgN-3C.
Collapse
Affiliation(s)
- Meihui Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Roland Zuest
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sumathy Velumani
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Farhana Tukijan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ramapraba Appanna
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Daniela Cerny
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Paul MacAry
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
213
|
Wang Q, Yang H, Liu X, Dai L, Ma T, Qi J, Wong G, Peng R, Liu S, Li J, Li S, Song J, Liu J, He J, Yuan H, Xiong Y, Liao Y, Li J, Yang J, Tong Z, Griffin BD, Bi Y, Liang M, Xu X, Qin C, Cheng G, Zhang X, Wang P, Qiu X, Kobinger G, Shi Y, Yan J, Gao GF. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci Transl Med 2016; 8:369ra179. [DOI: 10.1126/scitranslmed.aai8336] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 08/26/2016] [Accepted: 10/28/2016] [Indexed: 01/10/2023]
|
214
|
Qi H, Zhou H, Czajkowsky DM, Guo S, Li Y, Wang N, Shi Y, Lin L, Wang J, Wu D, Tao SC. Rapid Production of Virus Protein Microarray Using Protein Microarray Fabrication through Gene Synthesis (PAGES). Mol Cell Proteomics 2016; 16:288-299. [PMID: 27965274 PMCID: PMC5294215 DOI: 10.1074/mcp.m116.064873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Indexed: 01/19/2023] Open
Abstract
The high genetic variability of RNA viruses is a significant factor limiting the discovery of effective biomarkers, the development of vaccines, and characterizations of the immune response during infection. Protein microarrays have been shown to be a powerful method in biomarker discovery and the identification of novel protein–protein interaction networks, suggesting that this technique could also be very useful in studies of infectious RNA viruses. However, to date, the amount of genetic material required to produce protein arrays, as well as the time- and labor-intensive procedures typically needed, have limited their more widespread application. Here, we introduce a method, protein microarray fabrication through gene synthesis (PAGES), for the rapid and efficient construction of protein microarrays particularly for RNA viruses. Using dengue virus as an example, we first identify consensus sequences from 3,604 different strains and then fabricate complete proteomic microarrays that are unique for each consensus sequence. To demonstrate their applicability, we show that these microarrays can differentiate sera from patients infected by dengue virus, related pathogens, or from uninfected patients. We anticipate that the microarray and expression library constructed in this study will find immediate use in further studies of dengue virus and that, more generally, PAGES will become a widely applied method in the clinical characterization of RNA viruses.
Collapse
Affiliation(s)
- Huan Qi
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - Huiqiong Zhou
- §Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guangdong, No. 160, Quanxian Road, Dashi Street, Panyu District, Guangzhou, 511430, China
| | | | - Shujuan Guo
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - Yang Li
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - Nan Wang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education.,‖National Research Institute for Health and Family Planning, No.12 Dahuisi Road, Haidian District, Beijing, 100081, China
| | - Yi Shi
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - Lifeng Lin
- §Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guangdong, No. 160, Quanxian Road, Dashi Street, Panyu District, Guangzhou, 511430, China
| | - Jingfang Wang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - De Wu
- §Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guangdong, No. 160, Quanxian Road, Dashi Street, Panyu District, Guangzhou, 511430, China.,**State Key Laboratory of Oncogenes and Related Genes,Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education, .,¶School of Biomedical Engineering.,**State Key Laboratory of Oncogenes and Related Genes,Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
215
|
Protective Capacity of the Human Anamnestic Antibody Response during Acute Dengue Virus Infection. J Virol 2016; 90:11122-11131. [PMID: 27707930 PMCID: PMC5126370 DOI: 10.1128/jvi.01096-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Half of the world's population is exposed to the risk of dengue virus infection. Although a vaccine for dengue virus is now available in a few countries, its reported overall efficacy of about 60% is not ideal. Protective immune correlates following natural dengue virus infection remain undefined, which makes it difficult to predict the efficacy of new vaccines. In this study, we address the protective capacity of dengue virus-specific antibodies that are produced by plasmablasts a few days after natural secondary infection. Among a panel of 18 dengue virus-reactive human monoclonal antibodies, four groups of antibodies were identified based on their binding properties. While antibodies targeting the fusion loop of the glycoprotein of dengue virus dominated the antibody response, two smaller groups of antibodies bound to previously undescribed epitopes in domain II of the E protein. The latter, largely serotype-cross-reactive antibodies, demonstrated increased stability of binding at pH 5. These antibodies possessed weak to moderate neutralization capacity in vitro but were the most efficacious in promoting the survival of infected mice. Our data suggest that the cross-reactive anamnestic antibody response has a protective capacity despite moderate neutralization in vitro and a moderate decrease of viremia in vivo. IMPORTANCE Antibodies can protect from symptomatic dengue virus infection. However, it is not easy to assess which classes of antibodies provide protection because in vitro assays are not always predictive of in vivo protection. During a repeat infection, dengue virus-specific immune memory cells are reactivated and large amounts of antibodies are produced. By studying antibodies cloned from patients with heterologous secondary infection, we tested the protective value of the serotype-cross-reactive “recall” or “anamnestic” response. We found that results from in vitro neutralization assays did not always correlate with the ability of the antibodies to reduce viremia in a mouse model. In addition, a decrease of viremia in mice did not necessarily improve survival. The most protective antibodies were stable at pH 5, suggesting that antibody binding in the endosomes, after the antibody-virus complex is internalized, might be important to block virus spread in the organism.
Collapse
|
216
|
Neutralization mechanism of a highly potent antibody against Zika virus. Nat Commun 2016; 7:13679. [PMID: 27882950 PMCID: PMC5123051 DOI: 10.1038/ncomms13679] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
The rapid spread of Zika virus (ZIKV), which causes microcephaly and Guillain-Barré syndrome, signals an urgency to identify therapeutics. Recent efforts to rescreen dengue virus human antibodies for ZIKV cross-neutralization activity showed antibody C10 as one of the most potent. To investigate the ability of the antibody to block fusion, we determined the cryoEM structures of the C10-ZIKV complex at pH levels mimicking the extracellular (pH8.0), early (pH6.5) and late endosomal (pH5.0) environments. The 4.0 Å resolution pH8.0 complex structure shows that the antibody binds to E proteins residues at the intra-dimer interface, and the virus quaternary structure-dependent inter-dimer and inter-raft interfaces. At pH6.5, antibody C10 locks all virus surface E proteins, and at pH5.0, it locks the E protein raft structure, suggesting that it prevents the structural rearrangement of the E proteins during the fusion event-a vital step for infection. This suggests antibody C10 could be a good therapeutic candidate.
Collapse
|
217
|
In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine. NPJ Vaccines 2016; 1:16021. [PMID: 29263859 PMCID: PMC5707885 DOI: 10.1038/npjvaccines.2016.21] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/09/2016] [Accepted: 10/09/2016] [Indexed: 12/24/2022] Open
Abstract
Significant concerns have been raised owing to the rapid global spread of infection and disease caused by the mosquito-borne Zika virus (ZIKV). Recent studies suggest that ZIKV can also be transmitted sexually, further increasing the exposure risk for this virus. Associated with this spread is a dramatic increase in cases of microcephaly and additional congenital abnormalities in infants of ZIKV-infected mothers, as well as a rise in the occurrence of Guillain Barre' syndrome in infected adults. Importantly, there are no licensed therapies or vaccines against ZIKV infection. In this study, we generate and evaluate the in vivo efficacy of a novel, synthetic, DNA vaccine targeting the pre-membrane+envelope proteins (prME) of ZIKV. Following initial in vitro development and evaluation studies of the plasmid construct, mice and non-human primates were immunised with this prME DNA-based immunogen through electroporation-mediated enhanced DNA delivery. Vaccinated animals were found to generate antigen-specific cellular and humoral immunity and neutralisation activity. In mice lacking receptors for interferon (IFN)-α/β (designated IFNAR-/-) immunisation with this DNA vaccine induced, following in vivo viral challenge, 100% protection against infection-associated weight loss or death in addition to preventing viral pathology in brain tissue. In addition, passive transfer of non-human primate anti-ZIKV immune serum protected IFNAR-/- mice against subsequent viral challenge. This study in NHP and in a pathogenic mouse model supports the importance of immune responses targeting prME in ZIKV infection and suggests that additional research on this vaccine approach may have relevance for ZIKV control and disease prevention in humans.
Collapse
|
218
|
Fleith RC, Lobo FP, Dos Santos PF, Rocha MM, Bordignon J, Strottmann DM, Patricio DO, Pavanelli WR, Lo Sarzi M, Santos CND, Ferguson BJ, Mansur DS. Genome-wide analyses reveal a highly conserved Dengue virus envelope peptide which is critical for virus viability and antigenic in humans. Sci Rep 2016; 6:36339. [PMID: 27805018 PMCID: PMC5090869 DOI: 10.1038/srep36339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Targeting regions of proteins that show a high degree of structural conservation has been proposed as a method of developing immunotherapies and vaccines that may bypass the wide genetic variability of RNA viruses. Despite several attempts, a vaccine that protects evenly against the four circulating Dengue virus (DV) serotypes remains elusive. To find critical conserved amino acids in dengue viruses, 120 complete genomes of each serotype were selected at random and used to calculate conservation scores for nucleotide and amino acid sequences. The identified peptide sequences were analysed for their structural conservation and localisation using crystallographic data. The longest, surface exposed, highly conserved peptide of Envelope protein was found to correspond to amino acid residues 250 to 270. Mutation of this peptide in DV1 was lethal, since no replication of the mutant virus was detected in human cells. Antibodies against this peptide were detected in DV naturally infected patients indicating its potential antigenicity. Hence, this study has identified a highly conserved, critical peptide in DV that is a target of antibodies in infected humans.
Collapse
Affiliation(s)
- Renata C Fleith
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Francisco P Lobo
- Department of General Biology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula F Dos Santos
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mariana M Rocha
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliano Bordignon
- Laboratory of Molecular Virology, Instituto Carlos Chagas, Curitiba, Brazil
| | - Daisy M Strottmann
- Laboratory of Molecular Virology, Instituto Carlos Chagas, Curitiba, Brazil
| | - Daniel O Patricio
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | - Claudia N D Santos
- Laboratory of Molecular Virology, Instituto Carlos Chagas, Curitiba, Brazil
| | | | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
219
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
220
|
Ripoll DR, Khavrutskii I, Wallqvist A, Chaudhury S. Modeling the Role of Epitope Arrangement on Antibody Binding Stoichiometry in Flaviviruses. Biophys J 2016; 111:1641-1654. [PMID: 27760352 DOI: 10.1016/j.bpj.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 02/03/2023] Open
Abstract
Cryo-electron-microscopy (cryo-EM) structures of flaviviruses reveal significant variation in epitope occupancy across different monoclonal antibodies that have largely been attributed to epitope-level differences in conformation or accessibility that affect antibody binding. The consequences of these variations for macroscopic properties such as antibody binding and neutralization are the results of the law of mass action-a stochastic process of innumerable binding and unbinding events between antibodies and the multiple binding sites on the flavivirus in equilibrium-that cannot be directly imputed from structure alone. We carried out coarse-grained spatial stochastic binding simulations for nine flavivirus antibodies with epitopes defined by cryo-EM or x-ray crystallography to assess the role of epitope spatial arrangement on antibody-binding stoichiometry, occupancy, and neutralization. In our simulations, all epitopes were equally competent for binding, representing the upper limit of binding stoichiometry that results from epitope spatial arrangement alone. Surprisingly, our simulations closely reproduced the relative occupancy and binding stoichiometry observed in cryo-EM, without having to account for differences in epitope accessibility or conformation, suggesting that epitope spatial arrangement alone may be sufficient to explain differences in binding occupancy and stoichiometry between antibodies. Furthermore, we found that there was significant heterogeneity in binding configurations even at saturating antibody concentrations, and that bivalent antibody binding may be more common than previously thought. Finally, we propose a structure-based explanation for the stoichiometric threshold model of neutralization.
Collapse
Affiliation(s)
- Daniel R Ripoll
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ilja Khavrutskii
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Sidhartha Chaudhury
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland.
| |
Collapse
|
221
|
Dowd KA, Ko SY, Morabito KM, Yang ES, Pelc RS, DeMaso CR, Castilho LR, Abbink P, Boyd M, Nityanandam R, Gordon DN, Gallagher JR, Chen X, Todd JP, Tsybovsky Y, Harris A, Huang YJS, Higgs S, Vanlandingham DL, Andersen H, Lewis MG, De La Barrera R, Eckels KH, Jarman RG, Nason MC, Barouch DH, Roederer M, Kong WP, Mascola JR, Pierson TC, Graham BS. Rapid development of a DNA vaccine for Zika virus. Science 2016; 354:237-240. [PMID: 27708058 PMCID: PMC5304212 DOI: 10.1126/science.aai9137] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/15/2016] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) was identified as a cause of congenital disease during the explosive outbreak in the Americas and Caribbean that began in 2015. Because of the ongoing fetal risk from endemic disease and travel-related exposures, a vaccine to prevent viremia in women of childbearing age and their partners is imperative. We found that vaccination with DNA expressing the premembrane and envelope proteins of ZIKV was immunogenic in mice and nonhuman primates, and protection against viremia after ZIKV challenge correlated with serum neutralizing activity. These data not only indicate that DNA vaccination could be a successful approach to protect against ZIKV infection, but also suggest a protective threshold of vaccine-induced neutralizing activity that prevents viremia after acute infection.
Collapse
Affiliation(s)
- Kimberly A Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sung-Youl Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca S Pelc
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christina R DeMaso
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leda R Castilho
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Federal University of Rio de Janeiro, COPPE (Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia), Chemical Engineering Program, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael Boyd
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ramya Nityanandam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David N Gordon
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Robert Gallagher
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Audray Harris
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Rafael De La Barrera
- Translational Medicine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kenneth H Eckels
- Translational Medicine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
222
|
Pierson TC, Graham BS. Zika Virus: Immunity and Vaccine Development. Cell 2016; 167:625-631. [PMID: 27693357 DOI: 10.1016/j.cell.2016.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/30/2022]
Abstract
The emergence of Zika virus in the Americas and Caribbean created an urgent need for vaccines to reduce transmission and prevent disease, particularly the devastating neurodevelopmental defects that occur in utero. Rapid advances in Zika immunity and the development of vaccine candidates provide cautious optimism that preventive measures are possible.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
223
|
Zhao Y, Li L, Ma D, Luo J, Ma Z, Wang X, Pan Y, Chen J, Xi J, Yang J, Qiu L, Bai C, Jiang L, Shan X, Sun Q. Molecular Characterization and Viral Origin of the 2015 Dengue Outbreak in Xishuangbanna, Yunnan, China. Sci Rep 2016; 6:34444. [PMID: 27681163 PMCID: PMC5041078 DOI: 10.1038/srep34444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
A total of 1067 serum samples were collected from febrile patients in Xishuangbanna, Yunnan, 2015. Of these, 852 cases were confirmed to be dengue NS1-positive. 76 structural protein genes were sequenced through RT-PCR based on the viral RNAs extracted from serum samples. Phylogenetic analysis revealed that all strains were classified as cosmopolitan genotype of DENV-2. After comparing with the DENV-2SS, 173 base substitutions were found in 76 sequences, resulting in 43 nonsynonymous mutations, of which 22 mutations existed among all samples. According to secondary structure prediction, 8 new possible nucelotide/protein binding sites were found and another 4 sites were lost among the 775 amino acids of DENV structural proteins as compared with DENV-2SS. Meanwhile, 6 distinct amino acid changes were found in the helix and strand regions, and the distribution of the exposed and buried regions was slightly altered. The results indicated that the epidemic dengue strains of Xishuangbanna in 2015 are most similar to the Indian strain in 2001 and the Sri Lankan strain in 2004. Moreover, it also show a very strong similarity to the epidemic strains of Fujian province in 1999 and 2010, which show that there is an internal recycling epidemic trend of DENV in China.
Collapse
Affiliation(s)
- Yujiao Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Lihua Li
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
- Kunming Medical University, Kunming 650500, PR China
| | - Zhiqiang Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Jiajia Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Lijuan Qiu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Chunhai Bai
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Liming Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| |
Collapse
|
224
|
Dai L, Wang Q, Qi J, Shi Y, Yan J, Gao GF. Molecular basis of antibody-mediated neutralization and protection against flavivirus. IUBMB Life 2016; 68:783-91. [DOI: 10.1002/iub.1556] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
| | - Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Yi Shi
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China
| | - George F. Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China. National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC); Beijing China
| |
Collapse
|
225
|
Abstract
Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Alienys Izquierdo
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Eric Martinez
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
226
|
Zhao H, Fernandez E, Dowd KA, Speer SD, Platt DJ, Gorman MJ, Govero J, Nelson CA, Pierson TC, Diamond MS, Fremont DH. Structural Basis of Zika Virus-Specific Antibody Protection. Cell 2016; 166:1016-1027. [PMID: 27475895 PMCID: PMC4983199 DOI: 10.1016/j.cell.2016.07.020] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022]
Abstract
Zika virus (ZIKV) infection during pregnancy has emerged as a global public health problem because of its ability to cause severe congenital disease. Here, we developed six mouse monoclonal antibodies (mAbs) against ZIKV including four (ZV-48, ZV-54, ZV-64, and ZV-67) that were ZIKV specific and neutralized infection of African, Asian, and American strains to varying degrees. X-ray crystallographic and competition binding analyses of Fab fragments and scFvs defined three spatially distinct epitopes in DIII of the envelope protein corresponding to the lateral ridge (ZV-54 and ZV-67), C-C' loop (ZV-48 and ZV-64), and ABDE sheet (ZV-2) regions. In vivo passive transfer studies revealed protective activity of DIII-lateral ridge specific neutralizing mAbs in a mouse model of ZIKV infection. Our results suggest that DIII is targeted by multiple type-specific antibodies with distinct neutralizing activity, which provides a path for developing prophylactic antibodies for use in pregnancy or designing epitope-specific vaccines against ZIKV.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Estefania Fernandez
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott D Speer
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Derek J Platt
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Matthew J Gorman
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher A Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael S Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
227
|
Krauss IJ. Antibody recognition of HIV and dengue glycoproteins. Glycobiology 2016; 26:813-9. [PMID: 26941393 PMCID: PMC5018046 DOI: 10.1093/glycob/cww031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/12/2016] [Accepted: 02/29/2016] [Indexed: 01/13/2023] Open
Abstract
The last 6 years have witnessed an explosion of discoveries at the interface of glycobiology and immunology. Binding of clustered oligosaccharides has turned out to be a very frequent mode by which human antibodies have developed broadly neutralizing activity against HIV. This mini-review will cover many recent developments in the HIV antibody field, as well as emerging data about Dengue broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
228
|
Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus. mBio 2016; 7:mBio.01123-16. [PMID: 27435464 PMCID: PMC4958264 DOI: 10.1128/mbio.01123-16] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Zika virus (ZIKV) is a mosquito-borne flavivirus responsible for thousands of cases of severe fetal malformations and neurological disease since its introduction to Brazil in 2013. Antibodies to flaviviruses can be protective, resulting in lifelong immunity to reinfection by homologous virus. However, cross-reactive antibodies can complicate flavivirus diagnostics and promote more severe disease, as noted after serial dengue virus (DENV) infections. The endemic circulation of DENV in South America and elsewhere raises concerns that preexisting flavivirus immunity may modulate ZIKV disease and transmission potential. Here, we report on the ability of human monoclonal antibodies and immune sera derived from dengue patients to neutralize contemporary epidemic ZIKV strains. We demonstrate that a class of human monoclonal antibodies isolated from DENV patients neutralizes ZIKV in cell culture and is protective in a lethal murine model. We also tested a large panel of convalescent-phase immune sera from humans exposed to primary and repeat DENV infection. Although ZIKV is most closely related to DENV compared to other human-pathogenic flaviviruses, most DENV immune sera (73%) failed to neutralize ZIKV, while others had low (50% effective concentration [EC50], <1:100 serum dilution; 18%) or moderate to high (EC50, >1:100 serum dilution; 9%) levels of cross-neutralizing antibodies. Our results establish that ZIKV and DENV share epitopes that are targeted by neutralizing, protective human antibodies. The availability of potently neutralizing human monoclonal antibodies provides an immunotherapeutic approach to control life-threatening ZIKV infection and also points to the possibility of repurposing DENV vaccines to induce cross-protective immunity to ZIKV. IMPORTANCE ZIKV is an emerging arbovirus that has been associated with severe neurological birth defects and fetal loss in pregnant women and Guillain-Barré syndrome in adults. Currently, there is no vaccine or therapeutic for ZIKV. The identification of a class of antibodies (envelope dimer epitope 1 [EDE1]) that potently neutralizes ZIKV in addition to all four DENV serotypes points to a potential immunotherapeutic to combat ZIKV. This is especially salient given the precedent of antibody therapy to treat pregnant women infected with other viruses associated with microcephaly, such as cytomegalovirus and rubella virus. Furthermore, the identification of a functionally conserved epitope between ZIKV and DENV raises the possibility that a vaccine may be able to elicit neutralizing antibodies against both viruses.
Collapse
|
229
|
Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S, Vanzetta F, Minola A, Jaconi S, Mele F, Foglierini M, Pedotti M, Simonelli L, Dowall S, Atkinson B, Percivalle E, Simmons CP, Varani L, Blum J, Baldanti F, Cameroni E, Hewson R, Harris E, Lanzavecchia A, Sallusto F, Corti D. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 2016; 353:823-6. [PMID: 27417494 DOI: 10.1126/science.aaf8505] [Citation(s) in RCA: 598] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/05/2016] [Indexed: 12/29/2022]
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus with homology to Dengue virus (DENV), has become a public health emergency. By characterizing memory lymphocytes from ZIKV-infected patients, we dissected ZIKV-specific and DENV-cross-reactive immune responses. Antibodies to nonstructural protein 1 (NS1) were largely ZIKV-specific and were used to develop a serological diagnostic tool. In contrast, antibodies against E protein domain I/II (EDI/II) were cross-reactive and, although poorly neutralizing, potently enhanced ZIKV and DENV infection in vitro and lethally enhanced DENV disease in mice. Memory T cells against NS1 or E proteins were poorly cross-reactive, even in donors preexposed to DENV. The most potent neutralizing antibodies were ZIKV-specific and targeted EDIII or quaternary epitopes on infectious virus. An EDIII-specific antibody protected mice from lethal ZIKV infection, illustrating the potential for antibody-based therapy.
Collapse
Affiliation(s)
- Karin Stettler
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | | | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Victoria Graham
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland. Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Siro Bianchi
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | | | - Andrea Minola
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Stuart Dowall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Barry Atkinson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Cameron P Simmons
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, UK. Oxford University Clinical Research Unit, Center for Tropical Medicine, Ho Chi Minh City, Vietnam. Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, 792 Elizabeth Street, Melbourne VIC 3000, Australia
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Johannes Blum
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland. University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | | | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland. Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland.
| | - Davide Corti
- Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland.
| |
Collapse
|
230
|
Inhibitory Antibodies Targeting Emerging Viruses: Advancements and Mechanisms. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:535-9. [PMID: 27226280 DOI: 10.1128/cvi.00136-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
From Ebola virus outbreaks in Western Africa to the introduction of chikungunya and Zika viruses in the Americas, new and neglected viruses continue to emerge and spread around the world. Due to a lack of existing vaccines or specific therapeutics, little other than supportive care and attempts to interrupt transmission can be provided during initial outbreaks. This has prompted a shift in vaccine design and development to identify novel epitopes and mechanisms of protection that may offer a broader range of protection against groups or whole families of viruses. Receptor-binding domains and other motifs within viral envelope proteins represent one excellent opportunity to target communal epitopes shared by related viruses. Similarly, for viruses where envelope participates in driving viral egress from infected cells, shared epitopes need to be identified to guide the development of broadly protective antibodies and vaccines. Here, we discuss recent advances in our understanding of broadly protective humoral responses for emerging viruses.
Collapse
|
231
|
Yao G, Zhang S, Mahrhold S, Lam KH, Stern D, Bagramyan K, Perry K, Kalkum M, Rummel A, Dong M, Jin R. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat Struct Mol Biol 2016; 23:656-62. [PMID: 27294781 PMCID: PMC5033645 DOI: 10.1038/nsmb.3245] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/13/2016] [Indexed: 02/01/2023]
Abstract
Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-Å-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C. We found that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan-which is conserved in all SV2 isoforms across vertebrates-is essential for BoNT/A1 binding to neurons and for its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an antibotulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications, thereby achieving highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors.
Collapse
Affiliation(s)
- Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Sicai Zhang
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan Mahrhold
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kwok-ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Daniel Stern
- Centre for Biological Threats and Special Pathogens - Biological Toxins (ZBS3), Robert Koch-Institut, Berlin, Germany
| | - Karine Bagramyan
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois USA
| | - Markus Kalkum
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California USA
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| |
Collapse
|
232
|
Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau VM, Malasit P, Rey FA, Mongkolsapaya J, Screaton GR. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol 2016; 17:1102-8. [PMID: 27339099 PMCID: PMC4994874 DOI: 10.1038/ni.3515] [Citation(s) in RCA: 672] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of ZIKV in South America has led to widespread concern with reports of neurological sequelae ranging from Guillain Barré syndrome to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue, a flavivirus closely related to ZIKV. Here we investigate the serological crossreaction between the two viruses. Dengue immune plasma substantially crossreacted with ZIKV and could drive antibody-dependent enhancement of ZIKV infection. Using a panel of human anti-dengue monoclonal antibodies we showed that most antibodies reacting to dengue envelope protein also reacted to ZIKV. Antibodies to linear epitopes including the immunodominant fusion loop epitope while able to bind ZIKV could not neutralize the virus but instead promoted ADE. These data indicate that dengue immunity may drive higher ZIKV replication and have clear implications for disease pathogenesis and future ZIKV and dengue vaccine programs.
Collapse
Affiliation(s)
- Wanwisa Dejnirattisai
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, UK
| | - Piyada Supasa
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, UK.,Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand.,Graduate Program in Immunology, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wiyada Wongwiwat
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, UK
| | - Alexander Rouvinski
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, Paris, France.,CNRS UMR 3569 Virologie, Paris, France
| | - Giovanna Barba-Spaeth
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, Paris, France.,CNRS UMR 3569 Virologie, Paris, France
| | - Thaneeya Duangchinda
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anavaj Sakuntabhai
- Institut Pasteur, Functional Genetics of Infectious Diseases Unit, Paris, France.,CNRS URA3012, Paris, France
| | - Van-Mai Cao-Lormeau
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | - Prida Malasit
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand.,Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Felix A Rey
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, Paris, France.,CNRS UMR 3569 Virologie, Paris, France
| | - Juthathip Mongkolsapaya
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, UK.,Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand
| | - Gavin R Screaton
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, UK
| |
Collapse
|
233
|
Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 2016; 536:48-53. [PMID: 27338953 DOI: 10.1038/nature18938] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain-Barré syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation. Comparison of the Zika and dengue virus immunocomplexes provides a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and dengue virus infections.
Collapse
|
234
|
Messer WB, Yount BL, Royal SR, de Alwis R, Widman DG, Smith SA, Crowe JE, Pfaff JM, Kahle KM, Doranz BJ, Ibarra KD, Harris E, de Silva AM, Baric RS. Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1. J Virol 2016; 90:5090-5097. [PMID: 26962223 PMCID: PMC4859728 DOI: 10.1128/jvi.00155-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. IMPORTANCE Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus have been incompletely described. Here we map a region on dengue virus serotype 3 recognized by the human neutralizing antibody 5J7 and then test the functional significance of this region by transplanting it into a serotype 1 virus. Our studies demonstrate a region on dengue virus necessary for 5J7 binding and neutralization. Our work also demonstrates the technical feasibility of engineering dengue viruses to display targets of protective antibodies. This technology can be used to develop new dengue vaccines and diagnostic assays.
Collapse
Affiliation(s)
- William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
- Division of Infectious Diseases, Department of Medicine, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Boyd L Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott R Royal
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruklanthi de Alwis
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Douglas G Widman
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott A Smith
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | - Kristie D Ibarra
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
235
|
Hushegyi A, Pihíková D, Bertok T, Adam V, Kizek R, Tkac J. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens Bioelectron 2016; 79:644-9. [PMID: 26765527 PMCID: PMC4883649 DOI: 10.1016/j.bios.2015.12.102] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/19/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
An ultrasensitive impedimetric glycan-based biosensor for reliable and selective detection of inactivated, but intact influenza viruses H3N2 was developed. Such glycan-based approach has a distinct advantage over antibody-based detection of influenza viruses since glycans are natural viral receptors with a possibility to selectively distinguish between potentially pathogenic influenza subtypes by the glycan-based biosensors. Build-up of the biosensor was carefully optimized with atomic force microscopy applied for visualization of the biosensor surface after binding of viruses with the topology of an individual viral particle H3N2 analyzed. The glycan biosensor could detect a glycan binding lectin with a limit of detection (LOD) of 5 aM. The biosensor was finally applied for analysis of influenza viruses H3N2 with LOD of 13 viral particles in 1 μl, what is the lowest LOD for analysis of influenza viral particles by the glycan-based device achieved so far. The biosensor could detect H3N2 viruses selectively with a sensitivity ratio of 30 over influenza viruses H7N7. The impedimetric biosensor presented here is the most sensitive glycan-based device for detection of influenza viruses and among the most sensitive antibody or aptamer based biosensor devices.
Collapse
Affiliation(s)
- András Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Dominika Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - René Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
236
|
Dai L, Song J, Lu X, Deng YQ, Musyoki AM, Cheng H, Zhang Y, Yuan Y, Song H, Haywood J, Xiao H, Yan J, Shi Y, Qin CF, Qi J, Gao GF. Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host Microbe 2016; 19:696-704. [PMID: 27158114 DOI: 10.1016/j.chom.2016.04.013] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a current global public health concern. The flavivirus envelope (E) glycoprotein is responsible for virus entry and represents a major target of neutralizing antibodies for other flaviviruses. Here, we report the structures of ZIKV E protein at 2.0 Å and in complex with a flavivirus broadly neutralizing murine antibody 2A10G6 at 3.0 Å. ZIKV-E resembles all the known flavivirus E structures but contains a unique, positively charged patch adjacent to the fusion loop region of the juxtaposed monomer, which may influence host attachment. The ZIKV-E-2A10G6 complex structure reveals antibody recognition of a highly conserved fusion loop. 2A10G6 binds to ZIKV-E with high affinity in vitro and neutralizes currently circulating ZIKV strains in vitro and in mice. The E protein fusion loop epitope represents a potential candidate for therapeutic antibodies against ZIKV.
Collapse
Affiliation(s)
- Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xishan Lu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Abednego Moki Musyoki
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijun Cheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuan Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joel Haywood
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Microbial Physiology and Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China.
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100071, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
237
|
|
238
|
Du J, Chen Z, Zhang T, Wang J, Jin Q. Inhibition of dengue virus replication by diisopropyl chrysin-7-yl phosphate. SCIENCE CHINA-LIFE SCIENCES 2016; 59:832-8. [PMID: 27106619 DOI: 10.1007/s11427-016-5050-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 12/19/2022]
Abstract
Dengue fever is a tropical disease and caused by dengue virus (DENV), which is transmitted by mosquitoes and infects about 400 million people annually. With the development of international trade and travel, China is facing a growing threat. Over 40 thousands of people were infected during the 2014 DENV outbreak in Guangdong. Neither licensed vaccine nor therapeutic drug has been available. In this report, we isolated two clinical DENV strains. The full-length genome was sequenced and characterized. We also applied a flavonoid, CPI, into an anti-DENV assay. Replication of viral RNA and expression of viral protein was all strongly inhibited. These results indicated that CPI may serve as potential protective agents in the treatment of patients with chronic DENV infection.
Collapse
Affiliation(s)
- Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Zhe Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Ting Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
239
|
Pihikova D, Pakanova Z, Nemcovic M, Barath P, Belicky S, Bertok T, Kasak P, Mucha J, Tkac J. Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics 2016; 16:3085-3095. [PMID: 26920336 DOI: 10.1002/pmic.201500463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
The construction of a sensitive electrochemical lectin-based immunosensor for detection of a prostate specific antigen (PSA) is shown here. Three lectins with different carbohydrate specificities were used in this study to glycoprofile PSA, which is the most common biomarker for prostate cancer (PCa) diagnosis. The biosensor showed presence of α-L-fucose and α-(2,6)-linked terminal sialic acid within PSA´s glycan with high abundance, while only traces of α-(2,3)-linked terminal sialic acid were found. MALDI TOF/TOF mass spectrometry was applied to validate results obtained by the biosensor with a focus on determination of a type of sialic acid linkage by two methods. The first direct comparison of electrochemical immunosensor assay employing lectins for PSA glycoprofiling with mass spectrometric techniques is provided here and both methods show significant agreement. Thus, electrochemical lectin-based immunosensor has potential to be applied for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Dominika Pihikova
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Zuzana Pakanova
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Marek Nemcovic
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Barath
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Stefan Belicky
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Tomas Bertok
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Mucha
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| |
Collapse
|
240
|
Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection. Cell 2016; 164:392-405. [PMID: 26806128 DOI: 10.1016/j.cell.2015.12.022] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/17/2015] [Accepted: 12/03/2015] [Indexed: 11/21/2022]
Abstract
Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV), and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses, including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections.
Collapse
|
241
|
Abstract
Dengue is an emerging threat to billions of people worldwide. In the last 20 years, the incidence has increased four-fold and this trend appears to be continuing. Caused by one of four viral serotypes, dengue can present as a wide range of clinical phenotypes with the severe end of the spectrum being defined by a syndrome of capillary leak, coagulopathy, and organ impairment. The pathogenesis of severe disease is thought to be in part immune mediated, but the exact mechanisms remain to be defined. The current treatment of dengue relies on supportive measures with no licensed therapeutics available to date. There have been recent advances in our understanding of a number of areas of dengue research, of which the following will be discussed in this review: the drivers behind the global dengue pandemic, viral structure and epitope binding, risk factors for severe disease and its pathogenesis, as well as the findings of recent clinical trials including therapeutics and vaccines. We conclude with current and future dengue control measures and key areas for future research.
Collapse
Affiliation(s)
- Sophie Yacoub
- Department of medicine, Imperial College London, London, UK; Oxford University Clinical research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Juthathip Mongkolsapaya
- Department of medicine, Imperial College London, London, UK; Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Gavin Screaton
- Department of medicine, Imperial College London, London, UK
| |
Collapse
|
242
|
The development of therapeutic antibodies against dengue virus. Antiviral Res 2016; 128:7-19. [PMID: 26794397 DOI: 10.1016/j.antiviral.2016.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
Dengue virus, a positive-sense RNA virus, is one of the major human pathogens transmitted by mosquitoes. However, no fully effective licensed dengue vaccines or therapeutics are currently available. Several potent neutralizing antibodies against DENV have been isolated from mice and humans, and the characterization of their properties by biochemical and biophysical methods have revealed important insights for development of therapeutic antibodies. In this review, we summarize recently reported antibody-antigen complex structures, their likely neutralization mechanisms and enhancement propensities, as well as their prophylactic and therapeutic capabilities in mouse models. This article forms part of a symposium on flavivirus drug discovery in the journal Antiviral Research.
Collapse
|
243
|
Lok SM. The Interplay of Dengue Virus Morphological Diversity and Human Antibodies. Trends Microbiol 2015; 24:284-293. [PMID: 26747581 DOI: 10.1016/j.tim.2015.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022]
Abstract
Dengue virus (DENV) infects ∼400 million people annually, and there is no available vaccine or therapeutics. It is not clear why candidate vaccines provide only modest protection. In addition to the presence of four different dengue serotypes, there is also structural heterogeneity in DENV infectious particles, even within a strain. This severely complicates the development of vaccines and therapeutics. The currently known different morphologies of DENV are: immature, partially mature, compact mature, and expanded mature forms of the virus. In this review I describe these forms of the virus, their infectivity, and how antibodies could recognize these morphologies. I also discuss possible vaccine and antibody therapeutic formulations to protect against all morphologies.
Collapse
Affiliation(s)
- Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.
| |
Collapse
|
244
|
Acosta EG, Bartenschlager R. Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development. Expert Rev Vaccines 2015; 15:467-82. [PMID: 26577689 DOI: 10.1586/14760584.2016.1121814] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Highly effective prophylactic vaccines for flaviviruses including yellow fever virus, tick-borne encephalitis virus and Japanese encephalitis virus are currently in use. However, the development of a dengue virus (DENV) vaccine has been hampered by the requirement of simultaneous protection against four distinct serotypes and the threat that DENV-specific antibodies might either mediate neutralization or, on the contrary, exacerbate disease through the phenomenon of antibody-dependent enhancement (ADE) of infection. Therefore, understanding the cellular, biochemical and molecular basis of antibody-mediated neutralization and ADE are fundamental for the development of a safe DENV vaccine. Here we summarize current structural and mechanistic knowledge underlying these phenomena. We also review recent results demonstrating that the humoral immune response triggered during natural DENV infection is able to generate neutralizing antibodies binding complex quaternary epitopes only present on the surface of intact virions.
Collapse
Affiliation(s)
- Eliana G Acosta
- a Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany
| | - Ralf Bartenschlager
- a Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany.,b German Center for Infection Research , Heidelberg University , Heidelberg , Germany
| |
Collapse
|
245
|
Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst 2015; 141:1044-51. [PMID: 26647853 DOI: 10.1039/c5an02322j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study presents a proof-of-concept for the development of an impedimetric biosensor for ultra-sensitive glycoprofiling of prostate specific antigen (PSA). The biosensor exhibits three unique characteristics: (1) analysis of PSA with limit of detection (LOD) down to 4 aM; (2) analysis of the glycan part of PSA with LOD down to 4 aM level and; (3) both assays (i.e., PSA quantification and PSA glycoprofiling) can be performed on the same interface due to label-free analysis.
Collapse
Affiliation(s)
- D Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic.
| | | | | | | | | |
Collapse
|
246
|
Antibody Binding Modulates Conformational Exchange in Domain III of Dengue Virus E Protein. J Virol 2015; 90:1802-11. [PMID: 26637461 DOI: 10.1128/jvi.02314-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Domain III of dengue virus E protein (DIII) participates in the recognition of cell receptors and in structural rearrangements required for membrane fusion and ultimately viral infection; furthermore, it contains epitopes for neutralizing antibodies and has been considered a potential vaccination agent. In this work, we addressed various structural aspects of DIII and their relevance for both the dengue virus infection mechanism and antibody recognition. We provided a dynamic description of DIII at physiological and endosomal pHs and in complex with the neutralizing human antibody DV32.6. We observed conformational exchange in the isolated DIII, in regions important for the packing of E protein dimers on the virus surface. This conformational diversity is likely to facilitate the partial detachment of DIII from the other E protein domains, which is required to achieve fusion to the host cellular membranes and to expose the epitopes of many anti-DIII antibodies. A comparison of DIII of two dengue virus serotypes revealed many common features but also some possibly unexpected differences. Antibody binding to DIII of dengue virus serotype 4 attenuated the conformational exchange in the epitope region but, surprisingly, generated exchange in other parts of DIII through allosteric effects. IMPORTANCE Many studies have provided extensive structural information on the E protein and particularly on DIII, also in complex with antibodies. However, there is very scarce information regarding the molecular dynamics of DIII, and almost nothing is available on the dynamic effect of antibody binding, especially at the quantitative level. This work provides one of the very rare descriptions of the effect of antibody binding on antigen dynamics.
Collapse
|
247
|
New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 2015; 15:745-59. [DOI: 10.1038/nri3916] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
248
|
Abstract
Dengue virus is the leading cause of vector-borne viral disease with four serotypes in circulation. Vaccine development has been complicated by the potential for both protection and disease enhancement during heterologous infection. Secondary infection triggers cross-reactive immune memory responses that have varying functional and epitope specificities that determine protection or risk. Strongly neutralizing antibodies to quaternary epitopes may be especially important for virus neutralization. Cell-mediated immunity dominated by Th1 functions may also play an important role. Determining an immune correlate of protection or risk would be highly beneficial for vaccine development but is hampered by mechanistic uncertainties and assay limitations. Clinical efficacy trials and human infection models along with a systems approach may provide future opportunities to elucidate such correlates.
Collapse
Affiliation(s)
- Anon Srikiatkhachorn
- a Division of Infectious Diseases and Immunology, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - In-Kyu Yoon
- b Dengue Vaccine Initiative , International Vaccine Institute, SNU Research Park , Seoul , Korea
| |
Collapse
|
249
|
Wang C, Katzelnick LC, Montoya M, Hue KDT, Simmons CP, Harris E. Evolutionarily Successful Asian 1 Dengue Virus 2 Lineages Contain One Substitution in Envelope That Increases Sensitivity to Polyclonal Antibody Neutralization. J Infect Dis 2015; 213:975-84. [PMID: 26582957 DOI: 10.1093/infdis/jiv536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022] Open
Abstract
The 4 dengue virus serotypes (DENV-1-4) cause the most prevalent mosquito-borne viral disease of humans worldwide. DENV-2 Asian 1 (A1) genotype viruses replaced the Asian-American (AA) genotype in Vietnam and Cambodia, after which A1 viruses containing Q or M at envelope (E) residue 160 became more prevalent than those with residue 160K in both countries (2008-2011). We investigated whether these substitutions conferred a fitness advantage by measuring neutralizing antibody titer against reporter virus particles (RVPs) representing AA, A1-160K, A1-160Q, and A1-160M, using patient sera from Vietnam and a well-characterized Nicaraguan cohort. Surprisingly, we found that A1-160Q and A1-160M RVPs were better neutralized by heterologous antisera than A1-160K. Despite this, Vietnamese patients infected with A1-160Q or A1-160M viruses had higher viremia levels than those infected with A1-160K. We thus found that independent lineages in Vietnam and Cambodia acquired a substitution in E that significantly increased polyclonal neutralization but nonetheless were successful in disseminating and infecting human hosts.
Collapse
Affiliation(s)
- Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley Department of Zoology, Center for Pathogen Evolution, University of Cambridge
| | - Magelda Montoya
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Kien Duong Thi Hue
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom Oxford University Clinical Research Unit, Center for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - Cameron P Simmons
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom Oxford University Clinical Research Unit, Center for Tropical Medicine, Ho Chi Minh City, Vietnam Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, Australia
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| |
Collapse
|
250
|
Simmons CP, McPherson K, Van Vinh Chau N, Hoai Tam DT, Young P, Mackenzie J, Wills B. Recent advances in dengue pathogenesis and clinical management. Vaccine 2015; 33:7061-8. [PMID: 26458808 DOI: 10.1016/j.vaccine.2015.09.103] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
This review describes and commentates on recent advances in the understanding of dengue pathogenesis and immunity, plus clinical research on vaccines and therapeutics. We expand specifically on the role of the dermis in dengue virus infection, the contribution of cellular and humoral immune responses to pathogenesis and immunity, NS1 and mechanisms of virus immune evasion. Additionally we review a series of therapeutic intervention trials for dengue, as well as recent clinical research aimed at improving clinical diagnosis, risk prediction and disease classification.
Collapse
Affiliation(s)
- Cameron P Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet street, District 5, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Kirsty McPherson
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nguyen Van Vinh Chau
- Hospital for Tropical Diseases, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Viet Nam
| | - D T Hoai Tam
- University of Medicine and Pharmacy, 217 Hong Bang, District 5, Ho Chi Minh City, Viet Nam
| | - Paul Young
- School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| | - Jason Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet street, District 5, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|